thermal energy storage for concentrated solarthermal power...

25
1 Thermal Energy Storage for Concentrated Solarthermal Power Plants Doerte Laing - German Aerospace Center SEMINARS IN ENGINEERING SCIENCE Department of Mechanical Engineering and Mechanics Lehigh University Sept. 13, 2013 www.DLR.de/TT Folie 2 > Lehigh University > Doerte Laing > 13.09.2013 Why Concentrated Solarthermal Power Plants? Renewable energies for power production Tides Waves Wind Photovoltaic Geo-thermal Solarthermal power plants Run-of-the-river

Upload: hakien

Post on 10-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

1

Thermal Energy Storage for ConcentratedSolarthermal Power Plants

Doerte Laing - German Aerospace Center

SEMINARS IN ENGINEERING SCIENCE

Department of Mechanical Engineering and Mechanics

Lehigh University

Sept. 13, 2013

www.DLR.de/TT • Folie 2 > Lehigh University > Doerte Laing > 13.09.2013

Why Concentrated Solarthermal Power Plants?Renewable energies for power production

Tides

Waves WindPhotovoltaic

Geo-thermal

Solarthermal power plants

Run-of-the-river

2

www.DLR.de/TT • Folie 3 > Lehigh University > Doerte Laing > 13.09.2013

Integration in the electricity supply systemAdaptation to electricity demand

Supply-oriented

Tides

Waves WindPhotovoltaic

Geo-thermal

Solarthermal power plants

Run-of-the-river

www.DLR.de/TT • Folie 4 > Lehigh University > Doerte Laing > 13.09.2013

Integration in the energy supply systemAdaptation to electricity demand

Partly demand-oriented

Supply-oriented

Run-of-the-river

Tides

Waves WindPhotovoltaic

Geo-thermal

Solarthermal power plants

3

www.DLR.de/TT • Folie 5 > Lehigh University > Doerte Laing > 13.09.2013

Vorwärmer

Verdampfer

Überhitzer

Turbine

KühlturmKondensator

Generator

Netz

Speisewasser -pumpe

Verdampfer

Überhitzer

Turbine

KühlturmKondensator

Generator

Netz

-

Brennstoff

OilGas

Coal

Uranium

Biomass

Waste

Principle of solarthermal power plantsThermodynamic cycle (Clausius-Rankine, Joule)

www.DLR.de/TT • Folie 6 > Lehigh University > Doerte Laing > 13.09.2013

Vorwärmer

Verdampfer

Überhitzer

Turbine

KühlturmKondensator

Generator

Netz

Speisewasser -pumpe

Verdampfer

Überhitzer

Turbine

KühlturmKondensator

Generator

Netz

-

BrennstoffSonne

Principle of solarthermal power plantsReplacement of conventional fuels by solar energy

4

www.DLR.de/TT • Folie 7 > Lehigh University > Doerte Laing > 13.09.2013

Parabolischer Reflektor

DishTurmRinne

Principle of solarthermal power plantsHigh temperatures through concentration of solar radiation

www.DLR.de/TT • Folie 8 > Lehigh University > Doerte Laing > 13.09.2013

Parabolic trough (PSA) Power Tower (SNL)

Linear Fresnel (MAN/SPG) Dish-Stirling (SBP)

Up to 500 ºC over 1000 ºC

Principle of solarthermal power plantsTypes of solarthermal power plants

5

www.DLR.de/TT • Folie 9 > Lehigh University > Doerte Laing > 13.09.2013

Integration in the electricity supply systemAdaptation to electricity demand with thermal storage

Thermal Storage => more operating hours => cost reduction

2000 h

+2000 h

www.DLR.de/TT • Folie 10 > Lehigh University > Doerte Laing > 13.09.2013

Source: C. Libby, EPRI

Energy storage necessary for

successful market implementation

of CSP technology

- Higher solar annual contribution

- Reduction of part-load operation

- Power output management

- Dispatchable power

Energy Storage for Concentrating Solar Power Plants

6

www.DLR.de/TT • Folie 11 > Lehigh University > Doerte Laing > 13.09.2013

Parabolic Trough Power Plant

Conventional steam power plantCollector field Molten salt storage

H2ONaNO3-KNO3Syn. Oil

www.DLR.de/TT • Folie 12 > Lehigh University > Doerte Laing > 13.09.2013

Highly specific design specifications regarding: primary HTF - pressure - temperature - power level - capacity

