the university of manchester introducción al análisis del código neuronal con métodos de la...

47
The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro [email protected]

Upload: lorin-black

Post on 18-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

The

Uni

vers

ity

of M

anch

este

r

Introducción al análisis del código neuronal con métodos de la teoría de la

información

Dr Marcelo A [email protected]

Page 2: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Information theory

Page 3: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Entropy

Suppose there is a source that produces symbols, taken from a given alphabet

Assume also that there is a certain probability distribution, with support over the alphabet, that determines that outcome of the source (for the moment we assume iid sources).

Page 4: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Probability of observing the outcome i

Normalisation of a probability distribution

We define the ‘surprise’ of event i as

Empirical determination of a probability

There are ni outcomes of event i in a total of N trials. Then if N>>1

[bits]

Page 5: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

heads tails

p(heads)=0.5

p(tails)=0.5

What is the average surprise?

Average of a random variable

Example

Page 6: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Then the average surprise is

Entropy

For our coin,

Page 7: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Frequency of letters in English text

p(a)=0.082; p(e)=0.127; p(q)=0.001

Surprise of letter ‘e’

Surprise of letter ‘q’

Example

Page 8: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

If all the letters appeared with the same probability, then

and

Which is larger than for the real distribution. It can be shown that the entropy attains its maximum value for a uniform distribution.

Page 9: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Imagine a loaded die that produces always the same outcome

What is the surprise of each outcome?

What is the average surprise?

Page 10: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

What if the dice is fair?

What is the surprise of each outcome?

What is the average surprise?

Page 11: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

In general, the less uniform a distribution (less random) the lower is the entropy

Page 12: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk
Page 13: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

In general, for the independent binary variable case

Page 14: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Thus for a noiseless communication system the entropy quantifies the amount of information that can be encoded in the signal

Signal with low entropy -> low information

Signal with high entropy -> high information

a

b

0

1

p(a)

p(b)

Noiseless channel

Page 15: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

trial 1

trial 2

trial 3

trial 3

Stimulus 1

(3)

(4)

(3)

(2)

trial 1

trial 2

trial 3

trial 3

Stimulus 2

(5)

(6)

(5)

(4)

However, many real systems, like neurons, have a noisy output

Because of the noise, a new variability has to be taken into account. On the one hand, we have the variability of the stimulus (good variability); on the other we have the variability created by the noise (bad variability)

How to handle this more complex problem? How can we quantify information in the presence of noise in the channel?

Page 16: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

noisy channel receivertransmitterX Y

p(Y|X)

Page 17: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

a

b

0

1

p(a)

p(b)

Noiseless channel

a

b

0

1

p(a)

p(b)

Noisy channel

Page 18: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

stimuluss

responser

P(r|s)

Probabilistic dictionary

•The amount of information about the stimulus encoded in the neural response is quantified by the Mutual Information I(S;R)

•In general Mutual Information quantifies how much can be known about one variable by looking at the other.

•It can be computed from real data by characterising the stimulus-response statistics.

Page 19: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Mutual Information

Response entropy: variability of the whole response

Noise entropy: variability of the response at fixed stimulus

2( ) ( ) log ( )r

H R P r P r

2( | ) ( | ) log ( | )r s

H R S P r s P r s

Page 20: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

a

b

0

1

Noisy binary channel

Stimulus={a, b}

p(S)={p(a),p(b)}

Response={0,1}

p(R)={p(0),p(1)}

P(R|S)=

StimulusResponse

Probabilistic dictionary

Page 21: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Simple example

a

b

0

1p(S)={0.5, 0.5}

Page 22: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Let us first find p(R)={p(0), p(1)}

We must find p(0) and p(1)

then

Page 23: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Now we can find the entropies to compute the information

Page 24: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Then, to compute the information we just take the difference between the two entropies

a

b

0

1

Page 25: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

What is the meaning of information?

Page 26: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Response entropy: variability of the whole response

Noise entropy: variability of the response at fixed stimulus

Page 27: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Stimulus entropy: variability of the whole stimulus

Noise entropy: variability of the stimulus at fixed response

Page 28: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Meaning 1 : Number of yes/no questions to indentify the stimulus

Stimulus 1 Response 1Stimulus 2 Response 2Stimulus 3 Response 3

P(S)=1/4

H(S)

Stimulus 4 Response 4

Before observing the responses, questions need to be asked on average

When a response is observed, questions need to be asked on average

a) Deterministic responses

H(S)=2

Page 29: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Stimulus 1 Response 1Response 2Response 3

P(S)=1/2

H(S)

Stimulus 2

Before observing the responses, questions need to be asked on average

When a response is observed, questions need to be asked on average

b) Overlapping responses

H(S)=1

Information measures the reduction in uncertainty about the stimulus, after the responses are observed

Page 30: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

trial 1

trial 2

trial 3

trial 3

Stimulus 1

(3)

(4)

(3)

(2)

trial 1

trial 2

trial 3

trial 3

Stimulus 2

(5)

(6)

(5)

(4)

Meaning 2: upper bound to the number of messages that can be transmitted through a communication channel

Question: what is the number of stimuli n that can be encoded in the neural response such that their responses do not overlap?

responses to S1 all responses

responses to S2

responses to S3responses to S4

Page 31: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Typical sequences

( )1 2 1..... iidn

n i j j kx x x x x

also ( )j jp p

What is the probability of a given sequence? 1 21 2 ...

knn nkp p p p

A typical sequence is such that every symbol appears e number of times equal to its average i in np

1 21 2 ...

knpnp npkp p p pThen the probability of a typical sequence will be

Taking logs

Then 2 nHp Is the probability of each typical sequence

Example:

1,0 2 iidix k (2) (2)01 00x x

Page 32: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

2 nHp Is the probability of each typical sequence. What is the probability all typical sequences?

