the new co-simulation tool for traction power supply

63
Stephan_RTS2010_OpenPowerNet.ppt (Figure 1) Prof. Dr.-Ing. Arnd Stephan The new Co-simulation Tool for Traction Power Supply AC Railway DC Railway / Trolleybus

Upload: others

Post on 27-Nov-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 1)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Prof. Dr.-Ing. Arnd Stephan

The new Co-simulation Tool for Traction Power Supply

AC Railway DC Railway / Trolleybus

Page 2: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 2)

– Co-Simulation Tool for Traction Power Supply RTS 2010

• The voltage situation as well as the network structure influence the electrical load distribution (… current levels and current directions).

• There are energy consumers with time-dependent and position-dependent power demands (… picking up and recovering energy).

⇒ Thus the power supply system influences the energy consumption.

• Energy consumption analysis and prognosis• Design and rating verification of the electrical installations• EMC studies

Simulation of these dynamic processes enables:

Simulation of Traction Power Supply – what for?

Page 3: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 3)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Power Supply Network Structure (DC 0.6 … 3.0 kV)

Power Grid Connection3 AC 10 / 20 / 30 kV

OCS

Rails

train NOT in section train in section

Substation

GO1

GR1

GO3

GR2

GO4

GR3

GO5

GR4

sw

sw

SS1

sw

sw

SS2

sw

sw

SS3

sw

sw

SS4

Earth

G’RE G’RE G’RE G’RE G’RE G’RE G’RE

sw sw sw sw

GO2

single-end double-end double-end

0.6 kV

Page 4: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 4)

– Co-Simulation Tool for Traction Power Supply RTS 2010

• currents and power losses increase with decreasing voltage,

• under low voltage conditions current or power limitations of the train propulsion control are activated ⇒ … impact on driving dynamics,

• the network voltage influences the braking energy recovering decisively (“energy absorption capability”).

The network voltage situation affects the electrical load flows and may have retroaction to the propulsion characteristics of the trains:

Special Requirements

Page 5: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 5)

– Co-Simulation Tool for Traction Power Supply RTS 2010

• each train’s driving state and its required traction power,

• the train’s positions within the network,

• the layout and the capability of the power supply system.

Energy consumption simulation for electrical railway systems requires detailed information concerning …

• either concerning the complexity of the railway operation simulation,

• or regarding the modelling depth of the propulsion technology and the electrical network.

In the past a number of compromises were made

Initial Situation

All these information are needed exactly at the same time.

Page 6: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 6)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Separation of Simulation Tasks

• Line routing and alignment• Track layout• Signalling system• Train data• Timetable• Connecting conditions• Operating rules

• Train propulsion data• Power grid parameter• Substation arrangement• Feeder lines and cables• Catenary system• Earthing system• Switch status

Railway Operation Load Flow and Energy

Plug-in

Page 7: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 7)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Input Data Output DataSimulation

Rolling Stock

Infrastructure

Timetable

Interactivity

Animation

Diagrams

Timetable Graphs

Track Occupations

Statistics

Page 8: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 8)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Geometrical Track Model

Page 9: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 9)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Source: IFB

Page 10: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 10)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Propulsion Technology

Railway Operation Simulation

ATMAdvanced

Train Module

“Co-Simulation”

Power Supply System

PSCPower Supply

CalculationInteraction

Page 11: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 11)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Sequence per Time Step

Line Voltage, Requested Effort

Train Current

Train Position,Requested

EffortAchieved

Effort

OpenTrack

PSC ATM

Page 12: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 12)

– Co-Simulation Tool for Traction Power Supply RTS 2010

AP Server

PSC ATM

network data base

propulsion data base

train_ID, engine_ID,line_ID, track_ID,train location, time,requested force,speed

1

line_ID, track_ID,train location, time, train current

2

train voltage, nominal voltage,nominal frequency

3train_ID,engine_ID, requested force,speed,

train voltage,nominal voltage,nominal frequency

4

achieved force,train current

5

achieved force

6SOAP interface

Page 13: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 13)

– Co-Simulation Tool for Traction Power Supply RTS 2010

a) constant efficiency factors for propulsion equipment

b) driving state related efficiency factors

c) load depending efficiency factors of components

d) detailed engine models of components

+ auxiliaries and eddy current break power

+ additionally: limiting values of propulsion control (e.g. voltage related current limitation)

Modelling levels available for propulsion simulation

Page 14: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 14)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Pel

