the rf mosfet line mrf1570t1 rf power field effect

20
The RF MOSFET Line RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequen- cies up to 470 MHz. The high gain and broadband performance of these devices make them ideal for large - signal, common source amplifier applica- tions in 12.5 volt mobile FM equipment. Specified Performance @ 470 MHz, 12.5 Volts Output Power 70 Watts Power Gain 10 dB Efficiency 50% Capable of Handling 20:1 VSWR, @ 15.6 Vdc, 470 MHz, 2 dB Overdrive Excellent Thermal Stability Characterized with Series Equivalent Large - Signal Impedance Parameters Broadband - Full Power Across the Band: 135 - 175 MHz 400 - 470 MHz Broadband Demonstration Amplifier Information Available Upon Request N Suffix Indicates Lead-Free Terminations Available in Tape and Reel. T1 Suffix = 500 Units per 44 mm, 13 inch Reel. MAXIMUM RATINGS Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device Dissipation @ T C = 25°C Derate above 25°C P D 165 0.5 Watts W/°C Storage Temperature Range T stg - 65 to +150 °C Operating Junction Temperature T J 175 °C ESD PROTECTION CHARACTERISTICS Test Conditions Class Human Body Model 1 (Minimum) Machine Model M2 (Minimum) Charge Device Model C2 (Minimum) THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case R θJC 0.75 °C/W NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. Order this document by MRF1570T1/D MOTOROLA SEMICONDUCTOR TECHNICAL DATA 470 MHz, 70 W, 12.5 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs CASE 1366 - 04, STYLE 1 TO-272-8 WRAP PLASTIC MRF1570T1(NT1) MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 CASE 1366A - 02, STYLE 1 TO-272-8 PLASTIC MRF1570FT1(FNT1) Motorola, Inc. 2004 Rev. 3

Upload: others

Post on 01-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The RF MOSFET Line MRF1570T1 RF Power Field Effect

1MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

The RF MOSFET LineRF Power Field Effect TransistorsN-Channel Enhancement-Mode Lateral MOSFETs

Designed for broadband commercial and industrial applications with frequen-cies up to 470 MHz. The high gain and broadband performance of thesedevices make them ideal for large-signal, common source amplifier applica-tions in 12.5 volt mobile FM equipment.

• Specified Performance @ 470 MHz, 12.5 VoltsOutput Power 70 WattsPower Gain 10 dBEfficiency 50%

• Capable of Handling 20:1 VSWR, @ 15.6 Vdc, 470 MHz, 2 dB Overdrive

• Excellent Thermal Stability

• Characterized with Series Equivalent Large-Signal Impedance Parameters

• Broadband -Full Power Across the Band: 135-175 MHz400-470 MHz

• Broadband Demonstration Amplifier Information Available Upon Request

• N Suffix Indicates Lead-Free Terminations

• Available in Tape and Reel. T1 Suffix = 500 Units per 44 mm, 13 inch Reel.

MAXIMUM RATINGS

Rating Symbol Value Unit

Drain-Source Voltage VDSS 40 Vdc

Gate-Source Voltage VGS ± 20 Vdc

Total Device Dissipation @ TC = 25°CDerate above 25°C

PD 1650.5

WattsW/°C

Storage Temperature Range Tstg - 65 to +150 °C

Operating Junction Temperature TJ 175 °C

ESD PROTECTION CHARACTERISTICS

Test Conditions Class

Human Body Model 1 (Minimum)

Machine Model M2 (Minimum)

Charge Device Model C2 (Minimum)

THERMAL CHARACTERISTICS

Characteristic Symbol Max Unit

Thermal Resistance, Junction to Case RθJC 0.75 °C/W

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling andpackaging MOS devices should be observed.

Order this documentby MRF1570T1/D

MOTOROLASEMICONDUCTOR TECHNICAL DATA

470 MHz, 70 W, 12.5 VLATERAL N-CHANNEL

BROADBAND RF POWER MOSFETs

CASE 1366-04, STYLE 1TO-272-8 WRAP

PLASTICMRF1570T1(NT1)

MRF1570T1

MRF1570FT1

MRF1570NT1

MRF1570FNT1

CASE 1366A-02, STYLE 1TO-272-8PLASTIC

MRF1570FT1(FNT1)

Motorola, Inc. 2004

Rev. 3

Page 2: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 2

MOTOROLA RF DEVICE DATA

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

OFF CHARACTERISTICS

Zero Gate Voltage Drain Current(VDS = 60 Vdc, VGS = 0 Vdc)

IDSS 1 µA

ON CHARACTERISTICS

Gate Threshold Voltage(VDS = 12.5 Vdc, ID = 0.8 mAdc)

VGS(th) 1.0 3 Vdc

Drain-Source On-Voltage(VGS = 10 Vdc, ID = 2.0 Adc)

