thermodynamics - review and example...

29
Outline Review Example Problem 1 Example Problem 2 Thermodynamics Review and Example Problems X Bai SDSMT, Physics Fall 2013 X Bai Thermodynamics

Upload: others

Post on 25-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Outline Review Example Problem 1 Example Problem 2

    ThermodynamicsReview and Example Problems

    X Bai

    SDSMT, Physics

    Fall 2013

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    1 Review

    2 Example Problem 1Exponents of phase transformation

    3 Example Problem 2Application of Thermodynamic Identity

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Thermodynamics: contents

    1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,etc.

    2 The Second Law of Thermodynamics

    3 Interacting systems: The connection between the microscopic and themacroscopic

    4 Heat Engines and Refrigerators

    5 Chemical Thermodynamics

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    1. Equilibrium

    Equilibrium Exchanges

    Thermal Thermal energyMechanical Volume

    Diffusive ParticlesChemical Chemical reactions

    H2O ↔ H+ + OH−H2SO4 ↔ 2H+ + SO2−4

    2. Thermal systems

    Isolated system: No interaction with environment, no matter andenergy exchange.Closed system: No matter exchange, has energy exchange.Open system: Has matter and energy exchange.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Ideal Gas, Carnot cycle, etc.

    3. Ideal Gas

    PV = nRTPV = NkTn: number of moles of gas.R constant R = 8.31 J

    mol·K

    4. Carnot cycle

    Step 1: isothermal expansion, (V1,P1,Th)→ (V2,P2,Th)Step 2: adiabatic expansion, (V2,P2,Th)→ (V3,P3,Tc)Step 3: isothermal compression, (V3,P3,Tc)→ (V4,P4,Tc)Step 4: adiabatic compression, (V4,P4,Tc)→ (V1,P1,Th)

    5. Equipartition theorem

    For a system with N particles, each with f DoF, and there is NO othernon-quadratic temperature-dependent forms of energy, the total thermal energyin the system is

    Uthermal = Nf12kT

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    The Second Law of Thermodynamics

    1. Macrostate, Microstate, Multiplicity, Applications: Einstein Solid, Ideal Gas,

    2. Entropy: S = klnΩThe famous Sackur-Tetrode Equation for Ideal Gas:

    S ≈ kN[ln(

    VN

    (4πmU3Nh2

    )3/2)+ 5

    2

    ]3. The Second Law of Thermodynamics

    Any large system in equilibrium will be found in the macrostate with thegreatest muitiplicity (aside from fluctuations that are normally too small tomeasure).

    If we start from a non-equilibrium system, it means:

    Multiplicity tends to increase as time goes.

    Isolated systems evolve from a organized system to a more randomized system!

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Interacting systems: The connection between themicroscopic and the macroscopic

    Interacting thermal systems

    To understand heat flow and the evolution of a thermal system (reversible orirreversible), we need to consider two systems that interact with each otherwith heat and/or matter exchanges.

    Solid  A  NA,  qA,    UA,  ΩA  

    Solid  B  NB,  qB,    ΩB,  UB  

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Interacting systems: The connection between themicroscopic and the macroscopic - cnt.

    1. Interacting thermal systems: Staring point

    Ωcombined = Ω1 × Ω2Scombined = S1 + S2

    At  equilibrium    Pa+b  Pa      Pb  

    Away  from  equilibrium      P’a+b  P’a      P’b  

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Interacting systems: The connection between themicroscopic and the macroscopic - cnt.

    2. What governs a non-isolated system? The typical method: Starting fromthe total entropy of the entire system.

    Stotal = S + Senvironment

    dStotal = dS + dSenvironment

    Using conditions:

    Te = T

    dU + dUe = 0

    One gets:

    dStotal = dS −1

    TdU = − 1

    T(dU − TdS) = − 1

    TdF

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Interacting systems: The connection between themicroscopic and the macroscopic - cnt.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Heat Engines and Refrigerators

    Qh  

    Qc  

    W  

    The efficiency of an engine:� ≤ 1− Tc

    Th

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Heat Engines and Refrigerators - cnt.

