thesis dharmpal deepak 179-pup ph.d....

28
200 BIBLIOGRAPHY Aggarwal, B.D., and Broatman, L.J. (1980) Analysis and performance of fibre composites, John Wiley, USA. Akira, M., and Watabane, R. (1997) Concept and P/M fabrication of functionally gradient materials, Ceramics Int., 23: 73–83. Alman, D.E. (2001) Properties of metal matrix composites, in: ASM Handbook, 21: Composites, ASM International, Metals Park, Ohio, 838–858. Andrade, E.N.da.C (1957) Creep and recovery, American Society of Metals, Metals Park, Ohio, 176–198. Arai, Y., Kobayashi, H., and Tamura, M. (1990) Analysis on residual stress and deformation of functionally gradient materials and its optimum design, Proc. 1st Int. Symposium on FGM, Sendai. Arai, Y., Kobayashi, H., and Tamura, M. (1993) Elastic-plastic thermal stress analysis for optimum material design of functionally graded material, Trans. Jpn. Soc. Mech. Engng., (in Japanese), A59: 849. Arsenault, R.J., and Taya, M. (1987) Thermal residual stress in metal matrix composites, Acta Metall, 35(3): 651–659. Arya, V.K., and Bhatnagar, N.S. (1979) Creep analysis of rotating orthotropic discs, Nuclear Engg. Design, 55: 323–330. Asghari, M., and Ghafoori, E. (2010) A three-dimensional elasticity solution for functionally graded rotating disks, Composite Structures, 92 (5): 1092–1099.

Upload: vonhu

Post on 29-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

200

BIBLIOGRAPHY

Aggarwal, B.D., and Broatman, L.J. (1980) Analysis and performance of

fibre composites, John Wiley, USA.

Akira, M., and Watabane, R. (1997) Concept and P/M fabrication of

functionally gradient materials, Ceramics Int., 23: 73–83.

Alman, D.E. (2001) Properties of metal matrix composites, in: ASM

Handbook, 21: Composites, ASM International, Metals Park, Ohio,

838–858.

Andrade, E.N.da.C (1957) Creep and recovery, American Society of

Metals, Metals Park, Ohio, 176–198.

Arai, Y., Kobayashi, H., and Tamura, M. (1990) Analysis on residual

stress and deformation of functionally gradient materials and its

optimum design, Proc. 1st Int. Symposium on FGM, Sendai.

Arai, Y., Kobayashi, H., and Tamura, M. (1993) Elastic-plastic thermal

stress analysis for optimum material design of functionally graded

material, Trans. Jpn. Soc. Mech. Engng., (in Japanese), A59: 849.

Arsenault, R.J., and Taya, M. (1987) Thermal residual stress in metal

matrix composites, Acta Metall, 35(3): 651–659.

Arya, V.K., and Bhatnagar, N.S. (1979) Creep analysis of rotating

orthotropic discs, Nuclear Engg. Design, 55: 323–330.

Asghari, M., and Ghafoori, E. (2010) A three-dimensional elasticity

solution for functionally graded rotating disks, Composite Structures,

92 (5): 1092–1099.

201

Ashby, M.F., and Frost, H.J. (1975) Kinematics of inelastic deformation

above 0 K, in constitutive equations in plasticity (Ed. A. Argon), MIT

Press, Cambridge, MA.

Bache, M.R., Evans, W.J., and Uygur, I. (1998) Fatigue life prediction for

notch geometries in particle reinforced metal matrix composites,

Mater. Sci. Tech., 14: 1065–1069.

Badani, C. (1990) SiC whisker-aluminium 6061 composite: Microstructure

and mechanical characteristics anisotropy, J. Mat. Sci., 25: 2607–

2614.

Bayat, M., Saleem, M., Sahari, B.B., Hakouda, A.M.S., and Mahdi, E.

(2008) Analysis of functionally graded rotating disks with variable

thickness, Mechanics Research Communications, 35: 283–309.

Bayat, M.N., Saleem, M., Sahari, B.B., Hamouda, A.M.S., and Mahdi,

E. (2007) Thermo elastic analysis of a functionally graded rotating

disk with small and large deflections, Thin-Walled Structures, 45:

677–691.

Bhatnagar, N.S., Kulkarni, P.S., and Arya, V.K. (1986) Steady-state

creep of orthotropic rotating disks of variable thickness, Nuclear

Engineering and Design, 91(2): 121–144.

Bhatnagar, N.S., and Gupta, R.P. (1966) On the constitutive equations of

the orthotropic theory of creep, J. Phys. Soc. Japan, 21 (4): 1003–

1007.

Bicanic, N., Pearce, C.J., and Owen, D.R.J. (1994) Failure prediction of

concrete-like materials using softening Hoffman plasticity model,

202

Proceedings of international conference on computational modeling of

concrete structures, EURO-C, 185–198.

Biesheuvel, P.M., and Verweij, H. (2000) Calculation of the composition

profile of a functionally graded material produced by centrifugal

casting, J. Am. Ceram. Soc., 83: 743–749.

Blumm, M., Dollmeler, K., and Lischner, B. (1994) Experimental

investigation of fatigue-crack propagation in room temperature

bending tests with Cu-Ni graded alloys, Proc. 3rd International

Symposium on Structural and Functional Gradient Materials: 315.

Bonollo, F., Moret, A., Gallo, S., and Mus, C. (2004) Cylinder liners in

aluminium matrix composite by centrifugal casting, Materiali

Compositi, 6: 49–53.

Boyle, J.T., and Spence, J. (1983) Stress analysis for creep, Butterworth,

London.

Cadek, J., and Sustek, V. (1994) Comment on “Steady state creep

behaviour of silicon carbide reinforced aluminium composite”

discussion, Scr. Metall. Mater., 30(3): 277–282.