VDS(on) 1 Vdc

DYNAMIC CHARACTERISTICS

Input Capacitance (Includes Input Matching Capacitance)(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)

Ciss 500 pF

Output Capacitance(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)

Coss 250 pF

Reverse Transfer Capacitance(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)

Crss 35 pF

RF CHARACTERISTICS (In Motorola Test Fixture)

Common-Source Amplifier Power Gain(VDD = 12.5 Vdc, Pout = 70 W, IDQ = 800 mA) f = 470 MHz

Gps10

dB

Drain Efficiency(VDD = 12.5 Vdc, Pout = 70 W, IDQ = 800 mA) f = 470 MHz

η50

%

Load Mismatch(VDD = 15.6 Vdc, f = 470 MHz, 2 dB Input Overdrive, VSWR 20:1 at All Phase Angles)

Ψ No Degradation in Output Power Before and After Test

Page 3: The RF MOSFET Line MRF1570T1 RF Power Field Effect

3MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

Figure 1. 135 - 175 MHz Broadband Test Circuit Schematic

RF

OUTPUTDUT

+VGG

B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite ProductsC1, C32, C37, C43 270 pF, 100 mil Chip CapacitorsC2, C20, C21 33 pF, 100 mil Chip CapacitorsC3 18 pF, 100 mil Chip CapacitorC4, C5 30 pF, 100 mil Chip CapacitorsC6, C7 180 pF, 100 mil Chip CapacitorsC8, C9 150 pF, 100 mil Chip CapacitorsC10, C15 300 pF, 100 mil Chip CapacitorsC11, C16, C33, C39 10 µF, 50 V Electrolytic CapacitorsC12, C17, C34, C40 0.1 µF, 100 mil Chip CapacitorsC13, C18, C35, C41 1000 pF, 100 mil Chip CapacitorsC14, C19, C36, C42 470 pF, 100 mil Chip CapacitorsC22, C23 110 pF, 100 mil Chip CapacitorsC24, C25 68 pF, 100 mil Chip CapacitorsC26, C27 120 pF, 100 mil Chip CapacitorsC28, C29 24 pF, 100 mil Chip CapacitorsC30, C31 27 pF, 100 mil Chip CapacitorsC38, C44 240 pF, 100 mil Chip CapacitorsL1, L2 17.5 nH, 6 Turn Inductors, Coilcraft

L3, L4 5 nH, 2 Turn Inductors, CoilcraftL5, L6, L7, L8 1 Turn, #18 AWG, 0.33″ ID InductorsL9, L10 3 Turn, #16 AWG, 0.165″ ID InductorsN1, N2 Type N Flange MountsR1, R2 25.5 Ω Chip Resistors (1206)R3, R4 9.3 Ω Chip Resistors (1206)Z1 0.32″ x 0.080″ MicrostripZ2, Z3 0.46″ x 0.080″ MicrostripZ4, Z5 0.34″ x 0.080″ MicrostripZ6, Z7 0.45″ x 0.080″ MicrostripZ8, Z9, Z10, Z11 0.28″ x 0.240″ MicrostripZ12, Z13 0.39″ x 0.080″ MicrostripZ14, Z15 0.27″ x 0.080″ MicrostripZ16, Z17 0.25″ x 0.080″ MicrostripZ18, Z19 0.29″ x 0.080″ MicrostripZ20, Z21 0.14″ x 0.080″ MicrostripZ22 0.32″ x 0.080″ MicrostripBoard 31 mil Glass Teflon

VGG +

RF

INPUT

VDD+

VDD+

C14 C13 C12 C11 C10

B1

R1

R3Z2 L1 Z4 L3 Z6 Z8

C1

C6C8

Z1

C2 C3

C4

R4

Z3 L2 Z5 L4 Z7 Z9

C7 C9C5

R2

B2

C19 C18 C17 C16 C15

C38 C37 C36 C35 C34 C33

Z10 Z12 Z14 Z16 L5 L7 Z18

L9

C20 C22 C24 C26 C28 C30

C21 C23 C25 C27

Z11 Z13 Z15 Z17 L6 L8 Z19

Z21

Z20

Z22

B3

B4

B5

B6

C29 C31

C44 C43 C42 C41 C40 C39

L10

C32

Page 4: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 4

MOTOROLA RF DEVICE DATA

Figure 2. 135 - 175 MHz Broadband Test Circuit Component Layout

C11

B1

C12 C13 C14

C1C2

C3

C4

C5

L1

L2

C6

C7

L3

L4

C10

C15

C8

C9

R3

R4

R1

R2

C16

B2

C17 C18 C19C44

C38

L9

L10

C37

C20

C21

C43

C23

C22

C24

C26

C27

C25

L5

L6

C28

C29

L7

L8

C30

C31C32

C33

C39

B5B6

B3B4

C35 C34C36

C41 C40C42

VDD

GND

VGG

GND

MRF1570T1

TYPICAL CHARACTERISTICS, 135 - 175 MHZ

135 MHz

175 MHz

150 MHz

6

0

100

0

Pin, INPUT POWER (WATTS)

Figure 3. Output Power versus Input Power

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

VDD = 12.5 Vdc

80

60

40

20

1 2 3 4 5 80

−20

0

10

Pout, OUTPUT POWER (WATTS)

Figure 4. Input Return Loss versus Output Power

−5

−10

−15

135 MHz

175 MHz

155 MHz

VDD = 12.5 Vdc

90706050403020

INP

UT

RE

TU

RN

LO

SS

(dB

)IR

L,

Page 5: The RF MOSFET Line MRF1570T1 RF Power Field Effect

5MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

TYPICAL CHARACTERISTICS, 135 - 175 MHZ

90

12

18

10

Pout, OUTPUT POWER (WATTS)

Figure 5. Gain versus Output Power

Gps

, P

OW

ER

GA

IN (

dB)

20 30 40 50 60 70 80

135 MHz

175 MHz

155 MHzVDD = 12.5 Vdc

17

16

15

14

13

90

20

70

10

Pout, OUTPUT POWER (WATTS)

Figure 6. Drain Efficiency versus Output Power

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

60

50

40

30

20 30 40 50 60 70 80

135 MHz

175 MHz

155 MHz

VDD = 12.5 Vdc

1600

50

90

400

IDQ, BIASING CURRENT (mA)

Figure 7. Output Power versus Biasing Current

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

135 MHz

175 MHz155 MHz

VDD = 12.5 Vdc

Pin = 36 dBm

80

70

60

600 800 140012001000

0

100

IDQ, BIASING CURRENT (mA)

Figure 8. Drain Efficiency versus Biasing Current

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

1600400

135 MHz

175 MHz

155 MHz

VDD = 12.5 Vdc

Pin = 36 dBm

600 800 140012001000

80

60

40

20

15

0

100

10

VDD, SUPPLY VOLTAGE (VOLTS)

Figure 9. Output Power versus Supply Voltage

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

135 MHz

175 MHz

155 MHz

Pin = 36 dBm

IDQ = 800 mA

80

60

40

20

14131211 15

0

100

10

VDD, SUPPLY VOLTAGE (VOLTS)

Figure 10. Drain Efficiency versus Supply Voltage

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

80

60

40

20

135 MHz

175 MHz

155 MHz

Pin = 36 dBm

IDQ = 800 mA

11 12 13 14

Page 6: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 6

MOTOROLA RF DEVICE DATA

Figure 11. 400 - 470 MHz Broadband Test Circuit Schematic

B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite ProductsC1, C9, C15, C32 270 pF, 100 mil Chip CapacitorsC2, C3 7.5 pF, 100 mil Chip CapacitorsC4 5.1 pF, 100 mil Chip CapacitorC5, C6 180 pF, 100 mil Chip CapacitorsC7, C8 47 pF, 100 mil Chip CapacitorsC10, C16, C37, C42 120 pF, 100 mil Chip CapacitorsC11, C17, C33, C38 10 µF, 50 V Electrolytic CapacitorsC12, C18, C34, C39 470 pF, 100 mil Chip CapacitorsC13, C19, C35, C40 1200 pF, 100 mil Chip CapacitorsC14, C20, C36, C41 0.1 µF, 100 mil Chip CapacitorsC21, C22 33 pF, 100 mil Chip CapacitorsC23, C24 27 pF, 100 mil Chip CapacitorsC25, C26 15 pF, 100 mil Chip CapacitorsC27, C28 2.2 pF, 100 mil Chip CapacitorsC29, C30 6.2 pF, 100 mil Chip CapacitorsC31 1.0 pF, 100 mil Chip Capacitor

L1, L2, L3, L4 1 Turn, #18 AWG, 0.085″ ID InductorsL5, L6 2 Turn, #16 AWG, 0.165″ ID InductorsN1, N2 Type N Flange MountsR1, R2 25.5 Ω Chip Resistors (1206)R3, R4 10 Ω Chip Resistors (1206)Z1 0.240″ x 0.080″ MicrostripZ2 0.185″ x 0.080″ MicrostripZ3, Z4 1.500″ x 0.080″ MicrostripZ5, Z6 0.150″ x 0.240″ MicrostripZ7, Z8 0.140″ x 0.240″ MicrostripZ9, Z10 0.140″ x 0.240″ MicrostripZ11, Z12 0.150″ x 0.240″ MicrostripZ13, Z14 0.270″ x 0.080″ MicrostripZ15, Z16 0.680″ x 0.080″ MicrostripZ17, Z18 0.320″ x 0.080″ MicrostripZ19 0.380″ x 0.080″ MicrostripBoard 31 mil Glass Teflon