First, how many typical sequences are there?

If is the number of all typical sequences, then the total probability is p

Example:

, .. ...ix a b x aaaa abbbb b

1n 2n

2 2n n n 1 1 2 1 2

! !

! ! ( )!( )!

n n n

n n n p n p n

When we have k symbols1 2

!

( )!( )!...( )!k

n

p n p n p n

If the sequences are very long, we can compute log

(using Stirling’s approximation: log(n!)=n log (n)-n)

and

Page 33: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Question: what is the number of stimuli n that can be encoded in the neural response such that their responses do not overlap?

responses to S1 all responses

responses to S2

responses to S3responses to S4

Page 34: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Simple explanation

there are typically 2 H(R) responses that could generated by the stimulus

However, due to the ‘noise’ fluctuations in theresponse a number 2H(R|S) of different responses that can be attributed to the same stimulus

2 H(R)

2 H(R|S)

Then, how many stimuli can be reliably encoded in the neural response?

Therefore, finding that a neuron transmits n bits of information within a behaviourally relevant time window, means that there are potentially 2n different stimuli that can be discriminated only on the basis of the neuron’s response.

),()|()()|(

)(

222

2 SRISRHRHSRH

RH

Page 35: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

How do we estimate information in a neural system?

Page 36: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

External stimulus

Sensory system

Spike trains

Encoding

T [ms]

L

10101001 …0010

11101010 …1101

00111101 …0110

S1

stimuli

trials per stimulus

S2 S3Stimulus conditions

P(r|s)Ns

S

r=(r1, r2, …, rL)

Each stimulus is presented with probability P(s)

T=L Δt

Page 37: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

P(r|t) P(r)Response probability conditional to the stimulus (at fixed time t)

Unconditional response probability

Tria

ls

P(r|t)

P(r|t)0 0 0 0 0 0 0 0 1 0

Time window T

Bin of size ∆t

Response entropy: variability of the whole response

Noise entropy: variability of the response at fixed time

Mutual Information quantifies how much variability is left after subtracting the effect of noise. It is measured in bits (Meaning 3)

ttrPrP )|()(

)(log)()( 2 rPrPRHr

tr

trPtrPSRH )|(log)|()|( 2

)|()(),( SRHRHSRI

tTL /

Page 38: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

To measure P(r|s) we need to estimate up to 2L-1 parameters from the data

The statistical errors in the estimation of P(r|s) lead to a systematic bias in the entropies

Number of response ‘words’with non zero probability

For Ns>>1 we can obtain a first order approximation to the bias

With N=Ns S

Bias in the information estimation

Miller, A G. Info. Theory in Psychology (1955)

Page 39: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

The response is more random. Responses are more uniformly spread over possible response words

The response is less random. Responses are more concentrated over a few response words

large so bias is large

Small, so bias is small

Page 40: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Because of the bias the information is overestimated

-Bias [H(R|S)]>-Bias[H(R)] Bias [H(R)-H(R|S)]>0

Adapted from Panzeri at al J. Neurophysiol 2007

Page 41: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

A lower bound to the information

For words of length L, we need to estimate at least 2^L parameters from the data!

Independent model

In general

Using the independent model we can compute

To estimate this probability we need only 2L parameters!

This entropy is much less biased

Page 42: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Trial 1 1 0 1 0Trial 2 0 1 0 1Trial 3 1 0 0 1

r1 r2 r3 r4Shuffling Trial 1 1 1 1 1

Trial 2 0 0 0 0Trial 3 1 0 0 1

r1 r2 r3 r4

There is an alternative way of estimating the entropy of the independent model.

Instead of neglecting the correlations by computing the marginals, we simply destroy them in the original dataset.

Page 43: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

a)

b)

Essentially because shuffling creates a larger number of response words with non zero probability

Page 44: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

4 6 8 10 120

0.5

1

1.5

Log2(trials)

Info

rma

tion

[bits

]

IIsh

I Ish

4 6 8 10 12

0.02

0.04

0.06

0.08

Log2(trials)

Info

rma

tion

[bits

]

σI

σIsh

σ I

σ Ish

Montemurro et al Neural Computation (2007)

Now we propose the following estimator fro the entropy

Page 45: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Further improvements can be achieved with extrapolation methods

We have N trials. We then get estimates of the entropy for different subsets of trials: N/2, and N/4

This gives 3 estimation of the information: I1, I2, and I4

Up to 2nd order this is the equation of a parabola in 1/N.

Quadratic extrapolation

Page 46: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

The practicalEfficiency of neural code of the H1 neuron of the fly

Page 47: The University of Manchester Introducción al análisis del código neuronal con métodos de la teoría de la información Dr Marcelo A Montemurro m.montemurro@manchester.ac.uk

Experiment was done: right before sunset, at midday, and right after sunset

The same visual seen was presented 100-200 times.

1) Examine the data2) Generate rasters for the three conditions3) Compute the time varying firing rate, allowing for different binnings.4) Compute spike-count information as a function of window size5) Compute spike-time information as a function of window size6) Determine the maximum response word length for which the estimation is accurate7) Compute the efficiency of the code: e=I(R,S)/H(R)=1-H(R|S)/H(R)8) Discuss