Cadek, J., Oikawa, H., and Sustek, V. (1994b) High temperature creep

behaviour of silicon carbide particulate-reinforced aluminium, High

Temp. Mater. Processes, 13: 327–338.

Cadek, J., Oikawa, H., and Sustek, V. (1995) Thershold creep behaviour

of discontinuous aluminium and aluminium alloy matrix composites:

An overview, Mater. Sci. Engng., A190: 9–21.

203

Cadek, J., Pahutova, M., and Sustek, V. (1998) Creep behaviour of a

2124 Al Alloy reinforced by 20 vol% silicon carbide particulate,

Mater. Sci. Engg., A246: 252–264.

Cadek, J., Sustek, V., and Pahutova, M. (1994a) Is creep in discontinuous

metal matrix composites lattice diffusion controlled?, Mater. Sci.

Engng., A174: 141–147.

Cadek, J., Zhu, S.J., and Milicka, K. (1998a) Creep behaviour of ODS

aluminium reinforced by silicon carbide particulates: ODS Al-30SiCp

composite, Mater. Sci. Engg., A248: 65–72.

Cadek, J., Zhu, S.J., and Milicka, K. (1998b) Threshold creep behaviour

of dispersion strengthened by fine alumina particles, Mater. Sci.

Engg., A252 (1), 1–5.

Callıoglu, H., Topcu, M., and Tarakcılar, A.R. (2006) Elastic–plastic

stress analysis of an orthotropic rotating disc, International Journal of

Mechanical Sciences, 48: 985–990.

Chang, C.I. (1976) Stresses and displacements in rotating anisotropic disks

with variable densities, AIAA, 14 (1): 116–118.

Chaudhury, P.K., and Mohamed, F.A. (1988) Effect of impurity content

on superplastic flow in the Zn–22%Al Alloy, Acta Metall., 36: 1099–

1110.

Cheu, T.C. (1990) Procedures for shape optimization of gas turbine,

Computers and Structures, 54 (1): 1–4.

Crowe, C.R., Gray, R.A., and Hasson, D.F. (1985) Proceedings of 5th

International Conference on Composite Materials, San Diago (The

Metallurgical Society, Warrendale, Pennsylvania), 843.

204

Dieter, G.E. (1988) Mechanical metallurgy, McGraw-Hill, London.

Ding, H.J., Wang, H.M., and Chen, W.Q. (2003) Dynamic responses of a

functionally graded pyroelectric hollow sphere for spherically

symmetric problems, Int. J. Mech. Sci., 45: 1029–1051.

Dragone, T.L., and Nix, W.D. (1992) Steady state and transient creep

properties of an aluminum alloy reinforced with alumina fibers, Acta

Metall. Mater., 40(10): 2781–2791.

Durodala, J.F., and Attia, O. (2000) Deformation and stresses in

functionally graded rotating disks, Comp. Sci. Tech., 60: 987–995.

Durodola, J.F., and Adlington, J.E. (1997) Functionally graded material

properties for disks and rotors, Key Engg. Mater., 127-131: 1199–

1206.

Eraslan, A.N., and Orcan, Y. (2002) Elastic-plastic deformation of a

rotating disk of exponentially varying thickness, Mechanics of

Materials, 34: 423–432.

Erdogan, F., and Wu, B.H. (1992) Analysis of FGM specimens for

fracture toughness testing, functionally gradient materials, Ceramic

Trans., American Ceramic Society, 34: 39.

Erdogan, F., and Wu, B.H. (1993) Analysis of FGM specimens of fracture

toughness testing, Ceramic Trans., 34: 39–46.

Farshi, B., and Bidabadi, J. (2008) Optimum design of inhomogeneous

rotating discs under secondary creep, International Journal of Pressure

Vessels and Piping, 85: 507–515.

205

Farshi, B., Jahed, H., and Mehrabian, A. (2004) Optimum design of

inhomogeneous non-uniform rotating discs, Computers and Structures,

82: 773–779.

Findely, W.N., Lai, J.S., and Onaram, K. (1976) Non-linear creep and

relaxation of viscoelastic materials, with an introduction to linear

visco-elasticity, North-Holland, Amsterdam.

Finnie, I., and Hellar, W.R. (1959) Creep of engineering materials,

McGraw Hill, NewYork.

Finot, M., Suresh, S., Bull, C., Giannakopoulos, A. E., Olsson, M., and

Sampath, S. (1994) Experimental studies of thermal cycling of a Ni-

A2O3 graded material, Proc. 3rd International Symposium on

Structural and Functional Gradient Materials, 229.

Fitzpatrick, M.E., Dutta, M., and Edwards, L. (1998) Determination by

neutron diffraction of effect of plasticity on crack tip strains metal

matrix composite, Mater. Sci. Tech., 14: 980–986.

Fox, R.L. (1970) Optimization methods for engineering design, Addisen-

wesley, London.

Fukui, Y., and Bowen, P. (1994) Fatigue crack propagation an In-Situ Al-

Al3Ni functionally gradient material, Trans. JSME, 60A (577): 2048.

Fukui, Y., and Yamanaka, N. (1992) Elastic analysis for thick-walled

tubes of functionally graded material subjected to internal pressure,

JSME Int J. Series I, 35(4): 379–385.

Fukui, Y., Yamanaka, N., and Wakashima, K. (1993) The stresses and

strains in a thick-walled tube for functionally graded material under

uniform thermal loading, JSME Int. J. Series A, 36(2): 156–162.

206

Gao, J.W., and Wang C.Y. (2000) Modeling the solidification of

functionally graded materials by centrifugal casting, Mater. Sci. and

Engng. , A292: 207–215.

Gonzalez-Doncel, G., and Sherby, O.D. (1993) High temperature creep

behaviour of metal matrix aluminium-SiC composites, Acta Metall

Mater, 41(10): 2797–2805.

