the magnetoelastic paradox m. rotter, a. barcza, ipc, universität wien, austria h. michor, tu-wien,...

33
The Magnetoelastic Paradox M. Rotter , A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany M. Zschintzsch, ISP TU-Dresden, Germany B. Beuneu, LLB – Saclay, France M el Massalami, UFRJ, Brazil J. Prokleska, Charles University, Prague, CZ A. Kreyssig, IOWA State University, Ames, US

Upload: sean-bradley

Post on 26-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

The Magnetoelastic ParadoxM. Rotter, A. Barcza, IPC, Universität Wien, Austria

H. Michor, TU-Wien, Austria

A. Lindbaum, FH-Linz, Austria

M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany

M. Zschintzsch, ISP TU-Dresden, Germany

B. Beuneu, LLB – Saclay, France

M el Massalami, UFRJ, Brazil

J. Prokleska, Charles University, Prague, CZ

A. Kreyssig, IOWA State University, Ames, US

Page 2: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

2M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

1. Magnetostriction Measurements

2. Magnetostriction in the Standard

Model of Rare Earth Magnetism

3. The Magnetoelastic Paradox (MEP)

4. Experimental Evidence for the MEP

in Gd Compounds

5. Application of Magnetic Fields - the

case of GdNi2B2C

6. Outlook

Page 3: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

3M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Experimental Methods

Capacitance Dilatometry

X-ray Powder Diffraction

• Good resolution (10-9 in dl/l)• 45 T Magnetic Fields - forced magnetostriction

• requires single crystals

• Anisotropic Effects on Polycrystals (Expansion, Symmetry-Changes)• bad resolution (10-4 in dl/l)

Rotter et.al. Rev. Sci. Instr. 69 (1998) 2742(patent submitted, optional use in PPMS, VTIs,...operated at 6 institutes in A, D, CZ, Brazil, US)

How to measure Magnetostriction ?

Page 4: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

4M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

X Axis

0 30 60 90 120 150 180 210 240 270

a [Å

]

4,154

4,156

4,158

4,160

4,162

T(K)

0 30 60 90 120 150 180 210 240 270

c [Å

]

9,600

9,604

9,608

9,612

9,616

9,620

Debye fit for T > 47 K

Debye fit for T > 47 K

TN=47 KGdRu2Si2

95,7 96,0 96,3 96,6 96,9

50

100

150

200

250

300

Inte

nsi

ty (

cou

nts

)

2*Theta(deg)

60K 10K(008)

GdRuSi

Page 5: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

5M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

55,6 55,8 56,0 56,2

25

50

75

100

125

150

Inte

nsi

ty (

cou

nts

)2*Theta(deg)

60K 10K

(202)

74,4 74,7 75,0 75,3 75,6

50

100

150

200

250

300

Inte

nsi

ty (

cou

nts

)

2*Theta(deg)

60K 10K(220)

GdRu2Si2

? ?

No sign of distortion of the tetragonal plane !

Page 6: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

6M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Crystal Field

T

e-

+

+

L0

T<TC(N)

Spontaneous Magnetostriction

STANDARD MODEL OF RARE EARTH MAGNETISMMicroscopic Origin of Magnetostriction:

Strain dependence of magnetic interactions

Exchange

T<TC(N) L=0, L0

„exchange-striction“

T

Gd3+, S=7/2, L=0

Page 7: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

7M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

No distortion (dJ1/d)

ij

jimag ijJH JJ),(2

1

kT k i i

k i i JH J J,

) , (

...)0()(

magH

magel HEH

cEel 2

1

}{ / TkH BeTrZ ZTkF B ln 0

F

Ferromagnet: J1>0dV/V<0

J1J1

Exchange striction on a Square Lattice

Page 8: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

8M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

No distortion (dJ1/d)

Anti-Ferromagnet withNN exchange: J1<0dV/V>0

Tetragonal Distortion (dJ1/d) !!!

Anti-FerromagnetWith small |J1|J2<0dV/V=0

J1J1

J2

J1

J2

J1

THE MAGNETOELASTIC PARADOX

Antiferromagnets with L=0 below TN:

Symmetry breaking distortions are expectedbut

have NOT been found

.... but in ALL experiments: distortion <10-4

Page 9: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

9M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

TN= 24 K q=(0 ½ 0)

GdCuSn

Page 10: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

10M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

TN= 22.7 K

<TR1=21.2K M||[001]<TR2=10.8K M||[110]

GdAu2

TN= 50 K

GdAg2

q=(0.362 0 1)

Page 11: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

11M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Gd3Rh TN=112 K

Large magnetostrictive effects on lattice constants – but NO distortion

Gd3NiTN=100 K

Page 12: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

12M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL)

Volume Magnetostriction

Page 13: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

13M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL)

Anisotropic Spontaneous Magnetostriction

FerromagnetAntiferromagnetε

TC(N)[K]

cbas V

dV

s

ds

,,

|3

|

Page 14: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

14M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

TN= 20 K: M||[010] <TR= 14 K: M||[0yz] q = (0.55 0 0)

small magnetostriction, therefore cap.-dilatometry ....