Pmech

Propulsion Structure

Page 15: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 15)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Wirkungsgradverläufe ICE 3 für maximale ZugkraftHerstellerangabe für Betrieb bei 15 kV 16,7 Hz

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120 140 160 180 200

Motorfrequenz

Wirk

ungs

grad

Transformator

4-QS

Pulswechselrichter

Asynchron-Fahrmotor

Radsatzgetriebe

Gesamt

Hz

Efficiency Characteristics of ICE3 train1 AC 15 kV 16,7 Hz

Page 16: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 16)

– Co-Simulation Tool for Traction Power Supply RTS 2010

1σL 2'σL1R sR 2'

HL1u

2'i1i

1 2'+i iΨH

1Ψ 2'Ψ

= +e le k t m e c h L ä u fe r v e r lu s teM M M23

2 22 ' '2 2

⋅= =

π πR o to r v e r lu s te

L ä u fe r v e r lu s tei RPM

n n

Propulsion Component Modelling (example for traction motor)

Page 17: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 17)

– Co-Simulation Tool for Traction Power Supply RTS 2010

23000

23500

24000

24500

25000

25500

26000

26500

2700000

:00

00:3

0

01:0

0

01:3

0

02:0

0

02:3

0

03:0

0

03:3

0

04:0

0

04:3

0

05:0

0

05:3

0

06:0

0

06:3

0

07:0

0

07:3

0

08:0

0

08:3

0

09:0

0

Zeit in Minuten

Span

nung

in V

olt

-500,00

-400,00

-300,00

-200,00

-100,00

0,00

100,00

200,00

300,00

400,00

500,00

Spannung in Volt Strom in Ampere

Propulsion Model VerificationTrain Current and Pantograph Voltage

time h:min

volta

ge

curre

nt

AV

Train Current and Pantograph Voltage

Page 18: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 18)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Fahrschaubild und Leistungsverlauf ICE1Betriebsfahrt Hannover - Göttingen, Meßwerte am führenden Triebkopf,

Simulation IFB: Standardparameter und Wirkungsgradmodell ICE1/2

0

20

40

60

80

100

120

140

160

180

200

220

240

260

0 10 20 30 40 50 60 70 80 90 100

Weg

v

-4

-2

0

2

4

6

8

PStr

v Meßfahrtv SimulationP MeßfahrtP Simulation

km/h

MW

km

Fehlertoleranzen: Fahrschaubild < 1 %

Energie ab Stromabnehmer < 2 %

Quelle: IFB

Train Speed and Power CharacteristicsMeasurement and Simulation Results

ICE1 Hannover – Göttingen

Page 19: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 19)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Requirements to the Electrical Network Model

- Simulation of all common AC- and DC-railway power supply systems

- Representation of the entire electrical network structure

- Unrestricted choice of conductor configuration along the line

- Precise consideration of electromagnetic coupling effects of overhead line conductors for a.c.-systems

- Change of switching status within the power supply network

- Retroaction to the railway operation simulation (OpenTrack)

- Iterative communication with the propulsion simulation (ATM)

- Configurable data output

- Interfaces for post-processing

Page 20: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 20)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Power Supply Network Structure (DC 0.6 … 3.0 kV)

Power Grid Connection3 AC 10 / 20 / 30 kV

OCS

Rails

train NOT in section train in section

Substation

GO1

GR1

GO3

GR2

GO4

GR3

GO5

GR4

sw

sw

SS1

sw

sw

SS2

sw

sw

SS3

sw

sw

SS4

Earth

G’RE G’RE G’RE G’RE G’RE G’RE G’RE

sw sw sw sw

GO2

single-end double-end double-end

0.6 kV

Page 21: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 21)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Power Grid Connection1 AC 110 kV 16,7 Hz

Power Supply Network Structure (1 AC 15 kV 16,7 Hz)

OCS

Rails

Substation

YO1

YR1

YO2

YR2

YO3

YR3

sw

sw

SS1

sw

sw

SS2

Earth

Y’RE Y’RE Y’RE Y’RE Y’RE Y’RE Y’RE

sw swsw

CS

sw

15 kV

Page 22: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 22)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Power Supply Network Structure (2 AC 25 kV ~ 50 / 60 Hz)

