the small-maturity smile for exponential lévy models · 2015-08-20 · close-to-expiration option...

29
The small-maturity smile for exponential Lévy models José Enrique Figueroa-López 1 1 Department of Statistics Purdue University SIAM-SEAS Minisymposium in Mathematical Finance UNC Charlotte March 27, 2011 Joint work with Martin Forde, Dublin City University

Upload: others

Post on 06-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

The small-maturity smile for exponential Lévy

models

José Enrique Figueroa-López1

1Department of Statistics

Purdue University

SIAM-SEAS

Minisymposium in Mathematical Finance

UNC Charlotte

March 27, 2011

Joint work with Martin Forde, Dublin City University

Page 2: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Motivation Empirical features of implied volatility

From the book “Trading Options at Expiration: Strategies and Models

for Winning the Endgame" by Jeff Augen:

“The final hours of each expiration cycle are characterized by

unusual market forces and price distortions caused by the

breakdown of traditional pricing calculations"

Page 3: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Motivation Empirical features of implied volatility

Empirical features of implied volatilities

1 Implied volatility σ̂(K ,T ) as a function of K is

• U-shaped with minimum around S0 (“smirk") ; or

• Decreasing (skew);

2 Market charges a premium for OTM puts (K < S0) above their BS price

computed with ATM implied vol σ̂(S0,T );

3 Smile flattens out as T →∞;

4 “Significant" skew for short-term options (t → T );

Page 4: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Motivation Close-to-expiration smile for continuous models

Known results for continuous models

1 [Gatheral et al. (2010)]. In a local volatility model:

dSt = St {rdt + σ(St )dWt} ⇐⇒ logSt+h

St

D≈ N

([r − σ2(St )

2]h, σ2(St )h

),

the implied volatility satisfies:

σ̂t (T ,K ) = σ0(K ) + σ1 × (T − t) + O((T − t)2),

where σ0(K ) =(

1ln(S/K )

∫ KS

1uσ(u)du

)−1.

2 In particular, as t → T , implied volatility smile behaves like σ0(K );

3 Similar behavior for other popular continuous model including Heston

model, SABR model, etc.

Page 5: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Description of the problem

The problem

1 Set-up: Suppose that St = S0eXt follows an exponential Lévy model

under the (risk-neutral) pricing measure Q;

2 Goal 1: Analyze the behavior of the option prices close-to-expiration:

ΠLévyt (T ,K ,S, r) := e−r(T−t)EQ((ST − K )+|St = S),

3 Goal 2: Obtain close-to-expiration asymptotics for the implied volatility

σ̂ := σ̂t (T ,K ):

ΠBSt (σ̂,T ,K ,S, r) = ΠLévy

t (T ,K ,S, r).

4 Applications:

• Calibration of the model parameters to market option prices near expiration;

• Quick and stable pricing of options near expiration;

Page 6: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result

Small-time asymptotic behavior of tail distributions

1 Let (b, σ2, s) be the triple of the Lévy process X with a smooth jump

intensity function s (a.k.a Lévy density);

2 Theorem: [F-L & Houdré, 2009, Rüschendorf & Woerner, 2002]

For any n ≥ 0 and x > 0,

P(Xt ≥ x) = d1(x)t +d2(x)

2t2 + · · ·+ dn(x)

n!tn + O(tn+1).

3 The coefficients:• d1(x) = limt→0

1t P(Xt ≥ x) =

R∞x s(u)du;

• d2(x) = limt→02t

˘ 1t P(Xt ≥ x)− d1(x)

¯= −σ2s′(x) + 2bs(x)

−„Z ∞

xs(u)du

«2

+

Z x

x/2s(u)du

!2

+ 2Z − 1

2 x

−∞

Z x

x−ys(u)s(y)dudy

−2s(x)

Z12 x<|y|<1

ys(y)dy + 2s(x)

Z 12 x

− 12 x

Z x

x−y(s(u)− s(x))s(y)dudy .

Page 7: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result

Small-time asymptotic behavior of tail distributions

1 Let (b, σ2, s) be the triple of the Lévy process X with a smooth jump

intensity function s (a.k.a Lévy density);

2 Theorem: [F-L & Houdré, 2009, Rüschendorf & Woerner, 2002]

For any n ≥ 0 and x > 0,

P(Xt ≥ x) = d1(x)t +d2(x)

2t2 + · · ·+ dn(x)

n!tn + O(tn+1).