GdNi2B2C

?

Page 15: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

15M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Thermal Expansion

5 10 15 20 25

0T

2T||a

TN

1.5T

0.75T

T (K)

Forced Magnetostriction

Orthorh.distortion !

10-4

a/a

TN= 20 K: M||[010] <TR= 14 K: M||[0yz] q = (0.55 0 0)

GdNi2B2C

Page 16: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

16M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

At H=0: Domains ?

distortion =3x10-4 would lead to FWHM (204)+ 0.1° FWHM (211)+ 0.05°

at H=0 no distortioncan be found(magnetoelasticparadox)

GdNi2B2C

Powder Xray Diffraction

.... FWHM determined by fitting

?

tan

d

d

Page 17: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

17M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

McPhase - the World of Rare Earth MagnetismMcPhase is a program package for the calculation of

magnetic properties of rare earth based systems.          Magnetization                       Magnetic Phasediagrams

    Magnetic Structures            Elastic/Inelastic/Diffuse                                               Neutron Scattering

                                             Cross Section

www.mcphase.de

Page 18: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

18M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

iiBJ

ijji

ijjimag

g

ijJ

ijJH

CD

HJ

JJ

JJ

)(2

1

),(2

1

The magnetic Hamiltonian

Isotropic exchange (RKKY,...)

Classical Dipole Interaction

Zeeman Energy

5

22

||

||))((3)()(

ji

jijijiBJ

RRRRgijJ

CD RR

RR

Page 19: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

0 5 10 15 20 25 30

0,0

0,5

1,0

1,5 Experiment McPhase Calc. GdNi

2B

2C

c P/T

(J/m

olK

2 )

T(K)

Angle 2(°)

4 6 8 10 12 14 16 18 20

Inte

nsi

ty (

co

un

ts)

-2000

0

2000

4000 T=2.2K

nuc

(0.4

55 1

2)

(0.5

45 1

2)

(0.4

55 0

3)

(0.5

45 0

2)

(0.6

36 0

1)(0

.455

0 1

)(0

.545

0 0

)

magT=2 K0 2 4 6 8 10 12 14

0

1x10-4

2x10-4

3x10-4

0

-5

-10

-15

-20

-25

T = 2 K

a- b

0H||a (T)

Hmag

+McPhase

?

Page 20: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

20M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

0 2 4 6 8 10 12 14

0

1x10-4

2x10-4

3x10-4

0

-5

-10

-15

-20

-25

T = 2 K

a- b

0H||a (T)

Orthorhombic Distortion

Standard Model of RE Mag... McPhase Simulation

HH JJJJ

JJJJ

JJJJ

,)010(,)100(

)010()100(

)010()100(

~

))((

))((

TiiTiibbaa

iiiibbaa

iiiiibbaa

elmag

B

A

EHH

?

The Magnetoelastic Paradox for L=0

.... demonstrated at GdNi2B2C

Rotter et al. EPL 75 (2006) 160

Capacitance D

ilatometry

Exchange Striction Model

Page 21: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

Status of Research on Magnetostriction in Gd based Antiferromagnets. Systems with a symmetry breaking magnetic propagation vector and large spontaneous magnetostriction demonstrate the existence of the magnetoelastic paradox and are marked by "MEP".

Symmetry Magnetic Anisotropic/ Single Forced / Propagation isotropic(dV/V) Crystal Magneto-Neel Spontaneous available -strictionTemp.(K) Magnetostriction (10-3)

