this is a title: helwig’s br2 powerpoint template file

99
Volume Visualization

Upload: others

Post on 31-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: This is a title: Helwig’s BR2 Powerpoint Template File

Volume Visualization

Page 2: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 2

Overview: Volume Visualization (1)

Introduction to volume visualization

On volume data

Voxels vs. cells

Interpolation

Gradient

Classification

Transfer Functions (TF)

Slice vs surface vs. volume rendering

Overview: techniques

Page 3: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 3

Overview: Volume Visualization (2)

Simple methods

Slicing, multi-planar reconstruction (MPR)

Direct volume visualization

Image-order vs. object-order

Raycasting

a-compositing

Hardware volume visualization

Indirect volume visualization

Marching cubes

Page 4: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 4

Volume Visualization

Introduction:

VolVis = visualization of volume data

Mapping 3D2D

Projection (e.g., MIP), slicing, vol. rendering, …

Volume data =

3D1D data

Scalar data, 3D data space, space filling

User goals:

Gain insight in 3D data

Structures of special interest + context

Page 5: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 5

Volume Data

Where do the data come from?

Medical Application

Computed Tomographie (CT)

Magnetic Resonance Imaging (MR)

Materials testing

Industrial-CT

Simulation

Finite element methods (FEM)

Computational fluid dynamics (CFD)

etc.

Page 6: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 6

3D Data Space

How are volume data organized?

Cartesian resp. regular grid:

CT/MR: often dx=dy<dz, e.g. 135 slices (z)

á 512² values (as x & y pixels in a slice)

Data enhancement: iso-stack-calculation =

Interpolation of additional slices, so that

dx=dy=dz 512³ Voxel

Data: Cells (cuboid), Corner: Voxel

Curvi-linear grid resp. unstructured:

Data organized as tetrahedra or hexahedra

Often: conversion to tetrahedra

Page 7: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 7

VolVis – Challenges

Rendering projection,

so much information and so few pixels!

Large data sizes, e.g.

5125121024 voxel á 16 bit = 512 Mbytes

Speed,

Interaction is very important, >10 fps!

Page 8: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 8

Voxels vs. Cells

Two ways to interpret the data:

Data: set of voxel

Voxel = abbreviation for

volume element (cf. pixel = "picture elem.)

Voxel = point sample in 3D

Not necessarily interpolated

Data: set of cells

Cell = cube primitive (3D)

Corners: 8 voxel (see above)

Values in cell: interpolation used

Page 9: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 9

Interpolation

Page 10: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 10

Interpolation – Results

Page 11: This is a title: Helwig’s BR2 Powerpoint Template File

Higher-Order Reconstruction (1)

If very high quality is needed, more complex

reconstruction filters may be required

Marschner-Lobb function is a common test

signal to evaluate the quality of reconstruction

filters [Marschner and Lobb 1994]

The signal has a high amount of its energy

near its Nyquist frequency

Makes it a very demanding test for accurate

reconstruction

Eduard Gröller, Helwig Hauser, Stefan Bruckner 11

Page 12: This is a title: Helwig’s BR2 Powerpoint Template File

Higher-Order Reconstruction (2)

Analytical evaluation of the Marschner-Lobb

test signal

Eduard Gröller, Helwig Hauser, Stefan Bruckner 12

Page 13: This is a title: Helwig’s BR2 Powerpoint Template File

Higher-Order Reconstruction (3)

Trilinear reconstruction of Marschner-Lobb test

signal

Eduard Gröller, Helwig Hauser, Stefan Bruckner 13

Page 14: This is a title: Helwig’s BR2 Powerpoint Template File

Higher-Order Reconstruction (4)

B-Spline reconstruction of Marschner-Lobb test

signal

Eduard Gröller, Helwig Hauser, Stefan Bruckner 14

Page 15: This is a title: Helwig’s BR2 Powerpoint Template File

Higher-Order Reconstruction (5)

Windowed sinc reconstruction of Marschner-

Lobb test signal

Eduard Gröller, Helwig Hauser, Stefan Bruckner 15

Page 16: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 16

Gradients in Volume Data

Volume data: f(x)R1, xR3

Gradient f: 3D vector points in direction of

largest function change

Gradient magnitude: length of gradient

Emphasis of changes:

