the readout chip for the xfel dssc detector: design and test

21
FEE 2018 1 The readout chip for the XFEL DSSC Detector: design and test Pradeep Kalavakuru, DESY for the DSSC ASIC design groups C. Fiorini 3 , P. Fischer 2 , K. Hansen 1 , F. Erdinger 2 , M. Kirchgessner 2 , M. Manghisoni 4 , M. Porro 5 , C. Reckleben 1 , J. Soldat 2 (DESY 1 , Heidelberg Univ. 2 , Politecnico di Milano 3 , Univ. de Bergamo 4 , European XFEL GmbH 5 )

Upload: others

Post on 26-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

FEE 2018

1

The readout chip for the XFEL DSSC Detector:

design and test

Pradeep Kalavakuru, DESY

for the DSSC ASIC design groups

C. Fiorini3, P. Fischer2, K. Hansen1, F. Erdinger2, M. Kirchgessner2,M. Manghisoni4, M. Porro5, C. Reckleben1, J. Soldat2

(DESY1 , Heidelberg Univ.2, Politecnico di Milano3,

Univ. de Bergamo4, European XFEL GmbH 5)

FEE 2018

2

Outline

● Project Status

● Overview

● Characterization

ADC

Front-end

● Measurements with Sensor

Small format ASICS - X-ray sources

Focal Plane Module (FPM) - LED

● Summary

FEE 2018

3

DSSC Project Status - mini-SDD & DEPFET Cameras

Two camera types

active: DEPFET with gain compression

passive: miniaturized Silicon-Drift Cells / linear gain

mini-SDD

Mega-Pixel Camera in production Bare Modules almost

completed Focal-Plane Modules started Peripheral Electronics completed

Mechanics completed

This Work: Test of 1st Ladder (128x512) using 2nd

ASIC version

DEPFET

Mega-Pixel Camera starts soon Sensors in production ASIC in production

This Work:

Test of small-format Ladder using 1st ASIC version (64x64)

FEE 2018

4

Overview: ASIC Layout

• 130-nm process, C4 Bumping

• Major changes in new ASIC→ Front-end (FE) based on Charge Sensitive

Amplifier (CSA)

→ Local references→ Uniform distribution of power pads

• Peripheral circuits→ Gray-code counter & TX per column to

distribute time-stamps for ADCs over transmission lines

→ 13-bit DAC for ADC characterization→ Temperature sensing circuit → Digital control logic

• Features (pixel-wise)→ Gain and Offset trimming→ Charge / Current injection circuits for FE

• Power cycling

FEE 2018

5

Overview: Pixel-Readout Chain

SensorA

D

DigitalMemory

Front-end

Pixel

• DEPFET• Mini-SDD

• Trapezoidal Filter• CSA + Filter

• Single-slope ADC• References

SRAM

8

SerialReadout

• Gaincompression

• Linear

• I → V & Noise

shaping

• Q → V → I

• 8/9 bit • Bias, Gain & Offset

trimming

• 800 words• Readout in ~99ms

XFEL gaps

FEE 2018

6

Overview: FE for active & passive Sensors

Two metal 4 masks either to connect CSA or DEPFET front-end (ASIC Prototype)

V → I

R

+

-

CQ → V

Mini-SDD Filter

Istat

►DEPFET

●●

● ●

Idyn

V

to ADCBump

Vreference

FEE 2018

7

Overview: FE with DEPFET as an active sensor

Istat + Idyn

DEPFET

+

-

Reset

Trapezoidal Filter

Ierr+dyn

Iprog

Vhold

Idyn

to ADC

--

S

G

CG

CL

4-bit programmablecurrent source

Vreference

Vreference 220ns

1 Pre-clear phase to remove residual charges

2 Iprog phase for bias current cancellation

Readout phase • 1st Integration: Baseline• 2nd Integration: Signal + Baseline

Clear (CL)

Clear Gate (CG)

Operation sequence:

8V

12V

Source (S)Gate (G)

2.5V4V

1 2 3

1st 2nd

Int

Ierr cancelation is done inclosed-loop configuration

3

Istat

Integration

FEE 2018

8

Overview: CSA for passive sensor

ADC

• Amplifier is based on closed-loop configuration• Coarse gain trimming (Cf , R) → 7 bits to set [0.5, 1, 2, 5, 10] keV / Bin

Schematic

CQ → V V → I

mini-SDD

Bump

Vreference

FEE 2018

9

Characterization – Setup

Main Board (MB)

Regulator Board (RB)

I/O Board(IOB)

Test condition• XFEL timing condition: 4.5-MHz frame rate • Room temperature operation• 10Hz → power cycling

• MB: Clock, Data & Power distribution (ASIC & Sensor)• RB: Power cycling & Clear pulse generation• IOB: Data concentration & DEPFET Power cycling

Focal-PaneModule

Mini-SDD Ladder DEPFET Ladder

Ladder Electronics

FEE 2018

10

Characterization – On-Chip Power Distribution

AD

C G

ain

(LSB /

V)

1st gen. ASIC: global reference

AD

C G

ain

(LSB /

V)

2nd gen. ASIC: local reference

(V)

