the weak kpz universality conjecture in...

23
The weak KPZ universality conjecture in equilibrium Nicolas Perkowski Humboldt–Universit¨ at zu Berlin February 9th, 2016 Paths to, from and in renormalization Potsdam Based on joint works with Joscha Diehl and Massimiliano Gubinelli Nicolas Perkowski Weak KPZ universality 1 / 13

Upload: others

Post on 23-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

The weak KPZ universality conjecture in equilibrium

Nicolas Perkowski

Humboldt–Universitat zu Berlin

February 9th, 2016Paths to, from and in renormalization

Potsdam

Based on joint works with Joscha Diehl and Massimiliano GubinelliNicolas Perkowski Weak KPZ universality 1 / 13

Page 2: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Motivation: modelling interface growth

Figure: Takeuchi, Sano, Sasamoto, Spohn (2011, Sci. Rep.)

Nicolas Perkowski Weak KPZ universality 2 / 13

Page 3: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

KPZ equation

Model for (fluctuations in) random interface growth: h : R+×R→ R,

∂th(t, x) = ∆h(t, x)︸ ︷︷ ︸diffusion

+ λ|∂xh(t, x)|2︸ ︷︷ ︸slope-dependence

+ ξ(t, x)︸ ︷︷ ︸space-time white noise

Kardar-Parisi-Zhang (1986): slope-dependent growth F (∂xh);

F (∂xh) = F (0) + F ′(0)∂xh +1

2F ′′(0)(∂xh)2 + . . .

Highly non-rigorous since ∂xh is a distribution; come back to thislater.

Conjecture: fluctuations

ε1(h(tε−3, xε−2)− ϕ(t, x))

converge to KPZ fixed point. Only known for fixed t, special h0 (Amir

et al. (2011), Sasamoto-Spohn (2010), Borodin et al. (2014)). Difficulty: KPZfixed point is very poorly understood.

Nicolas Perkowski Weak KPZ universality 3 / 13

Page 4: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

KPZ equation

Model for (fluctuations in) random interface growth: h : R+×R→ R,

∂th(t, x) = ∆h(t, x)︸ ︷︷ ︸diffusion

+ λ|∂xh(t, x)|2︸ ︷︷ ︸slope-dependence

+ ξ(t, x)︸ ︷︷ ︸space-time white noise

Kardar-Parisi-Zhang (1986): slope-dependent growth F (∂xh);

F (∂xh) = F (0) + F ′(0)∂xh +1

2F ′′(0)(∂xh)2 + . . .

Highly non-rigorous since ∂xh is a distribution; come back to thislater.

Conjecture: fluctuations

ε1(h(tε−3, xε−2)− ϕ(t, x))

converge to KPZ fixed point. Only known for fixed t, special h0 (Amir

et al. (2011), Sasamoto-Spohn (2010), Borodin et al. (2014)). Difficulty: KPZfixed point is very poorly understood.

Nicolas Perkowski Weak KPZ universality 3 / 13

Page 5: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

KPZ equation

Model for (fluctuations in) random interface growth: h : R+×R→ R,

∂th(t, x) = ∆h(t, x)︸ ︷︷ ︸diffusion

+ λ|∂xh(t, x)|2︸ ︷︷ ︸slope-dependence

+ ξ(t, x)︸ ︷︷ ︸space-time white noise

Kardar-Parisi-Zhang (1986): slope-dependent growth F (∂xh);

F (∂xh) = F (0) + F ′(0)∂xh +1

2F ′′(0)(∂xh)2 + . . .

Highly non-rigorous since ∂xh is a distribution; come back to thislater.

Conjecture: fluctuations

ε1(h(tε−3, xε−2)− ϕ(t, x))

converge to KPZ fixed point. Only known for fixed t, special h0 (Amir

et al. (2011), Sasamoto-Spohn (2010), Borodin et al. (2014)). Difficulty: KPZfixed point is very poorly understood.

Nicolas Perkowski Weak KPZ universality 3 / 13

Page 6: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

KPZ universality conjecture

All interface models converge to KPZ fixed point under “renormalization”

f 7→ εf (·ε−3, ·ε−2).