Special interest often in transitional areas

Gradients: measure degree

of change (like surface normal)

Larger gradient magnitude

larger opacity

Page 17: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 17

Gradients as Normal Vector Replacement

Gradient f = (f/x, f/y, f/z)

f|x0 normal vector to iso-surface f(x0)=f0

Central difference in x-, y- & z-direction (in voxel):

f(x1)f(x1) f (x,y,z) = 1/2 f(y1)f(y1) f(z1)f(z1)

Then tri-linear interpolation within a cell

Alternatives:

Forward differencing: f (x)=f(x1)f(x)

Backwards differencing: f (x)=f(x)f(x1)

Intermediate differencing: f (x0.5)=f(x1)f(x)

Page 18: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 18

Classification

Assignment data semantics:

Assignment to objects, e.g.,

bone, skin, muscle, etc.

Usage of data values,

gradient, curvature

Goal: segmentation

Often: semi-automatic resp. manual

Automatic approximation:

transfer functions (TF)

Page 19: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 19

Transfer Functions (TF)

Mapping data ”renderable quantities”:

1.) datacolor (f(i)C(i))

2.) dataopacity (non-transparency) (f(i)a(i))

data values

“bone”

“skin”

“air”

opacity

color

yellow, semi-transparent

red, opaque

Page 20: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 20

Different Transfer Functions

Image results:

Strong dependence

on transfer functions

Non-trivial

specification

Limited segmentation

possibilities

Page 21: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 21

Lobster – Different Transfer Functions

Three objects: media, shell, flesh

Page 22: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 22

Concepts and Terms

sampled data (measurement)

analytical data (modelling)

voxel space (discrete)

geometric surfaces (analytic)

pixel space (discrete)

iso-surfacing

voxelization

surface rendering

(direct) volume rendering

Page 23: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 23

Concepts and Terms

Example

X-Ray

Modelling

Surface-

definition

Sampling

(voxelization),

combination

Direct volume

rendering

volume rendering

sampled data (measurement)

analytical data (modelling)

voxel space (discrete)

geom. surfaces (analytic)

pixel space (discrete)

iso-surfacing

voxelization

surface rendering

Page 24: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 24

Slice vs. Surface vs. Volume Rendering

Slice rendering

2D cross-section from 3D volume data

Surface rendering:

Indirect volume visualization

Intermediate representation: iso-surface, “3D”

Pros: ShadingShape!, HW-rendering

Volume rendering:

Direct volume visualization

Usage of transfer functions

Pros: illustrate the interior, semi-transparency

Page 25: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 25

Slices vs. Iso-Surfaces. vs. Volume Rendering

Comparison ozon-data over Antarctica:

Slices: selective (z), 2D, color coding

Iso-surface: selective (f0), covers 3D

Vol. rendering: transfer function dependent,

“(too) sparse – (too) dense”

Page 26: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 26

VolVis-Techniques – Overview

Simple methods:

Slicing, MPR (multi-planar reconstruction)

Direct volume visualization:

Ray casting

Shear-warp factorization

Splatting

3D texture mapping

Fourier volume rendering

Surface-fitting methods:

Marching cubes (marching tetrahedra)

Page 27: This is a title: Helwig’s BR2 Powerpoint Template File

Simple Methods

Slicing, etc.

Page 28: This is a title: Helwig’s BR2 Powerpoint Template File

Slicing:

Axes-parallel slices

Regular grids: simple

Without transfer function

no color

Windowing: adjust contrast

General grid, arbitrary slicing

direction

Eduard Gröller, Helwig Hauser, Stefan Bruckner 28

Slicing

data values

Window white

black

Page 29: This is a title: Helwig’s BR2 Powerpoint Template File

Direct Volume Visualization

Page 30: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 30

Image-Order vs. Object-Order

Page 31: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 31

Image-Order vs. Object-Order

Page 32: This is a title: Helwig’s BR2 Powerpoint Template File

Ray Casting

Image-Order Method

Page 33: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 33

Ray Tracing vs. Ray Casting

Ray Tracing: method from image generation

In volume rendering: only viewing rays

therefore Ray Casting

Classical image-order method

Ray Tracing: ray – object intersection

Ray Casting: no objects, density values in 3D

In theory: take all data values into account!

