three-dimensional finite element analysis on …

9
Architectural Institute of Japan NII-Electronic Library Service ArchitecturalInstitute of Japan (tar:iJ-I] H4alkVkmsreXitttsu rgSl7e, 115-123, 1999#3H J. Struct. Constr. Eng., AIJ, Ne. Sl7, 115'123, Mar.,1999 THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON COMPRESSIVE STRENGTH OF CONCRETE PRISMS WITH SEVERAL HEIGHT/WIDTH RATIOS ' 3 }ftJiiJfi waee$ee6Ei: ik 6 ffNr."J-- S Lka) sc (it 6 - > 7 ]) - F ts aa)JIIwtSfimaee)bFft Hisato HOTTA' and Chang-Geun CHO" va M Jt. .A., ig g me In order te investigatethe effects of restraint conditions and stress concentrat;ons on the compressii,e strength of con"'ete by three-dimensiona] nunlinedl' finite element ana]ysis, concrete prisms with the seve]'al heightlwldth ratios(1i!w) under compressive }oads were analyzed. Cone;'ete muterials were mode]ed as an elastic sb'ain-hardening p]asticity materials in the pre-fa;]ure i'egion. and as an elastic iiftd lineai' sb'ain-softening rnaterials with t.he concept ef shem' retention factorin tension in the post'crac]cinn' reglen. For unrestrained loading suJ'faces, the compressive ultirnate load caiTying capucities were the same regardless of the effects uf height!width raties, however, for restrained loacling surfaees, ulieshurLer the height', 1'.he higher the compressive ultimate load caiTying capacity is. It is clemonstrated that the compi'essive streng(h of concrete ehanges accordlng to the restraint cenditions. .lfeywords : constitative relationsliip of concr?ig strain-hardenitrg plasticit.v, finite element anal.vsis, aniaxiat compressive strellgth ii )・/a 1) -FiKhSLF.ll. ew#iJILue{t. gecffpttwut. -"thiEmsgutU 1. INTRODUCTION rn general, the compressive strength of cencrete in stsMcturul members cliffers from that in a ey]inder test As shown in Fig. 1, the compressive strengths in two regions of a conci'ete bcam, tbe region under bending only nt point B und tlie regien under shear combined witli bending at point A, differ from each other. In a paper by Takiguchl, K., et al.i}, it is demonstrated that the compressive strength of eoncrete near the end support of colLimn ur beam, subjec{ed to bending combined svith shear, is highly increasecl compared with the uniaxial cempressive strength obtaiRed from a eylinder test. This effeet ls rnninly due tu the restraint condition. The stress state in the region uncler sheai' comL}ined ivlth bending, point A in Fig. 1, is a multiaxial stress state since the concrete is restrained. 'l'he failure.condition ef eoncrete uncler multiaxlal stress state is svell knewn, and the strength becomes veirs, high compared with the uniaxia] c()mpressive strength for condition of hydrostatic pressure under high eemprcssion. A]though iL is presently questionable if thc differencein concrete strength, due to the effect of the resa'aint condition. is directly related to the multiaxial stress state, a study in terms of the triaxial constitutive reiationship of concrete gives an apprupriate understanding cencerning the relationship between the compresshre strength and the effect of the restraint condition in the concrete. v. Fig. I Cotnpressive strengths in (wo .regiens of a concrete beam ' Assoc. Prof.,Tekyo Institute ef Technology, Dr. Eng. " Graduate Student,Tekyo lnstitute of Technology, M. Eng. rkttl*X\ inthnt I.・wa RstImetV jc#wath I-S NII-Electronic-I15- Mbrary

Upload: others

Post on 15-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

(tar:iJ-I] H4alkVkmsreXitttsu rgSl7e, 115-123, 1999#3HJ. Struct. Constr. Eng., AIJ, Ne. Sl7, 115'123, Mar., 1999

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

ON COMPRESSIVE STRENGTH OF CONCRETE PRISMS

WITH SEVERAL HEIGHT/WIDTH RATIOS '

3 }ftJiiJfi waee$ee6Ei: ik 6 ffNr."J-- S Lka) sc (it 6 - > 7 ]) - F ts aa)JIIwtSfimaee)bFft

Hisato HOTTA' and Chang-Geun CHO"

va M Jt. .A., ig g me

In order te investigate the effects of restraint conditions and stress concentrat;ons on the compressii,e

strength of con"'ete by three-dimensiona] nunlinedl' finite element ana]ysis, concrete prisms with the seve]'al

heightlwldth ratios(1i!w) under compressive }oads were analyzed. Cone;'ete muterials were mode]ed as an

elastic sb'ain-hardening p]asticity materials in the pre-fa;]ure i'egion. and as an elastic iiftd lineai'

sb'ain-softening rnaterials with t.he concept ef shem' retention factor in tension in the post'crac]cinn' reglen.

For unrestrained loading suJ'faces, the compressive ultirnate load caiTying capucities were the same regardless

of the effects uf height!width raties, however, for restrained loacling surfaees, ulie shurLer the height', 1'.he

higher the compressive ultimate load caiTying capacity is. It is clemonstrated that the compi'essive streng(h of

concrete ehanges accordlng to the restraint cenditions.

.lfeywords : constitative relationsliip of concr?ig strain-hardenitrg plasticit.v, finite element anal.vsis,

aniaxiat compressive strellgth

ii )・/a 1) -FiKhSLF.ll. ew#iJILue{t. gecffpttwut. -"thiEmsgutU

1. INTRODUCTION

rn general, the compressive strength of cencrete in stsMcturul members cliffers from that in a ey]inder test As shown

in Fig. 1, the compressive strengths in two regions of a conci'ete bcam, tbe region under bending only nt point B und

tlie regien under shear combined witli bending at point A, differ from each other. In a paper by Takiguchl, K., et al.i}, it

is demonstrated that the compressive strength of eoncrete near the end support of colLimn ur beam, subjec{ed to bending

combined svith shear, is highly increasecl compared with the uniaxial cempressive strength obtaiRed from a eylinder test.

