thermodynamic aspects of magnetic molecules g. lefkidis department of physics and research center...

23
Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box 3049, 67653 Kaiserslautern, Germany San Francisco, Dec 1, 2014

Upload: ambrose-parrish

Post on 28-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Thermodynamic Aspects of Magnetic Molecules

G. Lefkidis

Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology,Box 3049, 67653 Kaiserslautern, Germany

San Francisco, Dec 1, 2014

Page 2: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Outlook

• Introduction Hamiltonian Basics of quantum thermodynamics

• Understanding QTD Z system Doublet harmonic oscillator

• Results Otto cycle and magnetism Diesel cycle and magnetism

• Summary

Page 3: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Outlook

• Introduction Hamiltonian Basics of quantum thermodynamics

• Understanding QTD Z system Doublet harmonic oscillator

• Results Otto cycle and magnetism Diesel cycle and magnetism

• Summary

Page 4: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Degrees of Freedom in the Hamiltonian

SOC

electroniccorrelations

static B-field phonons

laser

at atel elel atel

1 11 11 11

2)0( 1

2

1ˆN

a

N

b ba

baN

i

N

j ji

N

i

N

a ia

aN

i

ZZZH

RRrrrR

elelel

111132

eff)1( ˆˆˆˆ

N

ii

N

iS

N

iL

N

i i

ael

Rc

ZH

q

q qBSBLSL

)(ˆ)(ˆ)(ˆ )10()10()2( tttH laserlaser BMEd )()(ˆ)( )2( ttHtdt

di

iE

i

eiiTZ

T )(

1)(

temperature

Page 5: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Electronic Correlations in the Hamiltonian

occupied

virtual

Configuration interaction or coupled cluster expansion

Slater-rules → & Mulliken analysis (localization)

at atel elel atel

1 11 11 11

2)0( 1

2

1ˆN

a

N

b ba

baN

i

N

j ji

N

i

N

a ia

aN

i

ZZZH

RRrrrR

Page 6: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Otto Cycle

Eugenio Barsanti and Felice Matteuccipatented around 1854-1857

Alphonse Beau de Rochas patented 1861

Nicolaus Otto built 1863

1→2 isentropic compression2→3 isochoric heating3→4 isentropic expansion4→1 isochoric cooling (exhaust +intake)

Page 7: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Basics of Quantum Thermodynamics

• quantum levels:• occupations:

• quantum first law of thermodynamics

• internal energy

• work

• heat

H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. B 76, 031105 (2007)

• volume

• pressure

changing only :quantum adiabatic process

𝑑𝑈=∑𝑛

(𝐸𝑛𝑑𝑝𝑛+𝑝𝑛𝑑𝐸𝑛 )𝑑𝑊=∑

𝑛

𝑝𝑛𝑑𝐸𝑛

𝑑𝑄=∑𝑛

𝐸𝑛𝑑𝑝𝑛

𝐹=−∑𝑛

𝑝𝑛

𝑑𝐸𝑛

𝑑𝐿

(1D system)

→ {𝐸𝑛′ }

{𝑝𝑛 }

𝑈=∑𝑛

𝑝𝑛𝐸𝑛

{𝐸𝑛}

Page 8: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Basics of Quantum Thermodynamics

H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. B 76, 031105 (2007)

• quantum first law of thermodynamics

• internal energy

• work

• heat

• volume

• pressure

changing only :Heating/cooling

𝑑𝑈=∑𝑛

(𝐸𝑛𝑑𝑝𝑛+𝑝𝑛𝑑𝐸𝑛 )𝑑𝑊=∑

𝑛

𝑝𝑛𝑑𝐸𝑛

𝑑𝑄=∑𝑛

𝐸𝑛𝑑𝑝𝑛

𝐹=−∑𝑛

𝑝𝑛

𝑑𝐸𝑛

𝑑𝐿

(1D system)

{𝐸𝑛}→ {𝑝𝑛

′ }

𝑈=∑𝑛

𝑝𝑛𝐸𝑛

• quantum levels:• occupations: {𝑝𝑛 }

Page 9: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Outlook

• Introduction Hamiltonian Basics of quantum thermodynamics

• Understanding QTD Z system Doublet harmonic oscillator

• Results Otto cycle and magnetism Diesel cycle and magnetism

• Summary

Page 10: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

¿𝑔 ⟩¿𝑒 ⟩

𝐸𝑔=0𝐸𝑒=𝑎𝑥+Δ

𝑥

𝐸

+thermalization if

Z System

𝐸𝑢¿𝑢⟩

Page 11: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

¿𝑔 ⟩¿𝑒 ⟩

𝐸𝑔=0𝐸𝑒=𝑎𝑥+Δ

𝑥

𝐸

Z System

𝐸𝑢¿𝑢⟩

𝑄¿=[𝑝𝑒 (𝑥2 ,𝑇2 )−𝑝𝑒 (𝑥1 ,𝑇 1 ) ]𝐸𝑒 (𝑥2 )+[𝑝𝑢 (𝑥2,𝑇 2 )−𝑝𝑢 (𝑥1 ,𝑇1 ) ]𝐸𝑢

𝑄out=[𝑝𝑒 (𝑥2 ,𝑇 2 )−𝑝𝑒 (𝑥1 ,𝑇1 ) ]𝐸𝑒 (𝑥1 )+[𝑝𝑢 (𝑥2 ,𝑇2 )−𝑝𝑢 (𝑥1 ,𝑇 1 ) ]𝐸𝑢

useful work produced by maximized near (not at)crossing/degeneracy

useless energy-move-around due to minimized if→gap+finite temperature

𝜂=𝑄¿−𝑄out

𝑄¿<1

A B

CD

Page 12: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

¿𝑔 ⟩¿𝑒 ⟩

𝐸𝑔=0𝐸𝑒=𝑎𝑥+Δ

𝑥

𝐸

Z System

𝐸𝑢¿𝑢⟩

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0T 2

0 .2

0 .4

0 .6

0 .8

1 .0

For and very small we get but very littleenergy conversion per cycle. At room temperature we get

