the physical properties and direct current...

38
THE PHYSICAL PROPERTIES AND DIRECT CURRENT CONDUCTIVITY OF TITANIUM (IV) DIOXIDE CERAMIC DOPED LITHIUM (II) NICKEL DIOXIDE SHARIFAH FAHSUHAIZAM BT ABD RAHMAN UNIVERSITI TEKNOLOGI MALAYSIA

Upload: others

Post on 13-Sep-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

THE PHYSICAL PROPERTIES AND DIRECT CURRENT CONDUCTIVITY

OF TITANIUM (IV) DIOXIDE CERAMIC DOPED LITHIUM (II) NICKEL

DIOXIDE

SHARIFAH FAHSUHAIZAM BT ABD RAHMAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

THE PHYSICAL PROPERTIES AND DIRECT CURRENT CONDUCTIVITY

OF TITANIUM (IV) DIOXIDE CERAMIC DOPED LITHIUM (II) NICKEL

DIOXIDE

SHARIFAH FAHSUHAIZAM BT ABD RAHMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Science (Physics)

Faculty of Science

Universiti Teknologi Malaysia

JUNE 2012

Page 3: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

iii

This thesis is dedicated to my

Mum (Siti Haliyah Bt Musa), Dad (Abd Rahman Bin Abu Bakar),

my brothers (Mohd Fairuz, Mohd Fazlihisham, Mohd Firdaus and Mohd Farid),

my sisters (Noor Fizatul Akmal, Siti Faezah,

Siti Noor Zulaikha and Siti Fazilah) and friend

(Syed Mohd Shahir bin Sayed Alwi).

Thank you for being with me all along.

Page 4: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

iv

ACKNOWLEDGEMENT

لرحمي١لرمحن١هلل١بسم

ALHAMDULILLAH, I had succeeded on completing my Master of Science

(Physics) thesis. I would like to take this opportunity to thank my supervisor Prof.

Dr. Md Rahim Sahar and co-supervisor Dr Mohd Nor Md Yusuf for their guidance,

advices and suggestions throughout the whole process of completing this thesis. I

really appreciate their patience, co-operation and willingness to spent time on

guiding me.

My progress would be slow without the ever helpful hands of Mr Mohd

Jaafar bin Mohamed Raji, Puan Junaidah binti Saman, Mr Zainal Abidin bin Abbas

(FKM,UTM) and Puan Radiah binti Hassan. Not to be forgotten also, my greatest

friends Syed Mohd Shahir Sayed Alwi, Siti Amlah Mohammad Azmi, Nurul

Fatheyah Ismail, Munirah Mohd Razi, Khamisah Abu Samah, Nurhalawa Md Yusof,

Dayang Nurfazliana Abdul Halim, Nor Aiza Razak, Ezzaan Kamsan and others who

were always there when needed.

Last but not least I thank my family for their kindness and encouragement on

my study.

Page 5: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

v

ABSTRACT

A series of ceramic based on xLi2O-(50-x)NiO–50TiO2 (0 ≤ x ≤ 50 mol%)

system have successfully been fabricated using solid state reaction method at various

sintering temperature from 700C to 1100C. The occurrence of crystalline phase

and the analysis of surface morphology are determined using X-Ray Diffraction

(XRD) method and Scanning Electron Microscopy (SEM) respectively. Meanwhile,

the ceramic density is determined using the Archimedes method and the hardness

using Vickers’s hardness test with 9.807 N of load. Brunauer-Emmett-Teller (BET)

method is used to determine the porosity of the ceramic via adsorption and

desorption of the nitrogen through the ceramic. The dc conductivity of the samples at

room temperature is measured using four point probe method. The X-Ray Diffraction

(XRD) result shows that the major phase occurrence is Li2TiO3 while NiTiO3 and

Li2NiO2 occur as the minor phases. The morphology of ceramic shows that the

sample sintered at 1100C exhibits the largest grain size which is due to the

increasing of solid state neck formation between the grains. It is found that the

density is in the range of 3.18 gcm-3

to 5.10 gcm-3

, increasing with the increasing of

sintering temperature and NiO content. However, the hardness is observed in the

range of 0.3707 GPa to 1.1673 GPa depending on the sintering temperature and Li2O

content. The porosity of the ceramic is found in the range 2.5250 m2g

-1 to 5.4405

m2g

-1 also depending on the sintering temperature and the contents of Li2O.

Meanwhile, the dc conductivity of the ceramic is found to be between 2.254x10-3

Sm-1

to 9.126x10-3

Sm-1

, increasing with the increase of sintering temperature and

Li2O contents.

Page 6: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

vi

ABSTRAK

Satu siri seramik berdasarkan sistem xLi2O-(50-x)NiO–50TiO2 (0 ≤ x ≤ 50

mol%) telah berjaya dihasilkan melalui kaedah tindak balas keadaan pepejal pada

suhu pensinteran dalam julat 700C ke 1100C. Pembentukan fasa kristal dan

analisis morfologi permukaan masing-masing ditentukan menggunakan pembelauan

sinar-X (XRD) dan mikroskopi pengimbasan electron (SEM). Disamping itu,

ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan kekerasan

seramik ditentukan dengan menggunakan ujian kekerasan Vicker’s menggunakan

9.807 N bebanan. Kaedah Brunauer Emmett Teller (BET) digunakan untuk

menentukan keliangan seramik melalui penjerapan dan penyahjerapan gas nitrogen.

Kekonduksian arus terus (AT) seramik pada suhu bilik diukur menggunakan kaedah

penduga empat titik. Keputusan XRD menunjukkan pembentukan fasa utama ialah

Li2TiO3 manakala NiTiO3 dan Li2NiO2 sebagai fasa minor. Morfologi seramik

menunjukkan bahawa seramik yang disinter pada suhu 1100C mempunyai saiz

butiran yang besar di sebabkan oleh pertumbuhan leher keadaan pepejal antara

butiran. Didapati bahawa ketumpatan adalah dalam julat 3.18 gcm-3

hingga 5.10

gcm-3

bertambah dengan penambahan suhu pensinteran dan komposisi NiO.

