thesciencebehindexpression™! - enhancement …!...

5
1 The Science Behind Expression™ In recent years there has been a growing concern regarding the use of animalderived products for technical and especially biomedical and pharmaceutical applications. Typically extracted from rooster combs, hyaluronic acid, also referred to as HA or hyaluronan, is one example of a product that could benefit from a pathogenfree production alternative. HA has been used in a wide range of proven and marketed applications within the cosmetic and biomedical industries. Its distinctive moisturizing and viscoelastic properties, coupled with its lack of immunogenicity and toxicity, have made it popular in skin moisturizers, osteoarthritis treatment, ophthalmic surgery, eye and rewetting drops, adhesion prevention, wound healing, and dermal fillers. HA also is investigated increasingly as a carrier for the dermal, ophthalmic, nasal, pulmonary, parenteral, liposomal, and implantable delivery of drugs as well as for gene delivery. New methods have emerged to make HA available as a raw material free from any animal derivatives through a biotech production method. Enhancement Medical is using the new pathogenfree, raw HA material to develop and manufacture its Expression™ injectable gel in Wauwatosa, Wisconsin. By examining the chemical properties of HA and comparing the two production methods, it is evident that the new method offers numerous advantages. Introduction to HA HA is a natural and linear polysaccharide belonging to the class nonsulphated glycosaminoglycans. With a structure that is highly conserved and identical in all species, HA is a unique biopolymer. It exhibits significant structural, rheological, physiological, and biological functions. HA is composed of alternating beta1, 3Nacetyl glucosamine and beta1, 4 glucoronic acid disaccharide units. The number of repeating disaccharides can reach 10,000 or more, resulting in molecular weights of 4 MDa or more. Figure 1 shows HA in its powdered form. Figure 1: Hyaluronic acid, with its moisturizing and viscoelastic properties

Upload: truongdien

Post on 01-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

 

1  

The  Science  Behind  Expression™    

In  recent  years  there  has  been  a  growing  concern  regarding  the  use  of  animal-­‐derived  products  for  technical  and  especially  biomedical  and  pharmaceutical  applications.  Typically  extracted  from  rooster  combs,  hyaluronic  acid,  also  referred  to  as  HA  or  hyaluronan,  is  one  example  of  a  product  that  could  benefit  from  a  pathogen-­‐free  production  alternative.    HA  has  been  used  in  a  wide  range  of  proven  and  marketed  applications  within  the  cosmetic  and  biomedical  industries.    Its  distinctive  moisturizing  and  visco-­‐elastic  properties,  coupled  with  its  lack  of  immunogenicity  and  toxicity,  have  made  it  popular  in  skin  moisturizers,  osteoarthritis  treatment,  ophthalmic  surgery,  eye  and  rewetting  drops,  adhesion  prevention,  wound  healing,  and  dermal  fillers.  HA  also  is  investigated  increasingly  as  a  carrier  for  the  dermal,  ophthalmic,  nasal,  pulmonary,  parenteral,  liposomal,  and  implantable  delivery  of  drugs  as  well  as  for  gene  delivery.        New  methods  have  emerged  to  make  HA  available  as  a  raw  material  free  from  any  animal  derivatives  through  a  biotech  production  method.    Enhancement  Medical  is  using  the  new  pathogen-­‐free,  raw  HA  material  to  develop  and  manufacture  its  Expression™  injectable  gel  in  Wauwatosa,  Wisconsin.    By  examining  the  chemical  properties  of  HA  and  comparing  the  two  production  methods,  it  is  evident  that  the  new  method  offers  numerous  advantages.    Introduction  to  HA  HA  is  a  natural  and  linear  polysaccharide  belonging  to  the  class  non-­‐sulphated  glycosaminoglycans.  With  a  structure  that  is  highly  conserved  and  identical  in  all  species,  HA  is  a  unique  biopolymer.  It  exhibits  significant  structural,  rheological,  physiological,  and  biological  functions.    HA  is  composed  of  alternating  beta-­‐1,  3-­‐N-­‐acetyl  glucosamine  and  beta-­‐1,  4-­‐glucoronic  acid  disaccharide  units.  The  number  of  repeating  disaccharides  can  reach  10,000  or  more,  resulting  in  molecular  weights  of  4  MDa  or  more.  Figure  1  shows  HA  in  its  powdered  form.    