Red line: KPZ equationNicolas Perkowski Weak KPZ universality 4 / 13

Page 7: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: physics

Gaussian fixed point and KPZ fixed point connected by one-dimensionalcurve: ∂th = ∆h + λ|∂xh|2 + ξ.

Nicolas Perkowski Weak KPZ universality 5 / 13

Page 8: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: mathematics

Consider class of stochastic models (f ε) on [0,∞)×R or [0,∞)× Z with

exactly one conservation law;

tunable strength of asymmetry ε.

Then ∃ observable uε of f ε such that

ε−1(uε(tε−4, xε−2)− ϕ(t, x))⇒ u(t, x),

where u = ∂xh solves Burgers equation

∂tu = ∆u + ∂xu2 + ∂xξ.

uε measures interface height differences at neighboring sites;

can go back and forth between h and u = ∂xh, but u mathematicallymore convenient.

Nicolas Perkowski Weak KPZ universality 6 / 13

Page 9: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: mathematics

Consider class of stochastic models (f ε) on [0,∞)×R or [0,∞)× Z with

exactly one conservation law;

tunable strength of asymmetry ε.

Then ∃ observable uε of f ε such that

ε−1(uε(tε−4, xε−2)− ϕ(t, x))⇒ u(t, x),

where u = ∂xh solves Burgers equation

∂tu = ∆u + ∂xu2 + ∂xξ.

uε measures interface height differences at neighboring sites;

can go back and forth between h and u = ∂xh, but u mathematicallymore convenient.

Nicolas Perkowski Weak KPZ universality 6 / 13

Page 10: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: examplesSimple exclusion process:

particles on Z move independently, jump left with rate p, right withrate 1− p;

jump suppressed if landing site occupied;

conservation law: no. of particles;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ Burgers.

Ginzburg-Landau ∇ϕ model:

Interacting Brownian motions on Z:

dx j =(pV ′(r j+1)− (1− p)V ′(r j)

)dt + dw j ; r j = x j − x j−1;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ KPZ.

Hairer-Quastel model:

Replace quadratic nonlinearity in KPZ by general one, smooth noise:

∂tv = ∆v + αF (∂xv) + ρ ∗ ξ

α = 0: (convergence to) Gaussian; α = ε: expect ⇒ KPZ.

Nicolas Perkowski Weak KPZ universality 7 / 13

Page 11: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: examplesSimple exclusion process:

particles on Z move independently, jump left with rate p, right withrate 1− p;

jump suppressed if landing site occupied;

conservation law: no. of particles;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ Burgers.

Ginzburg-Landau ∇ϕ model:

Interacting Brownian motions on Z:

dx j =(pV ′(r j+1)− (1− p)V ′(r j)

)dt + dw j ; r j = x j − x j−1;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ KPZ.

Hairer-Quastel model:

Replace quadratic nonlinearity in KPZ by general one, smooth noise:

∂tv = ∆v + αF (∂xv) + ρ ∗ ξ

α = 0: (convergence to) Gaussian; α = ε: expect ⇒ KPZ.

Nicolas Perkowski Weak KPZ universality 7 / 13

Page 12: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: examplesSimple exclusion process:

particles on Z move independently, jump left with rate p, right withrate 1− p;

jump suppressed if landing site occupied;

conservation law: no. of particles;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ Burgers.

Ginzburg-Landau ∇ϕ model:

Interacting Brownian motions on Z:

dx j =(pV ′(r j+1)− (1− p)V ′(r j)

)dt + dw j ; r j = x j − x j−1;

p = 12 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ KPZ.

Hairer-Quastel model:

Replace quadratic nonlinearity in KPZ by general one, smooth noise:

∂tv = ∆v + αF (∂xv) + ρ ∗ ξ

α = 0: (convergence to) Gaussian; α = ε: expect ⇒ KPZ.