Walaubagaimanapun, kekerasan seramik didapati pada julat 0.3707 GPa sehingga

1.1673 GPa bergantung kepada suhu pensinteran dan komposisi Li2O. Keliangan

seramik ialah dalam julat 2.5250 m2g

-1 hingga 5.4405 m

2g

-1 bergantung pada suhu

pensinteran dan komposisi Li2O. Manakala kekonduksian arus terus (AT) seramik

bertambah dengan pertambahan suhu pensinteran dan komposisi Li2O dalam julat

2.254x10-3

Sm-1

hingga 9.126x10-3

Sm-1

.

Page 7: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xvii

LIST OF ABBREVIATIONS xix

LIST OF APPENDICES xx

I INTRODUCTION

1.1 Background 1

1.2 Problem Statement 3

1.3 Objectives of the research 4

1.4 Scope of the research 5

1.5 Thesis Plan 6

Page 8: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

viii

II LITERATURE REVIEW

2.1 Introduction 7

2.2 Definition of ceramic 8

2.3 Transition element 11

2.4 The structure of TiO2 based ceramic 13

2.5 Lithium (II) Oxide (Li2O) 16

2.6 Nickel Oxide (NiO) 17

2.7 Forming process 18

2.7.1 Dry pressing 18

2.7.2 Sintering process 20

2.8 X-Ray Diffraction (XRD) 23

2.9 Scannning Electron Microscopy (SEM) 25

2.10 Density 28

2.11 Hardness 29

2.12 BET Specific Surface Area 31

2.13 DC Conductivity 37

2.14 Semiconductor 41

2.14.1 Intrinsic semiconductor 41

2.14.2 Extrinsic semiconductor 42

2.14.2(a) n-type material 42

2.14.2(b) p-type material 43

III EXPERIMENTAL PROCEDURE

3.1 Introduction 45

3.2 Sample preparation 45

3.3 Measurement and characterization 48

3.3.1 X-Ray Diffraction (XRD) 48

3.3.2 Scanning Electron Microscopy

(SEM)

49

3.3.3 Density 49

Page 9: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

ix

3.3.4 Hardness 50

3.3.5 Brunauer Emmett Teller (BET)

Specific Surface Area

51

3.3.6 DC Conductivity 52

IV RESULTS AND DISCUSSION

4.1 Introduction 55

4.2 Sample preparation 55

4.3 Crystalline phase analysis 57

4.3.1 Effect of sintering temperature 57

4.3.2 Effect of composition 60

4.4 Surface Analysis (morphology) 62

4.5 Density 64

4.5.1 Effect of sintering temperature 65

4.5.2 Effect of NiO content 66

4.6 Hardness 68

4.6.1 Effect of sintering temperature 68

4.6.2 Effect of Li2O content 69

4.7 Porosity (BET method) 70

4.7.1 Effect of sintering temperature 71

4.7.2 Effect of Li2O content 72

4.8 DC Conductivity 76

4.8.1 Effect of sintering temperature 76

4.8.2 Effect of Li2O content 77

V CONCLUSIONS

5.1 Introduction 79

5.2 Sample Preparation 79

5.3 Crystal Phase and Morphology Analysis 80

Page 10: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

x

5.4 Density and Hardness 80

5.5 Surface Area 81

5.6 DC conductivity 81

5.7 Suggestions for future work 81

REFERENCES 83-94

APPENDICES 95-103

Page 11: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 The stage of sintering. 22

2.2 Pore size classification. 32

2.3 The classification of adsorption isotherms. 35

2.4 The majority and minority charge carriers in

semiconductor.

44

3.1 The sample composition of xLi2O-(50-x)NiO–

50TiO2 (0 ≤ x ≤50 mol %).

46

4.1 The crystallite size of 30Li2O-20NiO-50TiO2

ceramic after sintered at different temperature.

59

4.2 The phase occurrence in 30Li2O-20NiO-

50TiO2 ceramic after sintered at different

temperature for nine hours.

60

4.3 The phase occurrence in xLi2O-(50-x)NiO-

50TiO2 ceramic (0 x 50 mol %).

62

4.4 Density of 30Li2O-50NiO-50TiO2 ceramic

sintered at different temperature.

65

4.5 Density of the xLi2O - (50-x) NiO-50TiO2

ceramic at different NiO and Li2O

concentration.

67

4.6 Specific area (m2/g) and particle size (m) of

30Li2O-20NiO-50TiO2 ceramic at varies of

sintering temperature (C).

71

4.7 Specific surface area (m2/g) and particle size 73

Page 12: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xii

(m) of ceramic at difference Li2O level.

Page 13: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xiii

LIST OF FIGURES

FIGURE NO TITLE PAGE

2.1 The ionic bond of Na+ and Cl- composition.

This is a result of electrostatic (or coulombic)

attraction between oppositely charged ions.

10

2.2 The covalent bonding. 11

2.3 Blocks within the Periodic Table. 12

2.4 Bulk structures of rutile and anatase. The

tetragonal bulk unit cell of cell of rutile has the

dimension, and

the one of anatase,

. In both structures, slightly distorted

octahedral are the basic building units. The bond

lengths and angles of the octahedrally

coordinated Ti atoms are indicated and the

stacking of the octahedral in both structures is

shown on the right side.

14

2.5 Ball and stick model of rutile crystal structure. It

is composed of slightly distorted octahedral, two

of which are indicated. Along the [1 1 0]

direction these octahedral are stacked with their

long axes alternating by 90o. Open channel are

visible along the [0 0 1] direction. The dashed

lines A and B enclose a charge-neutral repeat

unit without a dipole moment perpendicular to

15

Page 14: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xiv

the [1 1 0]-direction.