This effeet ls rnninly due tu the restraint condition. The stress state in the region uncler sheai' comL}ined ivlth bending,

point A in Fig. 1, is a multiaxial stress state since the concrete is restrained. 'l'he

failure. condition ef eoncrete uncler

multiaxlal stress state is svell knewn, and the strength becomes veirs, high compared with the uniaxia] c()mpressive

strength for condition of hydrostatic pressure under high eemprcssion. A]though iL is presently questionable if thc

difference in concrete strength, due to the effect of the resa'aint condition. is directly related to the multiaxial stress

state, a study in terms of the triaxial constitutive reiationship of concrete gives an apprupriate understanding cencerning

the relationship between the compresshre strength and the effect of the restraint condition in the concrete.

v.

Fig. I Cotnpressive strengths in (wo .regiens of a concrete beam

' Assoc. Prof., Tekyo Institute ef Technology, Dr. Eng.

" Graduate Student, Tekyo lnstitute of Technology, M. Eng.rkttl*X\ inthnt ・ I.・waRstImetV jc#wath ・ I-S

NII-Electronic-I15- Mbrary

Page 2: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

In genera], the uniaxia] compressive strength is determined by testing a cylinder which hus a diameter of 10cm and a

height of 20cm. But, by tests, Gonnerman, H. F., et al.2) and Murdeek, J, W,, et a].,3) have demonstrated that the

compressive strength of concrete changes with the heightidiameter ratio of specimen. The smal]er the height of specimen,

the higher the compressive strength, and lt is lcnown that the reason is the end friction bet"'een concrete surface and

steel loading plate. If the end friction is eliminated, the effect of heightldiarneter ratio on cempressive s.lrength

disappears, By Van Mier, J, G. M.,4) when conerete prisms ef varying height are ]oaded between dry i'igld steeHonding

plates as opposed to flexib]e p]ates, completely dlfferent strengths result. rn the case of d", rigid steel ]{)ading p]ates, tdie

apparent compressive strength of the concrete increases as the ptdsm height decreases. In centrast. when f]exible ]oadTng

plates are used, the effect dlsappears, and almost the same peak strength is measared independent of the prlsm height',

An investigatien of the cempressive strength of concrete prisms having several height/width ratios pi'uvides iL good

example of the effect of restraint conditions. since it is easy to understand Lhe mechanism ancl the behavior nut vnly

from experimental tests but also in terms of the triaxiat constltutivc re]atienship for concrete. Tlie effeet t}f different

heightfwidth ratios for a given friction conditiun of the loading surface ean be considered in order to investigate the

effect of restraint condition on concrete strength. The puipose of this study, using l.hree'dimensivna] finite element

analysis, is to investigate the behavior of concrete prisms having several heightfwidth ratios, and to understand tl]e

relationship between the effect of restraint condition and Lhe compressive strength of Lhe cc)nerete.

To model the concrete prisms under the uniaxiai compressive ]oad, an isepai'ameb'ic sulid e]ement with eJghELn{,des

was used, Concrete matei'ia] models are formu]ated as incrementu] strain-hardening p]asticity mode]s "'ith a

Drucker-Prager type surface in compression. In tensile regic]ns after cracking', concrete materials are Tnodeled us [imear

strain-softening materials, and the shear transfer mechanism is reduced linearly in accerdance -'itli the concept c)f shen]'

retention factor. The prisms were 10cmX10cm square in cross section and had heights of 5cm, 10cm, ]5em, and 20cm.

To investigate the development of cempressive strength in relation {o heightfwidth ratios, the loading sttrfaces 'of

prisms

were assumed te be both restrained and uni'estrained in the lateral dlrection. The non]inear lm]blem was solved by an

incremental and iterative method. The tangentia) stiffness matrix was updated at each loading step or when t,he cbncrete

newly cracked・,

2. STRAIN-HARDENING PLASnCITY MODEL OF CONCRETE

In current stucly, for analysis of conerete prisms, conerete material is considered as an elastic st]'ain-hardening

plasticity model in the pre-failure region. In the strain-hardening regime, the formulation follews a classicaHsotrepic

hardening plasticity with the Drucker-Prager type yield and loading function5i.

2.1 DRUCKER-PRAGER TYPE SURFACE

In the initial stage of joading, concrete is treated as a homogeneotss and isotropie eiastic matei'iu]. Fu]' lhe stag'e of

stress between the initial yield surface and the failure surface, the non]inear behnvior of concrete is assumed to fol]owthe cenventional theorlJ of strainuhaJ'dening p]asticity. Te detei'mine the current stlite of yielding ancl the failure surfaee,the Di'ucker-Prager type of loading function can be expressed as:

f= VJ2 +ali-k' =O, fi.VJ:taift- k, =O (IL{2}

t twhere a and k are material constants, li is the first invariant of the stress tensor, and Y,, t's the secund ini,ariitnt of

the stress cleviator tensor. Ttie constants a, and k, can be determined in te]ms of the LmiaNi"i coinpressii'e sti'ength f.'

and the equa]-biaxia] compr ¢ ssive strength fb. as

VS f,.-f. t,E f,. f,. -,"r.

'' 32f,.T/L' 7.',ICf=3 2f,.・. f.・ , (s'),(4)

Tfie initial yield surface fe and the plastic potential function Q, respectii,ely, also have the Dnickei"Prager type,

surface.

2.2 tNCREMENTAL STRAIN-HARDENING RELATtONSHIP

Based on the theery of plasticity, the total strain lncrement ;s taken t{} be the sum t)f the e]as.tic nncl plasticlncrements

dEii=dsff -- dE{j (5}

in which the elastic strain increment, dE:, is re]ated to the stress increment, claii, by the genei'a]ized Ilook's ]aw as

dO ,・,・=Pik, dE:.s (C'})

-116-

NII-Electronic

Page 3: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

whei'e Diiki is the tensor of elastic modulus.

