the olfactory system. olfactory system chemical sensing system with receptor organs in the nasal...

38
The Olfactory System

Upload: trevor-phelps

Post on 15-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The Olfactory System

Page 2: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory System

Chemical sensing system with receptor organs in the nasal passages

Receptors synapse directly into the brain; heavy connections with the limbic system

Different from other sensory systems in many ways

Page 3: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy
Page 4: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy
Page 5: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory System: Peripheral StructureOlfactory receptors are located on the olfactory (or nasal) epithelium. The epithelium hangs down from the roof of the nasal sinus. The epithelium contains olfactory receptor cells and supporting cells.

Dendrites of olfactory receptor cells extend into the mucus coating of the epithelium; odorant molecules bind to receptors on the dendrites. Axons of the olfactory receptor cells enter the brain and synapse on cells in the olfactory bulb.

BRAIN

SINUS

Page 6: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory sensory neurons

There are about 10 million receptors per side in humans

Page 7: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory sensory neuronsNo circuitry or synapses in the epithelium; receptors have axons (thin, unmyelinated, slow) which project directly to the brain.

Receptors die and are replaced about every 60 days.

Stem cell

To olfactory bulb

Page 8: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/O/Olfaction.html

Olfactory receptors use a G-protein coupled transduction mechanism similar to visual receptors

Page 9: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/O/Olfaction.html

KinaseAdjust sensitivity

Olfactory receptors show strong adaptation

Mechanisms: 1. Kinase phosphorolation of receptor protein (desensitization to odorant molecules); 2. Adjustment of channel sensitivity to cAMP (up or down depending on odorant concentration)

Page 10: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

What exactly do receptors code?

How odors are encoded by the olfactory receptors was a long-standing mystery

Early olfactory researchers suggested that a small number of receptor types could encode a large number of natural odors, similar to 3 cones coding all perceived colors: The “Prime Odor” theory (7 primes was a popular number)

Difficult to determine what those “prime odors” might be and how they would be combined to give the smell of a natural substance

Page 11: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Richard Axel and Linda Buck used molecular techniques to determine the number of different olfactory receptor types. The concept and strategy:

1. SPECIFICITY WOULD BE BASED ON STRUCTURE OF RECEPTOR-G PROTEIN COMPLEX; THEREFORE, IF YOU DETERMINE THE NUMBER OF DIFFERENT RECEPTOR STRUCTURES, YOU KNOW THE NUMBER OF DIFFERENT FUNCTIONAL TYPES, AND THEREFORE THE NUMBER OF DIFFERENT “PRIME ODORS”

2. STRUCTURALLY DIFFERENT RECEPTOR PROTEINS WOULD BE CODED BY DIFFERENT GENES; CLONE, SEQUENCE, CHARACTERIZE GENES EXPRESSED IN THE OLFACTORY EPITHELIUM, LOOK FOR SYSTEMATIC VARIATION ON G-PROTEIN TYPES

3. LOCALIZE THE EXPRESSED GENES BACK TO THE OLFACTORY RECEPTOR CELLS

Page 12: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Result: There are 1000 different genes in 4 families; each codes 7-transmembrane domain G-protein coupled receptor protein that is expressed in olfactory receptors in mice

About 350 of these are functional genes in humans; the rest are present as “pseudogenes”

Each receptor cell in the epithelium expresses only one receptor gene

Therefore, each receptor is best “tuned” to one of 1000 different chemical “types”

What these types are is still not clear, nor is how the code gets turned into a “smell”

Page 13: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

http://nobelprize.org/medicine/laureates/2004/buck-slides.pdf

The olfactory epithelium is “mapped”, but not in a familiar way

The 4 gene families are expressed in different zones of the epithelium

Within a zone, different receptor types appear to be randomly scattered

Page 14: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy
Page 15: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

http://nobelprize.org/medicine/laureates/2004/buck-slides.pdf

Examples of odorant coding; note that relative levels of activation in the different receptors might also be important in coding the odor

Page 16: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

http://nobelprize.org/medicine/laureates/2004/buck-slides.pdf

A combinatorial code means that receptors can contribute to the perception of very different smells

Page 17: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Output of the olfactory epithelium goes to the Olfactory Bulb: Olfactory bulb is a three layered structure. Mitral cells are the principal neurons of the olfactory bulb.

Page 18: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory Bulb Circuitry: The glomerulus is the basic processing component of the olfactory bulb

Olfactory Bulb Circuitry: Periglomerular cells in the glomerulus and granular cells in the deeper layers mediate local and lateral inhibition

Page 19: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Cells expressing a single type of receptor are widely scattered across the olfactory epithelium.

Axons of all these cells converge on a single place (glomerulus) in the olfactory bulb.

Page 20: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

All the axons terminating in a glomerulus are from the same type olfactory receptors. Therefore each glomerulus codes one odorant type.

Axons from each olfactory receptor type terminate in very few (maybe only 1 or 2) glomeruli at one point in the olfactory bulb.

Page 21: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Axons from 25,000 olfactory receptors

STRUCTURE OF THE OLFACTORY GLOMERULUS

Dendrites from 25 mitral cells

Periglomerular cells form inhibitory connections between glomeruli

A glomerulus is a self-contained zone of synaptic interactions.There are about 2000 glomeruli in the olfactory bulb of each side.