2.6 The bulk structure of Lithium (II) Oxide. 16

2.7 The bulk structure of Nickel (II) Oxide. 17

2.8 The stages of dry pressing. 19

2.9 Schematic diagram showing the stage of granule

compaction.

2.10 Changes that occur during the initial stage of

sintering (a) starting particles (b) rearrangement

(c) neck formation.

20

2.11 Changes that occur during the second stage of

sintering (a) Neck growth and volume shrinkage

(b) lengthening of grain boundaries, and (c)

continued neck growth and grain boundary

lengthening, volume shrinkage and grain

growth.

21

2.12 Changes that occur during the final stage of

sintering. (a) Grain growth with discontinuous

pore phase. (b) Grain growth with porosity

reduction (c) grain growth with porosity

elimination.

22

2.13 SEM micrographs of AH90 powder sintered at

different sintering temperature. (a) 1100C (b)

1150C (c) 1200C (d) 1250C ; respectively.

23

2.14 Deriving Bragg's Law using the reflection

geometry and applying trigonometry. The lower

beam must travel the extra distance (AB + BC)

to continue travelling parallel and adjacent to

the top beam (Bengisu, 2001).

24

2.15 Schematic diagram of the scanning electron

microscope (Goldstein et al., 1981).

27

2.16 The diamond pyramid shape of Vickers indenter

having an angle of 136° between opposite

pyramid faces.

31

Page 15: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xv

2.17 IUPAC classification of adsorption isotherms. 33

2.18 Collinear four point probe showing current flow

and voltage measurement.

38

2.19 Conductivities of the various classes of material:

shading indicates the range of values at room

temperature.

39

2.20 The energy band for different materials: (a)

insulator (b) semiconductor (c) conductor.

41

2.21 A structure of silicon crystal which contains a

donor atom.

43

2.22 A structure of silicon crystal that contains an

acceptor.

44

3.1 Preparation of Li2O-NiO-TiO2 ceramic. 47

3.2 X-Ray Diffractor used in this experiment. 48

3.3 The SEM used in this experiment. 49

3.4 Density measurement by the Archimedes’

method.

50

3.5 Vickers Hardness Instrument used to measure

the hardness of the sample.

51

3.6 Autosorb Micromeritic (Model ASAP 2010)

used for BET analysis.

52

3.7 Probe configuration in contact with the surface

for dc conductivity measurement.

53

3.8 Instruments setup for obtaining sheet resistance

value.

53

3.9 Illustration of the probe array displacement on

the sample surface from aerial view.

54

4.1 The appearance of xLi2O-(50-x)NiO-50TiO2

ceramic with different compositions (a) 50NiO-

50TiO2 (b) 10Li2O-40NiO-50TiO2 (c) 20Li2O-

30NiO-50TiO2 (d) 30Li2O-20NiO-50TiO2 (e)

40Li2O-10NiO-50TiO2 (f) 50Li2O-50TiO2.

56

4.2 XRD pattern of 30Li2O-20NiO-50TiO2 ceramic 58

Page 16: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xvi

sintered at different temperature for 9 hours.

4.3 XRD pattern of xLi2O-(50-x)NiO-50TiO2 (0 x

50 mol %) sintered at 1100 C. Diffractograms

show the plot of intensity (I) against Bragg

angle (2).

61

4.4 SEM micrographs of 30Li2O-20NiO-50TiO2

ceramic sintered at different temperature (a)

700C (b) 800C (c) 900C (d) 1000C

(e)1100C.

63

4.5 The variation of density with sintering

temperature for 30Li2O-20NiO-50TiO2

ceramics.

66

4.6 Density () against NiO content (mol %)

sintered at 1100C.

67

4.7 Graph of hardness for 30Li2O-20NiO-50TiO2

ceramic against sintering temperature of the

sample.

69

4.8 Graph of hardness against mol % of Li2O

sintered at 1100C.

70

4.9 The surface area and particle size as a function

of sintering temperature.

72

4.10 Specific surface area and particle size versus

Li2O level sintered at 1100C.

74

4.11 Adsorption/desorption curve from BET analysis 75

4.12 Relationship between dc conductivity and

sintering temperature (C) for 30Li2O-20NiO-

50TiO2.

76

4.13 Relationship between the conductivity () and

Li2O content (mol %).

78

Page 17: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xvii

LIST OF SYMBOLS

A - Area of a material

Å - Angstroms

- Full Width Half Maximum

e - Electron

F - Force

h - Planck constant

- Hardness

I - Current

L - Probe distance from the edge

Ls - Sample length

l - Length of the material

n - Negative

p - Positive

P - Load

P’ - Porosity

- Partial pressure of oxygen

p - Partial pressure

R - Electrical resistance

Rs - Sheet resistance

R’ - Particle size

S - Specific surface area

s - Probe spacing

s1 - Probe spacing between probe (1) and probe

(2)

s2 - Probe spacing between probe (2) and probe

Page 18: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xviii

(3)

s3 - Probe spacing between probe (3) and probe

(4)

T - Temperature

t - Sample thickness

V - Voltage

Vin - Input voltage

V2 - Voltage at probe 2

V3 - Voltage at probe 3

V23 - Voltage between probe (2) and probe (3)

Ws - Sample width

w - Width of a material

W1 - Weight in air

W2 - Weight in toluene

x - Probe position from the edge of the sample

< d > - Crystallite Size

- Electrical conductivity

- Electrical resistivity

- Density

λ - Wavelength of X-Ray radiation

- Pi = 3.14159

- Diffraction angle

Page 19: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xix

LIST OF ABBREVIATIONS

Al2O3 - Alumina

BET - Brunauer-Emmett-Teller

BJH - Barrett-Joyner-Halenda

DC - Direct Current

EDAX - Energy Dispersive X-Ray Analysis

Fe3O4 - Magnetite

Li2O - Lithium (II) Oxide

MRI - Magnetic Resonance Imaging

NiO - Nickel Oxide

NMR - Nuclear Magnetic Resonance

ReO3 - Rhenium Trioxide

SEM - Scanning Electron Microscopy

TiO - Titanium Oxide

TiO2 - Titanium (IV) Dioxide

UV - Ultraviolet

VO - Vanadium Oxide

XRD - X-Ray Diffraction

Page 20: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A The Sample Calculation 95