In practice: traverse volume step by step

Interpolation necessary for each step!

Page 34: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 34

Ray Traversal through Volume Data

Context:

Volume data: 1D value defined in 3D –

f(x)R1, xR3

Ray defined as

half-line:

r(t)R3, tR1>0

Values along

Ray:

f(r(t))R1, tR1>0

(intensity profile)

Page 35: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 35

Standard Ray Casting

Levoy ’88:

1. C(i), a(i)

(from TF)

2. Ray casting,

interpolation

3. Compositing

(or

combinations)

Page 36: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 36

1. Shading, Classification

1. Step:

Shading, f(i)C(i):

Apply transfer function

diffuse illumination (Phong),

gradient normal

Classification, f(i)a(i):

Levoy ’88,

gradient enhanced

Emphasizes transitions

Nowadays: shading/classification

after ray-casting/resampling

Page 37: This is a title: Helwig’s BR2 Powerpoint Template File

2. Ray Traversal

Cast ray through the volume and perform

sampling at discrete positions

Eduard Gröller, Helwig Hauser, Stefan Bruckner 37

image plane

data set

eye

Page 38: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 38

2. Ray Traversal – Three Approaches

equidistant

samples

all voxels

used once

samples weighted

by lengths of ray

segments

Page 39: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 39

3. Types of Combinations

Overview:

MIP

Compositing

X-Ray

First hit

Depth

MaxIntensity

Average

Accumulate

First

Intensity profile

Page 40: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 40

Types of Combinations

Possibilities:

a-compositing

Shaded surface display (first hit)

Maximum-intensity projection (MIP)

X-ray simulation

Contour rendering

SSD

DVR

MIP x-ray NPR

Page 41: This is a title: Helwig’s BR2 Powerpoint Template File

Classification Order (1)

Shading/classification can occur before or after

ray traversal

Pre-interpolative: classify all data values and

then interpolate between RGBA-tuples

Post-interpolative: interpolate between scalar

data values and then classify the result

Eduard Gröller, Helwig Hauser, Stefan Bruckner 41

Page 42: This is a title: Helwig’s BR2 Powerpoint Template File

Classification Order (2)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 42

op

tical

pro

pert

ies

data value

inte

rpo

lati

on

PRE-INTERPOLATIVE

op

tica

l p

rop

ert

ies

data value

interpolation

POST-INTERPOLATIVE

Page 43: This is a title: Helwig’s BR2 Powerpoint Template File

Classification Order (3)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 43

post-interpolative

classified data

supersampling transfer function

supersampling

transfer function

analytical solution pre-interpolative

transfer function

continuous data discrete data

scalar value

alp

ha v

alu

e

Page 44: This is a title: Helwig’s BR2 Powerpoint Template File

Classification Order: Example 1

Eduard Gröller, Helwig Hauser, Stefan Bruckner 44

same transfer function, resolution, and sampling rate

pre-interpolative post-interpolative

Page 45: This is a title: Helwig’s BR2 Powerpoint Template File

Classification Order: Example 2

Eduard Gröller, Helwig Hauser, Stefan Bruckner 45

pre-interpolative post-interpolative

same transfer function, resolution, and sampling rate

Page 46: This is a title: Helwig’s BR2 Powerpoint Template File

a-Compositing –

a Specific Optical Model for Volume Rendering

Display of

Semi-Transparent Media

Page 47: This is a title: Helwig’s BR2 Powerpoint Template File

Various models (Examples):

Emission only (light particles)

Absorption only (dark fog)

Emission & absorption (clouds)

Single scattering, w/o shadows

Multiple scattering

Two approaches:

Analytical model (via differentials)

Numerical approximation (via differences)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 47