Gooch, D.J., and How, I.M. (1986) Techniques for multiaxial creep

testing, Elsevier, New York.

Gupta, S.K., Sharma, S., and Pathak, S. (2000) Creep transition in non-

homogeneous thick walled rotating cylinders, Indian J. of Pure and

Appl. Math., 31(12): 1579–1594.

Gupta, V.K., Kumar, V., and Ray, S. (2009b) Modeling creep in a

rotating disc with linear and quadratic composition gradients,

Engineering Computations, 26 (4): 400– 421.

Gupta, V.K., Kwatra, N., and Ray, S. (2007) Artificial neural network

modeling of creep behavior in a rotating composite disc, Engineering

Computations: International Journal for Computer-Aided Engineering

and Software, 24(2): 151–164.

Gupta, V.K., Singh, S.B., and Ray, S. (2009a) Role of reinforcement

geometry on the steady state creep behavior of a rotating composite

disc, Multidiscipline Modeling in Mat. and Str., 5: 139–150.

Gupta, V.K., Singh, S.B., Chandrawat, H.N., and Ray, S. (2004) Creep

behaviour of a rotating functionally graded composite disc operating

under thermal gradients, Metall Mater Trans., 35A (4): 1381–1391.

207

Gupta, V.K., Singh, S.B., Chandrawat, H.N., and Ray, S. (2004a) Steady

state creep and material parameters in a rotating disc of Al-SiCp

Composite, Europ. J. Mech. A/Solids, 23: 335-344.

Gupta, V.K., Singh, S.B., Chandrawat, H.N., and Ray, S. (2005)

Modeling of creep behaviour of a rotating disc in presence of both

composition and thermal gradients, J Engng Mater. Technol., 127(1):

97–105.

Guven, U., and Celik, A. (2001) On transverse vibrations of functionally

graded isotropic linearly elastic rotating solid disks, Mechanics

Research Communications, 28 (3): 271–276.

Hasan, C. (2007) Thermal stress analysis of curvilinear orthotropic rotating

disks, Journal of Thermoplastic Composite Materials, 20: 357-369.

Hashida, T., and Takahashi, H. (1990) Laser irradiation thermal shock

and thermal fatigue test procedure, Proc. 1st International Symposium

on FGM, 365.

Hill R. (1950) The mathematical theory of plasticity, The Clarendon Press,

Oxford.

Hirai, T. (1996) Functionally gradient materials, Mater Sci. Tech. (Eds.

Chan, R.W., Hassen, P. and Cramer, E.J.) VCH, Weinheim, Germany,

17B: 293–341.

Hirano, T., and Teraki, J. (1993) Computational approach to design of

functionally graded energy conservation materials, in: Modeling and

Simulation for Materials Design (Eds. Nishijima, S and Onodera, H.),

303–308.

208

Ho, S., and Lavernia, E.J. (1996) Thermal residual stresses in functionally

graded and layered 6061 Al/SiC materials, Metall. Trans., 27A: 3241–

3249.

Hojjati, M.H., and. Hassani, A. (2008) Theoretical and numerical analysis

of rotating discs of non-uniform thickness and density, International

Journal of Pressure Vessels and Piping, 85(10): 694–700.

Horgan, C.O., and Chan, A.M. (1999) The pressurized hollow cylinder or

disk problem for functionally graded isotropic linearly elastic

materials, Journal of Elasticity, 55 (1): 43–59.

Hunt, W.H. (2000) Metal matrix composites, Comprehensive Composite

Materials, 6, (ISBN: -0-080437249), 57–66.

Ishizuka, T., and Wakashima, K. (1994) Analysis of post-consolidation

cooling-induced distortion and residual stress in ceramic/metal

composition-graded laminates, Proc. 3rd International Symposium on

Structural and Functional Gradient Materials, 279.

Ivosevic, M., Knight, R., Kalidindi, S.R., Palmese, G.R., and Sutter,

J.K. (2006) Solid particle erosion resistance of thermally sprayed

functionally graded coatings for polymer matrix composites, Surf.

Coat. Technol., 200: 5145–5151.

Jackson, T.R, Liu, H., Patrikalakis, N.M., Sachs, E.M., and Cima, M.J.

(1999) Modeling and designing functionally graded material

components for fabrication with local composition control, Materials

and Design, 20: 63–75.

209

Jahed, H., and Bidabadi, J. (2003) An axisymmetric method of creep

analysis for primary and secondary creep, Int. J. Pressure Vessels

Piping, 80: 597–606.

Jahed, H., and Dubey, R.N. (1997) An axisymmetric method of elastic

plastic analysis capable of predicting residual stresses, ASME J.

Pressure Vessels Tech., 119: 264–273.

Jahed, H., and Sherkatti, S. (2000) Thermoplastic analysis of

inhomogeneous rotating disk with variable thickness, in: Proc.of the

EMAS Conference of Fatigue, April, Camdridge, England.

Jahed, H., and Shirazi (2001) Thermoplastic analysis of rotating discs at

elevated temperatures, Int. J. Pressure Vessels Piping, 71 (3): 285–

291.

Jahed, H., Farshi, B., and Bidabadi, J. (2005) Minimum weight design of

inhomogeneous rotating discs, International Journal of Pressure

Vessels and Piping, 82: 35–41.

Jain, R., Ramachandra, K., and Simha, K.R.Y. (1999) Rotating

anisotropic disc of uniform strength, Int. J. Mech. Sci., 41: 639–648.

Jin, Z.H., and Noda, N. (1994) Crack tip singular fields in

nonhomogeneous materials, J. Appl. Mech. (ASME), 61: 738–740.

Jolly, M.R. (1990) The Foundryman, Nov., 509.