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0T 2

0 .1

0 .2

0 .3

0 .4W o u t𝑇 1→0

𝑇 1→0

A B

CD

𝜂=[𝑝𝑒 (𝑥2 ,𝑇 2 )−𝑝𝑒 (𝑥1 ,𝑇 1 ) ][𝐸𝑒 (𝑥2 )−𝐸𝑒 (𝑥1 )]

[𝑝𝑒 (𝑥2 ,𝑇2 )−𝑝𝑒 (𝑥1 ,𝑇1 ) ]𝐸𝑒 (𝑥2 )+ [𝑝𝑢 (𝑥2 ,𝑇 2)−𝑝𝑢(𝑥1 ,𝑇1 ) ]𝐸𝑢

𝜂=𝑄¿−𝑄out

𝑄¿<1

Page 13: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Doublet Harmonic Oscillator

C. D. Dong, G. Lefkidis and W. Hübner, Phys. Rev. B 88, 214421 (2013)

𝑍=∑𝑛=1

exp¿¿

E=1𝑍

¿

𝐸𝑛

+¿=( 12+𝑛)𝜔 −𝜇𝐵¿

𝐸𝑛−=( 12+𝑛)𝜔+𝜇𝐵Spin up

Spin down

Page 14: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Doublet Harmonic Oscillator

C. D. Dong, G. Lefkidis and W. Hübner, Phys. Rev. B 88, 214421 (2013)

𝐶𝑣=𝜕𝐸 (𝑇 ,𝐵 ,𝜔 )

𝜕𝑇

𝜒𝑀=𝜕𝜕𝐵

¿

Heat capacity

Magnetic susceptibility

Page 15: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Outlook

• Introduction Hamiltonian Basics of quantum thermodynamics

• Understanding QTD Z system Doublet harmonic oscillator

• Results Otto cycle and magnetism Diesel cycle and magnetism

• Summary

Page 16: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Otto Cycle on Ni2: Efficiency and Work Output

W. Hübner, G. Lefkidis, C. D. Dong, D. Chaudhuri, L. Chotorlishvili, and J. BerakdarPhys. Rev. B 90, 024401 (2014)

• Magnetism increases output power at maximum efficiency• Magnetism increases work output

Page 17: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Otto Cycle on Ni2: Equilibrium Distance

W. Hübner, G. Lefkidis, C. D. Dong, D. Chaudhuri, L. Chotorlishvili, and J. BerakdarPhys. Rev. B 90, 024401 (2014)

Only molecules can both expand and compress spontaneously!

Page 18: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Diesel Cycle on Ni2: Isobaric Process in Ni2

Isobaric ranges

C. D. Dong, G. Lefkidis and W. Hübner, J. Supercond. Nov. Magn. 26, 1589 (2013)

𝐹 (𝑅 ,𝑇 )=− 1𝑍 (𝑅 ,𝑇 )∑𝑖

𝑑𝐸 𝑖(𝑅)𝑑𝑅

𝑒−𝐸𝑖 (𝑅)𝐾𝑇

Non-equilibrium, non-thermalized states!

Page 19: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Entropy and Quantum Thermodynamics

Entropy:

• Crossings of lines in PV diagrams due to additional degrees of freedom• Even larger configuration space for magnetic molecules

C. D. Dong, G. Lefkidis and W. Hübner, Phys. Rev. B 88, 214421 (2013)

Page 20: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Heat Capacity and Magnetic Susceptibility of Ni2

C. D. Dong, G. Lefkidis and W. Hübner, Phys. Rev. B 88, 214421 (2013)

𝜒𝑀=𝜕 ⟨𝑀 (𝑇 ,𝑅 ) ⟩

𝜕𝐵𝜒 𝑖𝑗

(𝑥𝑦 )∝∑𝑘

(𝐷𝑖𝑘(𝑥))∗𝐷𝑘𝑗

( 𝑦) 𝑝𝑖−𝑝 𝑗

𝐸𝑖−𝐸 𝑗−𝜔+𝑖 Γ

Singularities indicate level crossings.

Page 21: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Heat Capacity and Magnetic Susceptibility of Ni2

C. D. Dong, G. Lefkidis and W. Hübner, Phys. Rev. B 88, 214421 (2013)

Magnetic susceptibility at 100 K

Magnetic susceptibility at 400 K

Heat capacity

Von-Neumann entropy𝑆=−∑

𝑛𝑖

𝑝𝑛Tr (𝜌𝑛(𝑟𝑒𝑑) ln𝜌𝑛

(𝑟𝑒𝑑))

Page 22: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Summary

• QTD: Effects of energy discretization (in particular level crossings)

• Electronic temperature – non thermalized states

• Quantum Otto Cycle – effects of magnetism

• Isobaric process – Quantum Diesel Cycle

Page 23: Thermodynamic Aspects of Magnetic Molecules G. Lefkidis Department of Physics and Research Center OPTIMAS, Kaiserslautern University of Technology, Box

Acknowledgements

Wei Jin (Xi’an) Hongping Xiang (Northridge) Chuanding Dong

Chun Li (Xi‘an)Debapriya Chaudhuri