Modelling of Natural Phenomena

Page 48: This is a title: Helwig’s BR2 Powerpoint Template File

Physical Model of Radiative Transfer

Eduard Gröller, Helwig Hauser, Stefan Bruckner 48

in-scattering

en

erg

y

de

cre

as

e

absorption out-scattering

en

erg

y

incre

as

e

emission

Page 49: This is a title: Helwig’s BR2 Powerpoint Template File

Analytical Model (1)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 49

viewing ray

initial intensity

at 𝑠0

without absorption all

the initial radiant energy

would reach the point 𝑠

Page 50: This is a title: Helwig’s BR2 Powerpoint Template File

Analytical Model (2)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 50

Extinction 𝜏

Absorption 𝜅

viewing ray

absorption between

𝑠0 and 𝑠

Page 51: This is a title: Helwig’s BR2 Powerpoint Template File

Analytical Model (3)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 51

absorption between 𝑠 and 𝑠

active emission

at point 𝑠

one point 𝑠 along the

viewing ray emits additional

radiant energy

viewing ray

Page 52: This is a title: Helwig’s BR2 Powerpoint Template File

Analytical Model (4)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 52

every point 𝑠 along the

viewing ray emits additional

radiant energy

viewing ray

Page 53: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (1)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 53

Extinction:

approximate integral by Riemann sum:

Page 54: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (2)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 54

Page 55: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (3)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 55

now we introduce opacity:

Page 56: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (4)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 56

now we introduce opacity:

Page 57: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (5)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 57

Page 58: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (6)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 58

Page 59: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (7)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 59

Page 60: This is a title: Helwig’s BR2 Powerpoint Template File

can be computed recursively:

Numerical Approximation (8)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 60

radiant energy

observed at position 𝑖 radiant energy

emitted at position 𝑖 radiant energy

observed at position 𝑖 − 1

absorption at

position 𝑖

Page 61: This is a title: Helwig’s BR2 Powerpoint Template File

Numerical Approximation (9)

Eduard Gröller, Helwig Hauser, Stefan Bruckner 61

back-to-front

compositing

front-to-back

compositing

early ray

termination:

stop the

calculation

when 𝐴𝑖′ ≈ 1

Page 62: This is a title: Helwig’s BR2 Powerpoint Template File

Back-to-Front Compositing: Example

Eduard Gröller, Helwig Hauser, Stefan Bruckner 62

𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 𝛼 = 0.4

0 1 2 3

Page 63: This is a title: Helwig’s BR2 Powerpoint Template File

Front-to-Back Compositing: Example

Eduard Gröller, Helwig Hauser, Stefan Bruckner 63

𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 𝛼 = 0.4

1 0

Page 64: This is a title: Helwig’s BR2 Powerpoint Template File

Summary

Emission Absorption Model

Numerical Solutions [pre-multiplied alpha assumed]

Eduard Gröller, Helwig Hauser, Stefan Bruckner 64

back-to-front iteration front-to-back iteration

Page 65: This is a title: Helwig’s BR2 Powerpoint Template File

Pre-Multiplied Alpha

Color values are stored pre-multiplied by their

opacity: (𝛼𝑟, 𝛼𝑔, 𝛼𝑏)

Consequence: transparent red is the same as

transparent black, etc.

Simplifies blending: color and alpha values are

treated equally

Can result in loss of precision

Eduard Gröller, Helwig Hauser, Stefan Bruckner 65

Page 66: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 66

Emission or/and Absorption

Emission

only

Absorption

only

Emission

and Absorption

Page 67: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 67

Ray Casting – Examples

CT scan of human hand (244x124x257, 16 bit)

Page 68: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 68

Ray Casting – Examples

Page 69: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 69

Ray Casting – Further Examples

Tornado Visualization:

Page 70: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 70

Ray Casting – Further Examples

Molecular

data:

Page 71: This is a title: Helwig’s BR2 Powerpoint Template File

Hardware-Volume Visualization

Faster with Hardware?!

