the paradigm shift from traditional to virtual

19
The Paradigm Shift from Traditional to Virtual Stephen K. Durham, PhD Department of Lead Safety Assessment

Upload: hateya

Post on 15-Jan-2016

61 views

Category:

Documents


0 download

DESCRIPTION

The Paradigm Shift from Traditional to Virtual. Stephen K. Durham, PhD Department of Lead Safety Assessment. Factors Influencing Change. Technology Combinatorial Chemistry High-throughput Screens Computational Power Genomic revolution Escalating Costs. The Changing Paradigm. Traditional - PowerPoint PPT Presentation

TRANSCRIPT

  • The Paradigm Shift from Traditional to VirtualStephen K. Durham, PhDDepartment of Lead Safety Assessment

  • Factors Influencing ChangeTechnologyCombinatorial ChemistryHigh-throughput ScreensComputational PowerGenomic revolutionEscalating Costs

  • The Changing ParadigmTraditional(Sequential)MTSPotencySelectivitySpecificityFunctional ActivityCurrent(Parallel)HTSPotencySelectivitySpecificityFunctional ActivityADME/PharmaceuticsSafetyFuture(Knowledge-Based)Computational Design and Screening of VirtualLibrariesIn Vitro ConfirmationDEVELOPMENT

  • What Are the Key Toxicological Liabilities Affecting Drug Development?GenotoxicityCarcinogenicityTeratogenicityLiver ToxicityExtrahepatic Toxicity P450 Induction

  • Why Do We Want to Find Out the Liabilities Early?Studies Required for an NDA:Genotoxicity Studies (in vitro and in vivo).Single-Dose Studies in Mice and Rats.Two-Week, One-Month or Three-Month Studies in Rats and Dogs.Six-Month Study in Rats.Chronic (6 12 Month) Study in Dogs.Segment I, II, and III Reproductive Toxicity Studies in Rats and/or Rabbits.Palatability and 3-month Range-Finding Studies for Carcinogenicity Studies.Carcinogenicity Studies in Mice and Rats.Local Tolerance Study in Rabbits.Antigenicity Study in Guinea Pigs.Others as needed.

  • How Do We Address Safety Issues Until Virtual is a Reality?Tiered Multivariate Analysis

    Chart2

    1.00045399931.00045399938.360355317

    1.00000002061.00000002067.7718537991

    117.2304062646

    4.678794411716.7322504846

    5.895416595616.2739250416

    5.723665527415.8522452777

    4.114032239115.4642811662

    2.353352832415.1073369523

    1.497870683714.7789324219

    1.356739933514.4767856681

    1.25561533211.0001670174.1987972348

    1.18315638891.02478752183.9430355294

    1.13123728741.13123728743.7077234009

    1.09403562551.30197383423.4912257913

    1.067379471.49787068373.2920383749

    1.04827949991.69483451223.1087771049

    1.03459377341.88162689362.9401685971

    1.02478752182.05399224562.7850412812

    1.01776103552.21103332392.6423172606

    1.0127263382.35335283242.5110048227

    1.00911881972.48215066342.3901915476

    In Vitro Studies

    In Vivo Studies

    Computational Analyses

    Stage of Development

    No of Compounds

    Sheet1

    0.10.118.16531310578.3603553171.00045399931.0004539993

    0.10.126.13417119037.77185379911.00000002061.0000000206

    0.10.134.67879441177.230406264611

    40.143.63597138126.73225048464.67879441171

    70.152.88875602846.27392504165.89541659561

    80.162.35335283245.85224527775.72366552741

    60.171.96971967865.46428116624.11403223911

    40.181.69483451225.10733695232.35335283241

    30.191.49787068374.77893242191.49787068371

    30.1101.35673993354.47678566811.35673993351

    31111.25561533214.19879723481.25561533211.000167017

    32121.18315638893.94303552941.18315638891.0247875218

    33131.13123728743.70772340091.13123728741.1312372874

    34141.09403562553.49122579131.09403562551.3019738342

    35151.067379473.29203837491.067379471.4978706837

    36161.04827949993.10877710491.04827949991.6948345122

    37171.03459377342.94016859711.03459377341.8816268936

    38181.02478752182.78504128121.02478752182.0539922456

    39191.01776103552.64231726061.01776103552.2110333239

    310201.0127263382.51100482271.0127263382.3533528324

    311211.00911881972.39019154761.00911881972.4821506634

    Sheet1

    In Vitro Studies

    In Vivo Studies

    Computational Analyses

    Stage of Development

    No of Compounds

    Sheet2

    Sheet3

  • In Silico Predictive ToxicityComputational programs ultimately fulfill the requirement for determining liabilities at the early stages of discoveryMutagenicityCarcinogenicityReproductiveToxicity

  • In Silico Predictive Toxicity

  • Approaches to Analysis

  • Typical TOPKAT Output

  • Typical Multicase Output

  • Typical DEREK Output

  • Size Does MatterLarge Pharma AdvantagesRobust Institutional DatasetExtensive Logistical ResourcesBiotech AdvantagesFlexible and AgileRisk TolerantStrong Academic TiesQuid pro quo

  • Internal Evaluation ProtocolComparative computational toxicological evaluation using a pharmaceutical data setAnalysis of compounds not existing in training dataset (MCASE/ TOPKAT)Include BMS institutional data Compliance for robustness and chemical diversity

  • Acceptability Criteria for Computational Analysis85% ConcordanceRequire low false negatives (high specificity)Willing to accept false positives followed by rapid in vitro verification

    Still looking for Utopia

  • Post-computational Verification: Acceptability Criteria for In Vitro AnalysisHigh concordanceRequire low false negatives and false positivesSmall compound requirementsModerate through-put with rapid results

    Reliable in vitro assays are necessary to confirm computational predictions

  • The Changing Paradigm

  • Emerging Technologies

  • AcknowledgementsGenetic Toxicology, Drug Safety EvaluationAndrew HenwoodLarry YottiLead Safety AssessmentOliver FlintGreg PearlStructural Biology and ModelingDeborah LoughneyJonathan MasonRoy Vaz