 Figure  1:  Hyaluronic  acid,  with  its  moisturizing  and  visco-­‐elastic  properties  

 

2  

 Hyaluronic  acid  is  found  in  the  vitreous  body  and  it  is  also  abundant  in  the  extracellular  matrix,  especially  of  soft  connective  tissue,  and  in  the  synovial  fluids  of  articular  joints.  Skin  tissues  contain  the  largest  amount  of  HA,  measuring  7-­‐8  g  per  average  adult  human.  The  concentration  of  HA  in  rooster  combs  and  human  umbilical  cords  is  very  high,  reaching  7500  mg/L  and  4100  mg/L,  respectively.  In  the  early  1980s,  a  group  of  scientists  developed  a  procedure  to  isolate,  purify  and  identify  hyaluronic  acid  from  rooster  combs  and  human  umbilical  cords.    Since  then,  HA  has  been  produced  from  rooster  combs  at  industrial  scale.    

Production  of  HA    Microbial  fermentation  has  emerged  as  a  successful  new  technique  for  the  production  of  HA.    The  bacterial  production  of  HA  involving  a  Streptococcus  zooepidemicus  strain  was  first  described  in  1989,  giving  rise  to  the  first  commercialization  of  fermented  HA.  Nevertheless,  streptococci  are  pathogenic  in  nature  and  fastidious  lactic  acid  bacteria.  They  have  demanding  requirements  such  as  media  containing  yeast  or  animal  extracts,  peptone  and  serums  during  the  fermentation.  The  presence  of  bacterial  endotoxins,  chondroitin  sulphates,  proteins,  nucleic  acids,  and  heavy  metals  in  HA  from  streptococcal  fermentation  or  rooster  combs  has  also  been  reported.  Finally,  both  extracted  HA  and  microbial  HA  are  purified  using  harsh  organic  solvents. As  a  global  biotech  specialist  in  enzymes  and  micro-­‐organisms,  the  Denmark-­‐based  company  Novozymes  Biopolymer  used  its  core  competencies  to  develop  a  unique  method  for  the  production  of  an  ultra-­‐pure  sodium  hyaluronate.  It  is  produced  by  fermentation  of  a  novel  and  non-­‐pathogenic  strain,  Bacillus  subtilis,  from  which  products  are  Generally  Regarded  As  Safe  (GRAS).    

 The  enzyme  hyaluronan  synthase,  or  HAS,  catalyzes  the  assembly  of  the  two  immediate  HA  precursor  sugars,  UDP-­‐glucoronic  acid  (UDP-­‐GlcUA)  and  UDP-­‐N-­‐acetyl-­‐D-­‐glucosamine  (UDP-­‐GlcNAc),  to  form  HA.  In  Streptococcus,  the  biosynthetic  pathways  that  result  in  the  production  of  these  precursors  also  supply  sugars  for  basic  cellular  processes  such  as  cell  wall  biosynthesis  and  energy  metabolism.  This  relationship  is  illustrated  in  Figure  2.    

 

3  

 Figure  2:  Bacterial  pathway  for  the  production  of  hyaluronic  acid  in  recombinant  Bacillus  

subtilis  strains    To  avoid  potential  limitation  on  cell  growth  due  to  HA  synthesis,  Streptococci  incorporate  HAS  into  an  operon  along  with  additional  copies  of  one  or  more  genes  that  encode  key  enzymes  involved  in  the  synthesis  of  the  precursor  sugars.  For  example,  in  addition  to  the  HAS  gene  (designated  hasA),  the  S.  equisimilis  HA  operon  includes  the  hasB,  hasC,  and  hasD  precursor  genes  encoding  the  enzymes  UDP-­‐glucose  dehydrogenase,  UDP-­‐glucose  pyrophosphorylase,  and  UDP-­‐N-­‐acetylglucosamine  pyrophosphorylase,  respectively.    A  New  Approach  A  similar  strategy  was  followed  to  develop  recombinant  Bacillus  strains  that  produce  HA.  All  expression  constructs  utilized  the  hasA  from  S.  equisimilis,  in  conjunction  with  one  or  more  of  three  native  B.  subtilis  precursor  genes:  tuaD  (hasB  homologue),  gtaB  (hasC),  and  gcaD  (hasD).  Gene  expression  was  driven  by  a  modified  version  of  the  amyQ  promoter  from  B.  amyloliquefaciens.  All  expression  cassettes  were  integrated  into  the  chromosome  of  B.  subtilis  A164D5  at  the  amyE  locus  in  order  to  maximize  genetic  stability.  Strains  that  demonstrated  HA  production  through  the  appearance  of  a  wet  or  slimy  phenotype  on  agar  plates  were  evaluated  further  in  fermentation  reactors.    During  the  fermentation  of  Bacillus  subtilis  for  the  production  of  HA,  no  animal  derived  raw  material  are  used.  Instead,  the  carbon  source  is  a  minimal  medium  based  on  sucrose.  The  growing  HA  chain  is  secreted  into  the  surrounding  medium  and  is  not  cell-­‐associated.  As  a  consequence,  the  Bacillus-­‐derived  HA  is  characterized  by  a  vastly  improved  safety  profile.  There  is  no  risk  of  viral  contamination  or  of  transmittance  of  animal  spongiform  encephalopathy.  It  also  exhibits  very  low  levels  of  protein,  nucleic  acid  and  metal  ion.  Moreover,  the  host  strain  does  not  produce  any  endotoxins  or  exotoxins.  