3 The coefficients:• d1(x) = limt→0

1t P(Xt ≥ x) =

R∞x s(u)du;

• d2(x) = limt→02t

˘ 1t P(Xt ≥ x)− d1(x)

¯= −σ2s′(x) + 2bs(x)

−„Z ∞

xs(u)du

«2

+

Z x

x/2s(u)du

!2

+ 2Z − 1

2 x

−∞

Z x

x−ys(u)s(y)dudy

−2s(x)

Z12 x<|y|<1

ys(y)dy + 2s(x)

Z 12 x

− 12 x

Z x

x−y(s(u)− s(x))s(y)dudy .

Page 8: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result

Small-time asymptotic behavior of tail distributions

1 Let (b, σ2, s) be the triple of the Lévy process X with a smooth jump

intensity function s (a.k.a Lévy density);

2 Theorem: [F-L & Houdré, 2009, Rüschendorf & Woerner, 2002]

For any n ≥ 0 and x > 0,

P(Xt ≥ x) = d1(x)t +d2(x)

2t2 + · · ·+ dn(x)

n!tn + O(tn+1).

3 The coefficients:• d1(x) = limt→0

1t P(Xt ≥ x) =

R∞x s(u)du;

• d2(x) = limt→02t

˘ 1t P(Xt ≥ x)− d1(x)

¯= −σ2s′(x) + 2bs(x)

−„Z ∞

xs(u)du

«2

+

Z x

x/2s(u)du

!2

+ 2Z − 1

2 x

−∞

Z x

x−ys(u)s(y)dudy

−2s(x)

Z12 x<|y|<1

ys(y)dy + 2s(x)

Z 12 x

− 12 x

Z x

x−y(s(u)− s(x))s(y)dudy .

Page 9: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result

Small-time asymptotic behavior of tail distributions

1 Let (b, σ2, s) be the triple of the Lévy process X with a smooth jump

intensity function s (a.k.a Lévy density);

2 Theorem: [F-L & Houdré, 2009, Rüschendorf & Woerner, 2002]

For any n ≥ 0 and x > 0,

P(Xt ≥ x) = d1(x)t +d2(x)

2t2 + · · ·+ dn(x)

n!tn + O(tn+1).

3 The coefficients:• d1(x) = limt→0

1t P(Xt ≥ x) =

R∞x s(u)du;

• d2(x) = limt→02t

˘ 1t P(Xt ≥ x)− d1(x)

¯= −σ2s′(x) + 2bs(x)

−„Z ∞

xs(u)du

«2

+

Z x

x/2s(u)du

!2

+ 2Z − 1

2 x

−∞

Z x

x−ys(u)s(y)dudy

−2s(x)

Z12 x<|y|<1

ys(y)dy + 2s(x)

Z 12 x

− 12 x

Z x

x−y(s(u)− s(x))s(y)dudy .

Page 10: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result

Small-time asymptotic behavior of tail distributions

1 Let (b, σ2, s) be the triple of the Lévy process X with a smooth jump

intensity function s (a.k.a Lévy density);

2 Theorem: [F-L & Houdré, 2009, Rüschendorf & Woerner, 2002]

For any n ≥ 0 and x > 0,

P(Xt ≥ x) = d1(x)t +d2(x)

2t2 + · · ·+ dn(x)

n!tn + O(tn+1).

3 The coefficients:• d1(x) = limt→0

1t P(Xt ≥ x) =

R∞x s(u)du;

• d2(x) = limt→02t

˘ 1t P(Xt ≥ x)− d1(x)

¯= −σ2s′(x) + 2bs(x)

−„Z ∞

xs(u)du

«2

+

Z x

x/2s(u)du

!2

+ 2Z − 1

2 x

−∞

Z x

x−ys(u)s(y)dudy

−2s(x)

Z12 x<|y|<1

ys(y)dy + 2s(x)

Z 12 x

− 12 x

Z x

x−y(s(u)− s(x))s(y)dudy .

Page 11: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 WLOG, we assume that r = 0;

2 Equivalent formulation:

ΠLévyt (T ,K ,S, r) := EQ [ (ST − K )+

∣∣St = S]

= EQ[(

S0eXT − K)+

∣∣∣St = S]

= SEQ[(

eXτ − eκ)+

]= ΠLévy

0 (T − t ,K ,S, r),

where τ = T − t (time-to-maturity) and κ = log(K/S) (log-moneyness).

