the method of integration by parts. main idea if u & v are differentiable functions of x, then...

55
The Method of Integration by Parts

Post on 20-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

The Method of Integration by Parts

Main Idea

If u & v are differentiable functions of x, then

By integrating with respect to x, we get:

')'('

'')'(

vuuvuv

vuuvuv

vduuvudv

dxvudxuvdxuv ')'('

When to use this method?

When the integrand is a product of the form udv, such that we do not know how to find the integral ∫udv, but can find v = ∫dv and the integral ∫vdu.

Examples I

When, we have an integrand, similar to one of the following: ( where b and c are any real numbers)

1. xn cos(cx) or xn sin(cx) ; where n is a natural number

2. xn ecx or xn acx

; where n is a natural number and b is a base for an exponential function ( b is positive and not equal to 1)

3. x lnx or xc lnxb

Example 1

dxxxI cos

cxxx

dxxxx

vduuvI

xvdxdu

dxxdvxuLet

dxxxI

cossin

sinsin

sin,..

cos,

cos

Example 2

dxxxI sin2

cxxxxx

cxxxxx

dxxxxx

vduuvI

xvxdxdu

dxxdvxuLet

dxxxI

cos2sin2cos

]cossin[2cos

cos2cos

cos,2

sin,

sin

2

2

2

2

2

Example 3

dxxxI cos3

cxxxxxxx

dxxxxx

vduuvI

xvdxxdu

dxxdvxuLet

dxxxI

]cos2sin2cos[3sin

sin3sin

sin,3

cos,

cos

23

23

2

3

3

Example 5

dxxeI x

cexe

dxexe

vduuvI

evanddxdu

dxedvandxuLet

dxxeI

xx

xx

x

x

x

Example 5

dxexI x2

cexeex

cexeex

dxxeex

vduuvI

evandxdxdu

dxedvandxuLet

dxexI

xxx

xxx

xx

x

x

x

22

][2

2

2

2

2

2

2

2

Example 6

dxexI x3

cexeexex

cexeexex

dxexex

vduuvI

evanddxxdu

dxedvandxuLet

dxexI

xxxx

xxxx

xx

x

x

x

663

]22[3

3

3

23

23

23

2

3

3

Example 7

dxxxI ln

cxx

cx

cxdxx

dxx

vduuvI

vanddxdu

xdxdvandxuLet

dxxxI

x

xx

x

xxx

xx

241

2

221

2

21

2

122

21

ln

ln

ln

ln

ln

ln

2

22

2

22

2

Example 8

dxIxx)ln(

5 35 3

11

153

53

531

1

11

ln

,

ln)ln()ln(

,

)ln(

53

53

5 3

53

5 3

5 35 3

IdxxxI

Therfore

xx

x

simplifyFirst

dxI

x

x

xx

cxxx

cxx

dxxxx

dxxxx

vduuvI

xvanddxdu

dxxdvandxuLet

dxxxI

x

x

xx

52

52

52

52

52

53

52

52

52

52

52

52

53

53

425

25

25

25

25

25

125

25

1

251

1

ln

ln

ln

ln

ln

ln

cxxx

cxxxI

Therefore

52

52

52

52

415

23

425

25

53

ln

]ln[

,

Example 9

dxxI ln

cxxx

cdxxx

dxx

xxx

vduuvI

xvanddxx

du

dxdvandxuLet

dxxI

ln

ln

1ln

1

ln

ln

Examples II:Integrals valued by

Repeated Use of the Method When, we have an integrand, similar to one

of the following: ( where b and c are any real numbers)

1. sin(bx) cos(cx)

2. ecx sin(bx) or ecx cos(bx)

Example 1

dxxeI x cos

)2(..............................22sin

2cos22sin

2cos2

2sin:

2sin

,

)1.......(....................22cos

2sin22cos

2sin2

2cos

2cos

1

1

1

Ixe

dxexxeI

evanddxxdu

dxedvandxuLet

dxexI

Where

Ixe

dxexxe

vduuvI

evanddxxu

dxedvandxuLet

dxxeI

x

xx

x

x

x

x

xx

x

x

x

]2sin22cos[

2sin22cos5

42sin22cos

]22sin[22cos

)1()2(

)2.......(....................22sin

&

)1.......(....................22cos

,

51

1

1

1

xexeI

xexeI

IxexeI

IxexeI

infromISubstitute

IxeI

IxeI

haveWe

xx

xx

xx

xx

x

x

Example 2

dxxxI cos2cos

)2(..............................2cos2sin

cos2cos2cos2sin

cos.2cos2..

sin2sin:

sin2sin

,

)1.......(....................2sin2cos

sin2sin2sin2cos

sin2sin2

cos2cos

cos2cos

1

1

1

Ixx

dxxxxxI

xvanddxxdu

dxxdvandxuLet

dxxxI

Where

Ixx

dxxxxx

vduuvI

xvanddxxdu

dxxdvandxuLet

dxxxI

.