Kang, C.G., and Rohatgi, P.K. (1996) Transient thermal analysis of

solidification in a centrifugal casting for composite materials

containing particle segregation, Metallurgical and Mater.Trans. B,

27(2): 277–285.

210

Kawasaki, A., and Watanabe, R. (1994) Thermal shock fracture

mechanism of functionally graded materials as studied by burner

heating test, Proc. 3rd International Symposium on Structural and

Functional Gradient Materials, 397.

Kieback, B., Neubrand, A., and Riedal, H. (2003) Processing techniques

of functionally graded materials, Mater. Sci. Engng., A362: 81–105.

Kim, J. I., Kim, W.J., Choi, D. J., Park, J. Y., and Ryu, W.S. (2005)

Design of a C/SiC functionally graded coating for the oxidation

protection of C/C composites, Carbon, 43: 1749–1757.

Kiran A.S., Narendranath, S., Desai, V., and Mukunda, P.G. (2009)

Characterization of Al-Si functionally graded material using

centrifugal casting method, Int. review of Mechanical Engng., 3(5):

632–639.

Koizumi, M. (1995) An overview of FGMs, ICCE/2 2nd Int. conference on

composites engineering (Ed. David Hui), Aug, 21-24, New Orleans,

LA.

Koizumi, M. (1997) FGM activities in Japan, Composites PartB: Engng.,

28(1): 1–4.

Kollman, F.G. (1978) Die Auslegang Elastisch-Plastisch Beanspruchter

Querver bande. Forschung im Ingenieurwesen, 44: 1–11.

Kollman, F.G. (1981) Rotating elasto-plastic disc interference fits, Trans.

Amer. Soc. Mech. Des., 103: 61–66.

Kollman, F.G. (1984) Welle-Nabe Verbindungen. Konstruktionsbucher,

Bd. 32, Berlin: Springer.

211

Kordkheili, S.A.H., and Naghdabadi, R. (2007) Thermo elastic analysis

of a functionally graded rotating disk, Composite Structures, 79(4):

508–516.

Kraus, H. (1980) Creep analysis, Wiley, New York.

Kumakawa, A., Niino, M., Kiyoto, S., and Nagata, S. (1992) Thermal

fatigue of functionally gradient materials under high heat fluxes,

functionally gradient materials, Ceramic Trans., American Ceramic

Society, 34: 213.

Kumakawa, A., Takahashi, Saski, M., Togawa, M., Kitaguchi, S., and

Nishimori, H. (1994) Damage evaluation of functionally gradient

materials caused by cyclic thermal shock, Proc. 3rd International

Symposium on Structural and Functional Gradient Materials, 391.

Lagneborg, R., and Bergman, B. (1976) The stress/creep behaviour of

precipitation-hardened alloys, Metal Sci., 10(1): 20–28.

Lambros, A., Narayanaswamy, A., Santare, M.H., and Anlas, G. (1999)

Manufacturing and testing of a functionally graded material, ASME J.

Engng. Mater. Technol., 121: 488–493.

Laskaj, M., Murphy, B., and Houngan, K. (1999) Improving the

efficiency of cooling the front disc brake on a V8 racing car, Project

report, Monash University, Melbourne.

Lederich, K.J., and Sastry, S.M. (1982) Deformation behaviour of silicon

carbide whisker reinforced aluminum composite, Mater. Sci. Engng.,

55: 143–146.

Lekhnitskii, S.G. (1963) Theory of elasticity of an anisotropic body,

Holden-Day.

212

Leushake, U., Krell, T., and Schulz, U. (2004) Graded thermal barrier

coating systems for gas turbine applications, Materialwiss

Werkstofftech., 28: 391–394.

Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A., and

Taya, M. (2003) Fabrication and evaluation of porous piezoelectric

ceramics and porosity graded piezoelectric actuators, J. Am. Ceram.

Soc., 86: 1094–1098.

Li, Y. , and Langdon T.G. (1997c) A simple procedure for estimating

threshold stresses in the creep of metal matrix composites, Scripta

Mater., 36: 1457–1460.

Li, Y., and Langdon, T.G. (1997a) Creep behaviour of an Al-6061 metal

matrix composite reinforced with alumina particulates, Acta Mater.,

45(11): 4797–4806.

Li, Y., and Langdon, T.G. (1997b) An examination of creep data for an

Al-Mg composite, Metall. Mater. Trans., 28A: 1271–1273.

Li, Y., and Langdon, T.G. (1998a) An examination of the effect of

processing procedure on the creep of metal matrix composites, Mater.

Sci. Engng., A245: 1–9.

Li, Y., and Langdon, T.G. (1998b) Creep behaviour of reinforced Al-7005

alloy: Implications for the creep processes in metal matrix composites,

Acta Metall, 46: 1143–1155.

Li, Y., and Langdon, T.G. (1999a) An examination of a substructure-

invariant model for the creep of metal matrix composites, Mater Sci.

Engng. , A265(1): 276–284.

213

Li, Y., and Langdon, T.G. (1999b) Fundamental aspects of creep in metal

matrix composites, Metall. Mater. Trans., 30A: 315–323.

Li, Y., and Mohamed, F.A. (1997) An investigation of creep behaviour in

an SiC-2124 Al composite, Acta Mater, 45(11): 4775–4785.

Librescu, L., and Song, S.Y. (2005) Thin-walled beams made of

functionally graded materials and operating in a high temperature

environment: Vibration and stability, J. of Thermal Stresses, 28: 649–

712.

Lin, Z., Li, Y., and Mohamed, F.A. (2002) Creep and substructure in 5

Vol% SiC-2124Al composite, Mater. Sci. Engg., A332: 330–342.

Liu, Q., Jiao, Y., and Hu, Z. (1996) Theoretical analysis of the particle

gradient distribution in centrifugal field during solidification,

Metallurgical and Mater. Trans. B, 27B: 1025–1029.