Page 72: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 72

Two Approaches

3D-textures:

Volume data stored in 3D-texture

Proxy geometry (slices) parallel to image plane,

are interpolated tri-linearly

Back-to-front compositing

2D-textures:

3 stacks of slices (x-, y- & z-axis),

slices are interpolated bi-linearly

Select stack (most “parallel” to image plane)

Back-to-front compositing

Page 73: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 73

Variation of View Point

3D-textures:

Number of slices

varies

2D-textures:

Stack change:

discontinuity

Page 74: This is a title: Helwig’s BR2 Powerpoint Template File

Indirect Volume Visualization

Iso-Surface-Display

Page 75: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 75

volume rendering

Concepts and Terms

Example

CT measurement

Iso-stack-

conversion

Iso-surface-

calculation

(marching cubes)

Surface rendering

(OpenGL)

sampled data (measurment)

analytic data (modelling)

voxel space (discrete)

geom. surfaces (analytic)

pixel space (discrete)

iso-surfacing

voxelization

surface rendering

Page 76: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 76

Iso-Surfaces

Intermediate representation

Aspects:

Preconditions:

expressive Iso-value,

Iso-value separates materials

Interest: in transitions

Very selective (binary

selection / omission)

Uses traditional hardware

Shading 3D-impression!

Page 77: This is a title: Helwig’s BR2 Powerpoint Template File

Iso-Surface:

Iso-value f0

Separates values > f0

from values f0

Often not

known

Can only be approximated from samples!

Shape / position dependent on type of

reconstruction

Eduard Gröller, Helwig Hauser, Stefan Bruckner 77

Volume Data Iso-Surfaces

Page 78: This is a title: Helwig’s BR2 Powerpoint Template File

Marching Cubes (MC)

Iso-Surface-Display

Page 79: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 79

Approximation of Iso-Surface

Approach:

Iso-Surface intersects data volume = set of all

cells

Idea:

Parts of iso-surface represented

on a(n intersected) cell basis

As simple as possible:

Usage of

triangles

Page 80: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 80

Page 81: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 81

Page 82: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 82

Page 83: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 83

Page 84: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 84

Page 85: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 85

Page 86: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 86

Page 87: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 87

Page 88: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 88

Page 89: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 89

Danger: Holes!

Wrong vs. correct classification!

Page 90: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 90

Page 91: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 91

Page 92: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 92

4

Page 93: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 93

Page 94: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 94

Further Examples

Page 95: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 95

Even Further Examples

Page 96: This is a title: Helwig’s BR2 Powerpoint Template File

Conclusion

Volume Visualization

General Remarks

Page 97: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 97

Surface vs. Volume Rendering

Surface Rendering:

Indirect representation /

display

Conveys surface

impression

Hardware supported

rendering (fast?!)

Iso-value-definition

Volume Rendering:

Direct representation /

display

Conveys volume

impression

Often realized in

software (slow?!)

Transfer functions

Page 98: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 98

Literature, References

Marc Levoy: “Display of Surfaces from Volume

Data” in IEEE Computer Graphics & Applications,

Vol. 8, No. 3, June 1988

Nelson Max: “Optical Models for Direct Volume

Rendering” in IEEE Transactions on Visualization

and Computer Graphics, Vol. 1, No. 2, June 1995

W. Lorensen & H. Cline: “Marching Cubes: A

High Resolution 3D Surface Construction

Algorithm” in Proceedings of ACM SIGRRAPH ’87

= Computer Graphics, Vol. 21, No. 24, July 1987

K. Engel, M. Hadwiger et al. “Real-Time Volume

Graphics” http://www.real-time-volume-

graphics.org/

Page 99: This is a title: Helwig’s BR2 Powerpoint Template File

Eduard Gröller, Helwig Hauser, Stefan Bruckner 99

Acknowledgments

For material for this lecture unit Roberto Scopigno, Claudio Montani (CNR, Pisa)

Hans-Georg Pagendarm (DLR, Göttingen)

Michael Meißner (GRIS, Tübingen)

Torsten Möller

Gordon Kindlmann

Joe Kniss Nelson Max (LLNL), Marc Levoy (Stanford) Lloyd Treinish (IBM)

Roger Crawfis (Ohio State Univ.)

Hanspeter Pfister (MERL)

Dirk Bartz

Markus Hadwiger

Christof Rezk Salama