the synchronous machine (sm) in the power system (2) · 2011-09-30 · 30-sep-11 lecture 06 power...

35
30-Sep-11 1 Lecture 06 Power Engineering - Egill Benedikt Hreinsson The synchronous machine (SM) in the power system (2) (Where does the electricity come from)?

Upload: others

Post on 30-Dec-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

1Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The synchronous machine (SM) in the power system (2)

(Where does the electricity come from)?

Page 2: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

2Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Lecture overview

• Synchronous machines with more than 2 magnetic poles

• The relation between the number of poles and rotation speed

• The magnetic field in the SM• Circuit model for a SM and power when we have a

salient pole rotor• Introduction to the dynamics of machines• Photos of practical SM’s

Page 3: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

3Lecture 06 Power Engineering - Egill Benedikt Hreinsson

3 phase, 2 pole synchronous machine

Stator

A round rotor Rotor

Page 4: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

4Lecture 06 Power Engineering - Egill Benedikt Hreinsson

A 3 phase, 2 pole generator

The stator windings for phase “a” with direction “into the figure”

The stator windings for phase “-a” with direction “out of the figure”

The stator

The rotorRotor windings (or field windings) for Direct current with direction “into the figure”

Rotor windings (or field windings) for Direct current with direction “out of the figure”

Magnetic poles, “N” and “S”

A salient pole rotor

Page 5: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

5Lecture 06 Power Engineering - Egill Benedikt Hreinsson

N

N

S

S

-a

-a

b

-c

a

-b

c

c

a

-c

b

-b

A 3 phase, 4 pole generator

The stator windings for phase “a” with direction “into the figure”

The stator windings for phase “a” with direction “out of the figure”

Stator

Rotor

Rotor windings (or field windings) for Direct current with direction “into the figure”

Rotor windings (or field windings) for Direct current with direction “out of the figure”

Magnetic poles, “N”and “S”

A salient pole rotor

Page 6: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

6Lecture 06 Power Engineering - Egill Benedikt Hreinsson

A 3 phase, 6 pole machine

We have and increased number of poles both on the rotor and stator

Page 7: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

7Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Speed of rotation and number of poles

2 2 60 120e mp p n p nf f ⋅

= ⋅ = ⋅ =

ωe = “Electrical radians”ωm = “Mechanical radians”f e= Frequency of the AC voltage (50 or 60 Hz)f m= Revolutions per secondp = Number of poles (2,4,6...)n = Revolutions per minute (rpm)

150046001030020

30002

230.826

n (f = 50 Hz)p

fe = 50 Hz

60006000 p n np

= ⋅ → =

2m ep

ω ω=

An example for the number of poles:

Legend:

f e= 60 Hz78007800 p n n

p= ⋅ → =

Page 8: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

8Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The Magnetic Field in the SM

No load conditionδ = 0 A phase angle α between the rotor

and stator current (stator field) This angle is also called δ

Page 9: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

9Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The Magnetic Field in the SM (2)

Page 10: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

10Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Reactive Power from a Synchronous Machine

V

EjXI

I

φ

δ

Assume the machine is connected to an “infinite bus” with constant voltage V.

Locus for vector E withconstant real power and

variable exitationand reactive power

Locus for vector Iwith constant real power and variable

exitationThe length of this line is proportional to

and hence the reactive power generation and exitation

cosE Vδ −

Page 11: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

11Lecture 06 Power Engineering - Egill Benedikt HreinssonPhasor diagram with a constant magnetization

2a sjI XtV

t t

s s

V VjjX X−

=

2 2f f

s s

E Ej

jX X= −

1 1f f

s s

E Ej

jX X= −

1aI

2aI

1δ 2δ 1a sjI X

1fE

2fE1δ

2φ1φ

The locus for a vector of the constant excitation voltage

A locus for the vector of armature current in the case of constant excitation voltage

f t s a

f ft ta

s s s s

E V jX I

E EV VI jjX jX jX X

= +

= − = +

Page 12: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

12Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Salient pole rotord - and q - axis are differentd - axis is directged along the pole direction.q –axis is perpendicular to the pole directions in electrical degrees

•Geometry•Flux•Inductance•Currents and voltages

d-axis

q-axis

d-axis

q-axis

q d d q qE V jX I jX I= + +d djX I

q qjX I

qEqV

q-ás

d-ás

δ

I

qI

dV

dI

Page 13: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

13Lecture 06 Power Engineering - Egill Benedikt Hreinsson

P and Q for salient pole rotor

sin cos

cos sinsin cos

q q de

d q

qe

d q

E V VP V V

X X

E V VP V VX X

δ δ

δ δδ δ

−= ⋅ + ⋅

−= ⋅ + ⋅

We substitute:

q qd

d

E VI

X−

=

* *( ) ( )e e d q d qP jQ V I V jV I jI+ = ⋅ = + ⋅ +

sindV V δ= cosqV V δ=

dq

q

VI

X=

e d d q qP V I V I= +

sin cose d qP I V I Vδ δ= +

d djX I

q qjX I

qEqV q-axisd-axis

δ

I

qI

dV

dI

( ) ( )e e d q d qP jQ V jV I jI+ = + ⋅ −

Page 14: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

14Lecture 06 Power Engineering - Egill Benedikt Hreinsson

2

field reluctance

2 22

1 1sin sin 22

sin coscos

qe

d q d

qe

d q d

E V VP P PX X X

E VQ V

X X X

δ δ

δ δδ

⎛ ⎞= + − = +⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞

= − +⎜ ⎟⎜ ⎟⎝ ⎠ Note when:

δ

Pe

2 2

sin sin cos sin cosqe

d d q

E V V VPX X X

δ δ δ δ δ= − ⋅ + ⋅

sin 2sin cos2

δδ δ =We use:

reluctancePfieldP

d qX X=

Power

P and Q for salient pole rotor

Page 15: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

15Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The swing equationm

m edW P Pdt

= −

Pe is the power delivered from one or more machines into the power systemJ is the moment of inertia (one or more machines)Pm is the shaft mechanical power from the turbine pis the number of poles

The energy balance in rotation, or the swing equation is as follows: 2 2

20 0

0 0

12

m em m

m e

fW J W Wf

ωωω

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2e efω π=Kinetic energy in rotation as a function of frequency:

0 02e efω π=2m ep

ω ω=2m mfω π= 0 02m mfω π=

Wm is the kinetic rotation energy of one or more machineswe , fe is the electrical angle and frequency for the electric oscillation wm , fm is rotation angle and frequency of the rotor mechanical rotation. (The index “0”, means that the quantity is a constant at the nominal frequency, 50 or 60 Hz)

The relation between rotation angle and the electrical angle of the stator current:

Page 16: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

16Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The swing equation (2)2 2

20 0

0 0

12

m em m

m e

fW J W Wf

ωωω

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠We differentiate this equation.....

We substitute into the swing equation:

.....and then we get: 02

0

2m m m mm

m

dW d W dJdt dt dt

ω ω ωωω

= =

02

0

2 m m e

m m m

W d P Pdtω

ω ω ω= −

02

0

2 mm e

m

W d T Tdtω

ω= −

mm e

dW P Pdt

= −

Page 17: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

17Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The inertia constant, H

2

0

12 m

m

rating rating

JWHS S

ω= =

The unit for H is: Ws/VA = s

We define the following quantity:

We examine now the former version of the swing equation....

02

0

2 m mm e

m

W d P Pdt

ω ωω

= −

and make the following approximation

02

0 0 0 0 0 0

1 1 11m m m m

m m m m m m

ω ω ω ωω ω ω ω ω ω

⎛ ⎞+ Δ Δ= ⋅ = +⎜ ⎟

⎝ ⎠

where the deviation form the nominal frequency, Δω is small relative to ω

The kinetic energy of the rotating massRated power for the generators in this mass

H =

Page 18: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

18Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The swing equation (3)We then get the following equation:

we divide by the rating |Srating | and get:

0

0

2 mm e

m

W d P Pdtω

ω= −

0

0

2 m m e

m rating rating rating

W d P PdtS S Sω

ω= −

( ) ( )0

2 mm n e n

m

dH P Pdtω

ω= −

By defining the power from the turbine (or system) as a fraction of the rated power, we get:

Page 19: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

19Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Two equilibrium points

• Synchronizing torque from δ deviation

•dPe /dδ > 0 for δ < 90° - stable equilibrium

• dPe /dδ < 0 for δ > 90° - unstable equilibrium

δ

Pe

Pm

Page 20: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

20Lecture 06 Power Engineering - Egill Benedikt Hreinsson

H on different MVA bases

• Machine base– Steam turbines 4 - 9 s– Gas turbines 3 - 4 s– Hydro turbines 2 - 4 s– Synchronous compensator 1-1.5 s

• Common base– H ~ generator size– Infinite bus has infinite H

Narrow range!

Page 21: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

21Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Hydroeelectric rotor

The multiple poles are shown clearly on the rotor

Page 22: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

22Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Inside the Búrfell power house

Page 23: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

23Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Rotor in a hydro station

Page 24: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

24Lecture 06 Power Engineering - Egill Benedikt Hreinsson

A rotor from Laxá hydro station, North Iceland

Page 25: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

25Lecture 06 Power Engineering - Egill Benedikt Hreinsson

A stator from Laxá hydro station, North Iceland

Page 26: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

26Lecture 06 Power Engineering - Egill Benedikt Hreinsson

A stator from Laxá hydro station, North Iceland

Page 27: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

27Lecture 06 Power Engineering - Egill Benedikt Hreinsson

The stator in a hydroelectric generator

Page 28: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

28Lecture 06 Power Engineering - Egill Benedikt Hreinsson

267 MVA, 83.3 rpm stator

Page 29: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

29Lecture 06 Power Engineering - Egill Benedikt Hreinsson

References• P.C. Sen: "Principles of Electric Machines and Power

Electronics"; 2. edition: John Wiley & Sons, 1997• O.I. Elgerd: “Electric Energy Systems Theory”, McGraw-Hill,

1983• A.E. Fitzgerald, C. Kingsley Jr., S.D. Umans: Electric

Machinery, McGraw-Hill 2003• P. Kundur: Power System Stability and Control, McGraw-Hill

1994• D.P.Kothari, I.J. Nagrath: Modern Power System Analysis,

McGraw-Hill 2003

Page 30: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

30Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 7

Page 31: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

31Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 8

Page 32: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

32Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 9

Page 33: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

33Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 7 - solution

Page 34: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

34Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 8 - solution

Page 35: The synchronous machine (SM) in the power system (2) · 2011-09-30 · 30-Sep-11 Lecture 06 Power Engineering - Egill Benedikt Hreinsson 2 Lecture overview • Synchronous machines

30-Sep-11

35Lecture 06 Power Engineering - Egill Benedikt Hreinsson

Example 9 solution