GdIn3 cub./43 [12] (1/2 1/2 0) [13] MEP! 0.0/~-0.3 [14] yesGdCu2In cub./10 (1/3 1 0) [R18] 0.0/-0.1 [15]GdPd2In cub./10 [16] 0.0/0.0 [15]GdAs cub./25 (3/2 3/2 3/2) [17, 18, 19] [17]no MEP ?GdP cub./15 (3/2 3/2 3/2) [17] [17]GdSb cub./28 (3/2 3/2 3/2) [20] ? [21, 22]no MEP? Yes work in progressGdSe cub./60 (3/2 3/2 3/2) [20]GdBi cub./32 (3/2 3/2 3/2) [20] [21]no MEP ?GdS cub./50 (3/2 3/2 3/2) [20]EuTe cub./9.8 (3/2 3/2 3/2) [23] [23]GdTe cub./80 (3/2 3/2 3/2) [20]GdAg cub./133 (1/2 1/2 0) [24]GdBe13 cub./27 (0 0 1/3) [25]Gd2Ti2O7 cub./1 (1/2 1/2 1/2) [26] yesGdB6 cub./16 (1/4 1/4 1/2) [27] yesGd2CuGe3 hex./12 [28]GdGa2 hex./23.7 (0.39 0.39 0) [29]GdCu5 hex./26 (1/3 1/3 0.22) [29]Gd5Ge3 hex./79 [30] work in progress yes work in progressGd7Rh3 hex./140 [31, 32]Gd2PdSi3 hex./21 [33] yesGdCuSn hex./24 (0 1/2 0) [34] MEP! 1.9/-0.5 [35]GdAuSn hex./35 [34] (0 1/2 0) [36]GdAuGe hex./16.9 [37]GdAgGe hex./14.8 [38]GdAuIn hex./12.2 [38]GdAuMg hex./81 [39]GdAuCd hex./66.5 [40] (1/2 0 1/2) [40]GdAg2 tetr./23 (1/4 2/3 0) [R12] MEP! 1.2/0.0 [R19]Gd2Ni2-xIn tetr./20 [R19] 0.8/0.0 [R19]

Page 22: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

Symmetry Magnetic Anisotropic/ Single Forced / Propagation isotropic(dV/V) Crystal Magneto-Neel Spontaneous available -strictionTemp.(K) Magnetostriction (10-3)

Gd2Ni2Cd tetr./65 [41]Gd2Ni2Mg tetr./49 [42]Gd2Pd2In tetr./21 [43]GdNi2B2C tetr./20 (0.55 0 0) [44] MEP! 0.1/0.0 [R19, R20] yes [R4]GdAu2 tetr./50 (5/6 1/2 1/2) [R12] 0.0/0.0 [R19]GdB4 tetr./42 (1 0 0) [45]GdRu2Si2 tetr./47 [46] work in progress work in progress yes work in progressGdRu2Ge2 tetr./33 [46] work in progress work in progressGdNi2Si2 tetr./14.5 (0.21 0 0.9) [47]GdNi2Sn2 tetr./7 [48]GdPt2Ge2 tetr./7 [48]GdCo2Si2 tetr./45 [48]GdAu2Si2 tetr./12 (1/2 0 1/2) [R12]GdPd2Ge2 tetr./18 [48]GdPd2Si2 tetr./16.5 [49]GdIr2Si2 tetr./82.4 [49]GdPt2Si2 tetr./9.3 [49] (1/3 1/3 1/2) [50]GdOs2Si2 tetr./28.5 [49]GdAg2Si2 tetr./10 [48]GdFe2Ge2 tetr./9.3 [51, 52]GdCu2Ge2 tetr./15 [51]GdRh2Ge2 tetr./95.4 [51]GdRh2Si2 tetr./106 [49]GdCu2Si2 tetr./12.5 (1/2 0 1/2) [47]GdPt3Si tetr./7.5 [53] work in progressGdCu(FeB) orth./45 (0 1/4 1/4) [54] 19/-2 [54]Gd3Rh orth./112 [55] MEP ? 6.4/2.1 [56]Gd3Ni orth./100 [57] MEP ? 4.5/2.9 [56]Gd3Co orth./130 [58, 59]GdSi2 orth.(<818K)/? [60]GdSi orth./55 [61] work in progress work in progress yes work in progressGdCu6 orth./16 [62] work in progressGdAlO3 orth./3.9 [63]GdBa2Cu3O7 orth./2.2 (1/2 1/2 1/2) [64] [65]GdPd2Si orth./13 [66]

Page 23: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

23M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

The following compounds are not expected to show a change in lattice symmetry at the transition from the paramagnet to the antiferromagnet, because the propagation vector does not break the symmetry of the lattice and there is only one atom in the primitive crystallographic unit cell. Therefore they cannot exhibit themagnetoelastic paradox.

Symmetry Magnetic Anisotropic/ Single Forced / Propagation isotropic(dV/V) Crystal Magneto-Neel Spontaneous available -strictionTemp.(K) Magnetostriction (10-3)

GdNi2Ge2 tetr./27 (0 0 0.79) [67]GdCo2Ge2 tetr./37.5 [51] (0 0 0.93) [68]

In the following compounds the propagation does not break the crystal symmetry and there are more than one atom in the primitive crystallographic unit cell. In this case it depends on the relative orientiation of the moments in the unit cell, whether a symmetry breaking distortion is predicted by the exchange striction model or not. Therefore these compounds can in principle exhibit the magnetoelastic paradox although the propagation does not break the crystal symmetry of the lattice.

