the zoo of curve shortening solitons in rnangenent/preprints/ima-zootalk3.pdf · the zoo of curve...

55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Zoo of Curve Shortening Solitons in R n Sigurd Angenent, Dylan&Steve Altschuler, Lani Wu UW Madison, St.Mark’s School of Texas, UT Southwestern&UCSF February 12, 2014 IMA talk the soliton zoo

Upload: others

Post on 21-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .

    ......The Zoo of Curve Shortening Solitons in Rn

    Sigurd Angenent, Dylan&Steve Altschuler, Lani WuUW Madison, St.Mark’s School of Texas, UT Southwestern&UCSF

    February 12, 2014

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Curve Shortening in Rn

    A family of space curves X = X(t, ξ), evolves by CurveShortening if

    Xt = Xss + λXs,

    for some function λ = λ(t, ξ).

    Equivalently, X evolves by CS if

    X⊥t = Xss,

    where Xt = X⊥t + λXs is the decompo-sition of Xt into normal and tangentialcomponents.

    Xt⊥

    Xt

    X(t)

    X(t+dt)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Curve Shortening in Rn

    A family of space curves X = X(t, ξ), evolves by CurveShortening if

    Xt = Xss + λXs,

    for some function λ = λ(t, ξ).

    Equivalently, X evolves by CS if

    X⊥t = Xss,

    where Xt = X⊥t + λXs is the decompo-sition of Xt into normal and tangentialcomponents.

    Xt⊥

    Xt

    X(t)

    X(t+dt)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)

    Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.

    Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)

    Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)

    Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)

    Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Solitons

    Curve Shortening is invariant under a large number oftransformations of space-time, namely

    Translations (t, X) 7→ (t + τ, X + a), τ ∈ R, a ∈ Rn.Rotations (t, X) 7→ (t, RX), R ∈ SO(n, R)

    Parabolic Dilation (t, X) 7→ (σ2t, σX), σ ∈ R+

    The full symmetry group G consists of combinations of thesetransformations,

    g(t, x) =(σ2t + τ, σRx + a

    )

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,A = −AT ∈ so(n, R) generates the rotations R(t),v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,A = −AT ∈ so(n, R) generates the rotations R(t),v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,A = −AT ∈ so(n, R) generates the rotations R(t),v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,

    A = −AT ∈ so(n, R) generates the rotations R(t),v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,A = −AT ∈ so(n, R) generates the rotations R(t),

    v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..

    Self similar evolutionsDefinition: Solitons are solutions of Curve Shortening that are invariant under a oneparameter subgroup of symmetries {gθ : θ ∈ R} ⊂ G.

    Most Curve Shortening solitons are of the form

    X(t) = σ(t)R(t)C + a(t)

    for some fixed space curve C that satisfies

    Css = (α + A)C + v + λ(s)Cs

    for some real valued function λ, where

    α ∈ R is the expansion/shrinking rate,A = −AT ∈ so(n, R) generates the rotations R(t),v is the translation velocity

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions without rotationA = 0, α ∈ {0,± 12}, v ∈ Rn

    expanding wedge

    shrinkers

    translating soliton

    Abresch-Langer

    Circle

    Dilation

    Expanders X(t) =√

    t C, t > 0 Brakke’s 1979 wedgeShrinkers X(t) =

    √−t C, t < 0 Circles, Abresch–Langer

    curves

    Translation: X(t) = C + tv, The Grim Reaper

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions without rotationA = 0, α ∈ {0,± 12}, v ∈ Rn

    expanding wedge

    shrinkers

    translating soliton

    Abresch-Langer

    Circle

    DilationExpanders X(t) =

    √t C, t > 0 Brakke’s 1979 wedge

    Shrinkers X(t) =√−t C, t < 0 Circles, Abresch–Langer

    curves

    Translation: X(t) = C + tv, The Grim Reaper

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions without rotationA = 0, α ∈ {0,± 12}, v ∈ Rn

    expanding wedge

    shrinkers

    translating soliton

    Abresch-Langer

    Circle

    DilationExpanders X(t) =

    √t C, t > 0 Brakke’s 1979 wedge

    Shrinkers X(t) =√−t C, t < 0 Circles, Abresch–Langer

    curves

    Translation: X(t) = C + tv, The Grim Reaper

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions without rotationA = 0, α ∈ {0,± 12}, v ∈ Rn

    expanding wedge

    shrinkers

    translating soliton

    Abresch-Langer

    Circle

    DilationExpanders X(t) =

    √t C, t > 0 Brakke’s 1979 wedge

    Shrinkers X(t) =√−t C, t < 0 Circles, Abresch–Langer

    curves

    Translation: X(t) = C + tv, The Grim Reaper

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    What other solitons are there?