Nicolas Perkowski Weak KPZ universality 7 / 13

Page 13: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: metatheorem

Metatheorem (Goncalves-Jara ’13, Gubinelli-Jara ’13, Gubinelli-P. ’15)

We have a set of tools allowing to verify the weak KPZ universalityconjecture for a large class of models starting from equilibrium.

Go-Ja ’13: Tools for tightness and martingale characterization of limits;

Gu-Ja ’13: refined martingale characterization;

Gu-Pe ’15: uniqueness of refined martingale characterization.

Tested on many models:

Generalizations of simple exclusion process: Goncalves-Jara (2014),

Goncalves-Jara-Simon (2016), Franco-Goncalves-Simon (2016);

Zero-range process and many other interacting particle systems:Goncalves-Jara-Sethuraman (2015);

Ginzburg-Landau ∇ϕ model: Diehl-Gubinelli-P. (2016, unpublished);

Hairer-Quastel model: Gubinelli-P. (2016).

Nicolas Perkowski Weak KPZ universality 8 / 13

Page 14: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Weak KPZ universality conjecture: metatheorem

Metatheorem (Goncalves-Jara ’13, Gubinelli-Jara ’13, Gubinelli-P. ’15)

We have a set of tools allowing to verify the weak KPZ universalityconjecture for a large class of models starting from equilibrium.

Go-Ja ’13: Tools for tightness and martingale characterization of limits;

Gu-Ja ’13: refined martingale characterization;

Gu-Pe ’15: uniqueness of refined martingale characterization.

Tested on many models:

Generalizations of simple exclusion process: Goncalves-Jara (2014),

Goncalves-Jara-Simon (2016), Franco-Goncalves-Simon (2016);

Zero-range process and many other interacting particle systems:Goncalves-Jara-Sethuraman (2015);

Ginzburg-Landau ∇ϕ model: Diehl-Gubinelli-P. (2016, unpublished);

Hairer-Quastel model: Gubinelli-P. (2016).

Nicolas Perkowski Weak KPZ universality 8 / 13

Page 15: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

How to solve KPZ

∂th = ∆h + |∂xh|2 −∞+ ξ.

Difficulty: h(t, ·) has Brownian regularity, so |∂xh|2 −∞ =?

Cole-Hopf transformation: Bertini-Giacomin (1997) set h := logw , where

∂tw = ∆w + wξ

(linear Ito SPDE). Correct object but no equation for h.

Hairer (2013): series expansion and rough paths/regularity structures,defines |∂xh|2 −∞.

Martingale problem: Assing (2002), Goncalves-Jara (2010/2014), Gubinelli-Jara

(2013) define “energy solutions” of equilibrium KPZ. Uniqueness longopen, solved in Gubinelli-P. (2015).

Nicolas Perkowski Weak KPZ universality 9 / 13

Page 16: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

How to solve KPZ

∂th = ∆h + |∂xh|2 −∞+ ξ.

Difficulty: h(t, ·) has Brownian regularity, so |∂xh|2 −∞ =?

Cole-Hopf transformation: Bertini-Giacomin (1997) set h := logw , where

∂tw = ∆w + wξ

(linear Ito SPDE). Correct object but no equation for h.

Hairer (2013): series expansion and rough paths/regularity structures,defines |∂xh|2 −∞.

Martingale problem: Assing (2002), Goncalves-Jara (2010/2014), Gubinelli-Jara

(2013) define “energy solutions” of equilibrium KPZ. Uniqueness longopen, solved in Gubinelli-P. (2015).

Nicolas Perkowski Weak KPZ universality 9 / 13

Page 17: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

How to solve KPZ

∂th = ∆h + |∂xh|2 −∞+ ξ.

Difficulty: h(t, ·) has Brownian regularity, so |∂xh|2 −∞ =?

Cole-Hopf transformation: Bertini-Giacomin (1997) set h := logw , where

∂tw = ∆w + wξ

(linear Ito SPDE). Correct object but no equation for h.

Hairer (2013): series expansion and rough paths/regularity structures,defines |∂xh|2 −∞.

Martingale problem: Assing (2002), Goncalves-Jara (2010/2014), Gubinelli-Jara

(2013) define “energy solutions” of equilibrium KPZ. Uniqueness longopen, solved in Gubinelli-P. (2015).