B Periodic Table 98

C BET graph 99

Page 21: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

CHAPTER I

INTRODUCTION

1.1 Background

Ceramic can be defined as an inorganic, non-metallic solid prepared by the

reaction of heat, application of pressure and subsequent cooling. Ceramic materials

may have a crystalline structure, partial crystalline structure or amorphous (example:

a glass). However, ceramic most commonly are crystalline; therefore the definition

of ceramic is often classified to inorganic crystalline materials as opposed to the non-

crystalline glasses.

Most people have the stereotypical view that metals are good conductors and

ceramics are good insulators. Actually, ceramics can become excellent electrical

conductor by two modes of charge transfer i.e. electrons and ions (Richerson, 2006).

Throughout history, ceramics have been the material of choice because of their high

temperature stability and strength. Thus, they have played an important role in the

emergence of our aerospace industry (Sanders et al. (2000) and Naslain et al. (2004))

and for key component in heat engines (Katz, 1985). In addition, many applications

of ceramics are based upon resistance to wear and chemical corrosion. Examples

include seals and valves (Haugen et al. (1995), Jalili et al. (2003) and Sonsino,

Page 22: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

2

(2003)), pump parts (Tanaka et al. (2006) and Martínez et al. (2011)), bearings

(Swab, (1995) and Chunfu et al. (2007)) and others. Based on these features, many

researches projects have been conducted on ceramics (Julien, (1990), Leigh, (1990)

Traversa, (1995), Whittingham et al. (1997), Gopukumar et al. (2003), Hwu et al.

(2005) and Mazaheri et al. (2009)).

Over the past few decades, much attention has been given toward the

development of conducting ceramic for the efficient electronic device especially

Titanium dioxide (TiO2) ceramic. TiO2 has been well known for its wide range of

applications in gas sensor, electrochemical batteries, water purification, wastewater

treatment, solar cells and others (Imanaka et al. (1995), Anukunprasent et al. (2005),

Hussain et al. (2009) and Qureshi et al. (2009)). The other reasons for greater

attention given to TiO2 as compared to other materials such as Zinc oxide (ZnO) and

Cadmium Sulfide (CdS) are their chemical and physical stabilities are better, lower

production cost and higher life time. The efficiency of TiO2 based ceramic material

mostly depends on the particle size and pore morphology of TiO2 (Subramaniam et

al., 2006).

Increasing awareness of environmental factors and limited energy resources

have led to a profound evolution in the way the generation and supply of energy are

viewed. Although the fossil and nuclear sources remain the most important energy

providers for the future, flexible technological solutions which involve alternatives

means of energy supply and storage need to develop immediately. Therefore the

improvement of alternative energy resource such as batteries should be more

environmental friendly (Moulson and Herbert, 1990). Beside that the energy

provided are very optimum. Many researches have been conducted due to this matter

(Kennedy et al. (2000), Bernardes et al. (2004), Morford et al. (2000), Fu et al.

(2006), Iwahori et al. (2000), Georén and Lindbergh, (2003), Marcos, (2007) and

Fang, (2007)).

Page 23: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

3

The aims of the present study are to investigate of the structural evolution, the

mechanical changing and the electrical behaviour of titanium dioxide (TiO2) when

doped with lithium (II) nickel dioxide (Li2NiO2) ceramic.

1.2 Problem statement.

In 1973, Liang reported that the conductivity of the well-blended mixture of

anhydrous LiI and active alumina (Al2O3) with high specific surfaces areas at

operational temperature around 600C is 5x10-7

Scm-1

increasing when the LiI is

increased. He concluded that the conductivity depends on the existence of Lithium

ion in the ceramic system.

Moreno et al. (1998) reported that the conductivity values of Li0.25La0.583TiO2

are of about 8.4 x 10-4

Scm-1

at 25C of operation temperature and of 1.74x10-3

Scm-

1 at 50C. On a similar work, Belous (1998) reported the conductivity is 1.85 x 10

-4

Scm-1

at 125C and 4.5 x 10-4

Scm-1

at 390C for Li0.5La0.5TiO3 and Leon et al.

(1997) reported 1 x 10-3

Scm-1

at 60C for the same composition. They concluded

that the conductivity depends on the composition in the ceramic system.

Meanwhile, the conductivity of polycrystalline titanium dioxide TiO2 (rutile)

is increased from 5.50 x 10-3

Scm-1

at 1023 K to 1.22 x 10-1

Scm-1

at 1223 K

corresponding to the increasing of operational temperature as reported by Kurotami

et al. (2002). They concluded that the increasing of the mobility of the electron

corresponding to the temperature of the ceramic. Evidently, research has shown that

conducting ceramics exhibit high conductivity when the operational temperature of

Page 24: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

4

the system is above room temperature (25C). Therefore, this ceramic are limited to

be used for certain application only especially as batteries electrolyte.

The addition of additive lithium (II) oxide (Li2O) and nickel oxide (NiO) at

different sintering temperatures for preparation of TiO2 ceramic has been used as a

framework of the experiment. TiO2 based ceramic has advantages in term of cost

effectiveness, chemical stability, safety and environmental compatibility. Thus, these

ceramics which are required for specific applications can be used as gas sensor,

electrochemical batteries, water purification and wastewater treatment. (Hussain et

al. 2009).

The addition of lithium (II) oxide (Li2O) and nickel oxide (NiO) into the TiO2

ceramic is expected to modify the chemical and physical properties of the system.