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Non rotating solitons are planar(the case A = 0 is easy)

    Theorem. If C is a solution of the non rotating soliton equation

    Css = αC + λ(s)Cs + v

    then there is a two dimensional affine subspace of Rn that containsthe curve C.

    Proof (when v = 0): note that α and λ(s) are scalars. If ϕ, ψ arethe two solutions of the ODE y′′(s) = αy(s) + λ(s)y′(s) with

    ϕ(0) = 1, ϕ′(0) = 0, and ψ(0) = 0, ψ′(0) = 1

    thenC(s) = ϕ(s)C(0) + ψ(s)Cs(0).

    From now on: A ̸= 0!

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Non rotating solitons are planar(the case A = 0 is easy)

    Theorem. If C is a solution of the non rotating soliton equation

    Css = αC + λ(s)Cs + v

    then there is a two dimensional affine subspace of Rn that containsthe curve C.

    Proof (when v = 0): note that α and λ(s) are scalars. If ϕ, ψ arethe two solutions of the ODE y′′(s) = αy(s) + λ(s)y′(s) with

    ϕ(0) = 1, ϕ′(0) = 0, and ψ(0) = 0, ψ′(0) = 1

    thenC(s) = ϕ(s)C(0) + ψ(s)Cs(0).

    From now on: A ̸= 0!

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Non rotating solitons are planar(the case A = 0 is easy)

    Theorem. If C is a solution of the non rotating soliton equation

    Css = αC + λ(s)Cs + v

    then there is a two dimensional affine subspace of Rn that containsthe curve C.

    Proof (when v = 0): note that α and λ(s) are scalars. If ϕ, ψ arethe two solutions of the ODE y′′(s) = αy(s) + λ(s)y′(s) with

    ϕ(0) = 1, ϕ′(0) = 0, and ψ(0) = 0, ψ′(0) = 1

    thenC(s) = ϕ(s)C(0) + ψ(s)Cs(0).

    From now on: A ̸= 0!

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions with rotationwhat kind of rotating solitons can there be?

    Given A = −AT ∈ so(n, R), and etA ∈ SO(n, R) we have thefollowing kinds of solitons:

    Pure Rotation: X(t) = etACRotation&translation: X(t) = etAC + tv, v ∈ ker ARotation&dilation:

    Expanding (t > 0) X(t) =√

    t tA CShrinking (t < 0) X(t) = 1√−t (−t)

    A C

    In both cases, X(t) = (±t)± 12+AC,

    (for any z > 0: zA def= e(log z)A)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions with rotationwhat kind of rotating solitons can there be?

    Given A = −AT ∈ so(n, R), and etA ∈ SO(n, R) we have thefollowing kinds of solitons:

    Pure Rotation: X(t) = etAC

    Rotation&translation: X(t) = etAC + tv, v ∈ ker ARotation&dilation:

    Expanding (t > 0) X(t) =√

    t tA CShrinking (t < 0) X(t) = 1√−t (−t)

    A C

    In both cases, X(t) = (±t)± 12+AC,

    (for any z > 0: zA def= e(log z)A)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions with rotationwhat kind of rotating solitons can there be?

    Given A = −AT ∈ so(n, R), and etA ∈ SO(n, R) we have thefollowing kinds of solitons:

    Pure Rotation: X(t) = etACRotation&translation: X(t) = etAC + tv, v ∈ ker A

    Rotation&dilation:Expanding (t > 0) X(t) =

    √t tA C

    Shrinking (t < 0) X(t) = 1√−t (−t)A C

    In both cases, X(t) = (±t)± 12+AC,

    (for any z > 0: zA def= e(log z)A)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Self similar solutions with rotationwhat kind of rotating solitons can there be?

    Given A = −AT ∈ so(n, R), and etA ∈ SO(n, R) we have thefollowing kinds of solitons:

    Pure Rotation: X(t) = etACRotation&translation: X(t) = etAC + tv, v ∈ ker ARotation&dilation:

    Expanding (t > 0) X(t) =√

    t tA CShrinking (t < 0) X(t) = 1√−t (−t)

    A C

    In both cases, X(t) = (±t)± 12+AC,

    (for any z > 0: zA def= e(log z)A)

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The Soliton Flowthe soliton ODE defines a flow on the unit tangent bundle of Rn

    The soliton equation

    Css = (α + A)C + v + λ(s)Cs

    can be rewritten as a first order system, T = Cs

    Cs = T, Ts = pT[(α + A)C + v

    ]where

    pa(b)def= b − ⟨a, b⟩a

    is the orthogonal projection along the unit vector a.