    H

    HH T

    QS =Δ

    C

    CC T

    QS =Δ

    HQ

    CQ

    W

    heat

    work he

    at

    hot reservoir, TH

    cold reservoir, TC

    entr

    opy

    The coefficient of performance (COP):

    COP ≤ 1Th/Tc−1

    = TcTh−Tc

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Chemical Thermodynamics: Thermal quantities andpotentials

    Table: Quantities that govern the thermal processes

    Process What governs the process

    constant E and V Entropy Sconstant T and V Helmholtz Free Energy Fconstant T and P Gibbs Free Energy G

    Table: Thermodynamic quantities

    Extensive quantities Intensive quantities

    Do change when the Do NOT change when theamount of matter changes amount of matter changes

    V, N, S, U, H, F, G , mass T, P, ρ, µ (chemical potential)

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Chemical Thermodynamics: Thermal quantities andpotentials

    Potential variables identity

    U(S ,V ,N) S ,V ,N dU = TdS − PdV + µdNH(S ,P,N) S ,P,N dH = TdS + VdP + µdNF (T ,V ,N) V ,T ,N dF = −SdT − PdV + µdNG(T ,P,N) P,T ,N dG = −SdT + VdP + µdN

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Chemical Thermodynamics: Thermal quantities andpotentials

    T

    P

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Clausius-Claypeyron Relation

    What determines the phase boundary is the condition? - TheClausius-Clapeyron Relation.

    (1799  –  1864)  French  engineer  and  physicist,  one  of  the  founders  of  thermodynamics.  

    (1822  –  1888)  German  physicist  &    mathemaBcian,  one  of  the  central  founders  of  the  science  of  thermodynamics.  

    ΔP1  ΔP2  

    ΔT1  

    ΔT2  On  the  lone:    ΔP1  =  ΔP2    ΔT1  =  ΔT2    

    dPdT =

    δSδV

    dPdT =

    LTδV

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    van der Waals Model

    U(r)

    short-distance repulsion

    long-distance attraction

    -3

    -2

    -1

    0

    1

    2

    3

    4

    1.5 2.0 2.5 3.0 3.5 4.0distance

    Energy

    r

    Johannes  van    der  Waals,  1873  

    Using critical variables Vc ,Tc ,Pc to normalize P,V ,T :t = T/Tc , p = P/Pc , v = V /Vc , the vdW equation becomesp = 8t

    3v−1 −3v2

    The vdW equation in terms of reduced variables.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Maxwell construction plots

    P/Pc  

    V/Vc  

    1  2  

    3  

    4  5  

    6  

    7  

    P/Pc  

    V/Vc  

    1  2  

    3  

    4  5  

    6  

    7  

    SA>0  

    SB

  • Outline Review Example Problem 1 Example Problem 2

    Vapor pressure and critical point

    Understand phase transition using van der Waals Model.(1) vapor pressure Pv for each T: at which the liquid-gas transformation takesplace(2) critical pressure Pc , critical temperature Tc , and critical volume Vc : thecritical point.

    Pc  

    Tc  Vc  

    Pv  

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1

    Review Exercise 01:This series of problems are dedicated to the study of the behavior of van derWaals fluid near the critical point.

    (1) Expand the vdW equation in a Taylor series in (V − Vc), keeping termsthrough order (V − Vc)3. Prove that, for T close enough to Tc , the termquadratic in (V − Vc) becomes negligible compared to the others and may bedropped.Answer:To be simple, we take the vdW equation in terms of reduced variablesp = 8t

    3v−1 −3v2

    . When we use reduced quantities, v = V /Vc , the expansion isin terms of (V /Vc − Vc/Vc) = (v − 1).Taylor expansion is: f (x0 + h) = f (x0) + hf

    ′(x0) +h2

    2!f ′′(x0) + . . .