3 Next, as it is done with the B-S formula,

EQ(eXτ − eκ)+ = EQ(eXτ − eκ)1Xτ≥κ

= EQ(eXτ 1Xτ≥κ)− eκQ(Xτ ≥ κ) = Q∗(Xτ ≥ κ)− eκQ(Xτ ≥ κ),

where Q∗(A) := EQ{1AeXt} if A ∈ Ft (Esscher or Share measure);

Page 12: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 WLOG, we assume that r = 0;

2 Equivalent formulation:

ΠLévyt (T ,K ,S, r) := EQ [ (ST − K )+

∣∣St = S]

= EQ[(

S0eXT − K)+

∣∣∣St = S]

= SEQ[(

eXτ − eκ)+

]= ΠLévy

0 (T − t ,K ,S, r),

where τ = T − t (time-to-maturity) and κ = log(K/S) (log-moneyness).

3 Next, as it is done with the B-S formula,

EQ(eXτ − eκ)+ = EQ(eXτ − eκ)1Xτ≥κ

= EQ(eXτ 1Xτ≥κ)− eκQ(Xτ ≥ κ) = Q∗(Xτ ≥ κ)− eκQ(Xτ ≥ κ),

where Q∗(A) := EQ{1AeXt} if A ∈ Ft (Esscher or Share measure);

Page 13: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 WLOG, we assume that r = 0;

2 Equivalent formulation:

ΠLévyt (T ,K ,S, r) := EQ [ (ST − K )+

∣∣St = S]

= EQ[(

S0eXT − K)+

∣∣∣St = S]

= SEQ[(

eXτ − eκ)+

]= ΠLévy

0 (T − t ,K ,S, r),

where τ = T − t (time-to-maturity) and κ = log(K/S) (log-moneyness).

3 Next, as it is done with the B-S formula,

EQ(eXτ − eκ)+ = EQ(eXτ − eκ)1Xτ≥κ

= EQ(eXτ 1Xτ≥κ)− eκQ(Xτ ≥ κ) = Q∗(Xτ ≥ κ)− eκQ(Xτ ≥ κ),

where Q∗(A) := EQ{1AeXt} if A ∈ Ft (Esscher or Share measure);

Page 14: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 In conclusion,

ΠLévyt (K ,T ,S) = SQ∗(Xτ ≥ κ)− SeκQ(Xτ ≥ κ)

2 Under Q∗, {Xt} is again a Lévy process with triple (b∗, σ2, s∗):

s∗(x) = exs(x) and b∗ = b +

∫|x|≤1

x (ex − 1) s(x)dx + σ2.

3 Hence, when κ > 0 (OTM), we can apply the asymptotic result for the tail

distributions of Lévy processes.

4 Theorem: [F-L & Forde (2010)]. For κ := log K/S > 0 (OTM options),

ΠLévyt (K ,T ,S) = τS

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2S[d∗2 (κ)−eκd2(κ)

]+O(τ3),

where τ = T − t > 0, d2(κ) = d2(κ; b, σ2, s), and d∗2 (κ) = d2(κ; b∗, σ2, s∗).

Page 15: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 In conclusion,

ΠLévyt (K ,T ,S) = SQ∗(Xτ ≥ κ)− SeκQ(Xτ ≥ κ)

2 Under Q∗, {Xt} is again a Lévy process with triple (b∗, σ2, s∗):

s∗(x) = exs(x) and b∗ = b +

∫|x|≤1

x (ex − 1) s(x)dx + σ2.

3 Hence, when κ > 0 (OTM), we can apply the asymptotic result for the tail

distributions of Lévy processes.

4 Theorem: [F-L & Forde (2010)]. For κ := log K/S > 0 (OTM options),

ΠLévyt (K ,T ,S) = τS

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2S[d∗2 (κ)−eκd2(κ)

]+O(τ3),

where τ = T − t > 0, d2(κ) = d2(κ; b, σ2, s), and d∗2 (κ) = d2(κ; b∗, σ2, s∗).

Page 16: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 In conclusion,

ΠLévyt (K ,T ,S) = SQ∗(Xτ ≥ κ)− SeκQ(Xτ ≥ κ)

2 Under Q∗, {Xt} is again a Lévy process with triple (b∗, σ2, s∗):

s∗(x) = exs(x) and b∗ = b +

∫|x|≤1

x (ex − 1) s(x)dx + σ2.

3 Hence, when κ > 0 (OTM), we can apply the asymptotic result for the tail

distributions of Lévy processes.

4 Theorem: [F-L & Forde (2010)]. For κ := log K/S > 0 (OTM options),

ΠLévyt (K ,T ,S) = τS

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2S[d∗2 (κ)−eκd2(κ)

]+O(τ3),

where τ = T − t > 0, d2(κ) = d2(κ; b, σ2, s), and d∗2 (κ) = d2(κ; b∗, σ2, s∗).