Li2O-NiO-TiO2 ceramic is chemically and electrochemically stable to be used as the

electrolyte and electrode material. These contribute to the battery performances

which are the energy, power density, cycle life and safety of the batteries. The

ceramic has the advantage of being strong enough to resist the high tension of battery

construction. It is therefore appropriate to investigate the effect of Li2O and NiO

content to the chemical, physical and electrical properties of the Li2O-NiO-TiO2

ceramic.

1.3 Objectives of the research.

The objectives of this research are:

i) To prepare the Li2O-NiO-TiO2 ceramic at different sintering temperatures and

different Li2O and NiO compositions.

Page 25: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

5

ii) To determine the crystal phase and surface analysis (morphology) of the

Li2O-NiO-TiO2 ceramics.

iii) To determine the density and hardness of the Li2O-NiO-TiO2 ceramics.

iv) To determine the porosity of Li2O-NiO-TiO2 ceramics.

v) To determine the DC conductivity of Li2O-NiO-TiO2 ceramic at different

compositions and sintering temperatures.

1.4 Scope of the research.

In order to achieve the above objective, the scopes of this research are:

i) Fabrication of Li2O-NiO-TiO2 ceramics using the solid state reaction

technique for (50-x) mol % of Li2CO3.10H2O, x mol % of Ni(NO3)2.6H2O

and 50 mol % of TiO2 (0 x 50 mol %). The sintering temperatures are in

the range of 700C to 1100C.

ii) Identification of crystal phase and surface analysis (morphology) of the

sample using X-Ray Diffraction (XRD) technique and Scanning Electron

Microscopy (SEM) technique respectively.

iii) Measurement of density and hardness of the Li2O-NiO-TiO2 ceramics using

Archimedes Principle and Vickers Hardness measurement technique

respectively.

iv) Measurement of porosity using BET method.

v) Measurement of DC conductivity of the Li2O-NiO-TiO2 ceramics using the

four point probe method at room temperature.

Page 26: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

6

1.5 Thesis plan

This thesis is structured into several chapters which includes introduction,

literature reviews, experimental procedure, results and discussion as well as

conclusion.

Chapter I describes the framework of the research including the background

study, problem statement, objectives and scopes of the research.

Chapter II reviews the theoretical part of the study. This would cover a

general theory of ceramic especially electrical conductivity, structure of the titanium

dioxide and theory related to the measurement that will be conducted.

Chapter III describes the experimental and measurement techniques which

include sample preparation and the equipments used for both electrical and

microstructural analysis. The parameter and physical measurement are defined.

Chapter IV reports the overall experimental results and the discussion that

follows. This includes the results of Scanning Electron Microscopy (SEM), X-Ray

Diffraction (XRD), density, hardness, BET surface area and dc conductivity of the

ceramic.

Finally, Chapter V reports the overall conclusion of the experiment that has

been discussed in chapter IV; some of the suggestions for future experiments will

also be inserted.

Page 27: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

REFERENCES

Allen, T. (1990). Particle Size measurement. Chapman & Hall. London.

Alpen, U. V., Rabenau, A. and Talat, G. H. (1977). Ionic conductivity in Li3N single

crystals. Applied Physics Letter 30: 621.

Anukunprasert, T., Saiwan, C.and Traversa, E. (2005). The development of gas

sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2.

Journal of Science and Technology of Advanced Material 6: 359 – 363.

Arifin, R. (2000). Sifat Eletrik Kaca Sb2O3-Li2O-LiCl. Universiti Teknologi

Malaysia: MSc Thesis.

Bae, K.R., Ko, C.H., Park, Y., Kim, Y., Bae, J., Yeum, J.H., Kim, S., Lee, W.J. and

Oh, W. (2010). Structure control of nanocrystalline TiO2 for the dye

sensitized solar cell application. Journal of Current Applied Physics 10,

Issues 3: S406-S409.

Barrett, E. P., Joyner, L. G. and Halenda, P. P. (1951). The determination of pore

volume and area distribution in porous distribution in porous substance, I.

Computations from nitrogen isotherms. J. Am. Chem. Soc. 73: 373-380.

Bengisu, M. (Ed) (2001). Engineering Ceramics, Springer-Verlag Berlin Heidelberg

New York, pages 209-211.

Page 28: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

84

Belous, A. G. (1998). Properties of Lithium Ion-Conducting Ceramics Based on

Rare-Earth Titanates. Journal of Ionics 4: 360-363.

Bernardes, A.M., Espinosa, D.C.R. and Tenório, J.A.S. (2004). Recycling of

batteries: a review of current processes and technologies. Journal of Power

Sources 130: 291-298.

Boissiere, C., Lee, A.V.D., Mansouri, A.E., Larbot, A., Prouzet, E. (1999). A double

step synthesis of mesoporous micrometric spherical MSU-X silica particles.

Chem. Comm.: 2047-2048.

Braginsky, L. and Shklover, V. (2000). Light absorption at the interface of transition-

metal oxide semiconductor. Solar Energy Material & Solar cells 64: 15-27.

Brunauer, S., Emmett, P.H. and Teller, E. (1938). Adsorption of gases in

multimolecular layers. J. Am. Chem. Soc. 60: 309-319.

Buchanan, R.C.(Ed). (1986). Ceramic material for electronics. Marcel Dekker, New

York.

Chaudhari, G.N., Bende, A.M., Bodade, A.B., Patil, S.S., Sapkal, V.S. (2006).

Structural and Gas Sensing Properties of Nanocrystalline TiO2:WO3-based

Hydrogen Sensors. Sens. and Actuators B 115: 297-302.

Chunfu, G., Xueqing, B. and Shiju, E. (2007). Wear Experiments of Glass-Ceramic

and Bearing Steel. Journal of Rare Earth 25: 327 – 329.

Deng, Z. Y., Fukasaw, T. and Ando, M. (2001). High-Surface Area Alumina

Ceramics fabricated by the Decomposition of Al(OH)3. J. Am. Ceram. Soc.