For plastic strain increment dEe・i, the necessary cennection between the loading function and the stress-strain relation

is mude by the flow rule. "rhen tlie cuiTent stress state reaehes the yield sur £ace. the materlal is ln a state of piastic

flour upon further loading. In particu]ar it, is assumed that the 1}]astic sts'ain ;nci'einent is propoi:tional tc) the sta'ess

gradient ef a quantlq, teiined the plastic potential Q, known as the nonasst/)ciatecl nosv i'ule, so (hat

dE{・, r- dX /rt,,

(7)

where dX is a pesitive proportienality ct/)nstant termed the plastic multiplier and the grudient ef the potential surface

OQ/ v' c,i defines the clirection of the plast{c strain increment vector. The, dadvatives of the ]oading and p]astic

I)otential funcLions can generajly be expressed by, respectively:

-S・ZI,,, -

-;-iiE-,,6・i--b9i, J, s-,i・ ,n,1.

t,・, ,9,5i,, -

g2. s,+-/r- ,Q,. s,,+ tu,!ttlt,,,

(sL(g}

where, 8ii is the Kronecker delta, sii is the deviatoric su'ess tensor, and t,, = s,,,,s,・,i

' (.2f3)J:8,i.

Using the flow rule ancl carr},ing out the mathematical derivation, the constitut'ive equation in the elastic

strain-hardening plastic model can be exprcssed as

dai,・=(D,/ii,i-D'ljky)dEkt {10}

ln which the plastic stiffness tensor DZ・ki has the form

i)e,ki= tDiiJ,ti, oOuS,,, -:iCltSl],,'

Ppqlti al.a)

whei'e /

-

h' "'a.., D""'p" sig., -E.illllE{::

emp,.,,'st' it 'SEi"',/

CJIii "' of,., -t/ilifl,.:' {]i'b}

c= op,y oOo9,, fv:[l.l'J?,, t6a9,

"e "

a-L・c)

and o. is ulie effective stress, tiEi, is the effective p]tistic strain increinent. Once the louding {ind plastic potential

function ai'e defined for n isotropic hai'dening plastic muterial, the constitutive relation ean be directly de]'is'ecl frotn Eqns.

10-11 in n rat.her sts'aiglitf()rsvarcl manner.

3. CONCRETE CRACKING AND STRAIN-SOFTENING MODEL IN TENSION

3.1 CRACKS IN THREE DIMENSION

Concrete in tension is modeled as a linem' clastic and strain softenlng material by the smeared erack itpproach. 1'he

principnl sti'esses and their directions ai'e computed initially in uncrac]{ed concrete. If the maximum prlnclpal st,ress for

some reasen exceeds a limiting valvte, a crack is assumed to form in a plane orLhogonal to this st)'ess. After this, the

behav{ur of that zone of euncrete becomes oi'thotrepic us shown ln Fig. 2. The locul matci'ia] axes in the given zone

coincide with the principa] stress directien. After eracking, new sets of cracks can be fermed which are peipenclicular tt)

the previous cracks. In this model, the limiting values to deflne the onset of craclcing are given as fo]]ows, by Al-Noury,

et ai.6):(a)

for triaxial tension

o,,=f, i=J,2,3 ".2.a)

(b) for tension-tension-compression, linearly decreasing tensile strength expressions

o,i=ft (i. -7-.1'・

l) t'or fi3go

"2.b)

(c} for lensionmcoinpression-coinpressioii, linenn' decreasing tensilo streng(h expressions

o,i. f, (1+ ,;T,i',)(l+';i) for o,,fi3 i-O (l2.c}

whet'e f, is the tensi}e strength of concrete,

In the cnse of a triaxial stress state both {n the strain-hnrdening plastic rcg'ion and in the craek region, stresses ar'e

NII-Electronic-117- Mbrary

Page 4: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

calcu]ated as followgng initially the tensi}e strain-softening state, and subsequent]y the triuxia] st'ress

strainuhardening plastic region.

S3

i zz i,

2

,, ,,,, :Iilr, =l

q

+

q

i

-m- EE,

!

/

(a) One craclc (b}'Twocraclcs ' (e}Three cracks

e

a)o

Fig. 2. 0rthogonal crack model in three-climension Fig. 3. Linear tensi]e. strain-soCten;ng

3.2 STRAIN-SOFTENING IN TENSILE CRACK

After concrete cracks in tension, It is 1{nown as demonstrated by Peterson, P. E.7) that the

immediately released to zero but is gradually releaspd by strainLsoftening 1)ehaviDr, In.t.hls paper, in

Chen, W. F.,8) after concrete eracl(s in tension, the stress-strain relation is taken 'as

a ]lnear

shown in Fig. 3, The total strain increment[AE} is decomposed into tsvo parts, the concrete st]'ain'

and the erack strain increment {AEC"], and the strain-softening modulus Et can be derived as fo]]esvs,

{As} r・ {AEc"}+{AE"'} , l, = /i; ' iL/:. ・ Clm = "e"

"f//,9i

'

'

'where

Gf is defined as the fracture energy of conciete required to create one unit of area of a contineus

i$ the,crack band width.

3.3 SHEAR TRANSFER MECHANISM FOR CRACKED SURFACE ' ' Experimental results indicate that a eonsicieiab]e

tGc sti'ess can be transferecl aeioss the reugh surfaces ef

l,,,,. '

]/k'

i?ti,11,:'

:.l,ILi'ffk..ii gii

e

:f'

1":,l.3./'.