Loghman, A., horbanpour Arani, A.G., Shajari, A.R., and Amir, S.

(2011) Time-dependent thermoelastic creep analysis of rotating disk

made of Al–SiC composite, Archive of Applied Mechanics, Available

Online (In Press).

Lubhan, D., and Felger, R.P. (1961) Plasticity and creep of metals, Wiley,

Newyork.

Ma, B.M. (1959) A creep analysis of rotating solid disks, J. of the Franklin

Inst., 267 (2): 149–165.

Ma, B.M. (1960) A further creep analysis for rotating solid disks of

variable thickness, J. of the Franklin Inst., 269 (5): 408–419.

Ma, B.M. (1961) Creep analysis of rotating solid disks with variable

thickness and temperature, J. of the Franklin Inst., 271 (1): 40–55.

214

Ma, B.M. (1964) A power-function creep analysis for rotating solid disks

having variable thickness and temperature, J. of the Franklin Inst., 277

(6): 593–612.

Ma, Z.Y., and Tjong, S.C. (1998) Creep behaviour of In-Situ Al2O3 and

TiB2 particulates mixture-reinforced aluminium composites, Mater.

Sci. Engg., A256: 120–128.

Ma, Z.Y., and Tjong, S.C. (1999b) The high-temperature creep behaviour

of 2124 aluminium alloys with and without particulate and sic whisker

reinforcement, Comp. Sci. Tech., 59: 737–747.

Ma, Z.Y., and Tjong, S.C. (2000) High-temperature creep behaviour of

SiC particulate reinforced Al–Fe–V–Si alloy composite, Mater. Sci.

Engg., A278: 5–15.

Ma, Z.Y., and Tjong, S.C. (2001) Creep deformation characteristics of

discontinuously reinforced aluminium-matrix composites, Composites

Sci Technol., 61(5): 771–786.

Ma, Z.Y., Tjong, S.C., and Wang, Z.G. (1999) Cyclic and static creep

behaviour of Al–Cu alloy composite reinforced with in-Situ Al2O3 and

TiB2 particulates, Mater. Sci. Engg., A264: 177–187.

Malkin, I. (1934) Design and calculation of steam turbine disc wheels, J.

Appl. Mech., ASME Trans., 56: 585–600.

Malkov, V.P., and Salgankays, E.A. (1976) Optimum material distribution

in rotating disks for minimum strength, Sov Aeronaut, 19: 46–50.

Mazumdar, S.K. (2002) Composites manufacturing, materials, products

and process engineering, CRC Press, London.

215

McDanels, D.L. (1985) Analysis of stress strain fracture and ductility of

aluminum matrix composite containing discontinuous silicon carbide

reinforcement, Metell. Trans., 16A: 1105–1115.

Mishra, R.S., and Pandey, A.B. (1990) Some observations on the high-

temperature creep behaviour of 6061 Al-SiC composites, Metall

Trans., 21A (7): 2089–2090.

Mohamed, F.A. (1998) Correlation between creep behaviour in Al-based

solid solution alloys and powder metallurgy Al alloys, Mater. Sci.

Engg., A245: 242–256.

Mohamed, F.A., Park, K.T., and Lavernia, E.J. (1992) Creep behaviour

of discontinuous SiC–Al composites, Mater Sci Engng., A150(1): 21–

35.

Moin, K. (1996) Post peak response analysis using the finite element

method, Doctoral Thesis submitted to the Department of Earthquake

Engng., University of Roorkee, Roorkee.

Morimoto, T., Yamaoka, T., Lilholt, H., and Taya, M. (1988) Second

stage creep of SiC Whisker/6061 aluminium composite at 573K, J.

Engg. Mater. Tech., 110: 70–76.

Nabarro, F.R.N., and Villiers, H.L.De. (1995) Physics of creep, Taylor

and Francis, PA.

Nagata, S., Adachi, N., Sakamoto, A., and Yoshida, Y. (1990) Evaluation

on thermal fatigue in functionally gradient materials, Proc. 1st

International Symposium on FGM, 333.

Nagatha, F., and Takahashi, H. (1995) Intelligent functionally graded

material: Bamboo, Composites Engg, 5 (7): 743–752.

216

Nakagaki, M., Brust, F. W., Miyazaki, N., Saski, T., and Saki, T. (1991)

Effects of thermal inhomogeneity on cracks, Proc. ICM-6, 4: 93.

Nardone, V.C., and Strife, J.R. (1987) Analysis of the creep behaviour of

silicon carbide whisker reinforced 2124 Al (T4), Metall. Trans., 18A:

109–114.

Nieh, T.G. (1984) Creep rupture of a silicon carbide reinforced aluminium

composite, Metall Trans., 15A (1): 139–145.

Nieh, T.G., Xia, K., and Langdon, T.G. (1988) Mechanical properties of

discontinuous SiC reinforced aluminum composite at elevated

temperature, J. Engng. Mater. Technol., 110: 77–82.

Noda, N., and Jin, Z.H. (1994) Stress singularity of nonhomogeneous body

with crack in thermal stress fields, Trans. JSME, 60A (572): 921.

Noda, N., and Tsuji, T. (1990) Steady thermal stresses in a plate of

functionally gradient material, Proc. 1st International Symposium on

FGM, 339.

Noda, N., Nakai, S., and Tsuji, T. (1998) Thermal stresses in functionally

graded materials of particle-reinforced composite, JSME Int. J., 41A

(2): 178–184.

Obata, Y., and Noda, N. (1994) Steady thermal stresses in a hollow

circular cylinder and hollow sphere of a functionally graded materials,

J. Thermal Stresses, 17: 471–487.

Odqvist, F.K.G. (1974) Mathematical theory of creep and creep rupture,

Clarendon Press, Oxford.