84, Issues 3: 485-491.

Diebold, U. (2003). The Surface Science of Titanium Dioxide. Surface Science

Reports 48: 53-229.

Page 29: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

85

Earnshaw, A. and Harrington, T.J. (1973). The chemistry of the Transition Element.

Oxford University Press.

Fang, X. and Oh, J.T. (2007). Microstructure and electrical properties of Nb2O5

doped titanium dioxide. Journal of Material Sciences and Engineering B 136:

15 – 19.

Farah, M.B., Lapicque, F. and Matlosz, M. (1998). Electrical characterization of the

semiconducting properties of n-TiO2. J. Electrochem. Soc. 145: 3550-3556.

Fergus, J.W., (2010). Recent Development in Cathode Materials for Lithium ion

batteries. Journal of Power Sources 195: 939-954.

Fu, L.J., Liu, H., Li, C., Wu, Y.P., Rahm, E., Holze, R. and Wu, H.Q. (2006).

Surface modification of electrode material for lithium ions batteries. Journal

of Solid State Sciences 8: 113 – 128.

Furukawa, Y., Takada, S., Kumagai, K., Kawashima, T., Muromachi, E.T.,

Kobayashi, N., Fukase, T., Chiba, K. and Goto, T. (2002). NMR studies of

magnetic superconductor RuSr2RECu2O8 (RE=Gd, Eu and Y). Journal of

Physics and Chemistry of Solids 63, Issues 12: 2315-2318.

Gaikwad, A.B., Navale, S.C. and Ravi, V. (2005). TiO2 ceramic varistor modified

with tantalum and barium. Material Science and Engineering B 123, Issue 1:

Pages 50-52.

Georén, P. and Lindbergh, G. (2003). On the use of voltammetric methods to

determine electrochemical stability limits for lithium battery electrolytes.

Journal of Power Sources 124: 213-220.

German, R.M., (1996). Sintering Theory and Practice. John Wiley & Sons, Inc.

Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C. and Lifshin, E. (1981).

Scanning Electron Microscopy and X-Ray Microanalysis: A Text for

Page 30: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

86

Biologists, Material Scientist and Geologists. Plenum Press, New York and

London.

Goldstein, J.I. and Yakowitz, H. (1977). Practical Scanning Electron Microscopy.

Plenum Press, New York.

Gopukumar, S., Jeong, Y. and Kim, K.B. (2003). Synthesis and electrochemical

performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid

State Ionics 159: 223 – 232.

Gratzel, M. (1993). Nanocrystalline Thin Film PV cells. MRS Bulletin. Materials

Research Society, Pittsburgh.

Gregg, S.J, and Sing, K.S. (1982). Absorption, Surface Area and Porosity. 2nd

edition, Academic Press, New York.

Halder, N., Chattopadhyay, D.D., Sharma, A., Saha, D., Sen, A. and Maiti, H.S.

(2001). Effect of sintering atmosphere on the dielectric properties of barium

titanate based capacitor. Material Research Bulletin 36, Issues 5–6 : 905-913.

Hamer, F and Hamer, J. (2004). The Potter’s Dictionary of Materials and Technique.

University of Pennsylvania Press.

Haugen, K., Kvernvold, O., Ronold, A. and Sandberg, R. (1995). Sand erosion of

wear resistant material: erosion in choke valves. Journal of Wear. 186 - 187:

179 – 188.

Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T. (Ed). (2007). Nanoparticle

Technology Handbook. Elsevier’s Science & Technology, Oxford, UK.

Huang, H., Zhang, W.K., Gan, X.P., Wang, C., Zhang, L. (2007). Electrchemical

investigation of TiO2/carbon nanotubes nanocomposites as anode material for

lithium-ion batteries. J. Material Letters 61: 296 - 299.

Page 31: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

87

Hussain, S. T., Khan, K. and Hussain, R. (2009). Size control synthesis of sulphur

doped Titanium Dioxide (anatase) nano-particles, its optical property and its

photo catalytic reactivity for CO2 + H2O conversion and phenol degradation.

J. of Natural Gas Chem. 18: 383 - 391.

Hwu, J.M., Yu, W.H.,Yang, W.C., Chen, Y.W. and Chou, Y.Y. (2005).

Characterization of dielectric barium titanate powders prepared by

homogeneous precipitation chemical reaction for embedded capacitor

applications. Material Research Bulletin 40, Issue 10: 1662-1679.

Ibrahim, K. (2002). Kajian seramik poros berasaskan TiO2 berdop yang disediakan

secara sol-gel. Universiti Teknologi Malaysia: MSc Thesis.

Ibrahim, Z. (2005). Characterization study of platinum doped stannic oxide ceramics

for methane sensing in air. Universiti Teknologi Malaysia: PhD Thesis.

Imanaka, N., Hirota, Y. and Adachi, A. (1995). A tip-type carbon dioxide gas-sensor

probe based on lithium and oxide ionic conductor. Sens. and Actuators B. 24-

25: 380-382.

Iwahori, T.,Mitsuishi, I., Shiraga, S., Nakajima, N., Momose, H., Ozaki, Y.,

Taniguchi, S., Awata, H., Ono,T. and Takeuchi, K. (2000). Development of

lithium ion and lithium polymer batteries for electric vehicle and home use

load levelling system application. Journal of Electrochimica Acta 45: 1509 –

1512.

Jain, M.K., Bhatnagar, M.C., and Sharma, G.L. (1999). Effect of Li+ doping on

ZrO2-TiO2 humidity sensor, Sens. Actuators B 55: 180-185.

Jainal, M.N. (2008). The study on the effect of probe position in resistivity

measurement using four-point probe method. Universiti Teknologi Malaysia,

Degree Thesis.

Page 32: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

88

Jalili, N., Wagner, J. and Dadfarnia, M. (2003). A piezoelectric driven ratchet

actuator mechanism with application to automotive engine valves. J of

Mechatronic 13: 933-956.

