the periodic table unit 4. i. history a. dmitir mendeleev russian chemist, 19th century arranged...

30
The Periodic Table Unit 4

Upload: samson-harmon

Post on 23-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

The Periodic TableUnit 4

Page 2: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

I. HistoryA. Dmitir Mendeleev • Russian chemist, 19th century

•Arranged elements by their properties•Arranged by increasing atomic mass•Groups: vertical groups-elements have similar properties•Periods : horizontal rows•Periodic Law: Properties of the element are a periodic function of their atomic mass

O Now arranged by atomic numberO Iodine and tellurium were out of order

Page 3: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic
Page 4: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

B. Henry Mosely• British physicist (1887-1915 years of accomplishment)• Developed the modern periodic table• Used x-rays to determine atomic number

Page 5: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

II. Elements• Arranged based properties • 109 elements-mostly naturally occurring• Any element greater than 83 is

radioactive

Page 6: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

III. Metals, Nonmetals, Metalloids

A. Metals (H is NOT a metal)• Make up 2/3rds of the periodic table• Shiny• Solids (not Hg)• Malleable• Ductile• Good conductor of heat and electricity

• Mobile electrons• Tend to lose electrons to become ions 

Page 7: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic
Page 8: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

B. Nonmetals• Not shiny• Gas, liquid, and solids• Not malleable or ductile• Brittle• Poor conductors of heat and electricity•Tend to gain electrons to become negative ions

Page 9: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic
Page 10: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

C. Metalloids or semi-metals• In between in properties On stairs

B, Si, Ge, As, Sb, and, Te

Page 11: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

IV. Groups or Families

A. Alkali Metals (group 1) Very active metals, reactivity increases

as you go down a group React violently with water Always found in compound

Page 12: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

B. Alkaline Earth Metals (group 2) Active but not as much as group 1 Reactivity of metals increases as you go

down a group

Page 13: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

C. Transition Metals (group 3-12)•Can lose 1-3 electrons to become ions•Multiple oxidation states•High melting points

O Hard solid at Standard Temperature and Pressure (STP: 0 C and 1 atm)

•Mercury (Hg) is the exception-liquid•Form colored ions in solution• Reactivity of metals increases as you go down a group

Page 14: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

D. Halogens (group 17)•“salt-formers”•Tend to bond with group 1 and 2•Very active non-metals•Only group containing all three states of matter at room temperature

Page 15: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

E. Noble Gases (group 18)•Non-reactive•Inert gases•8 valence electrons•Octet rule: all elements “want” 8 valance electrons•He exception- only 2 valence electrons

Page 16: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

Q1. Explain the placement of an unknown element in the periodic table

Q2. Compare and contrast metals, metalloids, nonmetals.

Q3. Why are noble gases non-reactive

Page 17: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

V. Trends

A. Electron Configuration• Although arranged by atomic number, there are significant trends for electron configuration• Groups: same number of valance electrons (valence electrons determine how an element will react with other elements/ compounds)

O Draw Li, Na, K

•Periods: same number of principle energy levels

O Draw Na, Mg, Al

Page 18: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

•Lewis Dot Diagrams• Used to determine the type(s) of covalent

bonds that an element may make in certain situations

• Used to predict the type of ion that an atom might make when it forms an ion.

• Each dot diagram consists of an elemental symbol, which represents the kernel of the atom, and a group of 1-8 dots which shows the configuration of the valence shell electrons (outer-most electron shell of the atom).

Page 19: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

• Order for placing dots, two dots can start on any side, continue either clockwise or counter clockwise, fill one dot at a time

• Remember that each side can only hold up to two dots• The number of valance electrons can be determined using the

group number

Page 20: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

Q4. Explain how the number of energy levels containing electrons can be used to determine the Period the element would be found on the periodic table

Q5. Draw a Lewis electron-dot structure for Na, Be, Al, Ne

Q6. Distinguish between valence and non-valence electrons, given an electron configuration the following electron configurations. 2-1, 2-8-7, 2-8-18-8

Page 21: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

B. Atomic radii (Size)-Table S• Measure of the size of the atom•Atomic radii measured as half the distance between 2 nuclei

r = ½ d

•Groups: increase the number of principle energy levels as you go down

Radii increase

•Period: same number of principle energy levels as you go across

• Number of protons increases• More pull for electrons• Radii decrease

Page 22: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic
Page 23: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

C. Ions•Octet Rule: all atoms in nature want to “look like” noble gases (8 valance electrons)•Metals

Few valence electrons Lose electrons become + ions

•Nonmetals Close to 8 Want to gain electrons become – ions

Page 24: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

D. Shielding•The electron shielding effect is the effect where core electrons block valence electrons from the nuclear charge of the nucleus. •If you increase the number of principle energy levels, shielding increases•Positive and negative charges attract each other so the more effective charge the electrons gets, the more attraction there is between the nucleus and the outer electrons. So as the effective nuclear charge increases, the atom and it's radii becomes smaller•As the shielding becomes stronger, the nuclear charge decreases and the size of the atom increases-More shielding, bigger atom

Page 25: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

Q7. Explain the trends of periods, in terms of nuclear charge and electron shielding seen on the periodic table

Page 26: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

E. Ionization Energy•Energy to remove the most loosely bound electron from a neutral gaseous atom•Trend in periods

From left to right, there is an increase in the number of protons which results in the nuclear charge increasing, the electrons are more strongly attracted and more energy is needed to remove them from the atom

Page 27: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

•Trends in Group Ionization energy decreases because

valance electrons in each successive element are at a higher energy level and farther from the nucleus

Page 28: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic
Page 29: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic

F. Electronegativity• Electronegativity value of an atom is a measure of its attraction for electrons when bonded to another atom•Table S •Periods: from left to right shows an increase in electronegativity• Group: the highest electronegativity value is found at the top. Attraction for bonded electrons is less towards the bottom of the group

Page 30: The Periodic Table Unit 4. I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic