the role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000...

22
The role of seasonal and occasional floods in the origin of extreme hydrological events Lomonosov Moscow State University Department of Hydrology Water Problem Institute, RAS

Upload: others

Post on 13-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

The role of seasonal and occasional floods in the origin of extreme hydrological events

Lomonosov Moscow State University Department of Hydrology

Water Problem Institute, RAS

Page 2: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Main goals of the study includes:

Spatial distribution analyses of different seasonal flow characteristics, drawing renewed maps of them

Investigation of seasonal and occasional flood wave variation and it’s influence on the low flow

Assessment of deficit and surplus under the threshold values and it’s dynamics during the XX – XXI century

Analyses of extreme hydrological events in terms of water regime transformation

Climate change Water regime Extremes

Page 3: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Dangerous hydrological phenomena

FloodsDangerous changes in river bed

Extremely low Flow

Water qualityIce Phenomena

3

Number of floods for North Caucases and Central Russia (Volga basin) (a) and East and West Siberia, Far East region (b) for 1991–2006 (Semenov, 2010)

Number of dangerous hydrological phenomena in Russia (http://www.meteorf.ru)

153 142163

195

254206

150175 160

193

285258

220

310

361387

436

349385

467

322

469 455

0

100

200

300

400

500

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

N

Page 4: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Dangerous hydrological phenomena4

Extreme draught 2010. Smoke in Moscow caused by wildfires

Extreme low flow in Volga basin, 2014. Flooded by Rybinskoe reservoir city Mologa appears

from under the water

Extremely high seasonal flood on the Oka, 2013, led to flooding of roods and countryside

Page 5: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Recent climate change on the European part of Russia5

Winter

Summer

Average increase rate of seasonal air temperature for 1976-2012 yy.

Spring

Autumn

Average Rainfall linear trend coefficient for 1976-2012

Average annual deviation of the air temperature for 1936-2009 гг.

1970

C° per 10 years

Winter Spring

Summer Autumn% per 10 years

Report on climate for the Russian Federation territory’ 2014

Average annual deviation of the

rainfall for1936-2009 гг.

1970

Page 6: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

www.themegallery.com

6Методика многофакторной количественной оценки6

Typical features of recent climate conditions on the European part of Russia expressed in:

6

Sum of positive air temperatures during the cold period, which reflects thaws, increases dramatically

Most evident changes occurred in cold and mid-seasons conditions, warm period remained quite stable

Increase in annual average air temperature comes to+0,43 °C/10 years ‘1976-2012

Total precipitation of the cold period doubled for some stations on the south and west territories

The main changes in precipitation annual distribution occurred during the last 25-30 years are an increase of rainfall & decrease of snowfall

45

145

245

345

445

545

1860 1880 1900 1920 1940 1960 1980 2000 2020-350

-250

-150

-50

50

150

250

350

450

Total Р(XI-III) Sum Т+(XI-III)

Tota

l pre

cipi

tatio

n of

the

cold

per

iod

Sum

of p

ositi

ve a

ir te

mpe

ratu

res d

urin

g th

e co

ld p

erio

d

22-Jan1-Feb

11-Feb21-Feb

3-Mar13-Mar23-Mar

2-Apr12-Apr22-Apr2-May

1880 1900 1920 1940 1960 1980 2000

Date of stable transmission to positive temperature

Page 7: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Main drainage basins of the European part of Russia7

1. Volga river basin F=1360000 km2

2. Don river basin F=422000 km2

3. N.Dvina river basin F=357000 km2

4. Pechora river basin F=322000 km2

5. Neva river basin F=281000km2

6. Kuban river basin F=58000 km2

7. Terek river basin F=43000 km2

19 representative watersheds was chosen from more then 300 hydrological gauging

stations, with a time series 1880-2013

0

50

100

150

250

200

300

III IV V VI VII VIII IX X XI XII I II

IIIIII

3

1 2

Q, м /с3

East-European type of water regime with well-pronounced seasonal flood wave and stable summer-autumn low flow period

Page 8: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Seasonal flood wave transformation during the XX – XXI century8

Seasonal flood wave

• Potential water supply during summer-autumn low water period in the basin

• Character of rain-fed flash floods overlapping seasonal flood

• Water supply and regulation strategy in huge water management systems (such as Volga – Kama cascade, and etc)

• Ecological function of water system

Low spring flood

High spring flood

• High risk of drought formation• Problems with water quality• Water management uncertainty

• High risk of flood formation• Problems with water quality• Water management uncertainty

Page 9: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Seasonal flood wave transformation during the XX – XXI century: Volga and Don river basin

9

Time-series of maximum discharge Qmax, m3/s (a), proportion of spring flood in total runoff d, % (b), coefficient of natural runoff regulation φ (c) for Oka - Kaluga

0

500

1000

1500

2000

Янв

арь

Фев

раль

Мар

т

Апр

ель

Май

Ию

нь

Ию

ль

Авг

уст

Сен

тябр

ь

Окт

ябрь

Ноя

брь

Дек

абрь

Расх

од в

оды

Q, м

3 /с

100

300

500

700

900

Янв

арь

Фев

раль

Мар

т

Апр

ель

Май

Ию

нь

Ию

ль

Авг

уст

Сен

тябр

ь

Окт

ябрь

Ноя

брь

Дек

абрь

Расх

од в

оды

Q, м

3 /с

1976

1997

Typical Hydrographs for Oka - Kaluga

a b c

10-years average hydrographs for Don - Kazanskaya

Page 10: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

0

-20-40

0

-20

7 Seasonal flood wave transformation during the XX – XXI century 10

Page 11: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Occasional flood separation: GrWat - algorithm11

12 calibrate parameters for Hydrograph separation by the nourishment types (Kudelin B.I. scheme, 1978)

•momegrad•grad1•kdQgr1•polmon(1)•polmon(2)

•polkol(1)•polkol(2)•polkol(3)•polgrad(1)•polgrad(2)•prodspada

Input = daily Q

Calibrate parameters

Opening Streams

Input Data

Years separation

elseif(Qin(k)>Qgr(k)) thenif(Mon(k)<mome.and.Year(k)==Year(1)) then

Wpavs(NF,1)=Wpavs(NF,1)+Qin(k)*86400/1000000000 Wpavs(NF,2)=Wpavs(NF,2)+(Qin(k)-

Qgr(k))*86400/1000000000 if(Qin(k)>Qmaxpavs(NF)) then

Qmaxpavs(NF)=Qin(k)nmaxpavs=k

end ifend ifif(Mon(k)>=mome.or.Year(k)>Year(1)) then

Wpavw(NF,1)=Wpavw(NF,1)+Qin(k)*86400/1000000000 Wpavw(NF,2)=Wpavw(NF,2)+(Qin(k)-

Qgr(k))*86400/1000000000 if(Qin(k)>Qmaxpavw(NF)) then

Qmaxpavw(NF)=Qin(k)nmaxpavw=k

Seasonal

separation

Seasonal flood

separation

Base flow separation

Flash flood separation

Low flow separation with different calibrate parameters

Page 12: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Occasional flood dynamics for Volga and Don river basin 12

0

0,5

1

1,5

2

1940 1960 1980 2000 2020

W, km3

0

3

6

9

12

1930 1950 1970 1990 2010

W, km3 Summer

0

2

4

6

8

10

12

1920 1940 1960 1980 2000 2020

W km3 Winter

0

0,5

1

1,5

2

2,5

1940 1960 1980 2000 2020

W, km3 Winter

Summer

Increase in occasional flood volume from 10 to 30 %

Rise of variance by 10 - 40 %

Both summer and winter flash flood runoff rise

Time-series of summer occasional flood volume (W, km3) for Don – Kazanskaya (a) and Vyatka – Vyatskie Polyani (b)

Page 13: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Occasional flood dynamics for Volga and Don river basin13

0

100

200

300

400

500

600

700

800

900

1940 1950 1960 1970 1980 1990 2000 2010 2020

Qmax, m3/s

0

10

20

30

40

50

1940 1950 1960 1970 1980 1990 2000 2010 2020

Qmax1/ Qmax2

0

400

800

1200

1600

2000

0 200 400 600 800 1000

Qmax, m3/s

Q low period, m/s

Qmax Flash Flood

Qmax Seasonal Flood

Low flow

Page 14: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Seasonal and occasional floods VS extremes14

The method of «Threshold values»

Qmonthly > Q10% Qmonthly < Q90%

SurplusΔVi = Qi – Q10

DeficiteΔVi = Q90 - QiT

ViSev

Page 15: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Seasonal and occasional floods VS extremes15

The number of extreme draughts directly connected with the number

of floods for one river

The volume of deficits directly connected with the volume of

surplus for one river

Sev index is strongly connected with the basin area

Page 16: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Seasonal and occasional floods VS extremes16

№ River Gauging stationMaximum

surplusMaximum deficit Last deficit

1 North Dvina Ust – Pinega 1974, 1955, 1993 1938, 1941, 1939 19692 Onega Porog 1966, 1955, 1995 1997, 1988, 1945 2006

3 Mezen Malonisogorskaya 1966, 1949, 2003 1956, 1934, 1988 20064 Pechora Ust – Tsilma 1935, 1952, 1939 1941, 1942, 1935 20085 Sukhona Kalikino 1961, 1958, 1955 1950, 1945, 1940 19966 Ysa Adzva 1975, 1972, 1981 1941, 1942, 1971 20027 Vetluga Vetluga 1974, 1992, 1966 1945, 1950, 1967 19778 Volga Staritsa 1966, 1947, 1958 1940, 1945, 1969 1977

9 Moksha Shevelkovkiy Majdan 1979, 1981, 2001 1937, 1939, 1995 199510 Oka Gorbatov 1932, 1970, 1931 1939, 1943, 1945 197311 Ygra Tovarkovo 1970, 1958, 1947 1939, 1938, 1964 197512 Belaya Birsk 1914, 1941, 1926 1940, 1936 - 1938 197613 Vishera Ryabinino 1990, 1993, 1979 1939, 1941, 1935 200614 Vyatka Vyatskie Polyani 1966, 1974, 1947 1938-1939, 1920-1921 197715 Kama Bondug 1974, 1972, 1957 1913, 1918, 1922 200616 Ufa Verkhnij Suyan 1914, 1926, 1941 1937, 1940, 1941 200817 Don Kazanskaya 1942, 1932, 1963 1945, 1946, 1972 197618 Medveditsa Archedinskaya 1994, 1929, 1941 1938, 1972, 1939 1984

19 Khoper Besplemyanovkij 1979, 1942, 1948 1938, 1939, 1972 2010

Page 17: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Dynamic of extreme hydrological events: NORTHEN RIVERS17

Surplus

Deficit

Increase in severity of floods

Double decrease in volume of deficits

During the last 30 years the frequency of deficits

falls into 15-20 % in comparison with 60 %

Page 18: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Dynamic of extreme hydrological events: VOLGA17

Surplus

Deficite

Double decrease in severity of floods

Last deficit was observed in 1975

During the last 30 years the frequency of deficits

falls into 5-20 % in comparison with 60 %

Page 19: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Dynamic of extreme hydrological events: KAMA17

Surplus

Deficit

Double increase in severity of floods

Decrease in volume of deficits

During the last 30 years the frequency of deficits

falls into 5 % in comparison with 50 %

Page 20: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

LOGO

Dynamic of extreme hydrological events: DON17

Surplus

Deficite

Double decrease in severity of floods

Last deficit was observed in 1975

During the last 30 years the frequency of deficits

falls into 5-20 % in comparison with 60 %

Page 21: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Опасные ледовые явленияFloods and deficits decrease but the economic loss and number of

dangerous events arise ?18

Mean annual damage caused by river flooding in Russian Federation (Frolova, Alekseevsky, 2010)

70

87

120

313

0 50 100 150 200 250 300 350

Kuban

Don

Terek

Volga

million USD

In the ХХ th. the increase in number of extreme events and losses mostly connected with social‐economic factors  while the natural component became lower due to the natural runoff regulation rise

Climate changes Another type of water regimeNew schemes of

water management

Natural runoff regulation doubled during the last 30 years period, but variation doubled too

Page 22: The role of seasonal and occasional floods in the origin of …€¦ · 1 1,5 2 1940 1960 1980 2000 2020 W, km3 0 3 6 9 12 1930 1950 1970 1990 2010 W, km3 Summer 0 2 4 6 8 10 12 1920

Thank you for your attention !!!