thermophysics with themis

17
Thermophysics with THEMIS • Background THEMIS daytime infrared images – Comparison with visible images THEMIS nighttime infrared images – Proxy for qualitative thermal inertia THEMIS thermal inertias – Comparison with TES and Mini-TES data

Upload: others

Post on 03-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Thermophysics with THEMIS

• Background• THEMIS daytime infrared images

– Comparison with visible images• THEMIS nighttime infrared images

– Proxy for qualitative thermal inertia• THEMIS thermal inertias

– Comparison with TES and Mini-TES data

Background• Surface

temperatureaffected by:

– Solar radiation ontothe surface

– Albedo – thermalenergy absorbed orreflected

– Conductivity of thesurface material

– Presence of CO2 ice

THEMIS Daytime IR• During the day surface temperature is

primarily a function of:– Surface albedo– Topography– Thermal inertia

• Poor time to derive thermal inertia• Good proxy for morphology and

context for THEMIS and MOC visibleimages

• Absolute accuracy: ~1° K

I06353020M0201821MSSS/JPL/NASA

Pasteur Crater

8 km

Day IR

THEMIS Visible

MOC Visible

4.8 kmV10422009

185 240

300 m

Kasai VallesTHEMIS Visible

Day IRV

1206

0006

I108

3700

6

8 km

200 2501 km

THEMIS Nighttime IR• Surface temperature at night dominated by:

– Thermal inertia - Physical nature of thesurface, such as particle size

– Effects of albedo and topography have largelydissipated

• Qualitative thermal inertia – band 9– High signal to noise– Fairly transparent to the atmosphere

• Most images are acquired between 4.5-5 H– CO2 frost may be present

• Absolute accuracy – ~4º K

Nili PateraNight IR

THEMIS VisibleI0

5347

011

V11

6310

06

8 km

170 210

2.5 km

PasteurCrater

I063

5302

0

8 km

Day IR

V10422009

THEMIS Visible

Night IR

I086

4401

2

8 km

185 240 150 195

4.8 km

Kasai VallesNight IR

I151

4900

7

V09

9010

21

THEMIS Visible

8 km

155 200

2 km

8kmI0

2017

005

I012

6200

5

Night IR

Day IR

Hecates Tholus

200 265 150 190

Thermal Inertia• I = (ρkc)1/2

ρ – bulk density (kg m-3) k – conductivity (J kg-1 °K-1 ) c – specific heat (J s-1 °K-1 m-1)• Units of J m-1 °K-1 s-1/2

• Measure of the resistance of a material to achange in temperature

Thermal Inertia Method• Use thermal model developed by H. H. Kieffer

– Ls, latitude, local time from spacecraft ephemeris– TES-derived albedo (8ppd)– MOLA-derived elevations (128 elem. per degree)– TES-derived dust opacity (2 ppd) every 30° Ls

• Radiance at 12.57 µm (Band 9) is convertedto brightness temperature, correcting for driftand wobble of the spacecraft.

• Interpolate upon a 7-D look-up table

Comparison with Orbital Data - TES

• Differences inthermal inertias areprimarily due todifferences insurface temperature– Differences are

roughly the sameas THEMISuncertainty

– This differencedoes not changethe scientificinterpretation of thegeology

• Thermal models results used for TES and THEMISagree within 3°K

Fergason et al., in prep.

Comparisonwith Surface

Measurements -MER

Fergason et al., in submission

THEMIS and Mini-TES Thermal Inertia

0

500

1000

1500

0 10 20 30 40 50 60 70 80

Spirit - Gusev Landing Site Number

Th

erm

al In

ert

ia

Mini-TES Thermal Inertia THEMIS Thermal Inertia

250 430J/m2Ks1/2

Arabia Terra

• Blue – dust– TI: 60-85

• Green –sand– TI: 210-250

• Red –resistiveoutcrops– TI: 400-435

J/m2Ks1/224 430

M0310925NASA/JPL/MSSS

1 km

16 km

I01229007

Nili Patera66.5 E

9.5 N67.9 E

8.3 N180-225

229-226

200-325

1040-1270 575-865

N

Conclusions• Day IR

– Good morphologic context– Temperatures strongly controlled by albedo

and local topography• Night IR

– Qualitative thermal inertia – relative within animage

• Thermal Inertia– Improved spatial resolution– Consistent with TES and Mini-TES data