thursday afternoon 9 october - cwi portal sites€¦ · accuracy of such semidiscrete time...

37
WSC Werkgemeenschap Scientific Computing Werkgemeenschap Scientific Computing Woudschotenconference 8 - 10 October 2008, Zeist Thursday afternoon 9 October 14:30 - 15:00 Hour One-minute session (for presenting poster) Line-up (alphabethic order, see booklet) Room 27/28 15:00 - 16:30 Hour Poster session, incl. coffee/tea Vide (first floor), Foyer N.B. The posters boards will be available till Friday departure time! http://wsc.project.cwi.nl/woudschoten/2008/postersessie.php6-10-2008 17:38:36

Upload: others

Post on 22-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • WSC Werkgemeenschap Scientific Computing

    Werkgemeenschap Scientific Computing

    Woudschotenconference 8 - 10 October 2008, Zeist

    Thursday afternoon 9 October 14:30 - 15:00 Hour One-minute session (for presenting poster) Line-up (alphabethic order, see booklet) Room 27/28 15:00 - 16:30 Hour Poster session, incl. coffee/tea Vide (first floor), Foyer N.B. The posters boards will be available till Friday departure time!

    http://wsc.project.cwi.nl/woudschoten/2008/postersessie.php6-10-2008 17:38:36

    http://validator.w3.org/check?uri=referer

  • Numerical analysis of a nonlinearpartial integro-differential equation

    Samir Kumar Bhowmik, Department of Mathematics, University ofAmsterdam, the Netherlands, e-mail: [email protected]

    AbstractPiecewise collocation-finite element and Galerkin-finite elementmethods are proposed and analysed for an nonlinear partialintegro-differential equation that arises in the modeling ofphase transitions. We compute solutions in both methodsusing some standard quadrature rules. We present the order ofaccuracy of such semidiscrete time dependent problem withfull integral and quadrature for the Galerkin inner productconsidering both the real solutions and the approximatesolutions are sufficiently smooth in whole domain Ω. We alsofind an upper bound considering the approximate solutions areL2 in Ω and H

    s , s ≥ 0 in each subdomain Ωi such thatΩ = ∪iΩi .

  • Geometric Multigrid for PDEs on Stretched GridsH. bin Zubair (TUDelft), S. P. Maclachlan (Tufts Univ.,US), C. W. Oosterlee (CWI Amsterdam)

    Numerieke Wiskunde, DIAM, Delft University of Technology

    Current research objectives

    Acquiring textbook multigrid convergence for elliptic model problems on rectangular domains, discretized on logarithmicallystretched and locally refined grids. Exploiting the geometry for apriori coarse grid construction.

    Example of a predictable grid coarsening sequence

    (a)Level 1 (b)Level 2 (c)Level 3 (d)Level 4 (e)Level 5 (f)Level 6

    Potential Target applications.

    I Poisson-type equations (accomplished)I Helmholtz equations (major work accomplished, completion underway)I Maxwell equations for EM diffusion (near future)

    [email protected], [email protected]

  • WSC conferenceWoudschoten, October 2008

    Numerical Integration of Damped Maxwell Equations

    Mike Botchev (UTwente), Jan Verwer (CWI)

    ∂tB = −∇× E

    ε∂tE = ∇× (µ−1)B − σE

    ︸︷︷︸

    damping

    −Jspace discretization

    Mu 0

    0 Mv

    u′

    v′

    =

    0 −K

    KT −S

    u

    v

    +

    ju

    jv

    .

    How to build efficient higher-order integrators, such that

    (∇×) wave terms are treated explicitly

    damping terms are treated implicitly

    . – p.1/1

  • Solution of Darcy Flow by Density-Enthalpy MethodIbrahim , C. Vuik, F. J. Vermolen, D. Hegen

    Boiler System

    Flow Through Porous Medium

    Once we have computed

    Density & Enthalpy Temperature, Pressure, Phase Fraction

    • Energy Balance and Mass Balance are used to solve the system.• Isolated and Open Systems with respect to mass and energy are investigated in this work.

    • System response for Different Boundary Conditions is computed.

    References

    [1] Master Thesis of Abdelhaq Abouhafc “Finite Element Modeling of Thermal Processes With Phase Transitions”, TUDelft, Netherlands.