RF

OUTPUTDUT

+VGG

VGG +

RF

INPUT

VDD+

VDD+

C14 C13 C12 C11 C9

B1

R1

R3

Z2

Z3 Z5 Z7

C1

C7

C5Z1

C2 C3 C4

R4

Z4 Z6 Z8

C8C6

R2

B2

C20 C19 C18 C17 C15

C37C10 C36 C35 C34 C33

Z9 Z11 Z13 Z15 L1 L3 Z17

L5

C21 C23C27 C29

C22 C24

Z10 Z12 Z14 Z16 L2 L4 Z18

Z19

B3

B4

B5

B6

C28 C30

C42 C41 C40 C39 C38

L6

C32

C16

C31

C25

C26

Page 7: The RF MOSFET Line MRF1570T1 RF Power Field Effect

7MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

Figure 12. 400 - 470 MHz Broadband Test Circuit Component Layout

C11

B1

C12 C13 C14

C1C2

C3

C4

C9

C15

C5

C6

R3

R4

R1

R2

C17

B2

C18 C19 C20

L5

L6

C37

C21

C22

C42

C26

C25C23

C24

L1

L2

C27

C28

L3

L4

C29

C30

C32

C33

C38

B5B6

B3B4

C35 C36C34

C40 C41C39

VDD

GND

VGG

GND

C10

C16

C7

C8

C31

MRF1570T1

TYPICAL CHARACTERISTICS, 400 - 470 MHZ

0

100

0

400 MHz

Pin, INPUT POWER (WATTS)

Figure 13. Output Power versus Input Power

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

VDD = 12.5 Vdc

80

60

40

20

1 2 3 4 5 6 7 8

440 MHz

470 MHz

80

−20

0

0

Pout, OUTPUT POWER (WATTS)

Figure 14. Input Return Loss versus Output Power

INP

UT

RE

TU

RN

LO

SS

(dB

)IR

L,

−5

−10

−15

10 20 30 40 50 60 70

400 MHz

VDD = 12.5 Vdc

440 MHz

470 MHz

Page 8: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 8

MOTOROLA RF DEVICE DATA

TYPICAL CHARACTERISTICS, 400 - 470 MHZ

80

5

17

0

Pout, OUTPUT POWER (WATTS)

Figure 15. Gain versus Output Power

Gps

, P

OW

ER

GA

IN (

dB)

400 MHz

VDD = 12.5 Vdc

440 MHz

470 MHz

15

13

11

9

7

10 20 30 40 50 60 70 80

0

70

0

Pout, OUTPUT POWER (WATTS)

Figure 16. Drain Efficiency versus Output Power

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

60

50

40

30

20

10

10 20 30 40 50 60 70

400 MHz

VDD = 12.5 Vdc

440 MHz

470 MHz

1600

50

90

400

IDQ, BIASING CURRENT (mA)

Figure 17. Output Power versus Biasing Current

Pou

t, O

UT

PU

T P

OW

ER

(W

AT

TS

)

VDD = 12.5 Vdc

Pin = 38 dBm

400 MHz

440 MHz

470 MHz80

70

60

600 800 1000 1200 1400

0

100

Figure 18. Drain Efficiency versus Biasing Current

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

VDD = 12.5 Vdc

Pin = 38 dBm

400 MHz

440 MHz

470 MHz

1600400

IDQ, BIASING CURRENT (mA)

600 800 1000 1200 1400

80

60

40

20

40

100

10

VDD, SUPPLY VOLTAGE (VOLTS)

Figure 19. Output Power versus Supply Voltage

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

Pin = 38 dBm

IDQ = 800 mA

400 MHz

440 MHz

470 MHz

90

80

70

60

50

11 12 13 14 15

Figure 20. Drain Efficiency versus Supply Voltage

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

0

100

10

VDD, SUPPLY VOLTAGE (VOLTS)

Pin = 38 dBm

IDQ = 800 mA

400 MHz

440 MHz470 MHz

80

40

60

20

11 12 13 14 15

Page 9: The RF MOSFET Line MRF1570T1 RF Power Field Effect

9MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

Figure 21. 450 - 520 MHz Broadband Test Circuit Schematic

B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite ProductsC1, C8, C14, C28 270 pF, 100 mil Chip CapacitorsC2, C3 10 pF, 100 mil Chip CapacitorsC4, C5 180 pF, 100 mil Chip CapacitorsC6, C7 47 pF, 100 mil Chip CapacitorsC9, C15, C33, C38 120 pF, 100 mil Chip CapacitorsC10, C16, C29, C34 10 µF, 50 V Electrolytic CapacitorsC11, C17, C30, C35 470 pF, 100 mil Chip CapacitorsC12, C18, C31, C36 1200 pF, 100 mil Chip CapacitorsC13, C19, C32, C37 0.1 µF, 100 mil Chip CapacitorsC20, C21 22 pF, 100 mil Chip CapacitorsC22, C23 20 pF, 100 mil Chip CapacitorsC24, C25, C26, C27 5.1 pF, 100 mil Chip CapacitorsL1, L2 1 Turn, #18 AWG, 0.115″ ID InductorsL3, L4 2 Turn, #16 AWG, 0.165″ ID Inductors