OCS

Rails

Negative Feeder

train NOT in section train in section

AutotransformerSubstation

YO1

YR1

YN1

Autotransformer Autotransformer

YO2

YR2

YN2

YO3

YR3

YN3

YO4

YR4

sw

sw

sw

SS

sw

sw

sw

AT1

sw

sw

sw

AT2

sw

sw

sw

AT3

Power Grid Connection3 AC 110 / 220 kV

Earth

Y’RE Y’RE Y’RE Y’RE Y’RE Y’RE Y’RE

25 kV

-25 kV

Page 23: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 23)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Modelling of the Railway Power Supply System

- Electrical network structure (feeding sections, feeding points, switch state) in congruence to the track topology

- Electrical characteristics of the feeding power grid

- Electrical characteristics of the substations

- Electrical characteristics of the conductors (cables, Catenary wires, tracks, rails)

- Electrical characteristics rail-to-earth

- Modelling of additional power consumers (e.g. switch heatings)

- Loading capacity (conductors, converters, transformers)

- Protection settings

Page 24: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 24)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Substation / AT Structure (2 AC 25 kV ~ 50/60 Hz)

Page 25: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 25)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Trackside Arrangement of Conductors

Source: DB KoRiL 997

Page 26: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 26)

– Co-Simulation Tool for Traction Power Supply RTS 2010

„Slice“

Catenary Arrangement and Conductor Model

Page 27: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 27)

– Co-Simulation Tool for Traction Power Supply RTS 2010

y

x

(0; 0)

(x1; y1)

material, diameter

electro-magneticcoupling effects

Slice n

Catenary Arrangement and Conductor Model

Page 28: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 28)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Sequence of Slices

Page 29: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 29)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Electrical network calculation using the advanced method of nodes

nodes

node voltages inductive voltages currents

Voltage drops caused by self- and mutual induction

Page 30: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 30)

– Co-Simulation Tool for Traction Power Supply RTS 2010

High Speed Railway 350 kph

966 km Double Track 2AC 25 kV 50 Hz

Page 31: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 31)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Example: High Speed Railway 966 km, Track Alignment (Detail)

Page 32: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 32)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Example: High Speed Railway 966 km, OCS Infeed (Detail)

Page 33: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 33)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Page 34: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 34)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Detail

Simulation Results: High Speed Railway 2AC 25 kV

Page 35: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 35)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Page 36: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 36)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Detail

Simulation Results: High Speed Railway 2AC 25 kV

Page 37: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 37)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Page 38: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 38)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Minimum Pantograph Voltage, Wuhan-GuangzhouLine Wuh-Gua_1, Track Up, km 1265.75-1319.69

New

Xia

nnin

g [1

274.

588]

New

Chi

bi [1

317.

74]

TSS_

1291

_Qnk

[129

1.26

7]TS

S_12

91_Q

nk [1

291.

687]

SP_1

265_

Qnk

[126

5.96

]

ATS

_127

9_Q

nk [1

279.

22]

ATS

_130

4_Q

nk [1

304.

81]

SP_1

319_

Qnk

[131

9.48

]

17000

19000

21000

23000

25000

27000

29000

31000

1265 1275 1285 1295 1305 1315

Position [km]

Volta

ge [V

]

 Isolator   AT   Infeed   Tolerance U (EN 50163)   U_nom   min_voltage_panto

Simulation Results: High Speed Railway 2AC 25 kV

Page 39: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 39)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Busbar Power, Wuhan-GuangzhouSubstation TSS_1444_Hua, Transformer 1444_Hua_TT-02

-20000

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

12:0

0:01

12:0

5:01

12:1

0:01

12:1

5:01

12:2

0:01

12:2

5:01

12:3

0:01

12:3

5:01

12:4

0:01

12:4

5:01

12:5

0:01

12:5

5:01

Time

App

aren

t Pow

er [k

VA

]A

ctiv

e P

ower

[kW

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Rea

ctiv

e P

ower

[kva

r]

 |S|‐1444_Hua_TT‐02     P‐1444_Hua_TT‐02     Q‐1444_Hua_TT‐02   

Page 40: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 40)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

57,0

49,5

62,462,1

78,5

74,077,176,8

73,973,2 72,271,8 71,671,4

81,0

71,2

85,2

79,681,881,8

91,590,992,992,9 92,592,1

107,8107,8

78,078,0

91,390,5

96,596,5

91,091,087,587,5

44,0

37,7

0,0

20,0

40,0

60,0

80,0

100,0

120,0

Elec

tric

Ene

rgy

[MW

h]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Substation No.