10,000,000RECEPTORS

2,000GLOMERULI

Page 22: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Olfactory system codes “odors” based on chemical structure of molecules; specificity is for a molecular structural characteristic, not a particular molecule.

SCIENCE VOL 286 22 OCTOBER 1999

Page 23: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Dendrodendritic reciprocal synapses form between PG cells and MT dendritic tufts, and between granular cells and MT basal dendrites. These both result in local dendritic inhibition following excitation of the mitral cells by olfactory nerve inputs. (NOTE: This is in addition to lateral inhibition of neighboring mitral cells.)

http://flavor.monell.org/%7Eloweg/OlfactoryBulb.htm

Page 24: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Lateral inhibition through periglomerular cells:

+ ---

-

Looking down on glomerular level; connections form +/- center surround receptive field

+

_

Oscillations induced through dendrodendritic connections:

Mitral EPSP

Mitral AP

Odorant present

Page 25: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Numerous connections to limbic system areas.

Connections to cortical areas do not depend on relay through a thalamic nucleus

Olfactory pathways out of the bulb are all uncrossed.

The piriform cortex is considered the olfactory sensory cortex.

Page 26: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

SCIENCE VOL 294 9 NOVEMBER 2001

Single glomeruli project to multiple locations in olfactory cortex.

Cortical representation of olfactory information

Page 27: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Glomeruli projections overlap in olfactory cortex, and individual cortical neurons receive input from multiple glomeruli (and hence receive input from multiple odorants).

http://nobelprize.org/medicine/laureates/2004/buck-slides.pdf

Page 28: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

QUESTION: Why remix inputs after you have gone through all the trouble of separating them out so effectively?

ANSWER: Olfaction may be based on pattern detection: Cortical neurons are concerned with specific combinations of inputs, with each combination corresponding to a percept.

Page 29: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy
Page 30: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The Vomeronasal System

A second olfactory system is present in most vertebrates. It is separate from the main olfactory system anatomically and functionally.

Page 31: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The vomeronasal organ is separate from the main olfactory epithelium in the nasal cavity

http://bioweb.usc.edu/courses/2002-fall/documents/neur524-olfactory_transduction.pdf

Page 32: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Vomeronasal receptors use a different signal transduction pathway than main olfactory receptors

About 100 different receptor types in two gene families; these families are different from the four in which main olfactory receptors are coded

Vomeronasal receptors are different from main olfactory receptors

http://bioweb.usc.edu/courses/2002-fall/documents/neur524-olfactory_transduction.pdf

Page 33: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The vomeronasal system is specialized for detecting high molecular weight, relatively nonvolatile chemicals. Its presence is often accompanied by morphological or behavioral specializations for moving such odorants to the vomeronasal epithelium.

LOCATION NEAR NARES, OR OPENING INTO MOUTH CAVITY

VASCULAR “PUMPS”

STEREOTYPED BEHAVIORS: TONGUE FLICKING IN SNAKES “FLEHMEN” RESPONSE IN HORSES

Page 34: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The vomeronasal receptors project to a separate “accessory olfactory bulb” via a separate “accessory olfactory nerve”

Organization of the AOB is similar to that of the MOB. Outputs are different: the AOB output target only subcortical limbic areas that connect in turn to the hypothalamus

Page 35: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Accessory Olfactory Bulb

Main Olfactory Bulb

Vomeronasal Organ Main Olfactory Organ

Septal nuclei

Amygdala Olfactory tubercle

Olfactory Cortex

PHEROMONESPREY ODORS

GENERAL ODORS

Entorhinal Cortex

HippocampusPARALLEL OLFACTORY PATHWAYS

Medial, BNST

Cortical

Hypothalamus

Page 36: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

The vomeronasal system is specialized for detecting and processing biologically important odors, especially chemical communication signals (“pheromones”)

•Chemical communication is a preeminent social communication channel in most mammals

•Courtship, sexual behavior, aggression, maternal behavior, kin recognition, pair bonding, territoriality, fear and predator avoidance all involve chemical signaling and are controlled by the reception of chemical signals in most mammals

•Lesions of the vomeronasal system at various levels interfere with normal social behavior mediated by pheromonal communication

Page 37: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Vomeronasal and Main Olfactory System May Both Participate in Chemical Signaling Depending on Experience

In virgin male rodents, lesioning VNO blocks sex with a female; lesioning OE has no effect

X

XX

X

NO COPULATION WITH A FEMALE

NO COPULATION WITH A FEMALE

NORMAL COPULATION WITH A FEMALE

NORMAL COPULATION WITH A FEMALE

XX

In male rodents with 1 previous sexual experience, lesioning VNO or OE alone has no effect; both must be lesioned to block copulation

Page 38: The Olfactory System. Olfactory System Chemical sensing system with receptor organs in the nasal passages Receptors synapse directly into the brain; heavy

Is Chemical Communication Important in Humans?

• Do we have a vomeronasal organ? Probably not (nor do Old World primates generally) – but does that mean anything?

• What can we recognize by odor alone? The “t-shirt” experiments

• Can odors affect reproductive function? The menstrual synchrony experiments

• If human pheromones were controlling our behavior, would we even know it? Look where accessory olfactory information is sent in the brain – it’s all subcortical