    The derivatives we need:∂p∂v

    = −24t(3v − 1)−2 + 6v−3∂2p∂v2

    = 144t(3v − 1)−3 − 18v−4∂3p∂v3

    = −1296t(3v − 1)−4 + 72v−5

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 (1) - cnt.

    p(v) ≈ p(1) + ∂p∂v

    ∣∣1

    (v − 1) + 12∂2p∂v2

    ∣∣∣1

    (v − 1)2 + 16∂3p∂v3

    ∣∣∣1

    (v − 1)3

    p(v) ≈ (4t − 3)− 6(t − 1)(v − 1) + 9(t − 1)(v − 1)2 − 32(9t − 8)(v − 1)3

    T being close enough to Tc means T − Tc ≈ 0, or in reduced variables,t − 1 ≈ 0, let’s note this as t − 1 ≈ O(0).

    When v − 1 ' t − 1:p(v) ≈ (4t − 3)− 6O2(0) + 9O3(0)− 3

    2(9t − 8)O3(0)

    When (v − 1)2 ' t − 1:p(v) ≈ (4t − 3)− 6O(0)(v − 1) + 9O2(0)− 3

    2(9t − 8)(v − 1)O(0)

    So, 9(t − 1)(v − 1)2 is always smallest, which we can drop. Then we have:p(v) ≈ (4t − 3)− 6(t − 1)(v − 1)− 3

    2(9t − 8)(v − 1)3

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 - cnt.

    (2) The expression for P(V ) is antisymmetric about the point V = Vc . Usethis fact to find an approximate formula for the vapor pressure as a function oftemperature.

    Answer: p(v) ≈ (4t − 3)− 6(t − 1)(v − 1)− 32(9t − 8)(v − 1)3

    When (v − 1) > 0, p(v) ≈ (4t − 3)− 6(t − 1) |(v − 1)| − 32(9t − 8)

    ∣∣(v − 1)3∣∣When (v − 1) < 0, p(v) ≈ (4t − 3) + 6(t − 1) |(v − 1)|+ 3

    2(9t − 8)

    ∣∣(v − 1)3∣∣So, the −6(t − 1)(v − 1)− 3

    2(9t − 8)(v − 1)3 is antisymmetric. The pressure of

    the phase transition is p(v) = (4t − 3) - This line split the enclosed area intotwo parts with the same area.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 - cnt.

    (3) Find an expression for the difference between volume between the gas andthe liquid phases at the vapor pressure. You should find(Vg − Vl) ∝ (Tc − T )β , where β is a critical exponent. Experiments show thatβ has a universal value of about 1/3, but vdW model predicts a larger number.

    Answer:

    The volumes of the liquid and gas at the transition pressure are those at thetransition pressure p = 4t − 3. That is,(4t − 3) = (4t − 3)− 6(t − 1)(v − 1)− 3

    2(9t − 8)(v − 1)3

    −6(t − 1)− 32(9t − 8)(v − 1)2 = 0

    At T ' Tc , or t ' 1,−6(t − 1)− 3

    2(v − 1)2 = 0

    v − 1 = ∓2√

    1− t or, v = 1∓ 2√

    1− tvg − vl = 4

    √1− t

    So, β is 12.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 - cnt.

    (4) Use the previous result to calculate the latent heat of the transformation asa function of T , and sketch this function.

    Answer:

    The Clausius-Clapeyron relation: dPdT

    = LTδV

    So, the latent heat is

    L = T (Vg − Vl) dPdT = tPcVc(vg − vl)dpdt

    L = tPcVc · 4√

    1− t · 4L = 16PcVct

    √1− t

    L = 16 38kNTct

    √1− t

    LkNTc

    ≈ 6t√

    1− t

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 (4) - cnt.