217

Oh, S.Y., Librescu, L., and Song, O. (2005) Vibration and instability of

functionally graded circular cylindrical spinning thin-walled beams, J.

Sound Vib., 285: 1071–1091.

Orcan, Y., and Eraslan, A.N. (2002) Elastic-plastic stresses in linearly

hardening rotating solid disks of variable thickness, Mechanics

Research Communications, 29: 269–281.

Pandey, A.B., Mishra, R.S., and Mahajan, Y.R. (1990) Creep behaviour

of an aluminium-silicon carbide particulate composite, Scripta Metall.

Mater., 24: 1565–1570.

Pandey, A.B., Mishra, R.S., and Mahajan, Y.R. (1992) Steady state creep

behaviour of silicon carbide particulate reinforced aluminium

composites, Acta Metall Mater., 40(8): 2045–2052.

Pandey, A.B., Mishra, R.S., and Mahajan, Y.R. (1994) High-temperature

creep of Al-TiB2 particulate composites, Mater. Sci. Engng., A189 (1-

2): 95–104.

Pandey, A.B., Mishra, R.S., and Mahajan, Y.R. (1996) Effect of solid

solution on the steady-state creep behavior of an aluminum matrix

composites, Metall. Mater. Trans., 27A: 305.

Pankaj (2009) Elastic-plastic transition stresses in an isotropic disc having

variable thickness subjected to internal pressure, International Journal

of Physical Sciences, 4: 336–342.

Park, K.T., and Mohamed, F.A. (1995) Creep strengthening in a

discontinuous SiC-Al composite, Metall Trans., 26A (12): 3119–3129.

218

Park, K.T., Lavernia, E.J., and Mohamed, F.A. (1990) High temperature

creep of silicon carbide particulate reinforced aluminum, Acta Metall

Mater., 38(11): 2149–2159.

Park, K.T., Lavernia, E.J., and Mohamed, F.A. (1994) High-temperature

deformation of 6061Al, Acta Metall. Mater., 42: 667–678.

Pattnayak, D.K., Bapat, B.P., and RamaMohan, T.R. (2001) Techniques

for the synthesis of functionally graded materials, Proc. National

Seminar on Functionally Graded Materials FGM-2001, DRDO,

Ambernath, India, 86–93.

Pederson, P. (1981) The integrated approach of FEM-SLP for solving

problems of optimal designs. In: Optimization of Distributed

Parameters, Sijtho. and Nourdho, Leydan, 757–780.

Penny, R.K. and Mariott, D.L. (1995) Design for creep, Chapman and

Hall, London.

Peters, S.T. (1998) Handbook of composites, 2nd Edition. Chapman and

Hall, London, UK, 905–956.

Pickel, W., Jr., Sidebowom, O.M., and Boresia, P. (1971) Evaluation of

creep laws and flow criteria for two metals subjected to stepped load

and temperature changes, Exper. Mechanics, 11(5): 202–209.

Pindera, M.J., Arnold, S.M., Aboudi, J., and Hui, D. (1994) Special

Issue: Use of composites in functionally graded materials, Composites

Engng., 4: 1–150.

Pitcher, P.D., Shakesheff, A.J., and Lord, J.D. (1998) Aluminum based

metal matrix composites for improved elevated temperature

performance, Mater. Sci. Tech., 14: 1015–1023.

219

Put, S., Vleugels, J., and Van der Biest, O. (2003) Microstructural

engineering of functionally graded materials by electrophoretic

deposition, J. Mater. Process. Technol., 143–144: 572–577.

Quin, X., and Dutta, D. (2004) Feature-based design for heterogeneous

objects, Computer Aided Design, 36: 1263–1278.

Rabin, B.H., and Shiota, I. (1995) Special Issue: Functional Gradient

Materials, MRS Bull., 20: 14–55.

Rabotnov, Y.N. (1969) Creep problems in structural members, Translated

from Russian by Transcripta Service Ltd., London. Ed. F.A. Leckie,

North- Holland Pubklishing Co., Amsterdam.

Reddy, J.N. (2000), Analysis of functionally graded plates, International

Journal of Numerical Method Engineering, 47: 663–684.

Reddy, T.J., and Srinath, H. (1974) Elastic stresses in a rotating

anisotropic annular disc of variable thickness and variable density, Int.

J. Mech. Sci., 16: 85.

Rohatagi, P.K., Liu, Y., and Ray, S. (1992) Friction and wear of metal-

matrix composites, ASM Handbook (Ed. Scott, D.Henry), 18: 802–

811.

Sadananda, K., Feng, C.R., Mitra, R., and Deevi, S.C. (1999) Creep and

fatigue properties of high temperature silicades and their composites,

Mater. Sci. Engng., 261A: 223–238.

Schellekens, J.C.J., and De Borst, R. (1990a) The use of hoffman yield

criterion in finite element analysis of anisotropic composites,

Computers and Structures, 37(6): 1087–1096.

220

Schellekens, J.C.J., and De Borst, R. (1990b) The use of hoffman yield

criterion in finite element analysis of anisotropic composites, Proc.

International Conference on Composite Materials: Design and

Analysis, Brussels.

Sen, F., and Aldas, K. (2009) Elastic–plastic thermal stress analysis in a

thermoplastic composite disc applied linear temperature loads via

FEM, Advances in Engineering Software, 40: 813–819.

Sen, F., Pekbey, Y., and Sayman, O. (2007) Elastic-plastic stress analysis

of a thermoplastic composite disc under parabolic temperature

distribution, Indian Journal of Engineering and Material Sciences, 14:

282–288.

Shakesheff, A.J., and Purdue, G. (1998) Designing metal matrix

composites to meet their target: Particulate reinforced aluminum

alloys for missile applications, Mater. Sci. Tech., 14: 851–856.

