the use of pile in deep foundation_3

Upload: isidro-buquiron

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    1/23

    3.3.2 Pile alternative design 2 - Precast concrete pile

    Table 3.6 Soil Design Parameters

    Soil Layer SPT Friction Data of Soil Design

    Layer From To Depth N Angle Parameters were

    (m) (m) (m) taken from Tables2-7, 3-4, Foundation

    Analysis & Design,

    (Bowles, J.E., (1989))

    Design Considerations:

    1. The pile foundation that will be designed is for an assumed bridge structure.

    3. Water level is being assumed to be at or just below ground surface.

    4. Initial and draft calculations were performed and a preliminary number of piles and

    pile section was selected and the final design calculations will be presented here.

    Table 3.7 Summary of LoadsLoad Axial

    Case Load

    # (Kn)

    1

    Max.

    Axial

    Load

    2

    Max.

    Over

    turning

    3

    Max.

    Horiz.

    Load

    Medium

    Dense Sand

    150

    SLS 6300 5180 200 1900 40

    ULS 6480 6900 600 2800

    ULS 0 3000

    SLS 6400 5120 200 1900

    79206640

    ULS

    SLS

    8350 0 3000

    2006400

    (Kn)

    1900

    Mx My Py

    Lateral Load

    5182

    40

    SLS

    (Kn-m)

    Moment

    about Y - Dir.

    (Kn-m)

    Px

    0

    40

    along Y - Dir.

    3.3.2.2 Foundation loads and load combinations

    ULS Moment Lateral Load

    150000-29.5 -40.5

    Very

    50 47

    2

    3

    4 22

    about X - Dir.

    Dense Sand

    13

    10

    11

    Dense Sand

    long X - Dir

    (Kn)

    8010

    0 -6.5

    -19.5 -29.5 39

    -6.5

    0

    Loose Sand

    Code/ReferenceCalculation/Discussion

    3.3.2.1 Subsurface conditions and geotechnical descriptions

    Soil

    6.5

    Bulk

    1

    Soil Elev. Modulus

    Density of Elasticity

    sat, (Kn/m3)

    4

    18 35 6250-19.5

    E, (Kn/m2)

    80000

    12

    20

    Description

    40

    25 4750

    10

    62

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    2/23

    Code/ReferenceCalculation/Discussion

    Y-Axis Ps PsyMsy

    Psx

    Msx

    L B

    Note: Direction of Traffic is along Y-axis.

    Figure 3.5 Schematic Diagram of Foundation Loads

    Presumed bearing value of loose sand = 30 KPa (1995))

    Maximum Axial Service Load, Ps => = 6400 KN B= 4.75 m

    Length of Foundation, L => L= 15.3 m

    Afd= BxL => Afd= 72.7 m2

    Depth of Underside of footing, Df= 2.5 m

    3.3.2.3 Verify the requirement of a pile foundation

    X-Axis

    Afd =

    63

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    3/23

    Code/ReferenceCalculation/Discussion

    Maximum Allowable Eccentricity of Loads

    eallow = 0.3B => = 1.425 m Supplement to CHBDC S6-00

    Section 6.7.3.4

    Actual Load Eccentricity (Factored Loading from Load Case 2)

    Mux The actual eccentricity is less than

    Pu the allowable, eccentricity

    requirement is complied.

    Check for the Footing Settlement

    qo(')(1-2)IsIf

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    4/23

    Code/ReferenceCalculation/Discussion

    Calculate for shape Factor, Is, => (2-)F2(1-)

    For: = 0.7976

    m'= 3.221 F1

    = 0.66

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    5/23

    Code/ReferenceCalculation/Discussion

    Design Consideration:

    1. Preliminary Pile Size 450 450 Grade 50

    b= 450 mm Ag= 2.E+05 mm2

    d= 450 mm Sx= 2E+07 mm3

    2. Initial No. of H-Piles => 22 Piles

    2. Pile Cap Dimension 4.75 15.3 1.5 m

    3. Minimum pile spacing 3xPile Dia. = 1.35 m

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    6/23

    Code/ReferenceCalculation/Discussion

    Maximum Design Load For a Single Pile

    b Pu

    Mux

    o

    a

    R1 R2

    Figure 3.7 Sectional View of Footing

    From Summary of Loads; From preliminary footing dimensions,

    Pu= 8010 KN a= 2.95 m

    Mux= 8350 KN-m b= 1.475 m

    @ Point "o" =0 Calculate for R2

    (R2 x a) - Mx - Pu x b = 0 Mux + Pu x b

    a

    = 6836 KN

    F =0 Calculate for R1

    R2 + R1 - Pu = 0 R1= 1174 KN

    Axial Load per single pile,

    R2

    No of Piles

    = 621.4 KN

    R2=

    Ru=

    67

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    7/23

    Code/ReferenceCalculation/Discussion

    Check the Adequacy of Preliminary RC Pile Size

    Capacity of Pile;

    For a 450 450 Grade 50 concrete section with, = 1.50%

    Pr,max= 4.5 MN 621.4 KN OK Concrete Design

    Handbook - Part 2

    (MacGregor, J.G.,

    Longitudinal steel reinforcement requirement; et al, (2006))

    1% t 4% 13.00 z= Segments of Pile embedment Length, L

    2= 18 At= Pile toe cross sectional area

    qt= Soil bearing stress at pile toe.

    L= 27.03 m Wp = Weight of pile

    w= Unit weight of water (9.81 kN/m3)

    Dense

    Sand

    L3=> 10 For shaft resistance of pile

    3= 20

    @ Loose sand layer

    Very L4=> 11 qs= v'

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    8/23

    Code/ReferenceCalculation/Discussion

    Thus, at Loose sand layer; = 0.3

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    9/23

    Code/ReferenceCalculation/Discussion

    So, pile point bearing resistance, Rt

    Rt= At qt

    = 8647 KN

    Therefore:

    R= Rt Rs Wp = 11340 KN

    4536 KN where; The value of R > 621.4 KN OK!

    = 0.4

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    10/23

    Code/ReferenceCalculation/Discussion

    Discussion:

    1. The Canadian Foundation Engineering Manual recommends the use of wave

    equation analysis for all calculation of pile driving capacity. This analysis gives

    a more reliable results than the conventional dynamic equations. However, the

    use of wave equation analysis involves the use of commercially available

    computer software. In the absence of the wave equation software, a modified

    Gates dynamic formula will be used to estimate the pile driving capacity.

    2. The research paper, Recent advances in the design of piles for axial loads,

    dragloads, downdrag, and settlement, B.H. Fellenius, 1998, it stated that

    " regardless of whether of not the settlement of the ground surface is of

    noticeable magnitude all piles will develop skin friction and dragloads"

    3. A downdrag force will be included in the calculation. In the absence of

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    11/23

    Code/ReferenceCalculation/Discussion

    Using Delmag D55 Hammer

    W= 11900 Lbs.

    = 5.95 Ton

    H= 9 Ft

    = 108 inches

    For a pile driving resistance, R= 421.7 Ton and calculating the value of S;

    S= 0.073 inch/Blow

    From the modified Gates dynamic formula, it can be shown that;

    Let : 1

    9 efWH N

    where, N= Number of Hammer blows per inch of penetration

    Further simplifying the above equation, gives;

