the phosphorus story: sustainable nutrient management at ... · the robert w. hite treatment...

64
The Phosphorus Story: Sustainable Nutrient Management at the Robert W. Hite Treatment Facility Englewood PWO Seminar – February 7, 2019 Dan Freedman, MWRD Nate Brown, Stantec

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • The Phosphorus Story: Sustainable Nutrient Management at the Robert W. Hite Treatment Facility

    Englewood PWO Seminar – February 7, 2019Dan Freedman, MWRDNate Brown, Stantec

  • Agenda

    • Background on Phosphorus• Robert W. Hite Treatment Facility Background• The District’s Phosphorus Initiative• Liquid Stream Phosphorus Removal• Solids Stream Phosphorus Recovery• The Future of Phosphorus Management

  • Background on Phosphorus(The Most Interesting Element in the World)

  • What even is Phosphorus?• In Greek mythology, Phosphorus was the god “Light Bringer” otherwise known as The Morning Star (aka the planet Venus)

    • The Latin translation of Phosphorus is Lucifer

    Image source ‐ https://lystek.com/Image source ‐ John Lemieux, flickr.com

    The Lucifer of Liege by Guillaume GeefsImage by Luc Viatour

  • How was Phosphorus first discovered?• Discovered in 1669 by Hennig Brand whilst searching for the “philosopher’s stone”

    • Brand attempted to create the stone through distillation of salts by evaporating urine

    • Through the process he produced a material that made a brilliant white light, hence the name phosphorus

    Image source ‐ https://lystek.com/

    The Alchymist, In Search of the Philosopher’s Stone, Discovers Phosphorus, and prays for the successful Conclusion of his operation, as was the custom of the Ancient Alchymical Astrologers

    by Joseph Wright of Derby

  • Why is Phosphorus important?“Life can multiply until all the phosphorus is gone, and then there is an inexorable halt which nothing can prevent. We may be able to substitute nuclear power for coal, and plastics for wood, and yeast for meat, and friendliness for isolation—but for phosphorus there is neither substitute nor replacement.”

    ‐Isaac Asimovfrom Asimov on Chemistry

    Image source ‐ https://lystek.com/Image source ‐ John Lemieux, flickr.com Image source ‐ https://lystek.com/

  • Who is Phosphorus?While working at a nuclear power plant, Dr. Alex Sartorius was expose to radioactive material as a result of a nuclear reactor failure. His body transformed into live Phosphorus and turns to flame whenever he is in contact with air. He is now known as Doctor Phosphorus!

    Image source ‐ John Lemieux, flickr.com Image source ‐ https://lystek.com/

    Image source – DC Comics

  • Where is all the Phosphorus?

    Image source: BioPandit

  • Where is all the Phosphorus?

    Image source ‐ https://lystek.com/Image source ‐ John Lemieux, flickr.com

    Image source – UNEP

    The Phosphorus Cycle (Source: UNEP)

    Image source – National Geographic

    Image source – Robert Garvey, CorbisImage source – Y. Arthur‐Bertrand, Corbis

    Image source – Elena Elisseeva, Shutterstock

  • South Platte RiverOff-line Reservoirs

    Prehearing Statement, Regs #31 and #85, Rulemaking Hearing, March 12, 2012, Colorado Water Quality Control Division, December 9, 2011.

    Phased Total Maximum Daily Load to Achieve pH Compliance in Barr Lake and Milton Reservoir, Colorado, Barr Lake and Milton Reservoir Watershed Association, May 2013,

    Why we care: Water quality issues

  • Robert W. Hite Treatment Facility (RWHTF) Background

  • Robert W. Hite Treatment Facility (RWHTF)

    North SecondaryNorth Secondary

    South SecondarySouth Secondary

    Solids HandlingSolids Handling

    • 1.8 million population equivalent service area, 220 MGD plant rating• Separate secondary processes, with combined solids handling and 

    sidestream treatment

  • Resource Recovery at the RWHTF

    Effluent (Water)Average ~134 mgd

    No District water rights85% of S. Platte 6 months/year

    Denver Water can reuse up to 120 cfs

    Biosolids (Nitrogen)107 dry tons/day (2017)1.64 tons/day plant available nitrogen75% applied on private property25% applied on METROGRO Farm

    Combined Heat and Power (Energy)Average ~4.5 MW

    38% plant electricity

    N

  • The District’s Phosphorus Initiative

  • The Regulatory Timeline

    2019 2037

    Reg. 85 Voluntary Incentive Program

    Reg. 31 andBarr/Milton TMDL

    TP (mg/L) 1.0 0.7 0.7 0.1

    Interim Limits?