Sharma, S., and Sahni, M. (2009) Elastic-plastic transition of transversely

isotropic thin rotating disc, Contemporary Engineering Sciences, 2:

433–440.

Sharma, S., and Sahni, M. (2011) Elastic-plastic analysis for finite

deformation of a rotating disk having variable thickness with

inclusion, World Academy of Science, Engineering and Technology,

75.

Shen, Z.J., and Nygren, M. (2002) Laminated and functionally graded

materials prepared by spark plasma sintering, Key Engng. Mater., 206:

2155–2158.

221

Sherby, O.D., Klundt, R.H., and Miller, A.K. (1977) Flow stress,

subgrain size and subgrain stability at elevated temperature, Metall.

Trans., 8A: 843–850.

Shi, N., Wilner, B., and Arsenault, R.J. (1992) An FEM study of the

plastic deformation process of whisker reinforced SiC/Al composites,

Acta Metall., 40 (11): 2841–2854.

Singh, S.B. (2000) Flow behaviour and creep deformation in engineering

components of composites, Ph.D. Thesis, University of Roorkee.

Singh, S.B. (2008) One parameter model for creep in a whisker reinforced

anisotropic rotating disc of Al-SiCw composite, Europeon Journal of

Mechanics A/Solids, 27:680–690.

Singh, S.B., and Rattan, M. (2010) Creep analysis of an isotropic rotating

Al-SiCp composite disc taking into account the phase-specific thermal

residual stress, Journal of Thermoplastic Composite Materials, 23 (3):

299–312.

Singh, S.B., and Ray, S. (2001) Steady-state creep behavior in an isotropic

functionally graded material rotating disc of Al-SiC composite,

Metall. Trans., 32A: 1679–1685.

Singh, S.B., and Ray, S. (2002) Modeling the anisotropy and creep in

orthotropic aluminum-silicon carbide composite rotating disc,

Mechanics of Materials, 34: 363–372.

Singh, S.B., and Ray, S. (2003a) Newly proposed yield criterion for

residual stress and steady state creep in an anisotropic rotating

composite rotating disc, J. Mater. Proc. Tech., 143-144: 623–628.

222

Singh, S.B., and Ray, S. (2003b) Creep analysis in an isotropic FGM

rotating disc of al-sic composite, J. Mater. Proc. Tech., 143-144: 616–

622.

Singh, S.B., and Ray, S. (2004) Modeling the creep in an isotropic rotating

disc of Al-SiCw composite in presence of thermal residual stress,

Proc. 3rd International Conference on Advanced Manufacturing

Technology: ICMAT-2004, Kualalumpur, Malaysia, 766–770.

Skrzypek, J.J., and Hetnarski, R.B. (1993) Plasticity and creep, CRC

Press, Boka Raton FL.

Srivatson, T.S., Sudarshan, T.S., and Lavernia, E.J. (1995) Processing of

discontinous-reinforced metal matrix composites by rapid

solidification, Progress in Mater. Sci., 39: 317–409.

Surappa, M.K. (2003) Automotive applications of aluminium matrix

composites, in: Int. Conf. on Advances Materials and Processes for

Industrial Applications, ASM International, Pune Chapter, Sep. 25-26,

Pune, India, pp. 3–6.

Suresh, S., and Mortensen, A. (1998) Fundamentals of functionally graded

materials, processing and thermomechanical behavior of graded metals

and metals-ceramic composites, IOM Communications Limited,

London.

Takeuch, K., Kawazoe, M., and Kanayama, K. (2003) Design of

functionally graded wood-based board for floor heating system with

higher energy efficiency, Functionally Graded Materials, Proceedings

of the 7th Int. Symposium on Functionally Graded Materials

(FGM2000), Mater. Sci. Forum, W. Pan, J. Gong, L. Zhang, and L.

223

Chen, eds., Trans Tech Publications Ltd., Uetikon-Zuerich,

Switzerland, 423–425, 819–824.

Takezono, S., Tao, K., Inamura, E., and Inoque, M. (1996) Thermal

stress and deformation in functionally graded materials shells of

revolution under thermal loading due to fluid, JSME Int. J., 39A(4):

573–581.

Tanigawa, Y. (1995) Some basic thermoelastic problems for

nonhomogeneous structural materials, Appl. Mech. Rev., 48: 287–300.

Teraki, J., Hirano, T., and Wakashima, K. (1992) An elastic-plastic

analysis of thermal stresses in a FGM plate under cyclic thermal load,

Functionally Gradient Materials, Ceramic Trans., American Ceramic

Society, 34: 67.

Timoshenko, S.P., and Goodier, J.N. (1970) Theory of elasticity,

Mcgraw-Hill, Singapore.

Tjong, S. C., Ma, Z. Y., and Wang, Z.G. (1999b) Static and cyclic creep

behaviour of SiC whisker reinforced aluminium composite, Mater. Sci.

Tech., 15: 666–672.

Tjong, S.C., and Ma, Z.Y. (1999a) High-temperature creep behaviour of

powder-metallurgy aluminium composites reinforced with SiC

particles of various sizes, Comp. Sci. and Tech., 59: 1117–1125.

Tjong, S.C., and Ma, Z.Y. (2000) Microstructural and mechanical

characteristics of in situ metal matrix composites, Mater Sci Engng.,

R29(3–4): 49–113.

Tokita, M. (2003) Large-size-WC/Co functionally graded materials

fabricated by spark plasma sintering (SPS) method, Functionally

224

Graded Materials VII, Proceedings of the Seventh Int. Symposium on

Functionally Graded Materials (FGM2000), Mater. Sci. Forum., W.

Pan, J. Gong, L. Zhang, and L. Chen, eds., Trans Tech Publications

Ltd., Uetikon-Zuerich, Switzerland, 423– 425: 39–44.