    Table 3.8: 1/set and Pile driving capacity

    N

    10N= 10 Ton KN

    1 198 1761

    Note: Values tabulated in Table 3.8 for Pile 3 292 2598

    driving resistance is obtained using the 5 336 2989

    above equation. 7 364 3238

    9 386 343411 403 3585

    13 418 3719

    15 430 3825

    Maximum permissible stress during pile driving

    max= 0.85f'c = 1.00

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    12/23

    Code/ReferenceCalculation/Discussion

    Calculate for factored axial resistance during pile driving,

    R= ( R - 75 % of Rs ) From Table 3.8, R= 3825.3 KN

    = 0.4 621 KN Canadian Foundation

    Engineering Manual

    2006

    Pu Muxeb MuyeL

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    13/23

    Code/ReferenceCalculation/Discussion

    Table 3.9 Load per pile @ Load Case 1 in ULS loading

    Pile Pu

    No. n

    (m.) (m.) (KN)1 1.475 2.1756 6.75 45.6 364.1

    2 1.475 2.1756 5.4 29.2 364.1

    3 1.475 2.1756 4.05 16.4 364.1

    4 1.475 2.1756 2.7 7.29 364.1

    5 1.475 2.1756 1.35 1.82 364.1

    6 1.475 2.1756 0 0 364.1

    7 1.475 2.1756 1.35 1.82 364.1

    8 1.475 2.1756 2.7 7.29 364.1

    9 1.475 2.1756 4.05 16.4 364.1

    10 1.475 2.1756 5.4 29.2 364.1

    11 1.475 2.1756 6.75 45.6 364.1

    12 -1.48 2.1756 -6.8 45.6 364.1

    13 -1.48 2.1756 -5.4 29.2 364.1

    14 -1.48 2.1756 -4.1 16.4 364.1

    15 -1.48 2.1756 -2.7 7.29 364.1

    16 -1.48 2.1756 -1.4 1.82 364.1

    17 -1.48 2.1756 0 0 364.1

    18 -1.48 2.1756 -1.4 1.82 364.1

    19 -1.48 2.1756 -2.7 7.29 364.1

    20 -1.48 2.1756 -4.1 16.4 364.1

    21 -1.48 2.1756 -5.4 29.2 364.1

    22 -1.48 2.1756 -6.8 45.6 364.1

    e2 => 47.864 401

    eb2

    () ()

    eL2eL

    eL2

    257.3

    Muxeb MuyeL Load/pile

    KNeb2

    eb

    257.3

    257.3

    257.3

    257.3

    ()

    257.3

    257.3

    257.3

    257.3

    257.3

    257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    -257.3

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    0.0

    621.4

    621.4

    621.4

    621.4

    621.4

    106.8

    106.8

    621.4

    621.4

    621.4

    621.4

    621.4

    621.4

    106.8

    106.8

    106.8

    106.8

    106.8

    106.8

    106.8

    106.8

    106.8

    +

    74

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    14/23

    Code/ReferenceCalculation/Discussion

    Calculate the axial load for each pile at various load cases, and tabulating the summary;

    Table 3.10 Summary of pile axial load for load cases 1, 2, & 3 in ULS and SLS loadings

    Load

    Case

    P=

    Mx=

    My=

    Pile

    No.

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    1718

    19

    20

    21

    22

    1

    ULS SLS

    2

    ULS SLS

    3

    ULS SLS

    8010

    8350

    0

    6400

    5182

    200

    6640

    0

    6400

    5120

    200

    6480

    6900

    600

    6300

    5180

    200

    621.4 454.0 545.9 452.1 517.3 449.4

    7920

    621.4 453.3 545.9 451.4 515.3 448.7

    621.4 452.6 545.9 450.7 513.2 448.0

    621.4 451.9 545.9 450.0 511.2 447.3

    621.4 451.3 545.9 449.4 509.2 446.7

    621.4 450.6 545.9 448.7 507.2 446.0

    621.4 451.3 545.9 449.4 509.2 446.7

    621.4 451.9 545.9 450.0 511.2 447.3

    621.4 452.6 545.9 450.7 513.2 448.0

    621.4 453.3 545.9 451.4 515.3 448.7

    621.4 454.0 545.9 452.1 517.3 449.4

    106.8 127.9 57.8 129.8 71.8 123.4

    106.8 128.5 57.8 130.4 73.8 124.0

    106.8 129.2 57.8 131.1 75.9 124.7

    106.8 129.9 57.8 131.8 77.9 125.4

    106.8 130.5 57.8 132.5 79.9 126.1

    106.8 131.2 57.8 133.1 81.9 126.7106.8 130.5 57.8 132.5 79.9 126.1

    106.8 129.9 57.8 131.8 77.9 125.4

    106.8 129.2 57.8 131.1 75.9 124.7

    57.8 129.8 71.8 123.4

    106.8 128.5 57.8 130.4 73.8 124.0

    106.8 127.9

    75

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    15/23

    Code/ReferenceCalculation/Discussion

    Lateral capacity of piles in soils by Brom's Method

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    16/23

    Code/ReferenceCalculation/Discussion

    Calculate for Qu at xo= 10 mm

    0.93Qu

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    17/23

    Code/ReferenceCalculation/Discussion

    Calculate for elastic deformation of pile shaft, Sp ;