sin2cos3

1cos2sin

3

2

,

sin2cos3

1cos2sin

3

2

]sin2coscos2sin2[3

1

sin2coscos2sin23

4cos2sin2sin2cos

]2cos2sin[2sin2cos

)2(..............................2cos2sin

)1...(..............................2sin2cos

)1()1(

1

1

1

cxxxxI

generally

xxxx

xxxxI

xxxxI

Ixxxx

IxxxxI

getWe

IxxI

in

IxxI

equationinequationfromISubstitute

Another method to evaluate this integral and similar ones is to use the proper trigonometric

identities

Recall that:

)]cos()[cos(sinsin).....3(

)]cos()[cos(coscos)....2(

)]sin()[sin(cossin).....1(

21

21

21

bababa

bababa

bababa

Using the identity (2), we get:

cxx

cxx

cdxxx

dxxxI

3sin6

1sin2

1

]3sin3

1[sin2

1

]3cos[cos2

1

cos2cos

Home Quiz

1.Prove the identity(2) of the previously given trigonometric identities

2.Show that the two values arrived at for the integral of of this example are equivalent

Examples IIIUsing the method to find the integrals of trigonometric and inverse trigonometric functions that can not be found directly

A. ∫arcsinx dx , ∫arccosx dx , ∫arctanx dx , ∫arccotx dx, ∫arcsecx dx and ∫arccscx dx

B. ∫secnx dx and ∫cscnx dx , where n is an odd natural number greater than

1

Examples III - AExample 1

dxxI arcsin

cxxx

cx

xx

x

xdxxxI

xvandx

dxdu

dxdvandxu

Let

dxxI

2

21

2

21

2

2

1arcsin

)1(arcsin

1arcsin

1

arcsin

arcsin

21

Example 2

dxxI arctan

cxxx

x

xdxxxI

xvandx

dxdu

dxdvandxu

Let

dxxI

)1ln(arctan

1arctan

1

arctan

arctan

221

2

2

Example 3

dxxarcI sec

1sec

1sec

1

sec

sec

2

2

2

x

dxxarcx

xx

xdxxarcxI

xvandxx

dxdu

dxdvandxarcu

Let

dxxarcI

We find the last integral using the method of trigonometric substitution

cxx

cd

d

x

dxI

Thus

x

and

ddx

x

Letx

dxI

1ln

tanseclnsec

tan

tansec

1

,

tan1

tansec

sec

1

2

21

2

21

Substituting that back, we get:

cxxxarcxI

generalInxx

xdxxarcxI

1lnsec

,1

sec

2

2

Examples III - BExample 1

dxxI 3sec

dxxdxxxx

dxxxxx

dxxxxxI

xvanddxxxdu

dxxdvandxu

Let

dxxx

dxxI

secsectansec

)1(secsectansec

tansectansec

tantansec

secsec

secsec

sec

3

2

2

2

2

3

cxxxxI

generally

xxxxI

xxxxI

xxIxx

dxxdxxxxI

]tanseclntan[sec2

1

,

]tanseclntan[sec2

1

tanseclntansec2

tanseclntansec

secsectansec 3

Examples III - BExample 2

dxxI 5sec

dxxdxxxx

dxxxxx

dxxxxxI

xvanddxxxdu

dxxdvandxu

Let

dxxx

dxxI

353

233

233

3

23

23

5

sec3sec3tansec

)1(secsec3tansec

tansec3tansec

tantansec3

secsec

:

secsec

sec

cxxxxxx

I

Generally

xxxxxxI

xxxxxx

dxxxxI

dxxdxxxx

tanseclntansectansec

.

tanseclntansectansec

tanseclntan[sectansec

sec3tansec4

sec3sec3tansec

83

833

41

83

833

41

233

33

353

Questions

Do them as homework

Questions I

dxxx

dxxx

dxxx

dxex x

3 259

59

59

9

)72()4(

sin)3(

cos)2(

)1(5

Questions II

dxxx

dxxx

dxxx

n ln)3(

arctan)2(

arcsin)1(

Questions III

dxxecarcs

dxx

dxx

dxx

dxx

dxx

)3()6(

)3arccos()5(

)3arcsin()4(

)3arctan()3(

)cos(ln)2(

)sin(ln)1(

Questions IVReduction Formulas

dxxn

nxx

ndxx

dxxn

xdxx

dxxn

nxx

ndxx

dxxn

nxx

ndxx

nn

nn

n

nn

nnn

22

21

21

21

sec1

2tansec

1

1)3arcsin()4(

tan1

tantan)3(

cos1

sincos1

)cos(ln)2(

sin1

cossin1

sin)1(