'1'

,.I

'lell"i,,t

gr

i::.'Llliit,,2t`

;,. x

Xx to the craclced shear modu]us Gc asafunetion of tlie -

Fig.4 ,Craclced sheai- modu]us Gg=a. G(l- -Eel;,;,),

for Ei <E<E,,,

' ' tt '

In the present worlc, from Kolmar, W. et a].,9] the cracked ,shear medulus is assume.d. to ,be

function of ti)e cun'ent tensile strain after ci'agking as shown in Fig. 4. , tt t ' '4. FINITE ELEMENT MODELS FOR CONCRETE PRISMS ttt

Based on the detailed desciiptions in the previuus sections, a three-dimensional finite element

the NFERC was developed, where the 8-noded hexahedrai e]ements as shown in Fig. 5 svere used to

solids. Concrete prisms had 10cmX10cm square cross sections. Finite elemenl mesh generations for

height of 20cm, 15cm, 10cm, nnd 5cm, respectively, are ii]ustrated in Fig. 6. With these mesh

'

modeled as the symmeb'ic moclel of the 118 part, und is compai'ed svith the fu]l size m.nc]e] t,o '

e]ement size,

'['he beunclaiy conclitions fur the top and the bottem sui'faces in ct/)ntnet "'ith the

a'ssutined to be either complcte restraint in the lateral direction, tvith no s]il) between the steel lvading

surfaee of prism, or complete unrestraint in the lateral direction.

The nonlinear prob]em for numerical analysis is solved by the incrementa] ftnd itei'ative method

Newton-Raphson approach. The tangehtial' stiffness matrix is recalculated for each ]oad in6rement or

newly eraclcs. Convergence criteria in terrns of incrementa1 noda] displacements are adopted in order

iterative cycje when the solution is consiciered to be sufficlent]y accurate.

rvlaterial properties of concrete prisms were assumed te be as follDws; unittxia} comprcssive

uniaxia] tensile strength of 3.22 MPa, Young's modu]us of :l1700 MPa, Poisson's ratio of O.22; (lf of

20mm, and the uniaxial stress-straln cui've ls adoptecl・as that presented by Labbane, M.. et al.iQ} The

S3 S3crz zsz

szcr

Slcr Sl1,- li

!- -

1 /1

slate

dr

,for the

mode]

fe

tensi]e stress is not

acc[}rdance svitl)

strain-softening moclel us

Mcrement { AE "" }'

(13),U4),(15)

cracl{ ;inct tvl

ameunt of shem/

cracked coticrete.

mechanism i$ the cruck

ancl bar slze also

aeuunt for agg'reg'atel

appropiiat.e value

uncracked slieai'

(16}

'

redueed as, a ]ingai'

prograrn fur cencrete,

inodel the concrete

concrcre prisms. witl)

generatpons, each prisin is

investigal'e the effect uf,

loading plnles wei'e

p]ute und thc end

of the inodiflecl

when t}ie toncreie' tu teJ'm;nute t/he

strenglli r,f :i2.2 "IP",

124Nlm, u]f Uf・

palllmeters ol' tile

-118-

Page 5: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute ofJapan

Di'uckeruPrager surfaces are assumed te be O.07 for a and crg, 2.36 for K and )gf in the associated f}ow ni]e. Up Lo 25%

of the uniaxial compressive strength, the stress-strain curve ls assumed to be linear elastlc. The analysis is performed

by displacement control}ed incremental loading appliecl to the top of specimen. The triaxia] stress-strain re]at,ionships

obtained from the foregoing models are compared with the test resu]ts by Kotsovos, M. I}., et al,.ii} in Fig. 7. The

maximum va]ues in this model are slightly lower than in the test results, since the triaxia] st:'ength is underestimated in

the DruclcerLPrager failure sgrface formulated by tlie biuxial stress strengths in Eqns. :S and 4. The fuilure sm'face of

the Drucker-Pragei' type is circular on the deviatoric p]ane, but that of the aetual concrete is near]y triangulai' fo]' tensi}e

and small compressive stresses, and becomes increasingly convex for higher compressive su'esscs. C)nly for the case

where tl)e angle ef similai'ity is neai'ly 60 O, the Dnicker-Pi'ager surface can be satisfied as a concrete

failLve

surface,

sinee

at a eorner

of

convex triangulm' surface of the concrete, the angle of similarity is 60 ".

Here, the angle of

slmi]arities is exprcssed as follows;

e- cos'i[ 3!2.t-3-

jf.Y,] (].7)

and Jp and J3 are the second and third invariants of the stress deviator tensor. From the analysis of prisms, the angles

of

siml]arities at ai'bitrary

points

from the maximum principai stress axls in the deviatoric section were eaicu]ated and

are shown

in Table 1. The values are nearly 60 t.

This result clernonstrates that this ・yield and loading surface, which

has the triaxia] stress-strain rclatlon shown in Fig. 7, can mode] accurntely the 1}ehuvior of Lhe concreLe prisms tinder

compressive loads.

8

7

l i

5

1

b

,

i

i

i

4d -- t

.1 yiJ-

Hexahedral

Angles of

6

z., 2

lsepm'ametrlc

similarlties at

3

Fig. 5.Table

].

(a) H=LtO [,m

element Fig. 6.

inner sultace of prisms

{b)

Finite

H=15 cm

element

-2oe

a .l $ E

g -lse

8

? -loe cr E

: : X -50 va ff co

o

Fig. 7.

and

;ll'e

tllehelght

of

J. "f.,

in

angle ef similarity

(clegree)

{c> H=10 cin (d) T{=5 eni

mesh for concrete specimens

loeationsanglc of similarity

(degree)locations

speclmen

top at outer

top at mner

middle at outer

middle at inner

l/

t)f H=20cm

52.78

55.28

59.96

58.93

speclmen

top at outer

top at lnner

middle at outer

middle at inner

:

ef I{=10cm

50.86

59.54

59.16

59.42

speclm.enef H=15cm tt

specimen of H=5cm t- '

.

e-

)tt,:1 - s・ i,

`i

.

"・/,t・--x{・i'gg

--・!.-".・f.

.

.