Storagesystem

ONE single storage technology will not meet the unique requirements of different solar power plants

Thermal Energy StorageChallenges

7

www.DLR.de/TT • Folie 13 > Lehigh University > Doerte Laing > 13.09.2013

Storage Concepts

Sensible Heatliquid solid/liquid

Latent HeatSalts solid-liquidSalts solid-solid

Heat of ReactionGas-solid reactionSorption

solid

www.DLR.de/TT • Folie 14 > Lehigh University > Doerte Laing > 13.09.2013

Storage Concepts

- Sensible Heat Storage 20 – 100 kWh/m³ (dependend on temperature difference)

Sensible Heat

- Latent Heat Storage 50 – 150 kWh/m³ (for minimal temperature difference)

Latent Heat

- Thermo-chemical Storage 100 – 400 kWh/m³ (dependend on driving gradient (temperatureor pressure))

Heat of Reaction

Energy density Development

[kWh/m3] status

low high

high low

8

www.DLR.de/TT • Folie 15 > Lehigh University > Doerte Laing > 13.09.2013

Commercially available storage systems- Steam Accumulator- 2-Tank sensible molten salt storage based on nitrate salts

Alternative materials and concepts tested in lab and pilot scale- Improved molten salt storage concepts- Solid medium sensible heat storage, e.g. concrete storage- Solid media storage for Solar Tower with Air- Latent heat - PCM storage- Thermo-chemical storage

Future focus for CSP- Higher plant efficiency => Increase process temperature- New fluids: steam, molten salt, gas/air

Thermal Energy Storage for CSP Plants Status und Development

www.DLR.de/TT • Folie 16 > Lehigh University > Doerte Laing > 13.09.2013

Steam Discharging

Isolated Pressure Vessel

Liquid Phase

Steam

Steam Charging

Liquid water Charging / Discharging

Charging process:raising temperature inliquid water volume bycondensing steam

Discharging process:generation of steamby lowering pressure insaturated liquid watervolume

→ Buffer storage for peak power

→ Inefficient and economically not attractive for high pressures and capacities

State-of-the-Art - Steam AccumulatorsStorage of sensible heat in pressurized liquid water

9

www.DLR.de/TT • Folie 17 > Lehigh University > Doerte Laing > 13.09.2013

State-of-the-Art - Steam AccumulatorsPS10

- Saturated steam at 250 ºC

- 50 min storage operation at 50% load

-Source: Abengoa SolarSource: Abengoa Solar

www.DLR.de/TT • Folie 18 > Lehigh University > Doerte Laing > 13.09.2013

State-of-the-Art - Steam AccumulatorsPS10

10

www.DLR.de/TT • Folie 19 > Lehigh University > Doerte Laing > 13.09.2013

State-of-the-art - Molten salt storageIndirect 2-Tank Storage

Andasol

Storage capacity 1010 MWh (7.7h)

Nitrate salts

(60% NaNO3 + 40% KNO3)

Salt inventory 28.500 t

Tank volume 14.000 m³

6 HTF/salt heat exchangers

- Source: Kolb, G. J., 2010, Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage System for Trough Plants, Solar Paces 2010, Perpignan, France.Relloso, S., Delgado, E., 2009. Experience with Molten Salt Thermal Storage in a Commercial Parabolic Trough Plant, Solar Paces 2009, Berlin, Germany.

www.DLR.de/TT • Folie 20 > Lehigh University > Doerte Laing > 13.09.2013

Parabolic trough power plants with thermal oilANDASOL 1: 50 MWe, 7.7 hours storage capacity