Jones, C.J., (2002). d and f-Block Chemistry. Royal Science of Chemistry. UK.

Julien, C. (1990). Technological Applications of Solid State Ionics. Journal of

Materials Science and Engineering, B6: 9-28.

Kalita, S. J., Qiu, S. and Verma, S. (2008). A quantitative study of the calcinations

and sintering of the nanocrystalline titanium dioxide and its flexural strength

properties. Journal of Material Chemistry and Physics 109: 392-398.

Katz, R.N. (1985). Application of high performance Ceramic in Heat Engine Design.

Journal of Material Science and Engineering 71: 227 – 249.

Keitley Instrumentation, Inc. (2006). Low Level Measurements Handbook. 6th

Edition. Cleveland, Ohio. 4-26.

Kennedy, B., Patterson, D. and Camilleri, S. (2000). Use of lithium-ion batteries in

electric vehicles. Journal of Power Sources 90: 156-162.

Kim, Y.H., Kim, M.S., Kim, K.S., Ahn, S.H., Lee, C.S. (2011) Deposition of TiO2

Layers for Dye-sensitized Solar Cells using Nano-particle Deposition System.

J. Current Applied Physics 11: S122-S126.

Kirillov, S.A., Lisnycha, T.V., Chernukhin, S.I. (2011). Precipitated Nanosizes

Titanium Dioxide for Electrochemical Application. Journal of Power Sources

196: 2221-2226.

Koch, C.C. (2007). Structural Nanocrystalline Materials: Fundamentals and

Applications. Cambridge University Press.

Page 33: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

89

Koller, A. (1994). Structure and properties of ceramics. Elsevier Science Publishers.

Netherlands.

Korošec, R.C. and Bukovec, P. (2006). Sol-Gel Prepared NiO Thin Films for

Electrochromic Application. Acta Chim. Slov. 53: 136:147.

Kuratomi, T., Yamaguchi, K., Yamawaki, M., Bak, T., Nowotny, J., Rekas, M. and

Sorrell, C. C. (2002). Semiconducting Properties of Polycrystalline Titanium

dioxide. Journal of Solid State Ionics 154-155: 223-228.

Leigh, G.J. (1990). Nomenclature of Inorganic Chemistry. Blackwell Scientific

Publication, Oxford.

Leon, C., Santamaria, J., Paris, M.A., Sanz, J., Ibarra, J. and Torres, L.M. (1997).

Non-Arrhenius conductivity in the fast ionic conductor Li0.5La0.5TiO3:

Reconciling spin lattice and electrical-conductivity relaxations. Phys. Rev.

B56: 5302-5305.

Li, Q., Yuan, X., Zeng, G., and Xi,s. (1997). Study on the microstructure and

properties of nanosized stannic oxide powders. Mater. Chem. and Phys, 47,

239-245.

Liang, C. C. (1973). Conduction Characteristics of the Lithium-Iodide Aluminium

Oxide Solid Electrolytes. Journal Electrochemical Society 120: 1289-1292.

Lowell, S., Shields, J.E., Thomas, M.A. and Thommes, M. (2006). Characterization

of Porous Solids and Powders: Surface Area, Pore Size and Density,

Springer. Netherlands.

Lynn, J.W. and Allen, P.B. (1990). High Temperature Superconductivity. Springer-

Verlag New York Inc.

Page 34: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

90

Marcos, F.R., Ochoa, P. and Fernandez, J.F. (2007). Sintering and properties of lead-

free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics. Journal of the European Ceramic

Society 27: 4125 – 4129.

Martínez, F.J.R., Gómez, E.V., García, C.M., Requena, J.F.S., Gracia, L.M.N.,

Navarro,S.H., A. Guimaraes, A.C., Gil, J.M. (2011). Life cycle assessment of

a semi-indirect ceramic evaporative cooler vs. a heat pump in two climate

areas of Spain. Journal of Applied Energy 88: 914 - 921.

Maruyama, T. and Arai, S. (1993). The electrochromic properties of nickel oxide thin

films prepared by chemical vapour deposition. Journal of Solar Energy

Materials and Solar Cells 30, Issues 3: 257-262.

Mazaheri, M., Zahedi, A.M., Haghighatzadeh, M. and Sadrnezhaad, S.K. (2009).

Sintering of titania nanoceramic: Densification and grain growth. Journal of

Ceramics International 35: 685 – 691.

Mencik, J. (1992). Glass Science and Technology 12: Strength and fracture of glass

and ceramics. Netherlands: Elsevier.

Molenda, J. (2004). Influence of host electronic structure on lithium intercalation

process.Journal of Solid State Ionics. 175: 203-213.

Moreno, I., Morales, M. and Sarrion M. M. L. (1998). Synthesis, Phase Diagram and

Conductivity Study in a La0.5+x+yLi0.5-3x Ti1-3yMn3yO3. Journal of Solid State

Chemistry 140: 377-386.

Morford, R.V., Kellam, E.C., Hofmann, M.A., Baldwin, R., Allcock, H.R. (2000). A

fire-resistant organophosphorus gel polymer electrolyte additive for use in

rechargeable lithium batteries. Journal of Solid State Ionics 133: 171-177.

Moriguchi, I., Hidaka, R., Yamada, H., Kudo, T. (2005). Li-intercalation Property Of

Mesoporous Anatase-TiO2 Synthesized by Bicontinuous Microemulsion-

aided Process. J. Solid State Ionics 176: 2361-2366.

Page 35: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

91

Moulson, A.J. and Herbert, J.M. (1990). Electroceramics. Chapman & Hall London.

Moulson, A.J. and Herbert, J.M. (2003). Electroceramics. John Wiley & Son, Ltd,

Publication, England.

Naslain, R., Guette, A.,Rebillat, F., Pailler, R., Langlais, F. and Bourrat, X. (2004).