∆V

(V)

23243 23

1.16

1.18

1.26

1.3

1.28

1.24

1.2

1.22

243

Max. Voltage drop → 140mV Max. Voltage drop → 62mV

FEE 2018

11

Characterization - Single-Slope 8-bit ADC

Peripheral

In-Pixel

13-bit DAC

Localreferences

Trimming

• Gain: 6-bit through IRamp with a resolution of ±2% (1 Bin per photon)• Offset: 4 bit through Delay with a resolution of 55 ps (Bin center)

→ single-photon resolution & minimal pixel-error rate (image fidelity)

FEE 2018

12

Characterization – ADC Gain & Linearity

0

1

LSB /

V

LSB

untrimmed

trimmed

ADU (LSB)Deviation from nom. Gain (%)

DNLGain

±2%0.07 ≤ DNL ≤ 0.4

Pix

el counts

Pix

el counts

FEE 2018

13

Characterization - Focal Plane Module Trimming

100

>99.3% have an rms value well

below 0.1 LSB (Target = 0)

1

00 200 400

0

10

38

24

4 bits are needed to reach target slope value for 16 ASIC’S. Design value → 21

>99.8% fall within ±2-% Range

around 320 LSB / V (Target)

240

320

380

Gain trimming:

IRamp trimming distribution:

Offset trimming:

FEE 2018

14

Characterization – Internal Charge Injection (mini-SDD)

10

30

40

50

20

02000500 1000 15000

AD

U (

LSB)

Default Gain settings

DAC setting

13-bit voltageDAC sets signalamplitude

Dynamic switch generates V-pulse

In-Pixel Test Input

Static column / pixel enable

• possible to adjust Cinj to match detector capacitance

FEE 2018

15

Characterization – Gain Trimming (mini-SDD)

-2 20

101

102

1

Pix

el counts

Relative slope ( %)0 2000500 1000 1500

10

30

40

50

20

0

60

70

AD

U (

LSB)

Equal Gain trimming

DAC setting

Pix

el counts

Relative slope (%)

~ 1 Bin / keV

Coarse gain:Cf (CSA), R , Cf (Filter)

Fine gain:IRamp

FEE 2018

16

Measurements – 64-by-64 Mini-SDD

Pixel 1950

Entries 780000Noise Peak 49.91Signal Peak 55.76Gain 1.01 Bin / keVENC (fit) 97.2e-

102

106

105

104

103

10

1

45 50 55 60ADU

Counts

Photo

n c

ounts

Intensity map

Pix

el counts

Bin / keV

±2%

~ 60% are with in target gain

Uncertainty in gain determinationdue to spread in Cinj

Gain

Mean → 90.15 (e-)140

100

60

20

0 40 60 80 100 120 140

ENC (e-)

0.6 1 1.20.8 1.4

100

200

300

400

500

600

Noise

5.85

FEE 2018

17

Measurements – 64-by-64 DEPFET Sensor

SRAM Address

AD

U U

nit (

LSB)

• 1 keV / Bin is successfully achieved

Photons

Offset

Fluorescence Measurements performed at PETRA III beam line

• Beam focused onto a 8 -µm thick Cu foil• Center of energy of the Cu - K∝ / Kβ → 8.155 keV

ADU Unit (LSB)

Counts

FEE 2018

18

Measurements – 64-by-64 DEPFET Sensor

0 63

4032 4095

EN

C (

e- )

0

200

100

No.

of pix

els

ENC (e-)

Mean Noise→ 80 el

0 160800

7

4

Ph

oto

n c

ou

nts

0 63

4032 4095

1

10

5

x104

x102

0

600

Counts

.5 1.5 2.5 3.5

63

4095

Bin

/ k

eV

0

1.6

1

4032

0

1.40.6 1

103

102

101

0

Mean Gain → 0.8662 Bin / keVCount rate → 230.2 kcts/s

No.

of pix

els

Gain (Bin / keV)

No.

of pix

els

Intensity map Gain map Noise map

FEE 2018

19

Measurements – 128-by-512 mini-SDD

• FPM : all ASICs fully work & both Sensors are sensitive to Light (LED)

Vacuum Chamber with FPM

• ADC-Gain & Offset trimmed for 1 Bin / keV

• FE settings

• 4.5-MHz Frame Rate

• 800-Frames

• Power Cycling

1st FPM: Single-Frame Image

100

80

00 200 400

0A

DU

(L

SB

)

FEE 2018

20

Summary

• We presented the successful operation of the full detector chain with DEPFET

and mini-SDD sensors.

• The 1st mini-SDD Focal Plane Module of the Mega-pixel camera was

successfully tested in power cycling mode at XFEL timing condition.

• Gain & Offset trimming as well as noise performance fulfills the design

requirements for single-photon resolution:

» Gain Trimming → 99.9 % falls in ±2% range of nominal gain 320 LSB / V at 1 keV

» Offset Trimming → 99.3 % have standard deviation of ‹ 0.1 LSB

» mini-SDD Noise → 90 e- at room temperature

» DEPFET Noise → 80 e- at room temperature

FEE 2018

21

Thank You