N1, N2 Type N Flange MountsR1, R2 1.0 kΩ Chip Resistors (1206)R3, R4 10 Ω Chip Resistors (1206)Z1 0.40″ x 0.080″ MicrostripZ2, Z3 0.26″ x 0.080″ MicrostripZ4, Z5 1.35″ x 0.080″ MicrostripZ6, Z7 0.17″ x 0.240″ MicrostripZ8, Z9 0.12″ x 0.240″ MicrostripZ10, Z11 0.14″ x 0.240″ MicrostripZ12, Z13 0.15″ x 0.240″ MicrostripZ14, Z15 0.18″ x 0.172″ MicrostripZ16, Z17 1.23″ x 0.080″ MicrostripZ18, Z19 0.12″ x 0.080″ MicrostripZ20 0.40″ x 0.080″ MicrostripBoard 31 mil Glass Teflon

RF

OUTPUTDUT

+VGG

VGG +

RF

INPUT

VDD+

VDD+

C13 C12 C11 C10 C8

B1

R1

R3Z4 Z6 Z8

C1

C6

C4Z1

R4

Z5 Z7 Z9

C7C5

R2

B2

C19 C18 C17 C16 C14

C33C9 C32 C31 C30 C29

Z10 Z12 Z14 Z16 L1 Z18

L3

C20 C22C26

C21 C23

Z11 Z13 Z15 Z17 L2 Z19

Z20

B3

B4

B5

B6

C27

C38 C37 C36 C35 C34

L4

C28

C15

C24

C25

C2

C3

Z2

Z3

Page 10: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 10

MOTOROLA RF DEVICE DATA

Figure 22. 450 - 520 MHz Broadband Test Circuit Component Layout

C10

B1

C13 C12 C11

C1C2

C3

C8

C14

C4

C5

R3

R4

R1

R2

C16

B2

C19 C18 C17

L3

L4

C33

C20

C21

C38

C25

C24C22

C23

L1

L2

C26

C27

C28

C29

C34

B5B6

B3B4

C31 C32C30

C36 C37C35

VDD

GND

VGG

GND

C9

C15

C6

C7

MRF1570T1

TYPICAL CHARACTERISTICS, 450 - 520 MHZ

0

100

0

Pin, INPUT POWER (WATTS)

Figure 23. Output Power versus Input Power

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

VDD = 12.5 Vdc

500 MHz

450 MHz

470 MHz

520 MHz

80

60

40

20

1 2 3 4 5 6 7 8 90

−25

0

0

Pout, OUTPUT POWER (WATTS)

Figure 24. Input Return Loss versus Output Power

INP

UT

RE

TU

RN

LO

SS

(dB

)IR

L,

VDD = 12.5 Vdc

500 MHz

450 MHz

470 MHz

520 MHz

−5

−10

−15

−20

10 20 30 40 50 70 8060

Page 11: The RF MOSFET Line MRF1570T1 RF Power Field Effect

11MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

TYPICAL CHARACTERISTICS, 450 - 520 MHZ

9

15

Pout, OUTPUT POWER (WATTS)

Figure 25. Gain versus Output Power

Gps

, P

OW

ER

GA

IN (

dB)

900

VDD = 12.5 Vdc

500 MHz

450 MHz

470 MHz

520 MHz

10 20 30 40 50 70 8060

14

13

12

11

10

20

70

Pout, OUTPUT POWER (WATTS)

Figure 26. Drain Efficiency versus Output Power

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

90

VDD = 12.5 Vdc

500 MHz

470 MHz

450 MHz

520 MHz

10 20 30 40 50 70 8060

60

50

40

30

1600

50

90

IDQ, BIASING CURRENT (mA)

Figure 27. Output Power versus Biasing Current

P out,

OU

TP

UT

PO

WE

R (

WA

TT

S)

500 MHz

450 MHz

470 MHz

520 MHz

VDD = 12.5 Vdc

Pin = 38 dBm

80

70

60

400 800 1200 1600

40

80

IDQ, BIASING CURRENT (mA)

Figure 28. Drain Efficiency versus Biasing Current

500 MHz

450 MHz

470 MHz

520 MHz

VDD = 12.5 Vdc

Pin = 38 dBm

70

60

50

400 800 1200

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

30

100

Figure 29. Output Power versus Supply Voltage

Pou

t, O

UT

PU

T P

OW

ER

(W

AT

TS

)

10

VDD, SUPPLY VOLTAGE (VOLTS)

Pin = 38 dBm

IDQ = 800 mA

450 MHz

470 MHz

11 12 13 14 15

90

80

70

60

50

40

520 MHz

500 MHz

40

80

Figure 30. Drain Efficiency versus Supply Voltage

, D

RA

IN E

FF

ICIE

NC

Y (

%)

η

10

VDD, SUPPLY VOLTAGE (VOLTS)

Pin = 38 dBm

IDQ = 800 mA

470 MHz

11 12 13 14 15

520 MHz

500 MHz

450 MHz

70

60

50

Page 12: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 12

MOTOROLA RF DEVICE DATA

Zin = Complex conjugate of source impedance.