TSS Energy Delivery (1 h)WGPDL - Operation Program 2028

Energy totalEnergy by TSS

Page 41: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 41)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

15,1%

0,5%

6,0%

0,3%0,9%

0,5% 0,3%

13,7%

7,0%

0,0%

0,6%

0,0%0,5%

0,0% 0,0%

0,9%

0,0% 0,0% 0,0%

16,6%

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

Ener

gy R

ecov

erin

g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Substation No.

Recovery Rates (peak operation)WGPDL - Operation Program 2028

Page 42: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 42)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Vehicle Type EngineID Transport WorkTotal Energy

Specific Energy

Consumed Energy

Recovered Energy

Degree Of Regeneration

Available Braking Energy

Used Braking Energy

[tkm] [kWh] [Wh/tkm] [kWh] [kWh] [%] [kWh] [kWh]

CRH3 G469‐0 26001,806 1754,227 67,466 1755,741 1,513 0,1 1,942 1,596CRH3 G469‐1 26001,806 1754,227 67,466 1755,741 1,513 0,1 1,942 1,596CRH3 G371‐0 25973,739 1759,052 67,724 1759,052 0,000 0,0 0,000 0,000CRH3 G371‐1 25973,739 1759,052 67,724 1759,052 0,000 0,0 0,000 0,000CRH3 G299‐0 26002,845 1754,247 67,464 1755,755 1,508 0,1 1,936 1,591CRH3 G299‐1 26002,845 1754,247 67,464 1755,755 1,508 0,1 1,936 1,591CRH3 G355‐0 25996,262 1756,881 67,582 1758,806 1,926 0,1 3,791 2,009CRH3 G355‐1 25996,262 1756,881 67,582 1758,806 1,926 0,1 3,791 2,009CRH3 G509‐0 8741,502 588,711 67,347 588,711 0,000 0,0 0,000 0,000CRH3 G509‐1 8741,502 588,711 67,347 588,711 0,000 0,0 0,000 0,000CRH3 G600‐0 7635,276 533,004 69,808 533,004 0,000 0,0 0,000 0,000CRH3 G600‐1 7635,276 533,004 69,808 533,004 0,000 0,0 0,000 0,000CRH3 G520‐0 15460,187 1068,943 69,142 1068,943 0,000 0,0 0,000 0,000CRH3 G520‐1 15460,187 1068,943 69,142 1068,943 0,000 0,0 0,000 0,000

Vehicle Energy Consumption And Recovery Overview, Wuhan - Guangzhou

Ygm 1862-1918

Page 43: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 43)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Energy output to catenary at substation [kWh] 72300,187 Losses in contact wire [kWh] 525,588Energy input from catenary at substation [kWh] 1154,082 Losses in messenger wire [kWh] 565,248Total energy at substation [kWh] 71146,105 Losses in negative feeder [kWh] 481,426

Losses in return conductor [kWh] 138,879Vehicles energy consumption [kWh] 78540,848 Losses in left rail [kWh] 13,174Vehicles braking energy used for auxiliaries [kWh] 639,139 Losses in right rail [kWh] 13,196Vehicles braking energy recovered by catenary [kWh] 9230,867 Losses in LEBC [kWh] 31,117Total used vehicles braking energy [kWh] 9870,007 Total losses in conductors [kWh] 1768,629Total vehicles energy [kWh] 69309,980 Losses in connectors [kWh] 1,495

Losses in autotransformers [kWh] 21,896Total energy consumption [kWh] 81016,112 Total losses in catenary system [kWh] 1792,020Energy consumption from national power grid [kWh] 71233,480

Losses in feeders [kWh] 44,072Average efficiency of traction power supply 97,6%

Losses in traction transformers [kWh] 87,375

Energy Consumption And Losses Overview, Wuhan - Guangzhou

Cha 1532-1600

Page 44: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 44)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

44

94

67

88

70

95

69

93

66

93 94

69

93

82

103

115

93 94

89

83

93 93 93 9492 92

95 9490

92

70

92 91

70

91

69

92

6973

00

20

40

60

80

100

120

App

aren

t Pow

er [M

VA]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Substation No.

Maximum Substation PowerWGPDL - Operation Program 2028

WU dir.GUA dir.

Page 45: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 45)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

0

200

400

600

800

1000

1200

Max

. Cur

rent

[A]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Section No.

Maximum Return Cable CurrentWGPDL - Operation Program 2028

SP WU dir.ATS WU dir.ATS GUA dir.SP GUA dir.