/f

/ ftf

./

Sl=S2=S3

- 44MPa

-]- 24MPa

---- 19MPe

5. RESULTS OF ANALYSIS

For the ana]ysis of two moclels, the syrnrnetric models of Y8 size

str ¢ ss-strain curvcs obtained from the reactions on the loading surfaces

unrestrained loacling surface, the compressive stress-strain cui's'es m'e

however, in the case of a restrained loading surfaee, the shorter the

ean'ying capacity. Resu]ts agree with the experimental results of Murdock,

heights are sbown in Fig. 9. For a 1ieighL of 5cm, the physicul tests i'esulted

unlaxial compressive strengtii for conerete strengths of 52, 26, ancl 14 MPa,

increase of 1.64 times for a uniaxial compressive strength ef 32 MPa.

o.oo2 e.ooe -o.ee2 4.oo4 o.oo6

Tensllet2,3} STRAINS Cempresslve{1)

1'riaxiul sta'ess-strain re]atlonship

the fu]] size mode]s, the compressive

shown in Fig. 8. In the case of an

same, regardless of heightlwidth ratios,

prism, the higher the u]timate load

et a].Z) Results for cy]inders of varying

strengths of 1,4, 1.8, and 2.0 times the

respectively. The analyses gave a strenglh

NII-Electronic-119-Mbrary

Page 6: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

Architectural Institute of Japan

60 6o

'

STRAINS STRAINS

(a) By l/8 symmetric models (b) By fu]] models

Heights(cm} extends througliout the centm1 region of the specimen.

Fig. 9. Influence of the different height en strength

' '

Ili :: II li H=

t5

CiiL・lff

・IT ・ITi ・p '

:ll l: ll ll lll ll ll ll lII lll"I lII :ll,i l! lIT tl

it, si :l Il Ill Il li :! II: [ll! lll lll !

,'F,

'fi

'fi n

II"l ll ll H=scm

lII l: Il [!・ ;':TR'ri ':i

tti

st

Hy l/ ]: ::

ll :l .

'

(e] !5.S3 MPa (0 35.75MPa la) 2s.6sMpa fo) 41.54MPa

Fig. 10. Crac]c distributions on uuter surface as function of calculatecl uniaxial eompressive stress

The maximum and the minimum principal stress distJlbut,iups en end surfaees, for resb'ai'ned ]oading surfaees, are

shown in Fig, ll. The tensile state is positive ancl the compressive state ls negative. For prisms of 20cm and 15cm'

height, large stress concentration exists near the coina' of the loading surface. With decreasing height, huwever, ]ai'gg

stress coricentrations alse developed near the center of the loading sLirface, ,especia]ly ln the case of H!5cm.

In Fig, l2, the dlstributions of the maximum principal stresses for inner su]'faces of prisms are shewn fer rest"'ainEd

loqding' surfaces. For the restrained }oading surfaces, stress s,tates varied according to the height!width rntio uf the

specimen. For the case of a height of 20cm, as shown in Fig. 12 (a). there ai'e twu expliflE zones, a. biaxial c"Tnpressive

-120-

NII-Electronic

Page 7: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchrtecturalInstrtute ofJapan

zenc near

deereases,

the triaxia]

the ]oadlng surfacc and a uniaxial

the triaxia! stress state increases

stiess state is extensive not unly

compressive zofie at the iniddlc uf

neai' the middle of the prlsms. For

near the cnd surface of the prism

the specimen. As the height of the prism

a height of 5cm, ag shown in Fig. 12 (d),

1)ut alsu near the middle uf the prism.

in

Ilre,

D

),git

]:il.7:.,iL'-.:.,L.t・.IF,'・l.i:ilP,''Ed']

'/oc

I:DS/O/5,O. 3

lt ltl PANLIPp. STF[V, /J. t/F/IAtlALr,TREt,t, t/,ttHIP/

ta'

''n[rvT[.

,JOtl.t,Ml FltEP

Cft) H - ,.'n /in

:;[E

et]l

stt/ts:liv]c]Elt

'''//r['

/'

,/pt "v///./O./tTr7.t//,/Pt//1/1.Al.L,,/Ptt.. tS)1,/PO

/"INPANtlPALSTrESr,/IAF.1//N/tv/JLSTR[r,S.ttl.WPn

'Ezo[D5o,].Ol.:OCT-.1t//1H-

16 cm

iaeEes:;lt:neo/o)

i.]tt/a2EE]e

,," pp//'lp. .'p[t:/vp ,,NIEIttV:ESE.ttt.'t/,/pts'1]

//'-

IODS/O S.Z..

M.tP-///IP,ttt ///-x./AtStnEEt'q']''2//c'

]o]. oPE:SlvPt/.].lt

/P.

ZZ5S/O S.: .303

(t} 1' 10 cm

I:::[:1::1]/"//t

'eo]o-]'o].o]:o,Ioa7P/'oa.[tE[

!:,:,..".PJL.,::'..:'!.:.t,",L"p':

'"''

'o-

[oo./o/s t [.E g Eo

inHt PRt/ IP.1 .ltFSS//-Ps, u/-"1,./ tl,ESt.]7 1E/,/pt

ittt/gewli,llllgg oooL/o/' ,ott.t, tEqOtEEr "ltt'H // Cd)H.Z,m

itti/[s

5'sS5ts

g'I;S::l:::i;r]te

Flg.11. Principal stresson loadings"rface of prism as function ofca]culateduniaxial compressive stress

2e.5eMPa10

1.1.1"4.di-7le.OlMPa

o.2""4"e.12 ISTSMP-

e1234S

fa)H=20cm {blH=IScm (t]HtlOcm

Fig. t2. Maximum principal stress on inner surface of prism as funclion ef

Strain'hardening ratios for each loacl step of the calculated compi'essive stress

surfaces are shown in Fig. 13. For a given lecation, those ratiog are percentages

restrained conditions. Due to the development of the niaxia] cDmpressive stress

case uf H=2ecm, as shown in Fig. 13 (a}, largc i'atios are confined to the miclclle

p]'ogressive]y extended from the middle to the ends of tbe prigmg as the prlsm

(c), ancl (d).