11

www.DLR.de/TT • Folie 21 > Lehigh University > Doerte Laing > 13.09.2013

Source: Homepage Torresol Energy

Cold tank

Hot tank Steamgenerator

Turbine

Generator

Receiver

- Heat transfer fluid and storage medium are the same

- 1st system: Solar Two Project by Sandia

- 2nd commercial system at Gemasolar plant:Solar Tower plant with 15 h storage

State-of-the-art - Molten salt storageDirect 2-Tank Storage

www.DLR.de/TT • Folie 22 > Lehigh University > Doerte Laing > 13.09.2013

Commercially available storage systems- Steam Accumulator- 2-Tank sensible molten salt storage based on nitrate salts

Alternative materials and concepts tested in lab and pilot scale- Improved molten salt storage concepts- Solid medium sensible heat storage, e.g. concrete storage- Solid media storage for Solar Tower with Air- Latent heat - PCM storage- Thermo-chemical storage

Future focus for CSP- Higher plant efficiency => Increase process temperature- New fluids: steam, molten salt, gas/air

Thermal Energy Storage for CSP Plants Status und Development

12

www.DLR.de/TT • Folie 23 > Lehigh University > Doerte Laing > 13.09.2013

Storage Concepts – Sensible Heat Storage

Sensible Heatliquid solid/liquid

Latent HeatSalts solid-liquidSalts solid-solid

Heat of ReactionGas-solid reactionSorption

solid

www.DLR.de/TT • Folie 24 > Lehigh University > Doerte Laing > 13.09.2013

Molten Salt StorageCurrent Developments – Thermocline concept

Most of the salt volume is replaced by

a low cost solid filler material

Molten Salt is stored in one tank

Cost Reduction

13

www.DLR.de/TT • Folie 25 > Lehigh University > Doerte Laing > 13.09.2013

Molten Salt StorageCurrent Developments – Thermocline concept

Status:

- Most solids react with molten salt

- Thermal ratcheting can occur

- No long term experience have beenpublished so far

- Cost reduction potential: approx. 33 %

- Lots of simulation research hasbeen done

- Test loop with test module is in the design stage at DLR

3h charging cycle

www.DLR.de/TT • Folie 26 > Lehigh University > Doerte Laing > 13.09.2013

- Demand for… - …higher thermal stabilities of molten salts 700 °C - …Lower melting points < 140 °C - …improved thermo-physical properties

- Research on new salt mixtures:

Ternary system Ca(NO3)2-KNO3-NaNO3

Quaternary system

Li, Na, K // NO2,NO3

Source: DLR

Molten Salt StorageCurrent Developments – New Salt Mixtures

14

www.DLR.de/TT • Folie 27 > Lehigh University > Doerte Laing > 13.09.2013

Alternative Storage Technology for Trough Plants with Oil HTF – Concrete Storage

Storage systemPower block

Col

lect

or f

ield

- Heat transfer fluid and storage medium are different

- Low cost storage material with integrated heat exchanger

- No risk of solidification

- Modular and scalable design

- Economic and reliable TES (< 35 € / kWh TES capacity)

- Flexible to large no. of sites and construction materials

Source: DLR

Source: DLR

www.DLR.de/TT • Folie 28 > Lehigh University > Doerte Laing > 13.09.2013

Concrete StorageSet-up

Source: ZÜBIN

Source: ZÜBIN

15

www.DLR.de/TT • Folie 29 > Lehigh University > Doerte Laing > 13.09.2013

Concrete StorageStatus

- 400 kWh pilot storage in operation since May 2008

- Storage capacity: 0.65 kWh/(m3·K)

- Over 10,000 operation hours

- No indication of any degradation effects

01 05 10 15 20 25 2680

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

Temperature and Flow 01.11 - 26.11.2008

Time in days

Tem

pera

ture

in °

C

01 05 10 15 20 25 26

-20

0

20

Flo

w in

m³/

h

Oil temperature "hot" sideOil temperature "cold" side

Flow

2nd Generation Pilot Storage built 2008 by Source: DLR

www.DLR.de/TT • Folie 30 > Lehigh University > Doerte Laing > 13.09.2013

18 m

2,6 m

4 m

Basic Storage Module Design

- Definition a standardized 5 MWh basic module design

- Detailed design according to specifications (∆T, MW, MWh)