    The phase space for this system is{(C, T) : ∥T∥ = 1} = Rn × Sn−1.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Is the soliton flow a geodesic flow?

    The soliton flow

    Cs = T, Ts = pT[(α + A)C + v

    ]defines a flow on Rn × Sn−1, so through each point C ∈ Rn and ineach direction T ∈ TCRn there is a unique soliton.

    Theorem. When A = 0 the soliton flow is the geodesic flow for themetric

    (ds)2 = eα2 ∥C∥2∥dC∥2

    on Rn.

    Huisken’s monotonicity formula:ddt

    1√T − t

    ∫C(t)

    e−∥x∥2/4(T−t)ds ≤ 0

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Is the soliton flow a geodesic flow?

    The soliton flow

    Cs = T, Ts = pT[(α + A)C + v

    ]defines a flow on Rn × Sn−1, so through each point C ∈ Rn and ineach direction T ∈ TCRn there is a unique soliton.Theorem. When A = 0 the soliton flow is the geodesic flow for themetric

    (ds)2 = eα2 ∥C∥2∥dC∥2

    on Rn.

    Huisken’s monotonicity formula:ddt

    1√T − t

    ∫C(t)

    e−∥x∥2/4(T−t)ds ≤ 0

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Is the soliton flow a geodesic flow?

    The soliton flow

    Cs = T, Ts = pT[(α + A)C + v

    ]defines a flow on Rn × Sn−1, so through each point C ∈ Rn and ineach direction T ∈ TCRn there is a unique soliton.Theorem. When A = 0 the soliton flow is the geodesic flow for themetric

    (ds)2 = eα2 ∥C∥2∥dC∥2

    on Rn.

    Huisken’s monotonicity formula:ddt

    1√T − t

    ∫C(t)

    e−∥x∥2/4(T−t)ds ≤ 0

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Some 3D pictures

    In the next series of pictures we have

    α ∈ R . . .

    α > 0 expandingα < 0 contractingα = 0 no dilation

    v =

    00vz

    , vz ≥ 0,A =

    0 −ω 0ω 0 00 0 0

    ω > 0

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Wagon wheels

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Translating and rotating

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    From here on assume that v = 0 and α ̸= 0

    i.e. only look atrotating shrinkers and expanders

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The ends of rotating expandersCss = (α + A)C + λCs

    Assume α > 0 (expanding solitons)and A ̸= 0 (rotating solitons).

    The distance to the origin ∥C∥attains a unique minimum on thesoliton,

    ∥C∥ → ∞ along both ends of thesolitonAs s → ±∞, we have theasymptotic expansion

    C(s) ∼ eθ(s)(α+A)Γ±, θ(s) → ∞

    for certain constant vectors Γ±that depend on the soliton.

    −100

    10−100

    10

    20

    40

    60

    80

    100

    120

    140

    xyz

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The ends of rotating expandersCss = (α + A)C + λCs

    Assume α > 0 (expanding solitons)and A ̸= 0 (rotating solitons).

    The distance to the origin ∥C∥attains a unique minimum on thesoliton,∥C∥ → ∞ along both ends of thesoliton

    As s → ±∞, we have theasymptotic expansion

    C(s) ∼ eθ(s)(α+A)Γ±, θ(s) → ∞

    for certain constant vectors Γ±that depend on the soliton.

    −100

    10−100

    10

    20

    40

    60

    80

    100

    120

    140

    xyz

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The ends of rotating expandersCss = (α + A)C + λCs

    Assume α > 0 (expanding solitons)and A ̸= 0 (rotating solitons).

    The distance to the origin ∥C∥attains a unique minimum on thesoliton,∥C∥ → ∞ along both ends of thesolitonAs s → ±∞, we have theasymptotic expansion

    C(s) ∼ eθ(s)(α+A)Γ±, θ(s) → ∞

    for certain constant vectors Γ±that depend on the soliton.

    −100

    10−100

    10

    20

    40

    60

    80

    100

    120

    140

    xyz

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    Next, rotating shrinkers. . .

    α < 0, A =

    0 −ω 0ω 0 00 0 0

    z-axis

    (-α)-½

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Why should there be a Lyapunov function?

    Gradient flow of∫

    L(u, ux)dxEuler

    Lagrange−→ ut =∂Lux∂x

    − Lu.

    E.g.

    gradient flow of∫ { 1

    2 u2x − F(u)

    }dx is ut = uxx + F ′(u).

    Traveling waves: u(t, x) = u(x − ct), ut = cuxare solutions of the traveling wave ODE

    cux =dLuxdx

    − Lu. e.g. cux = uxx + F ′(u).

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Why should there be a Lyapunov function?