ZOL* = Complex conjugate of the load impedance at given output power, voltage, frequency, and ηD > 50 %.

Notes: Impedance Zin was measured with input terminated at 50 . Impedance ZOL was measured with output terminated at 50 .

Figure 31. Series Equivalent Input and Output Impedance

fMHz

ZinΩ

ZOL*Ω

450 0.94 - j1.12 0.61 - j1.14

VDD = 12.5 V, IDQ = 0.8 A, Pout = 70 W

470 1.03 - j1.17 0.62 - j1.12

500 0.95 - j1.71 0.75 - j1.03

520 0.62 - j1.74 0.77 - j0.97

fMHz

ZinΩ

ZOL*Ω

400 0.92 - j0.71 1.05 - j1.10

VDD = 12.5 V, IDQ = 0.8 A, Pout = 70 W

440 1.12 - j1.11 0.83 - j1.45

470 0.82 - j0.79 0.59 - j1.43

fMHz

ZinΩ

ZOL*Ω

135 2.8 +j0.05 0.65 +j0.42

VDD = 12.5 V, IDQ = 0.8 A, Pout = 70 W

155 3.9 +j0.34 1.01 +j0.63

175 2.4 - j0.47 0.71 +j0.37

Zin

f = 175 MHz

ZOL*

f = 470 MHz Zo = 5 Ω

Zin

ZOL*

Zin

ZOL

*

Input

Matching

Network

Device

Under Test

Output

Matching

Network

f = 175 MHz

f = 470 MHz

f = 520 MHz

Zo = 5 Ω

Zin

ZOL* f = 450 MHz

f = 135 MHz

f = 135 MHz

f = 400 MHz

f = 400 MHz

f = 450 MHz

f = 520 MHz

Page 13: The RF MOSFET Line MRF1570T1 RF Power Field Effect

13MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

APPLICATIONS INFORMATION

DESIGN CONSIDERATIONSThis device is a common-source, RF power, N-Channel

enhancement mode, Lateral Metal -Oxide SemiconductorField -Effect Transistor (MOSFET). Motorola ApplicationNote AN211A, FETs in Theory and Practice, is suggestedreading for those not familiar with the construction and char-acteristics of FETs.

This surface mount packaged device was designed pri-marily for VHF and UHF mobile power amplifier applications.Manufacturability is improved by utilizing the tape and reelcapability for fully automated pick and placement of parts.However, care should be taken in the design process to in-sure proper heat sinking of the device.

The major advantages of Lateral RF power MOSFETs in-clude high gain, simple bias systems, relative immunity fromthermal runaway, and the ability to withstand severely mis-matched loads without suffering damage.

MOSFET CAPACITANCESThe physical structure of a MOSFET results in capacitors

between all three terminals. The metal oxide gate structuredetermines the capacitors from gate - to -drain (Cgd), andgate- to-source (Cgs). The PN junction formed during fab-rication of the RF MOSFET results in a junction capacitancefrom drain- to-source (Cds). These capacitances are charac-terized as input (Ciss), output (Coss) and reverse transfer(Crss) capacitances on data sheets. The relationships be-tween the inter- terminal capacitances and those given ondata sheets are shown below. The Ciss can be specified intwo ways:

1. Drain shorted to source and positive voltage at the gate.

2. Positive voltage of the drain in respect to source and zerovolts at the gate.

In the latter case, the numbers are lower. However, neithermethod represents the actual operating conditions in RF ap-plications.

Drain

Cds

Source

Gate

Cgd

Cgs

Ciss = Cgd + Cgs

Coss = Cgd + Cds

Crss = Cgd

DRAIN CHARACTERISTICSOne critical figure of merit for a FET is its static resistance

in the full -on condition. This on-resistance, RDS(on), occursin the linear region of the output characteristic and is speci-fied at a specific gate-source voltage and drain current. The

drain -source voltage under these conditions is termedVDS(on). For MOSFETs, VDS(on) has a positive temperaturecoefficient at high temperatures because it contributes to thepower dissipation within the device.

BVDSS values for this device are higher than normally re-quired for typical applications. Measurement of BVDSS is notrecommended and may result in possible damage to the de-vice.

GATE CHARACTERISTICSThe gate of the RF MOSFET is a polysilicon material, and

is electrically isolated from the source by a layer of oxide.The DC input resistance is very high - on the order of 109 Ω resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage tothe gate greater than the gate- to-source threshold voltage,VGS(th).