    LkNTc

    ≈ 6t√

    1− t by red line.L

    kNTc≈ 6√

    1− t by black line.

    t0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    cL/

    kNT

    1

    2

    3

    4

    5

    6.0*sqrt(1-x)

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 1 - cnt.

    (5) The shape of the T = Tc isotherm defines another critical exponent, calledδ : (P − Pc) ∝ (V − Vc)δ. calculate δ in vdW model.

    Answer:

    When t = 1, from the Taylor expansion of the vdW equation:p(v) ≈ (4t − 3)− 6(t − 1)(v − 1)− 3

    2(9t − 8)(v − 1)3

    p(v) ≈ 1− 32(v − 1)3

    p(v)− 1 ≈ − 32(v − 1)3

    P − Pc ≈ − 32 (V − Vc)3

    So, δ = 3

    Note: The experimental value of δ is typically around 4 and 5.

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 2

    Review Exercise 02:Find the internal energy U of vdW gas as a function of T ,V ,Cv . Assume thenumber of particles are fixed.Answer:vdW equation:

    (P +

    (NV

    )2a)

    (V − Nb) = NkT

    P(N,V ,T ) = NkTV−Nb −

    (NV

    )2a(

    ∂P∂T

    )V

    = NkV−Nb

    T(∂P∂T

    )V− P =

    (NV

    )2a

    Use equation (see next slide)dU = CV dT +

    (T(∂P∂T

    )V− P

    )dV

    One hasdU = CV dT +

    (NV

    )2adV

    Integrating both sides of the equation gives:

    U = U0(V0,T0) + CV (T − T0)− N2a(

    1V− 1

    V0

    )

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 2 - cnt.

    Review Exercise 02:How do we get this equation: dU = CV dT +

    (T(∂P∂T

    )V− P

    )dV ???

    We can start fromdU =

    (∂U∂T

    )VdT +

    (∂U∂V

    )TdV

    anddS(V ,T ,N) =

    (∂S∂T

    )VdT +

    (∂S∂V

    )TdV ......(a)

    The derivative of S can be written asdS(V ,T ,N) = Q

    T= dU+PdV

    T, U = U(T ,V ,N)

    dS(V ,T ,N) = 1TCV dT +

    (1T

    (∂U∂V

    )T

    + PT

    )dV ......(b)

    By comparing these equation (a) and (b) , one get(∂S∂T

    )V

    = 1TCV =

    1T

    (∂U∂T

    )V(

    ∂S∂V

    )T

    = 1T

    (∂U∂V

    )T

    + PT

    Note 1: Problem 3.33: CV = T(∂S∂T

    )V.

    Note 2: Textbook (3.39): P = T(∂S∂V

    )U,N

    .

    X Bai Thermodynamics

  • Outline Review Example Problem 1 Example Problem 2

    Problem 2 - cnt.

    In the meantime, the derivative of S is∂2S∂V∂T

    = ∂∂V

    (1T∂U∂T

    )V

    = ∂2S

    ∂T∂V= ∂

    ∂T

    (1T

    (∂U∂V

    )T

    + PT

    )So, we have1T

    ∂2U∂V∂T

    = − 1T 2

    (∂U∂V

    )T

    + 1T

    ∂2U∂T∂V

    − PT 2

    + 1T

    (∂P∂T

    )V

    Identical terms cancel, we get1T 2

    (∂U∂V

    )T

    = − PT 2

    + 1T

    (∂P∂T

    )V

    Or,(∂U∂V

    )T

    = −P + T(∂P∂T

    )V

    So,dU =

    (∂U∂T

    )VdT +

    (∂U∂V

    )TdV

    dU =(∂U∂T

    )VdT + (−P + T

    (∂P∂T

    )V

    )dV

    X Bai Thermodynamics

    ReviewExample Problem 1Exponents of phase transformation

    Example Problem 2Application of Thermodynamic Identity