Page 17: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration option prices for exponential Lévy models (ELM) Our main result

Prices of out-the-money Call Options

1 In conclusion,

ΠLévyt (K ,T ,S) = SQ∗(Xτ ≥ κ)− SeκQ(Xτ ≥ κ)

2 Under Q∗, {Xt} is again a Lévy process with triple (b∗, σ2, s∗):

s∗(x) = exs(x) and b∗ = b +

∫|x|≤1

x (ex − 1) s(x)dx + σ2.

3 Hence, when κ > 0 (OTM), we can apply the asymptotic result for the tail

distributions of Lévy processes.

4 Theorem: [F-L & Forde (2010)]. For κ := log K/S > 0 (OTM options),

ΠLévyt (K ,T ,S) = τS

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2S[d∗2 (κ)−eκd2(κ)

]+O(τ3),

where τ = T − t > 0, d2(κ) = d2(κ; b, σ2, s), and d∗2 (κ) = d2(κ; b∗, σ2, s∗).

Page 18: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration implied volatility smile for ELM

Small-time asymptotics for Implied Volatilities

1 σ̂τ (k) be the implied volatility at log-moneyness κ and time-to-maturity τ

under the exponential Lévy models;

2 First-order approximation for σ̂t (κ): [Tankov (2009) & F-L & Forde (2010)]

[τ log(τ−1)]12 σ̂τ (κ) ∼ |κ|/

√2; (κ > 0, τ → 0);

Hence, (rescaled) implies volatility is V-shaped independent of s;

3 Correction term or Second-order approximation:

σ̂2τ (κ) =

12κ

2

τ log( 1τ )

[1 + V1(τ, κ) + o(

1log 1

τ

)] (τ → 0),

where, denoting a0(κ) :=∫∞−∞(ex − eκ)+s(x)dx ,

V1(τ, κ) =1

log( 1τ )

log

[4√πa0(κ)e−κ/2

κ

[log(

)]3/2].

Page 19: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration implied volatility smile for ELM

Small-time asymptotics for Implied Volatilities

1 σ̂τ (k) be the implied volatility at log-moneyness κ and time-to-maturity τ

under the exponential Lévy models;

2 First-order approximation for σ̂t (κ): [Tankov (2009) & F-L & Forde (2010)]

[τ log(τ−1)]12 σ̂τ (κ) ∼ |κ|/

√2; (κ > 0, τ → 0);

Hence, (rescaled) implies volatility is V-shaped independent of s;

3 Correction term or Second-order approximation:

σ̂2τ (κ) =

12κ

2

τ log( 1τ )

[1 + V1(τ, κ) + o(

1log 1

τ

)] (τ → 0),

where, denoting a0(κ) :=∫∞−∞(ex − eκ)+s(x)dx ,

V1(τ, κ) =1

log( 1τ )

log

[4√πa0(κ)e−κ/2

κ

[log(

)]3/2].

Page 20: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Close-to-expiration implied volatility smile for ELM

Small-time asymptotics for Implied Volatilities

1 σ̂τ (k) be the implied volatility at log-moneyness κ and time-to-maturity τ

under the exponential Lévy models;

2 First-order approximation for σ̂t (κ): [Tankov (2009) & F-L & Forde (2010)]

[τ log(τ−1)]12 σ̂τ (κ) ∼ |κ|/

√2; (κ > 0, τ → 0);

Hence, (rescaled) implies volatility is V-shaped independent of s;

3 Correction term or Second-order approximation:

σ̂2τ (κ) =

12κ

2

τ log( 1τ )

[1 + V1(τ, κ) + o(

1log 1

τ

)] (τ → 0),

where, denoting a0(κ) :=∫∞−∞(ex − eκ)+s(x)dx ,

V1(τ, κ) =1

log( 1τ )

log

[4√πa0(κ)e−κ/2

κ

[log(

)]3/2].

Page 21: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Numerical examples Variance Gamma Model

0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time−to−maturity (in Days)

Impl

ied

Vola

tility

Variance Gamma ModelApproximation of Implied Volatility with k=0.2

"True" implied volatility1st order approx.2nd order approx.

Figure: Term structure of implied volatility approximations for the Variance Gamma

model (i.e. s(x) = αx e−x/β+1x>0 + α

|x|e−|x|/β−1x<0 and σ = 0) with κ = 0.2.

