the next wave tomorrow’s network today · ftth ieee ge‐pon downstream 1490 nm 10g e‐pon...

39
The Next Wave Building Tomorrow’s Network Today Roger Vaughn Solutions Engineer – OFS [email protected]

Upload: others

Post on 25-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

The Next WaveBuilding Tomorrow’s Network Today

Roger VaughnSolutions Engineer – [email protected]

Page 2: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Remember when…

2

Page 3: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

In the Beginning…• Long Haul Routes Established

3

Page 4: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Metro Buildout

4

Page 5: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Access Networks• FTTx

5

Biarri

Page 6: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

The next wave• Macro to Small Cell/5G

6

Your Optical Fiber Solutions Partner® at www.ofsoptics.comC‐RAN

Page 7: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Big and Small

7

• Big demand– Bandwidth and fiber

• Smaller bends• Smaller fiber• Smaller OSP Cable• Smaller ISP Cable

BENDS

SIZE

OSP

ISP

BANDWIDTH& FIBER

Page 8: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Bandwidth growth is accelerating

• In the past 15 years, we’ve seen…– The Internet, iPods– HDTVs, DVRs– Smartphones, Tablet 

computers– Streaming services

• All require every increasing amounts of bandwidth

• Where to get additional bandwidth– Faster equipment– Use more wavelengths– Install more fiber

• Change is constant

8

Mary Meeker (Kleiner Perkins) Information forecast

1,024 Gigabytes = 1 Terabyte. 1,024 Terabytes = 1 Petabyte. 1,024 Petabytes = 1 Exabyte (In 2000, 3 exabytes of information was created.) 1,024 Exabytes= 1 Zettabyte.

Page 9: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Bandwidth – then, now, and next

9

~ 0.6 kbps

Then

2 Mbps

25 Mbps1.5 Mbps

9 Mbps6 Mbps

Now

Next

VR>500 MBPS

Page 10: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

4K (Ultra HD) TV

• Next gen TV format – 2x resolution, roughly 2X bandwidth

• Content online and growing rapidly

• For the first time ever, higher quality video is available via Internet streaming versus  standard packages

• Price continues to drop rapidly

– UHDTV 70” ~$1,000 USD

10

Source: Best Buy

Page 11: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

25 Mbps/screen – How many screens used at once?  

11

Page 12: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

IoT/5GBandwidth – then, now, and next

12

Page 13: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Artificial Intelligence

• Already in widespread use behind the scenes

• Image analysis, voice analysis

• Natural language

• Autonomous vehicles & robotics

• Enormous potential for early medical screenings using smartphones

Page 14: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Optical spectrum needed for the future

14

������� ��� ������������ �����������������������������������

���� ���� � �� � �� � �� � �� � �� ���� ���� ���� ���� ���� �!�� �!�� �!�� �!�� �!�� ���� ����

RFoGGE/GPON    

201210GPON

2016NG‐PON2(40G‐PON)

Year1990s

TechnologyP2P & DWDM

2000s12 ch CWDM

E‐Band CWDM     2010

Full Spectrum?Std SMF G.652.D Bending LossWater Peak 

LossWater Peak 

Loss

10 mm radius

The first 30 years used 1310/1550 nm.  The next 30 will require the entire ITU spectrum.

Page 15: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Zero Water Peak PerformanceClean performance through the optical spectrum

15

ZWP has up to 22% lower attenuation in the water peak region

wavelength (nm)

0

0.3

0.6

0.9

1.2

1300 1500 1600

Loss (d

B/km

)

O LCSE

1400

LWP fiber

Zero Water Peak fiber ‐ lowest loss

U

Conventional SM Fiber

G.652A/B

Page 16: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Bend loss vs wavelength and radius

���"� ��#���#$�%���%& '�����!�(��)����"�*+,���*")��#*�*�+)�*�)�

Optical Fiber Bending Loss Increase vs WavelengthMacro‐bending Loss of typical standard G.652D SMF 