- Up-scaling to desired capacity by adding modules

Concrete StorageStrategy for commercialization

16

www.DLR.de/TT • Folie 31 > Lehigh University > Doerte Laing > 13.09.2013

1100 MWh CapacityConfiguration of 4 x 63 = 252 modules

Concrete StorageLayout for trough plant of Andasol type

www.DLR.de/TT • Folie 32 > Lehigh University > Doerte Laing > 13.09.2013

Parabolic Trough Power Plant: ANDASOL 1Photo: Solar Millenium AG

Large Scale 7h 1000 MWh Concrete Storage

Concrete StorageLayout for trough plant of Andasol type

17

www.DLR.de/TT • Folie 33 > Lehigh University > Doerte Laing > 13.09.2013

Storage Concepts – Latent Heat Storage

Sensible Heatliquid solid/liquid

Latent HeatSalts solid-liquidSalts solid-solid

Heat of ReactionGas-solid reactionSorption

solid

www.DLR.de/TT • Folie 34 > Lehigh University > Doerte Laing > 13.09.2013

Parabolicsolar field

Fresnelsolar field Solar tower

Solar Receiver

Evaporation 65%

Preheating 16%Super-heating

19%

260 ºC – 400 ºC

107 bar

Storage Systems for DSG Plants Latent Heat Storage

18

www.DLR.de/TT • Folie 35 > Lehigh University > Doerte Laing > 13.09.2013

Latent Heat StorageFeatures of PCM (phase change material) Storage

- Nitrate salt represent possible PCMs for applications beyond 100 ºC

- Important PCM criteria: thermal conductivity, heat capacity, thermal stability, material cost, corrosion, hygroscopy

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350

Temperature [°C]

En

thal

py

[J/g

]

KNO3

NaNO3

NaNO2

KNO3-NaNO3

LiNO3-NaNO3

KNO3-LiNO3

KNO3-NaNO2-NaNO3

LiNO3

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350

Temperature [°C]

En

thal

py

[J/g

]

KNO3

NaNO3

NaNO2

KNO3-NaNO3

LiNO3-NaNO3

KNO3-LiNO3

KNO3-NaNO2-NaNO3

LiNO3

www.DLR.de/TT • Folie 36 > Lehigh University > Doerte Laing > 13.09.2013

solid

liquid

Fluid

solid

liquid

Fluid

Heat transfer coefficient is dominated by the thermal conductivity of the solid PCM→ Low thermal conductivity is

bottleneck for PCM

Latent Heat StorageChallenge

19

www.DLR.de/TT • Folie 37 > Lehigh University > Doerte Laing > 13.09.2013

Latent heat storageApproaches for heat transfer enhancement

Macro encapsulation

Extended heat exchanger structure

Composite material

PCM/graphite

composite

Pressure vessel

www.DLR.de/TT • Folie 38 > Lehigh University > Doerte Laing > 13.09.2013

Latent heat storageApproaches for heat transfer enhancement

Macro encapsulation

Extended heat exchanger structure

Composite material

PCM/graphite

composite

20

www.DLR.de/TT • Folie 39 > Lehigh University > Doerte Laing > 13.09.2013

Phase change material

Demonstrated at DLR:

- NaNO3 - KNO3 - NaNO2 142 ºC

- LiNO3 - NaNO3 194 ºC

- NaNO3 - KNO3 222 ºC

- NaNO3 306 ºC

Storage concepts

- Graphite fins / horizontal tubes < 250 ºC

- Aluminum fins / vertical tubes < 350 ºC

Experimental validation

- 6 test modules with 140 – 14,000 kg PCM

Status of Latent Heat Storage

Source: DLR

Source: DLR

www.DLR.de/TT • Folie 40 > Lehigh University > Doerte Laing > 13.09.2013

Storage System for DSG Latent heat storage for evaporation

PCM-Evaporator module:

- PCM: NaNO3

- Melting point: 306 °C

- Salt volume: 8.4 m³

- Total height 7.5 m

- Inventory ~ 14 t

- Capacity ~ 700 kWh

Worlds largest high

temperature latent heat

storage with 14 tons of

NaNO3 (700 kWh)

tested in 2010 / 2011

with 2949 h, 95 cyclesSource: DLR

21

www.DLR.de/TT • Folie 41 > Lehigh University > Doerte Laing > 13.09.2013

Storage Concepts – Thermo-chemical Heat Storage

Sensible Heatliquid solid/liquid

Latent HeatSalts solid-liquidSalts solid-solid

Heat of ReactionGas-solid reactionSorption

solid

www.DLR.de/TT • Folie 42 > Lehigh University > Doerte Laing > 13.09.2013

Thermo-chemical Heat StorageGas-Solid Reactions – Principle and Potential

Thermo-chemical heat storage

A+B AB + Heat

22

www.DLR.de/TT • Folie 43 > Lehigh University > Doerte Laing > 13.09.2013

Thermo-chemical Heat StorageGas-Solid Reactions – Principle and Potential

AB(s) + ∆H ⇌ A(s) + B(g)

endothermal

exothermal

Thermo-chemical heat storage

A+B AB + Heat

- Reversible gas-solid reactions

- Utilization of enthalpy of reaction

Heatstorage

Gasstorage

www.DLR.de/TT • Folie 44 > Lehigh University > Doerte Laing > 13.09.2013

Thermo-chemical Heat StorageGas-Solid Reactions – Principle and Potential

Potential:

- High storage densities

- Loss-free and long-term storage

- Detachment of storage capacity and thermal power

- Possibility for heat transformation

- Application in a wide temperature range (below ambient up to 1000C)

Thermo-chemical heat storage

A+B AB + Heat

23

www.DLR.de/TT • Folie 45 > Lehigh University > Doerte Laing > 13.09.2013

- Known reaction system

- Gaseous reactant: steam

- Low cost basic material (limestone)

- High reaction enthalpy ~ 100 kJ/mol

- Cycle stability needs to be proven

- Process engineering needs to be simplified

- Theoretical storage densities: Limestone Quarry Hahnstetten

TEQ [1 bar] ∆H [1 bar] Storage Density*

°C kJ/molSolid onlykWh/m3

Solid + H2OkWh/m3

Mass relatedkWh/t

507 100 410 323 373

* Porosity of 0.5

Thermo-chemical Heat StorageCalcium Hydroxide as Storage Material

www.DLR.de/TT • Folie 46 > Lehigh University > Doerte Laing > 13.09.2013

Quelle: DLR

Thermo-chemical Heat StorageTest facility - 10 kW, Tmax = 1000 C

24

www.DLR.de/TT • Folie 47 > Lehigh University > Doerte Laing > 13.09.2013

Electrically heated latent heat storage

Problem: Increasing amount of renewable energy are challenging the grid

Idea: store „surplus“ electricity from renewable energies as high temperature heat

Use for process heat applications in industry (e.g. bakeries)

( „inversing the concept of the night storage heaters“)

Storage concept:

- Latent heat storage with sodium nitrate (T_melt = 305 ºC)

- Apply new design with plate heat exchanger

- Directly charge PCM with special resistance heater

- Discharge of PCM through plate heat exchanger with air or thermal oil

www.DLR.de/TT • Folie 48 > Lehigh University > Doerte Laing > 13.09.2013

Latent Heat Storage – Plate Heat Exchanger Design

25

www.DLR.de/TT • Folie 49 > Lehigh University > Doerte Laing > 13.09.2013

Thermal Energy Storage for Concentrated Solar PowerSummary and Conclusions

- Energy storage is a key issue for CSP dispatchability & efficiency

- Steam accumulators: Commercial, only economic as buffer storage

- Molten salt technology: Commercial concepts for indirect/direct 2-tank storages are available Further research aims at cost reduction (new materials & concepts)

- Concrete storage technology is attractive alternative demonstration in pilot scale needed

- PCM storage technology is the most promising technology for DSG plants demonstrated in 1 MW scale

- Thermo-chemical storage development is in a basic research stage

- Continuous research and development effort is needed especially for higher process temperatures (> 400°C) and for further cost reduction

- High temperature storage also needed for energy efficiency in industrial processes and grid stability with increasing share of renewables

Thank you for your attention!

[email protected]