Frum the development of cracking and the ]ocation of critica] zone, it {s apparent

fuilLn'e shape wiLli spa]]ing due to tensile ci'aeks c'aused by jateral expansion

speclmen and the cc)mp]'essive failure in the inicldle uf the specinicn. This result

s]iape dernonstrated l)y the experiments t)S Hdnsen. H.. et dl.,E) and 1)y Newman

little different frorn the result nf Che two'dimensional axisvmmetrie finite element

where tensile cracks do not des,e]op. A dec]'ement iJi prigm height vauseg the reRion

the region ef triaxial stress states also incrcasc ultimate]y, the extension uf

which the concrete is restruined inf]uences direct]y the i"ci'eage in thc, peak strength

iinma'.'MM,.

i, 1: fd)H-Scm

caleulated uniaxial eompressive sb'ess

of the prisms for regti'ttinecl ]oading

of the failiu'e st]'ess for the gnverning

states near the loacling surfaees, in the

of the specimen. Huwes'cr, lai'ge ratios

height decreuses as shuwn iTi F]g. 1:l (b),

that the concrete prlsm has u conica]

at the outer surface in the rniddle "f tlie

gives a good ttgrcenicnt witli the failm'e

, K et a].B) Moreever, tliis resLtlt is a

mode] in the paper by Otcogen. N. s.,H)

' c}f regtrained coTici'ete Lo increase, su

the triaxiul cempressive sti'css state by

lll COtnPl'e5"t)Il.

NII-Electronic

121-Library

Page 8: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

ArchitecturalInstitute of Japan

uNIAxl"StRESSt19HOMPI

"/POLE

"" i.Ei...

.ll"il,,l.. .,.. i,,,li{lliii

'

"i!,,i・.i,;,,l,1,.,

:ttttt

e5

:: ::is ::Ill eotttt

S5

'so 45

UN/AXdALSTRESStlllJMPs

MbOOLE

=.I... i. ItL.,.

as,i・/;・',ll,;,}va,,,, , x,・'・/,・・・

URIAXdALSTRESS ±]fTS-P-g5

-tuxEgoesenT510-5605Sse

euER eoTToM EHt/ER

Ca) H- 2o cM

Fig, 13. Strain-hai'dening

'.'I.ii,i.l・i

÷!il,l.,!11tilge.. ・-・・

OvTER eoTTo"

(e} H 10

of ca]culated

gii・VU!AklALSTRES5iaTl"Ps viOOLE

OuTER eOTTOM INNER

(b} H- 15 CM

ratio as function

/pae:ERCM

uniaxial

OuTER ecTTo"

(d) H-5 CM

'

compresslve stress

9Sg:90ele4elle

(%)

6. CONCLUStON

From three dlmensiona] finite e]ement analyses of concrete prlsms under compressive ]oads and svith the severa}

heightfwidth ratios, it is concluded that:

1) For unrestrained loading surfaces, the compressive stress-strain curves are the same regardless of the heightlwidth

ratio, For restrained loading siirfaces, however, the shorter the height ef the prism, the greater the peak cumpressive

strength, and the more extensive the triaxial stress state, The compressive strength of concrete varies direct]y with the

restraint conditions.

2) For heightXwidth ratios of 2.0, 1.5, and 1.0, there are twn stress zones, a triaxia] compressive zone witli the 1arge

stress concentrations near the end surface a.nd a uniaxial cDmpressive zone neai' the middle of the, prism.

3) The failure rnechanism of prisms with heightiwidth ratios of O.5 to 2.0 can be predicted to have a cenica] fai]w'e

shape resulting frem tensile spalling cracks caused by iatera] expansioR of the outei' surface in the micldle of the prismand ceinpressive failure in the middle of the prlsm.

REFERENCES1. Takiguchi, K., hnai, 1<., and Mizobuchi, T., "Ceinpressive Stretigth oi ConcretE Around Critical Sectio" of R/C Cohi[n" under Ce:npressie[i-LSendiixg-S]ieai'," J. Slmict. CeTisn'. Eng., A", No. ・496, S3-90, Jun., 1997.Z, Gonnei'tnan, H, F.,

"Effeet of Size an{l Shape of Test Specilnen en Cempressive Strength of Concrere'. Proc. ASI'M, 25, PaiT il, L925, pp. 21i7-5U.

S. Murdock, J. W. [tnd Kesler, C/. E., "Effect

of Length te "la]neter Ratio ef Speci]nen on the Aplmrc]!t Cg[npressive Streiigt]] of CeT ¢ rete, A5TM Bu].. Apri].

1957, ppr 6S-73.

4. Van Mier, J. G. M., "Scaling

in Tensile aiid Cotnpressive Fractiwe of Conciete", Applicataons ef Fraeliue Mechanics te Rei[]fo]vect Co[]e]'ete, Edite[l by

Carpinteri, A., Elsevier App]ied Science, 1992, pp. 95-l35.5. Drucker, D. C. and Prager, SY,,

"Soil Mechariics and Plastic Analysis or limit Design," Q"arterly of Applled MathemHtics, i'e]. 16, 1952, pp. I57' 165.

6. Al-Noury, S, I, and Baiigash, Y., "?restressed

Concrete Contairunent Structures - Ctrc"inferential Hoop Tendon Calculation," 9th trxternational Cenferetice on

Stnictural Mechanics ln Reactor Technolegy CSMiRT), Lausanne, l9B7, l'ol. 4, pp. 395-401.

7. Petersen, P. E., "CTack

Grovvth and Deve]opment o Fractvre Zones iT) Plai" Cencrete andi Similm' Materkds," Report TVBM-100G, Viv, of Bui]ding Mnterials,

LuTicl Ii]stitute ef Technology, Lund, Svvedeit, l9Sl.

S. Chen, W. F., "Constitutive

Equations For Engineering Materials - Vol. 2: P]asticity And Modeling," Elsevier, 1994, pp. SSI-RS7.

9. Kolillai', W. and MehJhom, G., "Comparison of Shear Fefinulations fo:' Cracked Reinfoixred Cenerete Elements", in Procee{ling ef the IriLeriia[ioiLHI Cenfere])ce on Computer Aided Analysls and Design of Concrete Stnictures, Part I, (Eds. Daiijanic, F., et al.) Pineridge Press, Swanses, U. K., vpl33-l47, l9Saj.