Single 360 degree turn (maximum loss)

0

5

10

15

20

Wavelength (nm)

Macrobe

nding Loss (d

B)

10 mm radiusstd SMF

7.5 mm radiusstd SMF

5 mm radiusstd SMF

16

Page 17: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Bending Loss will become an even Bigger ChallengeIncreasing 2 to 4 times from Current Systems

17

Application Standard Current  Generation Next Generation on Same Fiber Network

Bending Loss 

Increase

FTTH

IEEE GE‐PON downstream

1490 nm

10G E‐PON downstream 1577 

nm 3X

ITU‐T G‐PON Downstream

10G‐PON downstream

40G‐PON(NG‐PON2)

1603 nm 4X

DOCSIS and HFC

SCTE

/ITURF‐Videodownstream

1550 nm

RFoG upstream

1610 nm 2X

Metro and some Long 

HaulITU

C‐Band DWDM /CWDM 

1560 nm

L‐Band DWDM /CWDM 

1625 nm 2.5X

Page 18: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

New challenges in the network More bends, tighter bends

• Outdoors– Limited duct space

• Demands smaller cable diameters– Demands smaller closures and hand holes

• Indoors– Fiber management challenges in CO– New indoor applications in homes and buildings

18

Page 19: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

19

Macro/Micro‐bending

19

Smallradius

Bend Optimized Singlemode fiber

Smallradius

Service Maintained

Optical Signal

Large Optical Loss

Dysfunctional Signal exits bend

Service Disrupted

Conventional Single-mode fiberHigh optical loss around bends

Smallradius

Page 20: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

20

SM/BIF/UBIFDemo

20

Page 21: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Small bends can mean big losses (G.652 Fiber)Two 10 mm radius half bends can lose up to 10 KM of reach

21

20 km

OLT

2016  GPON  1490 nm 2 half bends 10 mm radius

20 KM reach preserved 

2022 – NG PON 2 1603 nm2 half bends 10 mm radius 

10 KM less reach

10 kmOLTOLT

15 km

OLT

2017  10G‐PON 1577 nm 2 half bends 10 mm radius 

5 KM less reach

Sounds like an opportunity for bend insensitive fibers

Page 22: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

New OSP Fibers can Preserve PON reach

22

20 km

OLT

2016  GPON  1490 nm downstream2 half bends 10 mm radius

20 KM reach preserved 

2017  10G‐PON 1577 nm downstream2 half bends 10 mm radius 

20 KM reach preserved

20 km

OLT

2022 – NG PON 2 1603 nm downstream2 half bends 10 mm radius 

20 KM reach preserved

20 km

OLT

Page 23: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Meeting the bending challenge in the OSPNew fibers can help

23

Smaller cables reduce installed costs

Greater flexibility to use existing infrastructureLess bend sensitive fibers may enable smaller handholes for some designs

Page 24: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

200 micron fiber• Enables 2x fibers in same tube (or smaller tubes)

• Glass stays the same (125 microns) • > 12 fibers/tube, last 12 fibers ring marked• Fully compliant to fiber standards• Fully tested in standard cable designs• Reliability is not sacrificed• Millions of KMs deployed already

24

245 microns

Glass fiber

Primary coating

Secondary coating

250 microns200 microns

Glass fiber

24 fibers fit in a typical 12F tube2X the cabled fiber density

Page 25: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

200 µm fiber splicing –Loose tube cables

• Seamless splicing  with the installed base• Spliced with the same tools and 

procedures as 250 µm coated fibers• Why? 

25

Splicers hold the glass fiber, not the coating!

