thermodynamics of microplasma initiation in liquids

14
Thermodynamics of Microplasma Initiation in Liquids Robert Geiger Sagar Ghimire, Rei Kawashima Advisor: Dr. David Staack Texas A&M University- Mechanical Engineering Plasma Engineering & Diagnostics Laboratory (PEDL)

Upload: janine

Post on 31-Jan-2016

20 views

Category:

Documents


0 download

DESCRIPTION

Thermodynamics of Microplasma Initiation in Liquids. Robert Geiger Sagar Ghimire, Rei Kawashima Advisor: Dr. David Staack Texas A&M University- Mechanical Engineering Plasma Engineering & Diagnostics Laboratory (PEDL). Outline. Motivation Applications - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Thermodynamics of Microplasma Initiation in Liquids

Thermodynamics of Microplasma Initiation in Liquids

Robert Geiger

Sagar Ghimire, Rei Kawashima

Advisor: Dr. David Staack

Texas A&M University- Mechanical Engineering

Plasma Engineering & Diagnostics Laboratory (PEDL)

Page 2: Thermodynamics of Microplasma Initiation in Liquids

Outline

• Motivation– Applications

– Control plasma parameters (ne, Te, d)

• Discharges in liquid– Near liquids– “In” liquids

• Experimental Setup• Transient discharges (OES)• Summary

Page 3: Thermodynamics of Microplasma Initiation in Liquids

plasma

wire

cells

Why Generate Plasma in Liquids?Chemical Applications:

Fuel Reforming

Bio/Medical

Physical Applications:

Shock Wave Generation MicrofluidicsSpecies Identification

Water Sterilization

Shock Wave

Page 4: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Gases Near Liquids

Inside bubblesAbove liquid surface

Ref: Alyssa Wilson et al 2008 Plasma Sources Sci. Technol. 17 045001

In droplet containing gas

http://www.panoramio.com/photo/2843260

Page 5: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Liquids – Steady State

Phase Instability

Steady state supercritical plasma

Ref:27.12 MHz Plasma Generation in Supercritical Carbon Dioxide

Ayato Kawashima et al, J. Appl. Phys.

Page 6: Thermodynamics of Microplasma Initiation in Liquids

Discharge in Liquids - Process

1) Initiation Low Density Region1) Electrolysis

2) Boiling (Joule Heating)

3) Electrostatic Cavitations

2) Breakdown1) Primary Streamer

2) Secondary Streamer

3) Spark

3) Thermalization

4) Relaxation

1950s-1980s thoroughly studied breakdown process in dielectrics

Page 7: Thermodynamics of Microplasma Initiation in Liquids

r

Discharges in Liquids - Initiation

Boiling Analysis (Energy Balance)

Electrolysis Analysis ( Faradays law of electrolysis)

Electrostatic Cavitation Analysis (Force Balance)

Assumptions: All initiation mechanism achieve a low density reduction n

Const (I) and (V)

Local Low Density Region (n)

Y = (Yeild of Fluid)

Electrode

Fluid

Cavitation

should be larger

Page 8: Thermodynamics of Microplasma Initiation in Liquids

Experimental Setup

V

Spark Gap 1R

CSpark Gap 2

Output

Circuit:

Electrode Configurations:

Point to Plane Point to Point Plane to Plane

Diagnostics

Page 9: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Liquids – Transient & Plasma SizeSpark Streamer Corona

Water - Corona

Mineral Oil - Corona

Anode (+) Cathode (-)< 50 um

Page 10: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Liquids – Transient & Thermalization

200 300 400 500 600 700 800-0.2

0

0.2

0.4

0.6

0.8

1

1.2Broadband spectra of Corona in Water\NaCl\KCl mixtures

Wavelength (nm)

Re

lativ

e In

tesi

ty

130uS310uS540uS780uS

Hβ ONaOH

Te,Tvib>Tgas Te,Tvib ≈ Tgas

𝛕 = f(ne, υen, Te, E/n, medium, …)

Page 11: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Liquids - Transient

630 635 640 645 650 655 660 665 670 675 6800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Hydrogen Alpha Peak for different conductivities

Wavelength (nm)

Re

lativ

e In

tesi

ty

130uS310uS540uS780uS

100 200 300 400 500 600 700 8001

2

3

4

5

6

7

8Hydrogen Alpha FWHM for different conductivities at the Anode

Conductivity (nm)

FW

HM

14W18W28W

100 200 300 400 500 600 700 8001

2

3

4

5

6

7

8Hydrogen Alpha FWHM for different conductivities at the cathode

Conductivity (nm)

FW

HM

14W18W28W

Page 12: Thermodynamics of Microplasma Initiation in Liquids

Discharges in Liquids - Transient

100 200 300 400 500 600 700 800

0.35

0.4

0.45

0.5

0.55

Conductivity (uS)

OH

/H)

Max Peak (OH/H) Cathode

14W18W28W

100 200 300 400 500 600 700 8000.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conductivity (uS)

OH

/H)

Max Peak (OH/H) Anode

14W18W28W

100 200 300 400 500 600 700 8000.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Conductivity (uS)

O/H

)

Max Peak (O/H) Cathode

14W18W28W

100 200 300 400 500 600 700 8000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Conductivity (uS)

Na/

H)

Max Peak (Na/H) Cathode

14W18W28W

100 200 300 400 500 600 700 8000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Conductivity (uS)

Na/

H)

Max Peak (Na/H) Anode

14W18W28W

(OH/H)

(Na/H)

(O/H)

100 200 300 400 500 600 700 8000.05

0.1

0.15

0.2

0.25

0.3

Conductivity (uS)

O/H

)

Max Peak (O/H) Anode

14W18W28W

Anode Cathode

Page 13: Thermodynamics of Microplasma Initiation in Liquids

Summary• Control of plasma properties in liquids

• Characteristic times and initiation mechanisms

• Transient discharge breakdown development

• Experimental results– Discharge size

– Electron density

– Chemical Components

Future Work• Improve transient initiation model

• (dV/dt = const) instead of (V=const)

• ne = f(t) instead of (I = const)

• Dielectric Fluids

• Mechanical/Chemical Energy (Shockwaves vs. Radical Generation)

Page 14: Thermodynamics of Microplasma Initiation in Liquids

References

References:

• Alyssa Wilson et al 2008 Plasma Sources Sci. Technol. 17 045001

• Ayato Kawashima et al, J. Appl. Phys.

• D. Staack, A. Fridman, A. Gutsol et al., Angewandte Chemie-International Edition, vol. 47, no. 42, pp. 8020-8024, 2008.

Question?

Acknowledgements:

This material is based upon work suppoerted by the National Science Foundation Grant #1057175