Gate Voltage Rating Never exceed the gate voltagerating. Exceeding the rated VGS can result in permanentdamage to the oxide layer in the gate region.

Gate Termination The gates of these devices are es-sentially capacitors. Circuits that leave the gate open-cir-cuited or floating should be avoided. These conditions canresult in turn-on of the devices due to voltage build-up onthe input capacitor due to leakage currents or pickup.

Gate Protection These devices do not have an internalmonolithic zener diode from gate- to-source. If gate protec-tion is required, an external zener diode is recommended.Using a resistor to keep the gate- to-source impedance lowalso helps dampen transients and serves another importantfunction. Voltage transients on the drain can be coupled tothe gate through the parasitic gate-drain capacitance. If thegate- to-source impedance and the rate of voltage changeon the drain are both high, then the signal coupled to the gatemay be large enough to exceed the gate- threshold voltageand turn the device on.DC BIAS

Since this device is an enhancement mode FET, drain cur-rent flows only when the gate is at a higher potential than thesource. RF power FETs operate optimally with a quiescentdrain current (IDQ), whose value is application dependent.This device was characterized at IDQ = 800 mA, which is thesuggested value of bias current for typical applications. Forspecial applications such as linear amplification, IDQ mayhave to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. There-fore, the gate bias circuit may generally be just a simple re-sistive divider network. Some special applications mayrequire a more elaborate bias system.GAIN CONTROL

Power output of this device may be controlled to some de-gree with a low power dc control signal applied to the gate,thus facilitating applications such as manual gain control,ALC/AGC and modulation systems. This characteristic isvery dependent on frequency and load line.

Page 14: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 14

MOTOROLA RF DEVICE DATA

MOUNTINGThe specified maximum thermal resistance of 0.75°C/W

assumes a majority of the 0.170″ x 0.608″ source contact onthe back side of the package is in good contact with an ap-propriate heat sink. As with all RF power devices, the goal ofthe thermal design should be to minimize the temperature atthe back side of the package. Refer to Motorola ApplicationNote AN4005/D, Thermal Management and Mounting Meth-od for the PLD-1.5 RF Power Surface Mount Package, andEngineering Bulletin EB209/D, Mounting Method for RFPower Leadless Surface Mount Transistor for additional in-formation.

AMPLIFIER DESIGNImpedance matching networks similar to those used with

bipolar transistors are suitable for this device. For examples

see Motorola Application Note AN721, Impedance MatchingNetworks Applied to RF Power Transistors. Large-signalimpedances are provided, and will yield a good first passapproximation.

Since RF power MOSFETs are triode devices, they are notunilateral. This coupled with the very high gain of this deviceyields a device capable of self oscillation. Stability may beachieved by techniques such as drain loading, input shuntresistive loading, or output to input feedback. The RF test fix-ture implements a parallel resistor and capacitor in serieswith the gate, and has a load line selected for a higher effi-ciency, lower gain, and more stable operating region. SeeMotorola Application Note AN215A, RF Small - SignalDesign Using Two-Port Parameters for a discussion of twoport network theory and stability.

Page 15: The RF MOSFET Line MRF1570T1 RF Power Field Effect

15MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

NOTES

Page 16: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 16

MOTOROLA RF DEVICE DATA

NOTES

Page 17: The RF MOSFET Line MRF1570T1 RF Power Field Effect

17MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

NOTES

Page 18: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 18

MOTOROLA RF DEVICE DATA

PACKAGE DIMENSIONS

CASE 1366-04ISSUE C

TO-272-8 WRAPPLASTIC

MRF1570T1(NT1)

NOTES:1. CONTROLLING DIMENSION: INCH .2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994.3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD

AND IS COINCIDENT WITH THE LEAD WHERETHE LEAD EXITS THE PLASTIC BODY AT THETOP OF THE PARTING LINE.

4. DIMENSION D AND E1 DO NOT INCLUDE MOLDPROTRUSION. ALLOWABLE PROTRUSION IS0.006 PER SIDE. DIMENSION D AND E1 DOINCLUDE MOLD MISMATCH AND AREDETERMINED AT DATUM PLANE −H−.

5. DIMENSIONS b1 AND b2 DO NOT INCLUDEDAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.005 TOTAL IN EXCESSOF THE b1 AND b2 DIMENSIONS AT MAXIMUMMATERIAL CONDITION.