Ie. Labbane, M., Saha, N. K. and Ting, E, C., "Yield Criterion And Loading FuT]ctior] Fer Co"crete Plasticity," Inteniatienal Jounial of Se]ic]s Rucl Stractures, Ve]. 30, No. ,9, pp, 1269-12S8, 1993.Il. Kotsovos, M. D. and Nevvman, J. B.,

"A mathematical DescriptioT] of the Defonnational Behavior of Ce"a'ete uTider Complex Loatii[]g," Maguzine of Coibci'ele

Research, IS79, 31, pp. 77'SO.

12, Hftnsen, H., Kiellancl, A,, Nielsen, K. E, C., and Thaa]ow, S., ''Comptzssive

Stiength ot Concrete - Ciibe or Cy]inder,'' RILEM Bulletin, No. I7, I)ee,, l962, :)p.

23-SO. ・

13, ,Ne,wtman, K. an{i Sivaldason, O. T., ''Testing

Machine and Specimen Chftracteristics ancL their Efteet on tlic "lo(]e of 1/)eformarioii, Failure, an[S Strength of

Materials," I'receedings ef the Institution of "Ieclianical ET)gineers, Vel. ISO, Part 3A, 1965-66, pp. 399-4]O.I4. 0ttosen,

'N. S.,

"Evu]vatien of Coricrete Cy]inder Tests Using Finite Elements," Jovmal et the Engimeering Mee]ianics l)ivisioii, ASCE, Vol. 1LO, No. 3, MaJvh,

・l9S4,

pp. ,165-4Sl.

-122-

NII-Electronic Mbrary

Page 9: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON …

Architectural Institute of Japan

NII-Electronic Library Service

Arohiteotural エnstitute   of   Japan

和文要約

1.は じめ

 一

般 に 構 造 物の コ ン ク リート強度 は、シ リン ダー実 験の そ れ と

は異 な っ て い る。曲げ とせ ん 断を受ける 梁支点の コ ン ク リート強

度 は、シ リン ダー強度 に 比べ 、大 幅に 上 回 る場合 が あ る事 が 報告

され て い る。こ の 事は、拘 束状 態 が異 な っ て い るか らだ と一般 に

説 明さ れ て い る。拘束 問題 を多軸 応力状態で の 構 成関係で 把握 さ

れ るかは疑問 で あ るが 、コ ン クリー

トの 多軸 応力で の 構成 関係を

基 に して 、圧 縮 強度が拘 束条件 に どの よ うな 影響 を 受 け る か を調

べ る こ と で そ の 影響 を把 握 す る 必要があ る。特 に、圧縮 を受 ける

径 高 さ比 の 異 な る角柱 は、拘束 条件が 圧縮 強度に及ぼ す影響 を表

わ す こ とで 、そ の 問 題 を簡単 に把握 され る一例 と考え られ る。

 本 砥究は、径 高 さ比 の 異な る コ ン ク リー

ト角柱の 3 次元非線形

有 限要素 モ デ ル に よ り、実際 の コ ン ク リート構造部材 の 中で 拘 束

条 件 お よ び応 力 集 中の 変 化が コ ン ク リー

トの 圧縮強 度 に 及 ぼす影

響 に 関 して 検討す る こ と を 目的 とす る。高 さ20cm 、15cm 、10cm 、

5em の 10em × 10cm の 正方形断面 を有 す るコ ン ク リー

ト角柱に

対 して 解析に よる検討 を行 う。

2.コ ンク リートの 弾性尸 歪み硬化塑性モ デル

 破壊まで の コ ンク リート材 料は弾性一

歪 み硬化塑 性材料 と仮定

し、降伏 面および 載荷関数を Drucker−Prager基準 に基づ き定式

化 して い る。Drucker−Prager基準 に よ る破壊面、初 期 降 伏 面、塑

性 ポ テ ン シ ャル 関 数は そ れ ぞ れ 式(2)〜(6)の よ うに 与え られ る。塑

性論 に 従 っ て 歪み 増 分 は、弾性歪 み増分 と 式(7)の 流れ 則で 定義

され る塑性歪み増分 と の和で 定式化 され る。最 終的に、弾 性一

み 硬化塑 性材料の 応 カー歪み 関係 は 式 (IO>で 求 め られ 、塑 性剛性

テ ン ソ ル は 式(11、a)と な り、硬 化パ ラ メータは 式(11,b)と 式(11.c)