    2027

  • The Phosphorus InitiativeThe Problem:

    Why phosphorus is regulated

    The Cost of Compliance:Financial incentive to figure

    our way through this

    The Current Plan: Environmental and social

    reasons for innovation

    GOALTo find the most effective 

    and sustainable phosphorus management approach 

    through an intensive study phase of biological 

    phosphorus removal, phosphorus recovery, 

    watershed impact studies, and tertiary facilities

  • The Current Plan4 Angles

    1

    2

    3

    4

    Liquid stream

    TP removal

    SolidsTP

    removal

  • Liquid Stream Phosphorus Removal

  • Quick Note on Terminology• Biological phosphorus removal (BPR) – refers to the incorporation of phosphorus into biomass during cellular growth

    • Enhanced biological phosphorus removal (EBPR) – refers to the intentional selection of polyphosphate‐accumulating organisms (PAOs) through the conditioning of biomass in anaerobic zones (i.e., no nitrate or oxygen present)

    • Bio‐P – colloquial phrase used to describe either BPR or EBPR

  • EBPR Mechanisms

    Adapted from WEF MOP 8, 2010

    • Two‐stage process: anaerobic (release) and aerobic (uptake)

  • Liquid Stream Phosphorus Removal: SSEC

    • South Secondary Improvements Project (PAR 1085)

    • Completed in 2015• Demolished a high‐purity oxygen activated sludge process

    • Constructed a 3‐stage anaerobic‐anoxic‐oxic (A2O) activated sludge process

    • Rated for 114 MGD max. month flow• Currently treats approx. 60% of the total plant secondary influent – not running in Bio‐P mode

  • Liquid Stream Phosphorus Removal: SSEC

    Anaerobic(Anoxic Swing) Anoxic

    PE

    100% RAS

    Effluent

    Clarifier

    Aerobic

    MLR

  • Liquid Stream Phosphorus Removal: NSEC

    Aeration Tanks (1 of 12)

    Sidestream Tanks (1 of 4)

    Gravity Thickeners

    • 12 AB‐SC Trains• 4 Sidestream Tanks(CaRRB)

    • 4 Gravity Thickeners (in the vicinity)

  • NSEC Baseline Process Schematic

  • Conventional A2O Process Schematic

  • Alternative Novel Sidestream Configuration

  • Liquid Stream Phosphorus Removal: NSECEnhanced Biological Phosphorus Removal (EBPR) Pilot Project (PAR 1171)

    Two Anaerobic RAS Reactors

    Temporary Gravity Thickener Overflow Feed

  • EBPR Pilot Study Parameters

    • 8‐month full‐scale demonstration period• 15‐30% RAS rate through anaerobic zone• 0.3 to 0.5‐day anaerobic SRT• 1.3‐hr anaerobic HRT• 80‐100% centrate returned to NSEC CaRRB• 100% gravity thickener effluent conveyed to anaerobic zone• Low mixing energy in anaerobic zones

  • EBPR Pilot Study Phase I ResultsTP = 0.58 mg-P/LOP = 0.10 mg-P/L

  • Full-Scale Sidestream EBPR Implementation

    • Sidestream Nutrient Removal Project (PAR 1237)• Construction completed in Jan 2018• Retrofit two CaRRB to Sidestream Anaerobic Reactors (SAR)• Up to 50% RAS (52 MGD) and 100% GTE (7 MGD) to anaerobic zones

    North Secondary aeration basins

  • Consequences of EBPR Operation

    • 2011‐2012 pilot study observations suggest that effluent quality is directly related to digested sludge dewatering recycle loads.

  • Consequences of EBPR Operation

  • Consequences of EBPR Operation

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    0

    10

    20

    30

    40

    50

    60

    70

    1‐Jan‐15 11‐Apr‐15 20‐Jul‐15 28‐Oct‐15 5‐Feb‐16

    Capture Effic

    iency, %

    Chem

    ical, lbs/dt

    Cake so

    lids, % 

    Date

    Cake solids, % Polymer, lbs/dt Ferric, lbs/dt Capture Efficiency, %

    40% of Facility in EBPR

    100% of Facility in EBPR

    Intentional EBPR Off

  • Consequences of EBPR Operation

    Return Activated Sludge (RAS)

    Secondary Treatment

    Centrate (recycle flow)

    Primary Treatment

    Digester

    Centrifuge

    Phosphorus Recovery

    Less than 1% of the flow but 25% of the Phosphorus Load

  • Solids Stream Phosphorus Recovery

  • Effective and Sustainable Phosphorus Management

    5Drivers for Phosphorus Management1. Phosphorus Recycle Control2. Biosolids Dewatering3. Struvite Reduction4. Phosphorus Index5. Product Recovery

    1 lb of phosphorus equates to 8 lbs of struvite.7,000 lbs of phosphorus enter the RWHTF each day!