Page 46: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 46)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Short Circuit Current, Wuhan-GuangzhouLine Wuh-Gua_2, Track Up, km 1961.2-2015.12

New

Sha

ogua

n [1

987.

638]

TSS_

1986

_Sha

[198

6.37

]TS

S_19

86_S

ha [1

986.

79]

SP_1

961_

Sha

[196

1.41

]

ATS

_197

4_Sh

a [1

974.

539]

ATS

_199

7_Sh

a [1

997.

4]

SP_2

015_

Sha

[201

4.91

]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1961 1971 1981 1991 2001 2011

Short Circuit Position [km]

Cur

rent

[A]

 Isolator   AT   Infeed   short_circuit_current

Page 47: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 47)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

Maximum Rail-Earth Potential, Wuhan-GuangzhouLine Wuh-Gua_2, Track Up, km 1961.2-2015.12

New

Sha

ogua

n [1

987.

638]

TSS_

1986

_Sha

[198

6.37

]TS

S_19

86_S

ha [1

986.

79]

SP_1

961_

Sha

[196

1.41

]

ATS

_197

4_Sh

a [1

974.

539]

ATS

_199

7_Sh

a [1

997.

4]

SP_2

015_

Sha

[201

4.91

]

0

20

40

60

80

100

120

140

160

180

1961 1971 1981 1991 2001 2011

Position [km]

Vol

tage

[V]

 Isolator   AT   Infeed   URE_max  LR_U_LEBC_Up  LR_U_LEBC_Up‐2  LR_U_LEBC_Up‐3  RR_U_LEBC_Up RR_U_LEBC_Up‐2  RR_U_LEBC_Up‐3

78 V78 V

Page 48: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 48)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

ATS

km 1997,4

TSS SHA

km 1986,8

SP

km 2015,1

1987,000EMC 1 / EMC 2

1997,000EMC 3

1998,000EMC 4

10,9 MW

10,9 MWOCS

Rails

NF

RC

LEBC

880 A 880 A2x CRH 3

1988,000 2014,300

2x CRH 3

512 A

303 A

24 A

363 A

136 A

74 A

148 A

163 A

60 A

103A

7 A

13 A

387 A1150 A 280 A 493 A

603 A 603 A 387 A 387 A

Page 49: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 49)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Simulation Results: High Speed Railway 2AC 25 kV

tunnel subgrade

Page 50: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 50)

– Co-Simulation Tool for Traction Power Supply RTS 2010

City Light Rail Network300 km TRAM

220 km TrolleybusDC 600 V

Page 51: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 51)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Graphical time table

Line A

Page 52: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 52)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Page 53: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 53)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Minimum voltage: catenary and pantographNormal operation

STR

Vt [5

.804

]

HEG

A [5

.398

]

IHA

G [5

.017

]

FRIE

[4.6

81]

FRIB

[4.3

04]

HO

EF [3

.748

]

GO

LPt [

3.46

9]

ZWIN

[3.1

75]

KA

LKt [

2.76

2]

KER

N [2

.493

]

HEL

Vt [2

.311

]

MIL

A [1

.913

]

RO

EN [1

.581

]

LIM

Mt [

1.28

8]

Heu

ri-Fr

iese

n

Heu

ri-H

öfliw

e

Bad

en-K

alkb

reB

aden

-Lan

gstr

Alb

is-S

chw

eig

Lette

-Lim

mat

p

0

100

200

300

400

500

600

700

800

900

1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

Weg [km]

Span

nung

[V]

Trenner Toleranz U (EN 50163) U_nenn U_min_abs U_min_Tfz

Page 54: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 54)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Rail-to-earth potential Normal operation

FRA

N [6

.915

]

WIN

Z [6

.494

]

WA

RT

[6.0

51]

ZWIE

[5.6

91]

MEI

E [5

.374

]

SCH

T [4

.998

]

ATR

O [4

.602

]

EGU

T [4

.234

]

WA

IF [3

.754

]

WIP

K [3

.297

]

EWYS

[3.0

63]

DA

MM

[2.6

89]

QU

EL [2

.416

]

LIM

M [2

.092

]LI

MM

p [2

.003

]

MU

FG [1

.732

]

SIH

L [1

.391

]

Fran

k-ä.

