thermal systems design principles of space systems design u n i v e r s i t y o f maryland thermal...

25
Thermal Systems Desig Principles of Space Systems Desig U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures • Conduction Thermal system components © 2002 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: claud-robertson

Post on 11-Jan-2016

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermal Systems Design

• Fundamentals of heat transfer• Radiative equilibrium• Surface properties• Non-ideal effects

– Internal power generation– Environmental temperatures

• Conduction• Thermal system components

© 2002 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Classical Methods of Heat Transfer

• Convection– Heat transferred to cooler surrounding gas, which

creates currents to remove hot gas and supply new cool gas

– Don’t (in general) have surrounding gas or gravity for convective currents

• Conduction– Direct heat transfer between touching components– Primary heat flow mechanism internal to vehicle

• Radiation– Heat transferred by infrared radiation– Only mechanism for dumping heat external to vehicle

Page 3: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Ideal Radiative Heat Transfer

Planck’s equation gives energy emitted in a specific frequency by a black body as a function of temperature

• Stefan-Boltzmann equation integrates Planck’s equation over entire spectrum

Prad =σT 4

eλb =2πhC0

2

λ5 exp−hC0

λkT

⎝ ⎜

⎠ ⎟ −1

⎣ ⎢

⎦ ⎥

(Don’t worry, we won’t actually use this equation for anything…)

σ =5.67x10−8 Wm2°K 4

(“Stefan-Boltzmann Constant”)

Page 4: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Thermodynamic Equilibrium

• First Law of Thermodynamics

heat in -heat out = work done internally• Heat in = incident energy absorbed• Heat out = radiated energy• Work done internally = internal power

used(negative work in this sense - adds to total heat in the system)

Q−W =dUdt

Page 5: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Radiative Equilibrium Temperature

• Assume a spherical black body of radius r

• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

• 1 AU: Is=1394 W/m2; Teq=280°K

Qin =Isπr2

Qout =4πr2σT 4

Isπr2 =4π r2σT4 ⇒ Is =4σT4

Teq =Is

⎝ ⎜

⎠ ⎟

14

Page 6: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Distance on Equilibrium Temp

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40

Distance from Sun (AU)

Black Body Equilibrium Temperature

(°K)

Page 7: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shape and Radiative Equilibrium

• A shape absorbs energy only via illuminated faces

• A shape radiates energy via all surface area

• Basic assumption made is that black bodies are intrinsically isothermal (perfect and instantaneous conduction of heat internally to all faces)

Page 8: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Shape on Black Body Temps

Page 9: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Incident Radiation on Non-Ideal Bodies

Kirchkoff’s Law for total incident energy flux on solid bodies:

where– =absorptance (or absorptivity)– =reflectance (or reflectivity)– =transmittance (or transmissivity)

QIncident=Qabsorbed+Qreflected+Qtransmitted

Qabsorbed

QIncident

+Qreflected

QIncident

+Qtransmitted

QIncident

=1

α ≡Qabsorbed

QIncident

; ρ ≡Qreflected

QIncident

; τ≡Qtransmitted

QIncident

Page 10: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Non-Ideal Radiative Equilibrium Temp

• Assume a spherical black body of radius r

• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

Qin =Isαπ r2

Qout =4πr2εσT 4

Isαπr2 =4πr2εσT4 ⇒ Is =4εα

σT 4

Teq =αε

Is

⎝ ⎜

⎠ ⎟

14

( = “emissivity” - efficiency of surface at radiating heat)

Page 11: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Effect of Surface Coating on Temperature

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Teq=560°K (a/e=4)Teq=471°K (a/e=2)Teq=396°K (a/e=1)Teq=333°K (a/e=0.5)Teq=280°K (a/e=0.25)

Black Ni, Cr, Cu Black Paint

White Paint

Optical Surface Reflector

Polished Metals

Aluminum Paint

Page 12: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Non-Ideal Radiative Heat Transfer

• Full form of the Stefan-Boltzmann equation

where Tenv=environmental temperature (=4°K for space)

• Also take into account power used internally

Prad =εσA T 4 −Tenv4

( )

Isα As+Pint =εσArad T4 −Tenv4

( )

Page 13: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Example: AERCam/SPRINT

• 30 cm diameter sphere• =0.2; =0.8• Pint=200W• Tenv=280°K (cargo bay

below; Earth above)• Analysis cases:

– Free space w/o sun– Free space w/sun– Earth orbit w/o sun– Earth orbit w/sun

Page 14: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (Free Space)

• As=0.0707 m2; Arad=0.2827 m2

• Free space, no sun

Pint = εσAradT4 ⇒ T =

200W

0.8 5.67 ×10−8 W

m2°K 4

⎝ ⎜

⎠ ⎟ 0.2827m2( )

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

14

= 354°K

Page 15: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (Free Space)

• As=0.0707 m2; Arad=0.2827 m2

• Free space with sun

Isα As + Pint = εσAradT4 ⇒ T =

Isα As + Pint

εσArad

⎝ ⎜

⎠ ⎟

14

= 362°K

Page 16: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

AERCam/SPRINT Analysis (LEO Cargo Bay)

• Tenv=280°K

• LEO cargo bay, no sun

• LEO cargo bay with sun

Pint =εσArad T4 −Tenv4

( )⇒ T =200W

0.8 5.67×10−8 Wm2°K4

⎝ ⎜

⎠ ⎟ 0.2827m2( )

+(280°K)4

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

14

=384°K

Isα As+Pint =εσArad T4 −Tenv4

( )⇒ T =Isα As+Pint

εσArad

+Tenv4

⎝ ⎜ ⎜

⎠ ⎟ ⎟

14

=391°K

Page 17: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Radiative Insulation

• Thin sheet (mylar/kapton with surface coatings) used to isolate panel from solar flux

• Panel reaches equilibrium with radiation from sheet and from itself reflected from sheet

• Sheet reaches equilibrium with radiation from sun and panel, and from itself reflected off panel

Is

Tinsulation Twall

Page 18: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Multi-Layer Insulation (MLI)• Multiple insulation

layers to cut down on radiative transfer

• Gets computationally intensive quickly

• Highly effective means of insulation

• Biggest problem is existence of conductive leak paths (physical connections to insulated components)

Is

Page 19: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

1D Conduction

• Basic law of one-dimensional heat conduction (Fourier 1822)

whereK=thermal conductivity (W/m°K)A=areadT/dx=thermal gradient

Q=−KAdTdx

Page 20: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

3D Conduction

General differential equation for heat flow in a solid

whereg(r,t)=internally generated heat

=density (kg/m3)

c=specific heat (J/kg°K)

K/c=thermal diffusivity

∇ 2Tr r ,t( )+

g(r r ,t)K

=ρcK

∂Tr r ,t( )

∂t

Page 21: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Simple Analytical Conduction Model

• Heat flowing from (i-1) into (i)

• Heat flowing from (i) into (i+1)

• Heat remaining in cell

TiTi-1 Ti+

1

Qin =−KATi −Ti−1

Δx

Qout =−KATi+1 −Ti

Δx

Qout −Qin =ρcK

Ti( j +1)−Ti( j)Δt

… …

Page 22: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Heat Pipe Schematic

Page 23: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shuttle Thermal Control Components

Page 24: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Shuttle Thermal Control System Schematic

Page 25: Thermal Systems Design Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Thermal Systems Design Fundamentals of heat transfer Radiative

Thermal Systems DesignPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

ISS Radiator Assembly