Symmetry Magnetic Anisotropic/ Single Forced / Propagation isotropic(dV/V) Crystal Magneto-Neel Spontaneous available -strictionTemp.(K) Magnetostriction (10-3)

Gd2Sn2O7 cub./1 (0 0 0) [69] yesGd2In hex./100 (0 0 1/6) [70] 0.0/0.0 [R19]Gd2CuO4 tetr./6.4 (0 0 0) [71]GdCu2 orth./42 (1/3 0 0) [R21] 4.6/0.6 [72] yes [R22]Gd5Ge4 orth./130 [11] (0 0 0) [73] ?/<0.1 [74] yes [74]GdNi0:4Cu0:6 orth./63 (0 0 1/4) [75] 0.0/0.8 [76]Gd2S3 orth./10 [77] (0 0 0) [78] 0.0/0.0 [79] yes [79]GdNiSn orth./11 [80] (0 0 0) [81] yes

Page 24: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

24M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

THE MAGNETOELASTIC PARADOX

Antiferromagnets with L=0 below TN:

Symmetry breaking distortions are expectedbut

have NOT been found

• GdNi2B2C: large distortion at small fields - is this common to all Gd AFM ? ... implication on magnetostrictive technology ?

• Magnetoelastic Coupling = long wave length limit of electron phonon interaction ... relevance for superconductivity ?

• Note: MnO shows trigonal spontaneous distortion at TN

Summary and outlook

Page 25: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

25M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

New Methods• Imaging of AFM domains with XRMS

GdNi2Ge2 ab-plane T = 17 K

Mom

ent d

irect

ion

200 µm

• Anisotropy Measurements by ESR•Neutron Scattering on Transparent Gd Compounds

More Experiments• Powder X-ray Diffraction• Magnetic Neutron / X-ray

Scattering• Dilatometry in high

Fields

ToDo

More Theory• Apply Standard model

of RE Magnetism• Ab initio Calculation on

MEP

Page 26: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

WorkshopMagnetostrictive Materials and Magnetic Refrigeration (MMMR)

13.-15. August 2007,Vienna, Austria

http://www.univie.ac.at/MMMR/

Page 27: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

27M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

X Axis

0 30 60 90 120 150 180 210 240 270

a [Å

]

4,154

4,156

4,158

4,160

4,162

T(K)

0 30 60 90 120 150 180 210 240 270

c [Å

]

9,600

9,604

9,608

9,612

9,616

9,620

Debye fit for T > 47 K

Debye fit for T > 47 K

TN=47 K

GdRu2Si2

H(T)0 2 4 6 8 10 12 14 16

L/L

B||a da/aB||a' da/a

2x10-5

GdRuSi

GdRu2Si2

TN=47 Kq=(3/4 0 0)

35.7 35.8 35.9

0

500

1000

1500

2000

2500

3000

3500

4000

(1 1 2) 60K 20K

Inte

nsi

ty (

cou

nts

)

2 (deg)

Note: ε=4.10-5 ... ΔFWHM=0.0015 deg

Page 28: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

28M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

2 T

heta

FW

HM

(°)

0,09

0,10

0,11

0,12

a (n

m)

0,4154

0,4156

0,4158

0,4160

0,4162

c (n

m)

0,9604

0,9608

0,9612

0,9616

0,9620V

(nm

3)

0,1658

0,1660

0,1662

0,1664

GdRu2Si2

T(K)

0 50 100 150 200 250 300

c/a

2,310

2,311

2,312

2,313

2,314

TN

(112)

Page 29: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

29M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

GdSbStructure NaCl typeType II AFM order q=(111)TN=24.4 K

Page 30: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

Anharmonicity of lattice dynamics

+ Small contribution of band electrons

anharmonic Potential

Harmonic potential

with Debye function

)/(22

1 TTDKTK Dphonel

z

xe

dxx

zzD

0

3

3 1

3)(

Normal thermal Expansion

Page 31: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

31M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

H <0

Crystal Field

e-

+

+

Exchange - Striction

H

H>0

Forced Magnetostriction

L0 L=0, L0

Gd3+, S=7/2, L=0

Page 32: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

32M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

Theory of Magnetostriction

lmi

iml

mlcf OBH

,

)()( J ij

jiex ijJH JJ),(2

1

Crystal field Exchange

k

T k i i

k i i JH J J,

) , (

lm

Tml

ml B

H J O, ) (

+

...)0()0()(

excf HH

excfel HHEH

cEel 2

1with

}{ / TkH BeTrZ ZTkF B ln 0

F

Page 33: The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M

33M.Rotter „The Magnetoelastic Paradox“ Lorena 2006

TN= 42 K M [010]TR= 10 K q = (2/3 1 0) Magnetic Structure from

Neutron Scattering

GdCu2

kT i i

k i i JH J J, 1

) , (

Rotter et.al. J. Magn. Mag. Mat. 214 (2000) 281

0 -7-7-7-7+7