Tsuda, K., Ikegaya, A., Nomura, T., Isobe, K., Kitagawa, N., Chudou,

M. and Arimoto, H. (1996) Development of a functionally graded

hard material, Sumitomo Electric Technical Review, 41: 47–52.

Vanderplaats, G.N. (1990) Numerical optimization techniques for

engineering design with applications, 2nd Edition., McGraw Hill, New

York.

Vanmeensel, K., Anne, G., Jiang, D., Vleugels, J., and Van der Biest, O.

(2005) Processing of a graded cutting tool in the Al2O3–ZrO2–Ti (C,N)

system by electrophoretic deposition, Mater. Sci. Forum. 492–493:

705–710.

Velhinto, A., Sequeira, P.D., Fernanzes, F.M.B., Botas, J.D., and Rocha,

L.S. (2003) Al/SiCp functionally graded meta-matrix composites

produced by centrifugal casting: effect of particle grain size on

reinforcement distribution, Functionally Graded Materials VII,

Proceedings of the Seventh Int. Symposium on Functionally Graded

Materials (FGM2000), Mater. Sci. Forum, W. Pan, J. Gong, L. Zhang,

and, L. Chen eds., Trans Tech Publications Ltd., Uetikon-Zuerich,

Switzerland, 423–425: 257–262.

von Mises, R. (1913) Mechanics of solids in the plastically deformable

state, NASA, Technical Memorandom 88488, 1986. (Transition of

Mechanik derfesten koerper im plastisch-deformablem Zustrand,

225

Nachrichten von der Koniglichen Gasellschaft der Wissenschaften,

582–592).

Wahl, A.M. (1956) Analysis of creep in rotating disks based on the tresca

criterion and associated flow rule, Journal of Applied Mechanics, 78:

231–238.

Wahl, A.M. (1957) Stress distributions in rotating discs subjected to creep

at elevated temperature, J. Appl. Mech., ASME Trans., 29: 299–305.

Wahl, A.M. (1958) Further studies of stress distribution in rotating disks

and cylinders under elevated-temperature creep conditions, Journal of

Applied Mechanics, 80: 243–250.

Wahl, A.M. (1963) Effects of transient period in evaluating rotating disks

tests under creep conditions, Journal of Basic Engineering, 85: 66–70.

Wahl, A.M., Sankey, G.O., Manjoine, M.J., and Shoemaker, E. (1954)

Creep tests of rotating disks at elevated temperature and comparison

with theory, J. Appl. Mech., ASME Trans., 21 (3): 225–235.

Wakashima, K., Moriyama, T., and Mori, T. (2000) Steady-state creep of

a particulate SiC/6061 Al composite, Acta Mater., 48: 891–901.

Wang, S.Y., Son, Y., and Gallagher, K.H. (1985) Sensitivity analysis in

shape optimization of continuum structures. Computers and

Structures, 20: 855–867.

Williamson, R.L., Rabin, B.H., and Byerly, G.E. (1995) FEM study of the

effects of interlayers and creep in reducing residual stresses and

strains in ceramic-metal joints, Composites Part B: Engineering, 5 (7):

851–863.

226

Yang, Y.Y. (1998) Creep behaviour in a multi-layers joint, Report

Forschungszentrum Karlsruhe No. FZKA 6118.

Yeh, K.Y., and Han, R.P.S. (1994) Analysis of high-speed rotating disks

with variable thickness and inhomogeneity, J. Appl. Mech., ASME

Trans., 61: 186–191.

Yoshioka, H., Suzumura, Y., Cadek, J., Zhu, S.J., and Milicka, K.

(1998) Creep behaviour of ODS aluminium reinforced by silicon

carbide particulates: ODS Al–30 SiCp composite, Mater. Sci. Engng.,

A248 (1): 65–72.

You, L.H., Ou, H., and Zheng, Z.Y. (2007) Creep deformations and

stresses in thick-walled cylindrical vessels of functionally graded

materials subjected to internal pressure, Composite Structures, 78:

285–291.

Yue, T.M., Du, J.H., and Man, H.C. (1998) High power Nd-Yag laser

welding of SiC particle reinforced aluminum alloy 2124, Mater. Sci.

Tech., 14: 906–912.

Zeinkiewics, O.C. and Campbell, J.S. (1973) Shape optimization and

sequential linear programming in optimum structural design, John

Wiley, New York.

Zhai, P.C., Chen, G., and Zhang, Q.J. (2005) Creep property of

functionally graded materials, Functionally Graded Materials VIII

(FGM2004), Proceedings of the Eighth International Symposium on

Multifunctional and Functionally Graded Materials, Mater. Sci.

Forum, O. Van der Biest, M. Gasik, and J. Vleugels, eds., Trans Tech

Publications Ltd., Uetikon-Zuerich, Switzerland, 492–493: 599–604.

227

Zhou, F., and Ogata, A. (2002) Elastic solutions for a solid rotating disk

with cubic anisotropy, J. Appl. Mech., ASME Trans., 69: 81–83.

Zhu, D., and Miller, R.A. (1999) Determination of creep behaviour of

thermal barrier coatings under laser imposed high thermal and stress

gradient conditions, J. Mater. Res., Mater. Research Soc., 14(1): 146–

161.

Zhu, J., Lai, Z., Yin, Z., Joen, J., and Lee, S. (2001) Fabrication of ZrO2-

NiCr functionally graded materials by powder metallurgy, Mater.

Chemistry and Physics, 68(1–3): 130–135.

Zhu, S.J., Peng, L.M., Ma, Z.Y., Bi, J., Wang, F.G., and Wang, Z.G.

(1996) High temperature creep behavior of SiC whisker-reinforced Al-

Fe-V-Si composites, Mater. Sci. Engg., A215, pp. 120–124.