Lim

ma

Tobe

l-m_L

imm

a

Lette

-i.Li

mm

a

Lette

-Wip

king

Lette

-o.L

imm

a

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Weg [km]

Span

nung

[V]

Page 55: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 55)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Converter current and bus-bar-voltage Depot gateway 4:50 - 7:05 h

400

450

500

550

600

650

700

750

0 450 900 1350 1800 2250 2700 3150 3600 4050 4500 4950 5400 5850 6300 6750 7200 7650 8100

Zeit [s]

Span

nung

[V]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Stro

m [A

]

U-Sammelschiene I-Sammelschiene

Page 56: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 56)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Load and loading capacity Substation DC ConverterNormal operation, blackout in neighbouring subst.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1000 10000

Zeit [s]

Effe

ktiv

stro

m [A

]

SammelschieneSK i.LimmatstSK i.HardturmSK RosengarteSK HardbrückeSK ZWestRK HardturmstRK RosengarteBK V, 2381 ABK VI, 2381 A

Page 57: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 57)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Load values Substation Feeders, Normal operation without blackouts

Station Sektor Imax Ieff Pmax Eab Eauf Everl IEinst IKmin IKmin/IEinst Imax/IEinst

[A] [A] [kW] [kWh] [kWh] [kWh] [kA] [kA]1 s 7200 s soll > 110% soll < 90%

2 h

SK -o.Rämistraße 1915 588 1221 520 -10 4 3,5 14,0 400% 54,7%SK -Seilergraben 1686 404 1072 264 0 2 3,0 11,7 390% 56,2%SK -Hottingerstraße 1961 475 1252 417 0 3 3,0 10,4 347% 65,4%SK -Klosbachstraße 1665 332 1048 257 0 4 3,5 10,4 297% 47,6%SK -Kreuzbühlstraße 3710 1018 2312 1000 -33 36 4,2 12,7 302% 88,3%SK -Heimplatz 1128 310 720 290 0 1 3,0 34,0 1133% 37,6%SK -u.Rämistraße 40 172 50 111 36 0 0 3,0 23,0 767% 5,7%SK -u.Rämistraße 129 1145 316 738 220 0 1 3,0 38,2%SK -Bellevueplatz 2824 1075 1770 1226 -6 18 3,5 16,6 474% 80,7%SK -Zeltweg TB 912 279 582 153 -28 1 2,5 2,7 108% 36,5%RK -Heimplatz 2 Kabel -1242 513 -749 0 -627 3RK -Kreuzbühlstraße -2164 678 -1324 2 -789 8RK -o.Rämistraße -649 238 -393 0 -281 2RK -Heimplatz -3425 1375 -2065 0 -1683 8RK -Bellevueplatz -1742 657 -1050 0 -804 7RK -Zeltweg TB -912 279 -582 28 -153 1gesamt 8773 3527 5289 4305 0 97

SK: SpeisekabelRK: Rückleiterkabel

Prom

enad

e

SK: Feeder cableRK: Return current cable

Page 58: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 58)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Load and loading capacity Catenary wire at feeding pointNormal operation, blackout in neighbouring subst.

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000

Zeit

Stro

mst

ärke

Belastbarkeit Ri107 Abnutzung 0 %

Belastbarkeit Ri107 Abnutzung 20 %

Ieff je VL Abnutzung 0 %

Ieff je FD Abnutzung 20 %

s

A

Page 59: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 59)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Energy balance

Case 1 Case 2 Case 3 Case 4

Recovered energy

Delivered energy of all substations

Page 60: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 60)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Power losses balance

Case 1 Case 2 Case 3 Case 4

Page 61: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 61)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Recovering balance

Case 1 Case 2 Case 3 Case 4

Page 62: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 62)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Conclusions

- OpenPowerNet is able to simulate all common a.c. and d.c. railway power supply systems.

- OpenPowerNet works as a co-simulation with the commercial OpenTrack railway operation simulator.

- The Co-simulation principle is profitably for modelling, data handling and independent software further development.

- The accuracy of the electrical network simulation was verified by field measurements.

- Simulation service can be provided including or excluding the operation modelling (… already existing models can be used easily).

- OpenPowerNet was officially put into the market in 2009.

Page 63: The new Co-simulation Tool for Traction Power Supply

Stephan_RTS2010_OpenPowerNet.ppt (Figure 63)

– Co-Simulation Tool for Traction Power Supply RTS 2010

Eine Expertenrunde für das Gesamtsystem Bahn

The Expert Team for the Complete Railway System

IFB Dresden Branch, Wiener Str. 114-116, 01219 Dresden, GermanyPhone: +49 351 87759-0, E-Mail: [email protected], Web: www.bahntechnik.de