 

4  

 The  fermentation  of  the  B.  subtilis  A164D5  host  to  produce  HA  is  followed  by  a  unique  recovery  process,  during  which  only  water-­‐based  (i.e.  no  organic)  solvents  are  employed.  The  final  recovery  step  consists  of  spray-­‐drying,  which  affords  the  final  HA  powder.       Benefits  of  the  New  Method This  remarkably  energy-­‐efficient  technology,  combined  with  the  exclusive  use  of  aqueous  solvents,  make  the  Novozymes  sodium  HA  production  process  the  most  environment  friendly  developed  to  date.  The  new  biotech  process  leads  to  the  production  of  a  very  fine  HA  powder  composed  of  micro-­‐  and  nanospheres,  as  shown  in  Figure  3.  Owing  to  the  large  surface  area,  Bacillus-­‐HA  dissolves  faster  than  traditional  HA.  This  significantly  reduces  the  time  and  energy  needed  for  batch  processes  and  formulation  manufacturing.      

 Figure  3:  Scanning  Electron  Microscope  picture  of  Bacillus-­‐derived  hyaluronic  acid

 The  molecular  weight  of  spray-­‐dried  Bacillus-­‐derived  HA  is  ca.  1  MDa,  with  a  very  low  polydispersity  of  1.3-­‐1.4  according  to  SEC-­‐MALLS-­‐RI  analysis.  Moreover,  the  structure  of  Bacillus-­‐HA  is  identical  to  that  of  natural  HA  and  Streptococcus  HA.  This  was  confirmed  by  enzymatic  hydrolysis  followed  by  MALDI-­‐TOF  analysis,  FT-­‐IR  and  HPLC  for  monomer  composition.  It  has  been  shown  that  this  ultra-­‐pure  sodium  hyaluronate  from  is  biocompatible,  non-­‐cytotoxic,  non-­‐allergenic  and  non-­‐mutagenic. Enhancement  Medical  uses  the  raw  HA  product  from  Novozymes  as  a  non-­‐toxic  and  non-­‐pathogen  delivery  medium  for  its  Expression™  injectable  gel.  In  formulating  Expression™,  the  HA  molecules  are  cross-­‐linked  with  divinyl  sulfone  (DVS)  and  the  gel  is  swelled  to  equilibrium.      

 

5  

In  Summary  This  new  hyaluronic  acid  produced  by  the  fermentation  of  the  safe  bacterial  strain  Bacillus  subtilis  is  characterized  by  a  well-­‐controlled  and  reproducible  molecular  weight  and  exhibits  advantageous  formulation  properties.  This  innovative  Bacillus  technology  not  only  offers  great  promise  in  the  pharmaceutical  arena  with  demanding  quality  and  safety  requirements  but  also  has  the  potential  to  lead  to  custom-­‐tailored  products  with  targeted  molecular  weights.  The  fermentation  process  is  both  safe  and  environmentally  friendly.  It  is  100%  free  of  animal-­‐derived  raw  materials  and  of  organic  solvents.  As  a  consequence,  Expression™  by  Enhancement  Medical  contains  a  premium  hyaluronic  acid  with  unsurpassed  safety  and  purity.      Further  Reading  Additional  information  regarding  this  new  HA  production  method  is  available  from  Enhancement  Medical  and  from  Novozymes.  Additionally,  the  following  article  and  the  references  contained  therein:    “Hyaluronic  Acid  -­‐  The  Biotech  Way”,  Manufacturing  Chemist,  22  Dec  2008,  www.manufacturingchemist.com/technical/article_page/Hyaluronic  acid  the  biotech  way/41631  

 Figure  4:  Novozymes  Biopolymer  A/S  was  one  fo  the  winning  entries  in  the  2008  Innovatin  Awards  at  CPhI  in  Frankfurt.  The  company  won  Gold  for  the  innovative  process  of  producing  

hyaluronic  acid  via  biotechnology          

10201  Innovation  Drive,  Ste  450  Wauwatosa,  WI  53226  

(414)  918  -­‐  4280  

[email protected]  www.enhancementmedical.com