に よ り求め られ る。

3.引 っ 張り側の ひび割れ と歪み軟 化モ デル

 引っ張 り側 コ ン ク リート材料 は 分散 ひび 割 れ モ デル と考 え、線

形 弾 性一歪み 軟化 材料 と考 えて い る。3次元で の ひ び 割れ 発 生 は、

図 2 の よ うに 主 応 力 に 対 して 直交方向の 平面 に生 じる と仮 定す る

直 交 ひ び割れモ デル と考え、3 軸応力状態 で の ひ び割れの 限 界 値

は式(12)と仮定す る。

  ひ び 割れ 後、引 っ 張 り側 の コ ン ク リートは、図 3 の よ うに 総 歪

み 増分 はコ ン ク リー

ト歪 み増分 と ひ び 割 れ 歪 み 増 分 との 和で 、式

(13)〜式(15)と仮 定す る。

 ひ び 割 れ面で の せ ん 断 伝 達 メ カ ニ ズ ム は、式 (16>の よ うに 線 形

的に せん 断係数が 低..ドす る と仮定 す る。

4.コ ンク リート角 柱の 有限要素モ デル

 図 3 に 示すよ うな 8節点八 面立体要素を用 い て、第 2 お よび 第

3 章で 述 べ た仮 定を基 に コ ン ク リート材料 の 3 次 元 非線形 有限 要

素解 析 プロ グ ラ ム NFERC を開発 した。解 析対象は 10cmXIOcm

の 正 方形 断面を有 する高 さ 20cm 、15 cm 、10  cm 、5cm の 角柱

で 、荷 重 と構造体 の 対称性を 考え、供試体 の 1/8 の 対称 部分 だ

け解 析 を行 っ て い る。供試体の 要素分割 はそ れぞ れ図 4 に 示 す と

お りで あ る。コ ン ク リー

ト載荷面 と載荷釧板 は完 全 フ リーと完全

付着の 二 つ で 、載荷 面の 付着条 件 を 考慮 して い る。

  コ ン ク リート材 料値 は、圧縮強度を 32.2MPa 、引 っ 張 り強度 を

3.22MPa 、ヤ ン グ係数を 31700MPa 、ボ ア ソ ン比 を 0.22 と考 え 、

応 カー歪み 曲線 は文 献 10 で 示 されて い る もの を使用 し、圧 縮 強

度の 25% ま で は線形 弾性 と仮 定す る。

5.結 果考察

 図 7 に は、本研 究で 定式化 さ れた コ ン ク リー

ト材料の モ デル に

よ り、3 軸 応 力で の 応 カー歪 み 関係 を示 して い るが 、試験 に 比 べ

解析 に よ り得 られた 応 力の 最大 値が 少 し小 さ くなって い る。こ れ

は式 (3>および式(4)に 用い られた 2 軸 応 力 強度 に よ る 降伏 面が 過少

評価 さ れた か らで あ る。表 1 に 示 すよ うに 、各供試体 の 代表的な

節点で 計算 された 相似 角が 60°に 近づ くこ とは、円形 三角形 で あ

る コ ン ク リー

トの 破壊面が Druckel・−Prage ど 基 準 と相似角 が 60 °で

一致 す る こ とを考え る と、1 軸圧縮強 度 解 析 の モ デ ル と して 3 軸

応力下で の Drucker ・Prager 基 準 は 妥 当性を示 して い る こ とを 証

明 す る。

 図 8 に よ る と、載荷 面 が完 全 フ リーの 場合、高 さ が 異 な る こ と

とは関係 な く圧縮強度 が一

定 で あ るが、載荷面 が 完全 固定の 場合、

高 さが 短 くな る と圧 縮強度 が高 くな っ て い る。図 9 で は、その 結

巣 が 実験 と良 く一致 して い る こ とを 表わ して い る t,

 載荷面 が完全 フ リー

の 場合、ひび 割れ は発 生 して い な い が、図

10 は、載荷面が完全 固定の 場 合で の 外側 面 で の ひ び割れ分布 を表

わ して い る。中央 断 面 の 外側 面か らひ び 割れが 発 生 し、外 側 面 に

沿 っ て 徐 々 に載荷面側 に向け伸び て い る。

  図 ll は、載荷面 が 完全固 定の 場合 の 載荷面 で の 主 応力分布 を

表 わ して い る。高 さ 20か ら 10cm の 場合、外側面で 応力 が集 中 し

て い るが、高 さ 5cm の 場合、外側面 よ り中央部分で 応力 が 集 中 し

て い る。

 載荷面 が完全 フ リー

の 場合、全 て が一

軸 応 力 状態を表 わ した が、

図 12 の よ うに、載荷 面が完 全固定 の 場合、応 力状 態は 、径 高さ

比の 影響を受 け異な っ て い る し、高 さ 20cm の 場 合、載 荷 面側 で

は 三 軸応力 状態 とな って い る が、中央 面 側 で は ほ ぼ一

軸 応 力 状態

となって お り、二 つ の 応 力状 態 で 明 らかに 区分 す る こ とがで きる。

しか し、高 さが短 くな ると段 々 三 軸応 力状態 の 領域 が増 え、高 さ

5cm の 場合、載荷面 か ら中 央面 まで ほ ぼ 三 軸 応力状態 とな っ て い

る。

  図 13 は、載 荷面 が 完全 固 定 の場 合、内部面 で の 塑性 硬化率 を

表わ して い る。高さ が 2C}cm の 場 合、載荷 面側で は高応 力状態 で

あ ま り塑 性硬化 が進 ん で い な い が、中 央面 側 で は 中心 か ら塑性 歪

み硬化 が 進ん で 、圧 縮破壊 の 限界領 域 に な っ て い る,,載荷面側 と

中央 面側 で の そ の 差 は 大 き くな っ て い る が、高 さ が 短 い 場合、そ

の 差 は小 さ くな っ て い る。

  ひ ぴ割 れの 発 生、主応 力分布、塑 性歪 み一

硬化 分 布か ら考 え る

と、角柱の 破壊 は 中 央断面 の 外 か ら横方 向の 膨張 に よるひ び 割れ

が進展 す る と共に 中央 面か らの 塑性 歪み硬 化が 進 み、文献 12 と 13

の 試 験 に 示 さ れ て い る ような 円錐型 に 破 壊す る こ とが 判 断 され る。

6.ま とめ

 径 高 さ比が異 な るコ ン クリー

ト角 柱 の 3 次元 有 限 要素 解析 を行

い 以下の 知見 が得 られ たtt

゜丿1

2)

3)

載荷 面が 付着 さ れて い な い 場 合、ほ ぼ一

軸 応 力 状 態 で、径 高

さ 比 は 圧 縮強度 変化 に 影響 を及ば な い が、付着 さ れて い る場

合、高 さが短 くなる こ とに よ り、角柱の 圧 縮強度が高くな り、

三 軸応力状態が 広げられて い る。そ の 事は、拘束 条件 が 圧縮

強度に 影響.を及 ぼ す こ と が確 か で あ るの を 言正明 す る。

高 さ 20Cm 、15cm 、1Dcm の 場合、供 試体の 応力状 態 は 載荷

面で の 3軸 応 力状態 と 中央面 で の 1軸応力 状態の 二 っ の 領 域

に 区分 され る。角柱は 、中央 断面の 外側 か らの 膨 張 に よ る ひ び 割 れ と共 に 中

央 面 側 での 塑 性歪み 硬 化 の 進展 に よ り、試 験に 示 さ れて い る

よ うに、円錐 型 の破 壊 に な りこ とが 予 測 され る。

(1998年 3 月10日原稿 受理 ,1998年 10月 15 日採用 決定 )

一 123一

N 工工一Eleotronio  Library