6. CROSSHATCHING REPRESENTS THE EXPOSEDAREA OF THE HEAT SLUG.

L A1

c1

D

C

A

A

Maaa D

SEATING

PLANE

SEATING

PLANE

BE1

P

e4X

D

4X b2

D1

B

Maaa D B

Maaa D A

E

YY

A2

DIM

A

MIN MAX MIN MAX

MILLIMETERS

0.098 0.108 2.49 2.74

INCHES

A1 0.000 0.004 0.00 0.10

A2 0.100 0.104 2.54 2.64

D 0.928 0.932 23.57 23.67

D1

E 0.296 0.304 7.52 7.72

E1 0.248 0.252 6.30 6.40

L 0.060 0.070 1.52 1.78

b1 0.088 0.094 2.24 2.39

b2 0.066 0.072 1.68 1.83

c1 0.007 0.011 0.178 0.279

e

e1

0 6 0 6

aaa

1

2

3

5

6

7

0.104 BSC

0.004

2.64 BSC

0.10

4X

b1

b3 0.067 0.073 1.70 1.85

0.810 BSC 20.57 BSC

bbb 0.008 0.20

0.210 BSC 5.33 BSC

P 0.126 0.134 3.20 3.40

D2 0.608 BSC 15.44 BSC

E2 0.170 BSC 4.32 BSC

HDATUM

PLANE

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

4

2

1

6

5

7

VIEW Y-Y

3

8

bbb C

E2

D2A

DRAIN ID

B

48

B

2X

e14X

2X

b3(b1)

STYLE 1:PIN 1. SOURCE (COMMON)

2. DRAIN3. DRAIN4. SOURCE (COMMON)5. SOURCE (COMMON)6. GATE7. GATE8. SOURCE (COMMON)

NOTE 6

E3

E3

E3 0.241 0.245 6.12 6.22

Page 19: The RF MOSFET Line MRF1570T1 RF Power Field Effect

19MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1MOTOROLA RF DEVICE DATA

CASE 1366A-02ISSUE A

TO-272-8PLASTIC

MRF1570FT1(FNT1)

NOTES:1. CONTROLLING DIMENSION: INCH.2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994.3. DIMENSIONS "D" AND "E1" DO NOT INCLUDE

MOLD PROTRUSION. ALLOWABLE PROTRUSIONIS 0.006 PER SIDE. DIMENSIONS "D" AND "E1" DOINCLUDE MOLD MISMATCH AND AREDETERMINED AT DATUM PLANE −H−.

4. DIMENSIONS "b" AND "b1" DO NOT INCLUDEDAMBAR PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.005 TOTAL IN EXCESSOF THE "b1" AND "b2" DIMENSIONS AT MAXIMUMMATERIAL CONDITION.

5. CROSSHATCHING REPRESENTS THE EXPOSEDAREA OF THE HEAT SLUG.

6. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.

A

Maaa D

B

E1

P

e4X

D

4X b2

D1

B

Maaa D B

Maaa D A

E

DIM

A

MIN MAX MIN MAX

MILLIMETERS

0.098 0.106 2.49 2.69

INCHES

A1 0.038 0.044 0.96 1.12

D 0.926 0.934 23.52 23.72

D1

E 0.492 0.500 12.50 12.70

E1 0.246 0.254 6.25 6.45

b 0.105 0.111 2.67 2.82

b1 0.088 0.094 2.24 2.39

c1 0.007 0.011 0.178 0.279

e

e1

aaa

1

2

3

5

6

7

0.104 BSC

0.004

2.64 BSC

0.10

4X

b1

b2 0.066 0.072 1.68 1.83

0.810 BSC 20.57 BSC

bbb 0.008 0.20

0.210 BSC 5.33 BSC

P 0.126 0.134 3.20 3.40

D2 0.608 BSC 15.44 BSC

E2 0.170 BSC 4.32 BSC

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ

4

2

1

6

5

7

VIEW Y-Y

3

8

bbb C

E2

D2

A

DRAIN ID

B

48

B

2X

e14X

2X

b3

STYLE 1:PIN 1. SOURCE (COMMON)

2. DRAIN3. DRAIN4. SOURCE (COMMON)5. SOURCE (COMMON)6. GATE7. GATE8. SOURCE (COMMON)

NOTE 5

D

A

SEATING

PLANE

YYA1

c1

e2 0.229 BSC 5.82 BSC

b3 0.067 0.073 1.70 1.85

b4 0.077 0.083 1.96 2.11

(b1)

3X b

Maaa D B

e23X

4X

ZONE "J"

6

F

A2A2 0.040 0.042 1.02 1.07

F 0.025 BSC 0.64 BSC

b4

Page 20: The RF MOSFET Line MRF1570T1 RF Power Field Effect

MRF1570T1 MRF1570FT1 MRF1570NT1 MRF1570FNT1 20

MOTOROLA RF DEVICE DATA

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyrightlicenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regardingthe suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, andspecifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Motoroladata sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, includingTypicals, must be validated for each customer application by customers technical experts. Motorola does not convey any license under its patent rights nor therights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or otherapplications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injuryor death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorolaand its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney feesarising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges thatMotorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respectiveowners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,Motorola Literature Distribution 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, JapanP.O. Box 5405, Denver, Colorado 80217 81-3-3440-35691-800-521-6274 or 480-768-2130

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong852-26668334

HOME PAGE: http://motorola.com/semiconductors

MRF1570T1/D◊