Page 26: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Rollable Ribbons (aka. Pliable Ribbon)• Enables 2x Ribbons in same 

tube (or smaller tubes)• Intermittent bonds between 

fibers in a ribbon• “Rollable” into a smaller 

package than flat ribbons

• Development driven by NTT –Proposed in early 2000s

• “Classic” Japanese development – multiple companies work on similar problem 

26

Furukawa (2012) Illustration

Page 27: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Ultra high fiber count/density applications• “Classic” application

• Connects data centers together

• 1728 fibers and more• Little to no mid‐span fiber 

access• 3456 already being 

installed

• Emerging application• FTTH distribution• Main cable connected to 

micro (or other) cables• Frequent access for butt 

splicing and mid‐span access

27

Page 28: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Where Rollable Ribbons make sense

• Ultra high fiber counts – Significant diameter reductions– Enables 1728 fibers in 1 ¼” duct– 3456 fibers and higher are practical

• Lower fiber counts– 200 µm ribbons have more familiar performance and handling– Cables with 200 µm ribbons have similar diameters to rollable ribbons– When will 200um rollable ribbons be available?

28

Page 29: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Data Center Interconnect fiber density can be doubled at lower cost with Rollable Ribbon Cable

Conventional ‐ OSP Spliced to ISP Cable  Dual Rated RR cable can avoid 1000s of splices

• Double fiber density vs. conventional flat ribbon cables, $10Ks savings by avoiding new duct

• Indoor/Outdoor can bypass splice points saving $10Ks• Lighter weight and small size maximizes fiber count in congested 

raceway and trays

Dual Rated Cable can lower cost by avoiding an outdoor to indoor splice

Where Rollable Ribbons make sense

Page 30: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Evolution of optical cable – microcables

30

Page 31: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Microcables and Microducts Benefits Materials

High fiber density ‐ 200% better space efficiency

Labor Blown cable enables faster deployment than pulled cable Longer blowing distances, fewer splice points Smaller, easier to handle, equipment needed for install

Financial/Intangible Flexibility to grow network as needed

Page 32: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Evolution of Optical Cable – Microcables

32

Smallest – 5.7‐6.3 mm

144 fiber cable example(Traditional cable = 15.7mm)

Smaller – 8.6 mm

Small – 9.7 mm

First generation microcable – GR‐20

Second generation microcables – smaller tubes

3rd and 4th gen – smaller tubes and 200 µm fiber

Page 33: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

96 fiber Trial Difficult route Cable with PA (nylon) sheath 2000 m in approx. 35 minutes 

Microcables sometimes require caution• Not as standardized as traditional 

OSP cables• GR‐20 rated cables can be pulled 

with caution• Next gen microcables should be 

blown – less mechanically robust– Requires specialized handling

• Typical cable/microduct fill ratios (diam. to diam.) – 65%‐75%

• Not intended for aerial deployments (without microduct)

• Use caution with FTTH distribution applications requiring expessing in pedestals

33

Page 34: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Small Solutions to the MDU/MTU

34

Page 35: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

35

Existing methods for MDU/MTU hallway deployments• Traditional methods of hallway cable deployments are often costly and distract from the décor.– Large and visible– Time consuming to install

35

Moldings and tapes are typically very visible

Page 36: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Smaller solutions for hallway deployments

36

12 fibers

Page 37: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

37

Bend Optimization allows for complex hallway deployments

Clean, completed installation

Page 38: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Summary

38

• Bandwidth demand is big, really big, and keeps growing

• Small size lowers cost and increases fiber density

• Outdoors– New OSP fibers help manage smaller bends

• G.657A2 and 9.2 µm MFD– 200 µm fibers enable smaller cables– Rollable Ribbons reduce cable size and weight for large fiber counts– Smaller cables increase fiber density and lower costs

• Indoors– UBIF enables fiber to the MDU/MTU quickly reducing labor costs– Rollable Ribbon allows for smaller, lighter cables in trays and raceways

Page 39: The Next Wave Tomorrow’s Network Today · FTTH IEEE GE‐PON downstream 1490 nm 10G E‐PON downstream 1577 nm 3X ITU‐T G‐PON Downstream 10G‐PON downstream 40G‐PON (NG‐PON2)

Thank You

Roger VaughnSolutions Engineer

[email protected]

www.ofsoptics.com