  • Established Phosphorus Recovery SystemsIntentional Precipitation of Struvite

    NH4MgPO4●6H2O

    Two primary recovery system types

    Digestate = AirPrex™ Centrate and Stripped WAS Filtrate = WASSTRIP/Ostara

    5 in Germany4 in the Netherlands1 Belgium1 in China

  • Phosphorus Recovery Pilot WorkHypothesis:Removing phosphorus in the sidestream will: Improve our effluent quality Reduce operating costs Pilot Technologies: Digestate Recovery (i.e., AirPrex) WAS Phosphorus Stripping

    (i.e., Ostara WASSTRIP)

    AirPrex™ phosphorus removal pilot test, summer 2016

  • Phosphorus Recovery Pilot Work

    Pilot testing WAS release 

    pretreatment with anaerobic digestion and 

    sludge dewaterabilityassessment

    Oct 2016–Jun 2017

    Aug2016

    PAR 1280 initiation 

    Nutrient and cation

    sampling and mass balances across solids processing 

    2015 June–Aug2016

    Pilot testing of AirPrex

    precipitation and recovery 

    BenchtopWAS release 

    tests 

    Jan2015

    Ostara Pearl pilot

    2011 2016

    Development and utilization of steady‐

    state process model using 

    BioWin

  • How does AirPrex work?

    Anaerobic Digestion

    Centrifuge

    Centrate

    BiosolidsAirPrexReactor

    Struvite

    Digester effluent is fed to AirPrex reactor

    Reactor is aerated which strips the CO2from the reactor and raises the pH

    Magnesium is dosed to the reactor causing struvite to precipitate 

    CO2 Mg

    Struvite settles and is pumped out and cleaned

    AirPrex effluent, stripped of phosphorus, is sent to dewatering centrifuges

  • How does Ostara+WASSTRIP work?

    Thickening DewateringAnaerobic Digestion

    WASSTRIPProcess

    Struvite

    Biosolids

    Centrate

    Phosphorus‐stripped WAS from the WASSTRIP reactor is thickened

    Phosphorus is released into the liquid stream and separated from the biosolids

    Low P

    High P Centrate from dewatering is high in ammonia and is combined with liquid stream from WASSTRIP

    Caustic

    Mg

    Caustic is added to raise the pH

    Magnesium is dosed to the reactor, causing struvite to precipitate 

    Struvite pearls settle and are pumped out and cleaned

    Ostara Pearl effluent, stripped of phosphorus, is recycled back to mainstream

  • AirPrex Pilot Study• Pilot on site from June thru August 2016• Reactor operated continuously at a flow of 11 gpm

    • Centrisys CS10‐4 centrifuge operated 6 –8 hours per day

    • Mg:P molar dosing ratio varied between 0.7:1 – 1.7:1

  • AirPrex Pilot Phosphorus Recycle Load Control

    0

    50

    100

    150

    200

    250

    300

    Typical Untreated Mg:P0.7:1

    Mg:P1.4:1

    Mg:P1.7:1

    Phosph

    orus, m

    g/L

    Orthophosphorus

    Particulate Phosphorus

    • OP and TP were observed to decrease in the centrate as the Mg:P molar dosing ratio increased to 1.4:1

    • At 1.7:1 Mg:P molar ratio, OP was lowest while TP increased –potentially due to fines loss

  • AirPrex Pilot Dewaterability Improvements

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    0 1 2 3 4 5

    Cake Solids, %

    Polymer Dose, lb/hr

    Digestate

    AirPrex

    8.7% reduction in wet tons hauled17% decrease in polymer consumption

  • WAS Phosphorus Stripping Pilot Study• Pilot testing conducted from October 2016 through May 2017

    • Batch fed phosphorus stripping reactor (48‐hr SRT)

    • Filter press system for thickening

  • WAS Phosphorus Stripping Pilot Study• TWAS combined with TPS in Digester Pilot System (16‐day SRT)

    • “Control train” received unstripped WAS, “test train” received phosphorus‐stripped WAS

    • WAS used in pilot is from SSEC while operating in Bio‐P mode (centrate recycle to NSEC)

  • WAS Phosphorus Stripping Process

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    4-Feb 19-Feb 6-Mar 21-Mar 5-Apr 20-Apr

