thermal control of electronics: perspectives and...

16
Thermal Control of Electronics: Perspectives and Prospects Dr. Robert Hannemann Rohsenow Symposium on Future Trends in Heat Transfer Massachusetts Institute of Technology 16 May 2003

Upload: others

Post on 20-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

Thermal Control of Electronics: Perspectives and Prospects

Dr. Robert Hannemann

Rohsenow Symposium on Future Trends in Heat Transfer

Massachusetts Institute of Technology16 May 2003

Page 2: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

2Rohsenow Symposium 5/16/03

Introduction

Thermal control of electronics is posing significant challenges (again)

New, or re-invented technologies will be needed

Moore’s Law is the iconic driver of electronics progress – but it will continue until physics gets in the way (cooling!)

Research and development is needed as never before

Note: what follows is computer-centric, but…

Page 3: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

3Rohsenow Symposium 5/16/03

Perspective on microelectronic heat fluxH

eat

Flu

x (

W/

cm2)

T, K

Hannemann, Bar-Cohen, and Oktay, ca. 1986

Current Chips

Page 4: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

4Rohsenow Symposium 5/16/03

Technology generations

Timeframe Generation Representative Product Chip Power Module Power Density Rack Power

1945-1955 Historic Specialty Computers

1955 - 1965 Transistor Early Mainframe

1965 - 1975 SSI Mainframe

1975 - 1985 MSI Minicomputer

1985 - 1990 LSI Microcomputer

1990 - 2000 VLSI PC, Notebook, Portables

2000 - ULSI Micro-based Server

Trouble Design care Ignore

Page 5: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

5Rohsenow Symposium 5/16/03

What’s old is new again…

Heroic measures to maintain air cooling…

Heat pipe concepts…

Two-phase system cooling…

Page 6: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

6Rohsenow Symposium 5/16/03

Design / technology drivers

Performance Cost

ReliabilitySize

Page 7: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

7Rohsenow Symposium 5/16/03

Cost of cooling

Cost of cooling a microprocessor, Intel

Page 8: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

8Rohsenow Symposium 5/16/03

Intel’s inflection

X86 power dissipation

0

10

20

30

40

50

60

70

80

90

100

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year of Introduction

Chi

p Po

wer

(W)

486 PentiumPentium 3

Pentium 4

Page 9: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

9Rohsenow Symposium 5/16/03

Chip power trends

High Performance Chip Power (W)

0

50

100

150

200

250

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Year of Release

W

SIA 1993NTRS 1999NTRS 2002

Page 10: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

10Rohsenow Symposium 5/16/03

Heat flux trends at chip level

Chip Heat Flux

0

10

20

30

40

50

60

70

80

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Year of Introduction

W/c

m2 SIA 1993

NTRS 1999NTRS 2002

Page 11: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

11Rohsenow Symposium 5/16/03

A new problem: machine-room heat density

Data from Amdahl, Compaq, Dell, HP, IBM, SGI, Sun, Unisys, Lucent, Nortel, and Cisco

Page 12: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

12Rohsenow Symposium 5/16/03

Key challenges: large systems

Solutions for very high chip powers (100 – 200W)

High reliability / availability

Rack-level cooling

Machine-room cooling

Cost management

Page 13: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

13Rohsenow Symposium 5/16/03

Key challenges: office systems

Cost / performance microprocessors will reach 80 – 100W within 2 years

Air cooling must be optimized

Acoustics

Reduced cost

Page 14: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

14Rohsenow Symposium 5/16/03

Other challenges

Telecom systems: central offices already stretching power limits

Photonic components provide very serious cooling challengeThermal control at heat fluxes ~ 2 x 103 W/cm2

Performance very sensitive to temperature

Harsh environmentsAutomotive

Telecom

Military

Page 15: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

15Rohsenow Symposium 5/16/03

Research areas

Optimized fluids for liquid coolingMaterials for package construction / thermal spreadingPhase change materials for transient applications

High static pressure, low acoustic noise blowersMicro heat pipe structuresTwo-phase cooling approachesMEMS components for liquid / two phase cooling

Small-footprint liquid cooling systemsPackage-scale jet impingement / spray cooling Advanced, integrated thermal design toolsFrame and rack coolersEquipment room thermal design

Materials

Devices

Design

Page 16: Thermal Control of Electronics: Perspectives and Prospectsweb.mit.edu/hmtl/www/papers/HANNEMANNpres.pdf · Rohsenow Symposium 5/16/03 2 Introduction Thermal control of electronics

16Rohsenow Symposium 5/16/03

Conclusion

The importance of thermal management in electronics devices and systems has waxed and waned over the past 50 years

Current technologies and applications are once again providing aserious challenge – perhaps show-stopping – to heat transfer engineers

Breakthroughs are needed in advanced cooling technologies (and pragmatic design!) at all levels