Boron-bearing species in ceramic matrix composites for long-term aerospace

applications. Journal of Solid State Chemistry 177:449-456.

Pauzi, S.A. (2009). A Cullet-Kaolin Ceramic from Recycle Glass. Universiti

Teknologi Malaysia: MSc Thesis.

Qiu, S. and Kalita, S.J. (2006). Synthesis, processing and characterization of

nanocrystalline titanium dioxide. Journal of Material Science and

Engineering 435-436: 327-332.

Qureshi, A., Mergen, A. and Altindal, A. (2009). Preparation and characterization of

Li and Ti codoped NiO nanocomposites for gas sensor application. Sens. and

Actuators B. 135: 537-540.

Rahaman, M.N. (2007). Ceramic processing. CRC Press, Taylor & Francis Group,

United State.

Rausch, N., and Burté, E.P. (1993). Thin TiO2 films prepared by low pressure

chemical vapour deposition. J. Electrochem. Soc. 140: 145-149.

Richerson, D. W., (2006). Modern Ceramic Engineering. Taylor & Francis Group,

USA.

Robertson, A.D., West, A.R., Ritchie, A.G., (1997). Review of crystalline lithium-

ion conductors suitable for high temperature battery application. Journal of

Solid State Ionics. 104:1-11.

Page 36: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

92

Romero, J.J., Leret, P., Marcos, F.R., Quesada, A. and Fernandez, J.F. (2010).

Evolution of the Intergranular Phase During Sintering of CaCu3Ti4O12

ceramics. Journal of the European Ceramic Society 30: 737-742.

Runyan, W.R and Shaffner, T.J. (1998). Semiconductor Measurement and

Instrumentation. 2nd

Edition. New York: McGraw-Hill.

Sanders, J.H., Cutler, J.N., Miller, J.A. and Zabinski, J.S. (2000). In vacuuo

tribological investigations of metal, ceramic and hybrid interfaces for high-

speed spacecraft bearing applications. Journal of Tribology International 32:

649–659.

Schroder, D.K. (2006). Semiconductor Material and Device Characterization, 3rd

Edition. Hoboken, New Jersey: John Wiley & Sons, Inc. 1-16.

Seeley, Z., Choi, Y.J., Bose, S. (2009). Citrate-nitrate synthesis of nano-structured

titanium dioxide ceramics for gas sensor. Sens. and Actuators B. 140: 98-103.

Shimura, T., Suzuki, K. and Iwahara, H. (1997). High temperature protonic

conduction in Sr2TiO4-based ceramic with K2NiF4-type structure.

Shin, H.S., Rhee, S.W., Lee, B.H. and Moon, C.H. (1996). Metal binding site and

partial structure of soil fulvic and humic acids compared: aided by Eu (III)

luminescence spectroscopy and DEPT/QUAT 13

C NMR pulse technique.

Organic Geochemistry 24, Issues 5: 523-529.

Shing, L. A. (1998). The Effects of Cullet on the properties of Container Glass.

University Teknologi Malaysia, Skudai. Degree thesis.

Sonsino, C.M. (2003). Fatigue design of structural ceramic parts by the example of

automotive intake and exhaust valves. International Journal of Fatigue 25:

107-116.

Page 37: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

93

Stokes, D.J. (2008). Principles and Practice of Variables Pressure/Environmental

Scanning Electron Microscopy (VP-ESEM). John Wliey and Son, Ltd,

Publication, United Kingdom.

Subramanian, V., Karki, A., Gnanasekar, K. I., Eddy, F.P. and Rambabu, B. (2006).

Nanocrystalline TiO2 (anatase) for Li-ion batteries. Journal of Power Sources

159: 186-192.

Sudirman, R., Khalid, P.I. and Ruslan, S.H. (2010). Electronic Devices & Circuits.

Penerbit UTM Press, UTM.

Swab, J.J. (1995). Fracture analysis of an all-ceramic bearing system. Journal of

engineering Failure Analysis 2 (3): 175–190.

Tanaka, M., Asakura, Y., Uda, T., Katahira, K., Tsuji, N. and Iwahara, H. (2006).

Hydrogen enrichment by means of electrochemical hydrogen pumps using

proton-conducting ceramics for a tritium stack monitor. Journal of Fusion

Engineering and Design 81:1371-1377.

Traversa, E. (1995). Ceramic sensors for humidity detection: the state of the art and

future developments. Sensors and Actuators B23: 135-156.

Uekawa, N., Kajiwara, J., Kakegawa, K., & Sasaki, Y. (2002). Low Temperature

Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles.

Journal of Colloid and Interface Science 250 (2): 285-290.

Whittingham, M.S. (2004). Lithium Batteries and Cathode Materials. Journal of

Chem. Rev. 104: 4271-4301.

Whittingham, M.S., Chen, R. , Chirayil, T. and Zavalij, P. (1997). The intercalation

and hydrothermal chemistry of solid electrodes. Journal of Solid State Ionics

94: 227-238.

Winter, M.J. (1994). d-Block Chemistry. Oxford Science Publication. United States.

Page 38: THE PHYSICAL PROPERTIES AND DIRECT CURRENT …eprints.utm.my/id/eprint/32821/5/SharifahfahSuhaizamMFS2012.pdf · ketumpatan seramik diukur dengan menggunakan kaedah Archimedes dan

94

Yan, M.F. and Rhodes, W.W. (1986). Preparation and properties of TiO2 Varistor.

Appl. Phys. Letter 40: 536-537.

Yang, S.L. and Wu, J.M. (1995). Varied atmosphere compensation exploring the

roles of barium and bismuth in (Ba, Bi, Nb)-doped TiO2 varistor. J. Am.

Ceram. Soc. 76: 2203-2208.

Zworykin, V.K., Hillier, J. and Snyder, R.L. (1942). A scanning electron microscope.

ASTM Bull. 117: 15-23.