    QL 454.0 KN

    L= Total embedment length of pile => 27.03 m

    Ag= Cross section of pile => 0.203 m2

    E= Modulus of elasticity of material => 3E+07

    Calculate,

    Sp= 1.43 mm

    Calculate settlement due to load at pile shaft,

    Qsa where

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    18/23

    Code/ReferenceCalculation/Discussion

    Calculate ultimate lateral passive resistance of a pile group;

    Qu= 0.5BL2Kp 2.95 m (Tomlinson, M.J.,

    = Submerged density of soil => 1.10 (1977))

    Kp= Coeff of passive pressure => 3.6902

    L= Pile embedment => 27.03 m

    Calculate ultimate lateral passive resistance, Qug

    Qu= 42898 KN So, Quallow = 17159 2.5

    Quallow = 17159 KN > 1900 KN OK!

    Calculate settlement of a pile group;

    B 2.091 mm

    B= width of pile group => 2.95 m

    D= Diameter of single pile => 0.45 m

    5.35 mm < 25 mm OK!

    Allowable settlement for a pile group, Sgroup = 25.00 mm

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    19/23

    Code/ReferenceCalculation/Discussion

    where

    n1= No. of columns in plan => 11

    n2= No. of rows in plan => 2

    d= Spacing of pile => 1.35 m

    D= Pile Dia. => 0.45 m

    p= section perimeter of pile => 1.8 m

    calculate for the value of n,

    n= 0.7955

    Pu= n R

    = 79379 KN > 8010 KN OK!

    Calculate pile section bending moment capacity

    Estimate the steel reinforcement requirement for axial and bending resistance;

    Consider Load Case 1

    Loads per single pile,

    Mux= 379.55 KN-m => 0.38 MN-m

    Muy= 0.00 KN-mRu= 621.4 KN => 0.621 MN

    = 3.069 MPa

    thus, = 0.032

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    20/23

    Code/ReferenceCalculation/Discussion

    Try actual = 0.037 , For a value of = 0.037 Kr= 9.50 5828 mm2

    ; Try 8 - 30mm rebars Handbook - Part 2

    Actual, As= 5600 mm2

    say OK! (MacGregor, J.G.,Actual = 0.036 < b OK et al, (2006))

    Calculate bending moment capacity, Mrx

    where, d= h - cover - ds - => 350.00 mm

    b= 450 mm

    cover= 75 mm

    ds= 10 mm

    db= 30 mm

    Mrx= Krbd2 x 10-6 KN-m => 524 KN-m

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    21/23

    Code/ReferenceCalculation/Discussion

    Consider Load Case 3;

    Mux= 313.64 KN-m Mrx= 523.7 KN-m

    Muy

    = 27.27 KN-m Mry

    = 523.7 KN-m

    Ru= 517.3 KN Pucap= 4231 KN

    Ru Mux Muy

    R Mrx Mry

    517.3 314 27.27

    4231 524 523.7

    0.122 + 0.60 + 0.05 = 0.77 < 1 OK!

    Single pile maximum factored shear force; Vf

    Vf= 136.36 KN

    Concrete section shear resistance;

    Vc= c f'c bwdv

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    22/23

    Code/ReferenceCalculation/Discussion

    Section area provided by one stirrup, Av

    Av= 200.0 mm2

    Calculate the spacing of 10M stirrups, s;

    sAvfydvcot

  • 7/30/2019 The Use of Pile in Deep Foundation_3

    23/23

    Code/ReferenceCalculation/Discussion

    Minimum tie spacing requirement;