    Gradient flow of∫

    L(u, ux)dxEuler

    Lagrange−→ ut =∂Lux∂x

    − Lu.

    E.g.

    gradient flow of∫ { 1

    2 u2x − F(u)

    }dx is ut = uxx + F ′(u).

    Traveling waves: u(t, x) = u(x − ct), ut = cuxare solutions of the traveling wave ODE

    cux =dLuxdx

    − Lu. e.g. cux = uxx + F ′(u).

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Why should there be a Lyapunov function?Travelling wave ODE: cux =

    dLuxdx − Lu

    The Hamiltonian H = uxLux − L is a Lyapunov function for thetraveling wave ODE:

    ddx

    (uxLux − L

    )= uxxLux + ux

    dLuxdx

    − Lu ux − Luxuxx

    = ux{dLux

    dx− Lu

    }= c (ux)2.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The almost Lyapunov functionα < 0, v = 0.

    If we assume α < 0, then the soliton flow on the unit tangentbundle,

    Cs = T, Ts = pT[(α + A)C

    ]has an almost Lyapunov function, namely

    V(C, T) = ⟨T, AC⟩e α2 ∥C∥2 .

    One hasdVds

    = eα2 ∥C∥2∥pT(AC)∥2.

    In particular,dVds

    ≥ 0 with equality only if AC is a multiple ofT = Cs.

    Critical orbits: orbits on which V is constant.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The ends of rotating shrinkersV(C, T) = ⟨T, AC⟩eα∥C∥2/2 is an almost Lyapunov function

    Let C be a shrinking rotating soliton. If the end {C(s) : s ≥ 0} isbounded, then its ω-limit set is a union of critical orbits. Theonly bounded critical orbit is the circle. So, bounded ends of asoliton converge to the circle.

    Some rotating shrinkers have unbounded ends (e.g. the z-axis).

    Theorem about unbounded ends. If {C(s) : s ≥ 0} is anunbounded end of a rotating shrinking soliton, then either the end isasymptotic to a logarithmic spiral,

    (∃Γ∈Rn) C(s) ∼ e−θ(s)(α+A)Γ, θ(s) → ∞

    or else the ω-limit set of C is contained in the z-axis.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..The ends of rotating shrinkersV(C, T) = ⟨T, AC⟩eα∥C∥2/2 is an almost Lyapunov function

    Let C be a shrinking rotating soliton. If the end {C(s) : s ≥ 0} isbounded, then its ω-limit set is a union of critical orbits. Theonly bounded critical orbit is the circle. So, bounded ends of asoliton converge to the circle.

    Some rotating shrinkers have unbounded ends (e.g. the z-axis).

    Theorem about unbounded ends. If {C(s) : s ≥ 0} is anunbounded end of a rotating shrinking soliton, then either the end isasymptotic to a logarithmic spiral,

    (∃Γ∈Rn) C(s) ∼ e−θ(s)(α+A)Γ, θ(s) → ∞

    or else the ω-limit set of C is contained in the z-axis.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Could this happen?

    -1

    -0.5

    0

    0.5

    1

    -1

    -0.5

    0

    0.5

    1-150

    -100

    -50

    0

    50

    100

    150

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. This happens. . .

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Linearize near the z-axis

    zx+iy=f(z)x

    y

    fzz1 + |fz|2

    − zfz + (1 − iω)f = 0.

    fzz − zfz + (1 − iω)f = 0.

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Linearize near the z-axis

    zx+iy=f(z)x

    y

    fzz − zfz + (1 − iω)f = 0 =⇒ f (z) = aW(z) + bW(−z),

    Asymptotics:

    W(z) ∼ z1−iω, W(−z) ∼ Kz−2+iωez2/2

    |W(z)| ∼ z, |W(−z)| ∼ ez2/2+···

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    .. Linearize near the z-axis

    zx+iy=f(z)x

    y

    fzz − zfz + (1 − iω)f = 0 =⇒ f (z) = aW(z) + bW(−z),

    Asymptotics:

    W(z) ∼ z1−iω, W(−z) ∼ Kz−2+iωez2/2

    |W(z)| ∼ z, |W(−z)| ∼ ez2/2+···

    IMA talk the soliton zoo

  • ..........

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    .....

    .....

    ......

    .....

    ......

    .....

    .....

    .

    ..Up and down the z-axisf (z) = aW(z) + bW(−z), W(z) ∼ z1−iω , W(−z) ∼ Kz−2+iωez2/2

    M1

    M2 M3

    Grim reapers

    Matching the aymptotics leads to the following prediction ofthe growth of the amplitudes Mk of the oscillation:

    Mk+1 = e14 M

    2k+O(log Mk)

    IMA talk the soliton zoo