Page 22: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Numerical examples CGMY model

0 5 10 15 20 25 30

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time−to−Maturity (in Days)

Rela

tive

Erro

r ( ! a−

! ) /

!

Approximation of Implied Volatility for VGTerm Structure of Relative Error

1st, k=0.32nd, k=0.31st, k=0.22nd, k=0.21st, k=0.11st, k=0.1

Figure: Relative errors σ̂τ (κ)−στ (κ)στ (κ)

of the implied volatility approximations for the

Variance Gamma Model.

Page 23: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Numerical examples CGMY model

0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

CGMY ModelApproximation of Implied Volatility with k=0.2

Time−to−maturity (in Days)

Impl

ied

Vola

tility

"True" implied volatility1st order approx.2nd order approx.

Figure: Term structure of implied volatility approximations for the CGMY model (i.e.

s(x) = CxY+1 e−x/M1x>0 + C

|x|1+Y e−|x|/G1x<0 and σ = 0) with κ = 0.2.

Page 24: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Conclusions

0 5 10 15 20 25 30

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Approximation of Implied Volatility for the CGMYTerm Structure of Relative Error

Time−to−maturity (in Days)

Rela

tive

Erro

r ( ! a−

! ) /

!

1st, k=0.32nd, k=0.31st, k=0.22nd, k=0.21st, k=0.12nd, k=0.1

Figure: Relative errors σ̂τ (κ)−στ (κ)στ (κ)

of the implied volatility approximations for the

CGMY model.

Page 25: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Conclusions

Conclusions and extensions

1 The numerical results show that the second order significantly improves

the first order approximation for mid range values of κ (say, κ ≤ .2);

2 For κ > 0.2, it seems that τ has to be extremely small for the second

approximations to work well;

3 Similar results hold for time-changed Lévy models of the form:

St = S0eXt ; Xt = ZT (t),

T (t) =

∫ t

0Y (u)du, Y ⊥ Z ;

4 We then have

ΠLévyt = τEY0S

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2EY 2

0 S[d∗2 (κ)−eκd2(κ)

]+O(τ3).

Page 26: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Conclusions

Conclusions and extensions

1 The numerical results show that the second order significantly improves

the first order approximation for mid range values of κ (say, κ ≤ .2);

2 For κ > 0.2, it seems that τ has to be extremely small for the second

approximations to work well;

3 Similar results hold for time-changed Lévy models of the form:

St = S0eXt ; Xt = ZT (t),

T (t) =

∫ t

0Y (u)du, Y ⊥ Z ;

4 We then have

ΠLévyt = τEY0S

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2EY 2

0 S[d∗2 (κ)−eκd2(κ)

]+O(τ3).

Page 27: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Conclusions

Conclusions and extensions

1 The numerical results show that the second order significantly improves

the first order approximation for mid range values of κ (say, κ ≤ .2);

2 For κ > 0.2, it seems that τ has to be extremely small for the second

approximations to work well;

3 Similar results hold for time-changed Lévy models of the form:

St = S0eXt ; Xt = ZT (t),

T (t) =

∫ t

0Y (u)du, Y ⊥ Z ;

4 We then have

ΠLévyt = τEY0S

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2EY 2

0 S[d∗2 (κ)−eκd2(κ)

]+O(τ3).

Page 28: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Conclusions

Conclusions and extensions

1 The numerical results show that the second order significantly improves

the first order approximation for mid range values of κ (say, κ ≤ .2);

2 For κ > 0.2, it seems that τ has to be extremely small for the second

approximations to work well;

3 Similar results hold for time-changed Lévy models of the form:

St = S0eXt ; Xt = ZT (t),

T (t) =

∫ t

0Y (u)du, Y ⊥ Z ;

4 We then have

ΠLévyt = τEY0S

∫ ∞−∞

(ex−eκ)+s(x)dx +τ2

2EY 2

0 S[d∗2 (κ)−eκd2(κ)

]+O(τ3).

Page 29: The small-maturity smile for exponential Lévy models · 2015-08-20 · Close-to-expiration option prices for exponential Lévy models (ELM) A fundamental preliminary result Small-time

Appendix Bibliography

For Further Reading I

Figueroa-Lopez & Houdré.

Small-time expansions for the transition distributions of Lévy processes.

Stochastic Processes and Their Applications, 119:3862-3889, 2009.

Figueroa-López and Forde.

The small-maturity smile for exponential Lévy models

Preprint, 2010.

Figueroa-López, Gong, and Houdré.

Small-time expansions of the distributions, densities, and option prices of

stochastic volatility models with Lévy jump

Preprint, 2010.