Nicolas Perkowski Weak KPZ universality 9 / 13

Page 18: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

How to solve KPZ

∂th = ∆h + |∂xh|2 −∞+ ξ.

Difficulty: h(t, ·) has Brownian regularity, so |∂xh|2 −∞ =?

Cole-Hopf transformation: Bertini-Giacomin (1997) set h := logw , where

∂tw = ∆w + wξ

(linear Ito SPDE). Correct object but no equation for h.

Hairer (2013): series expansion and rough paths/regularity structures,defines |∂xh|2 −∞.

Martingale problem: Assing (2002), Goncalves-Jara (2010/2014), Gubinelli-Jara

(2013) define “energy solutions” of equilibrium KPZ. Uniqueness longopen, solved in Gubinelli-P. (2015).

Nicolas Perkowski Weak KPZ universality 9 / 13

Page 19: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Different solutions and weak universality

Difficulty with Cole-Hopf: most systems behave badly underexp-transform, only ok for few specific models: Bertini-Giacomin (1997),

Dembo-Tsai (2013), Corwin-Tsai (2015), Corwin-Shen-Tsai (2016).

Difficulty with pathwise approach: need control of regularity,universality so far only for semilinear S(P)DEs: Hairer-Quastel (2015),

Hairer-Shen (2015), Gubinelli-P. (2015).

Martingale problem: most powerful tool for universality if invariantmeasure known explicitly (all the works mentioned above). Approach:-Show tightness of fluctuations;-Give martingale characterization of limit points;-Uniqueness ⇒ convergence.

Nicolas Perkowski Weak KPZ universality 10 / 13

Page 20: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Different solutions and weak universality

Difficulty with Cole-Hopf: most systems behave badly underexp-transform, only ok for few specific models: Bertini-Giacomin (1997),

Dembo-Tsai (2013), Corwin-Tsai (2015), Corwin-Shen-Tsai (2016).

Difficulty with pathwise approach: need control of regularity,universality so far only for semilinear S(P)DEs: Hairer-Quastel (2015),

Hairer-Shen (2015), Gubinelli-P. (2015).

Martingale problem: most powerful tool for universality if invariantmeasure known explicitly (all the works mentioned above). Approach:-Show tightness of fluctuations;-Give martingale characterization of limit points;-Uniqueness ⇒ convergence.

Nicolas Perkowski Weak KPZ universality 10 / 13

Page 21: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Different solutions and weak universality

Difficulty with Cole-Hopf: most systems behave badly underexp-transform, only ok for few specific models: Bertini-Giacomin (1997),

Dembo-Tsai (2013), Corwin-Tsai (2015), Corwin-Shen-Tsai (2016).

Difficulty with pathwise approach: need control of regularity,universality so far only for semilinear S(P)DEs: Hairer-Quastel (2015),

Hairer-Shen (2015), Gubinelli-P. (2015).

Martingale problem: most powerful tool for universality if invariantmeasure known explicitly (all the works mentioned above). Approach:-Show tightness of fluctuations;-Give martingale characterization of limit points;-Uniqueness ⇒ convergence.

Nicolas Perkowski Weak KPZ universality 10 / 13

Page 22: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Conclusion

KPZ universality conjecture:asymmetric growth models ⇒ KPZ fixed point.

Weak KPZ universality conjecture:weakly asymmetric growth models ⇒ KPZ equation.

Both difficult to show because conjectured limits are difficult objects.

But with recent breakthroughs on KPZ equation: weak conjecturebecomes tractable.

In particular with martingale approach: good handle on equilibriumsituation, can establish conjecture in that case.

Nicolas Perkowski Weak KPZ universality 11 / 13

Page 23: The weak KPZ universality conjecture in equilibriumrecherche.math.univ-bpclermont.fr/.../potsdam-perkowski.pdfThe weak KPZ universality conjecture in equilibrium Nicolas Perkowski

Thank you

Nicolas Perkowski Weak KPZ universality 12 / 13