    Solu

    ble

    to T

    otal

    Pho

    spho

    rus

    P C

    once

    ntra

    tion

    in F

    inal

    Rel

    ease

    d W

    AS,

    mg/

    L

    Soluble P Particulate P Soluble to Total Phosphorus

  • Struvite Quantification

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    0%

    2%

    4%

    6%

    8%

    10%

    12%

    14%

    Acid Cake Test Mass Balance onSoluble Mg

    XRD

    Struvite

    Redu

    ction in Biosolid

    s

    Struvite Con

    centratio

    n in Biosolid

    s, % of T

    otal TS

    Comparison of Methods for Quantifying Struvite in Biosolids

    Test Control Reduction

    • 8% of biosolids is struvite at full‐scale• “Test train” averaged 23% less struvitethan “control train”

  • Key Results from Pilot Studies

    P Recovery System

    Struvite Formation Potential (Modeling) Recycle Control Dewaterability

    % Reduction in Struvite Formation 

    Potential%P Reduction % Increase in Final Cake Solids

    % Reduction in Polymer

    Ostara w/ WASSTRIP 30 ‐ 45% Combined ~70 – 90% 7 ‐ 13% Inconclusive

    AirPrex 25% 83% 15 ‐ 20% 17%

  • Full-Scale AirPrex Process Complexity

  • Full-Scale Ostara/WASSTRIP Process Complexity

  • AirPrex Ostara + WASSTRIP

    Phosphorus Recycle Control 

    Reliable Recycle Control Less stable and more complex process

    Improve Biosolids Dewaterability 

    Polymer 23% polymer reduction 10% polymer reduction

    Truck Hauls 8% reduction 7% reduction

    Struvite Reduction Digesters 25% reduction digester struvite 30 ‐ 45% reduction digester struvite

    Dewatering Significant reduction in dewatering nuisance struviteSignificant reduction in dewatering 

    nuisance struvite

    Phosphorus Index Improvement over chemical sequestrationImprovement over chemical 

    sequestration

    Product Recovery   25% ‐ 35% product recovery 70%+ product recovery

    Process Complexity Simple, reliable system Significant increase in equipment and system complexity

    Return on Investment 9 years (low risk) 17 years (higher risk)

    Summary of Findings

  • Full-Scale Implementation of AirPrex

    • Nuisance Struvite and Dewaterability Improvements Project (PAR 1280)

    • Project Delivery / Work Packages (WP)• WP 0 – Owner Pre‐procurement• WP 1 – Inground Utility Relocates / Reactor Piers• WP 2 – Balance of Plant

    • Anticipated completion Q4 2019

    • CNP (AirPrex™ Supplier) Involvement• WP 0 – Equipment• WP 2 – Reactor Fabrication, erection, coating as a subcontractor to WP 2 General Contractor

    SCPI

    Ductbank

    Ductbank

    North Gallery

  • Full-Scale Implementation of AirPrex• Work Package No. 1  ‐ In Construction

    North Tunnel

    PRF Bldg

    Reactor Piers

  • Full-Scale Implementation of AirPrex

    Major WP 2 Components• MgCl2 Storage, Pumping, and Conveyance• Digested Sludge Pumping and Conveyance• New Phosphorus Recovery Facility Bldg.• Recovery Reactor• Stair Tower• Access Manway

    • Work Package No. 2  ‐ Award in late Q1/2019

  • MgCl2 and FeCl3 Storage and Conveyance

    FeCl3

    FeCl3 Delivery• Two rail spurs• Six 10,000+ gal

    Storage Tanks

    FeCl3 Uses• Digesters• EPC• Dewatering• Centrate Holding• DAF

    867 ‐ PRF

  • MgCl2 and FeCl3 Storage and Conveyance

    FeCl3

    MgCl2

    Tank Retrofit• Three Storage

    Tanks each Chemical

    • New Fused HDPE Piping

    • New MgCl2 pumps (PC)

    867 ‐ PRF

  • Phosphorus Recovery Facility Construction

    Aeration Blowers

    Anti‐foam

    Struvite Washing and Load Out

    Electrical

    Struvite Pumping

  • Stair Tower

    North Gallery

    Reactor

    Reactor Bldg.

    Air Piping

    Sludge Feed

    Sludge Return

    Overflow

    MgCl2

  • The Future of Phosphorus Management

  • The Future of Phosphorus Management

  • Tertiary Facilities ($300M+)

    Flocculation & Sedimentation Complex Filter Complex

    Image Rendering from 2013 Facility Plan

  • Thank You! [email protected]@stantec.com