    TUDelft, The Netherlands

    P1

    P2

    G

    L

    L L+G G

    x

  • LEUVENSuppression of the Richtmyer-Meshkov instability in

    MHD

    P. Delmont, R. Keppens, B. van der Holst

    AMRVAC

    • Hybrid block-based AMR

    • Richardson extrapolation

    • Shock capturing algorithms

    • Solving conservative equations:∂tU + ∇ · F(U) = S(U, ∂iU, ∂i∂jU, x, t)

    2D Hydrodynamics

    • refraction in 3 waves• instable contact

    2.5D MHD

    • refraction in 7 waves• stable contact

    1

  • Approximation in high dimensional product domains

    Tammo Jan Dijkema, UUjoint work with

    Rob Stevenson, UvAChristoph Schwab, ETH Zürich

    The curse of dimensionality

    ‖u − uh‖L2 ∼ h

    N ∼1

    hd

    ‖u − uh‖L2 ∼ N−1d

    Approaches:Sparse grids

    Adaptivewavelet method

    u ∈ L2(Ωd)uh

  • Statistical mechanics of aHamiltonian particle-mesh method forincompressible flow over topography

    Svetlana Dubinkina, Jason FrankCWI, Amsterdam, Netherlands

    Numerical method������������

    ������������

    ??

    ?AAAAAAAAAAAAUQQQQQQQQQsOrder Consistency Symplectic

    Stability . . . Convergence

    Statistical mechanics

  • Numerical Simulation of the Stirling-type pulse-tube refrigerator for 4 K

    M.A. Etaati1

    Supervisors: R.M.M. Mattheij1, A.S. Tijsseling1,

    A.T.A.M. de Waele2

    1Mathematics & Computer Science Department - CASA 2Applied Physics Department

    October 2008

  • An Optimization Method for Blowing Glass Preform Shapes

    Hans [email protected]

  • The results of the Boltzmann model correspond with the results of many particle simulations!

    0 2 4 6 8 10 12 14 16 18 20

    0

    0.5

    1

    1.5

    2

    2.5

    time

    ener

    gy

    BoltzmannParticle

    1000 simulations

    0 2 4 6 8 10 12 14 16 18 20

    0

    0.5

    1

    1.5

    2

    2.5

    time

    ener

    gy

    BoltzmannParticle

    100 simulations

    0 2 4 6 8 10 12 14 16 18 20

    0

    0.5

    1

    1.5

    2

    2.5

    time

    ener

    gy

    BoltzmannParticle

    10 simulations

    Towards a DG method for theBoltzmann equation

    Wijnand Hoitinga, Harald van Brummelen, René de Borst

  • 2008 Conference of the Dutch and Flemish Numerical Analysis Communities

    Boundary Element Method:A survey of errors

    Godwin [email protected]

  • Compressible Two-Fluid Flow modelfor Interface Capturing

    Keywords: Two-Fluid Flow, Interface Capturing, Five-Equation model, Energy Exchange,

    Shock-Bubble Interaction

    Delft University of TechnologyCentre for Mathematics and Computer Science

    Jasper J. Kreeft

  • Robust Optimization of Thermal Aspects of FrictionStir Welding Using Manifold Mapping Techniques

    Anders A. Larsen1, Domenico Lahaye2, Martin Bendsøe1, Jesper Hattel3, Henrik Schmidt31 Dept. of Mathematics, Tech. University of Denmark

    2 Delft Institute for Applied Mathematics, Tech. University of Delft3 Dept. of Mechanical Engineering, Tech. University of Denmark

    Friction stir welding

    I Solid state welding process

    I Good for aluminium welding

    I Low residual stresses anddistortions

    Robust optimization

    I Include variations inmaterial, machine andenvironmental parameters

    I Statistical data computedusing Taylor expansions

    Manifold mapping allowsefficient optimization

    I No user-supplied gradients

    I Fewer expensive functionevaluations

  • Department of Aerodynamics

    Fig. 2 Performance as function of numerical stencil Jacobian

    Efficient unsteady flow computations

    Peter Lucas and Hester Bijl

    Fig. 1 Unsteady flow around wind turbine airfoil

    Tab. 1 Comparison performance MG and JFNK

    Flow topology converged

    Iterative error < R-K error estim.

    Two order res. reduction

    Total costs MG / JFNK

    yes no no 4.3

    yes yes no 7.6

    yes yes yes 20

  • 2008 Conference of the Dutch and Flemish Numerical Analysis Communities

    Model Reduction for Complex High-techSystems

    Agnieszka [email protected]

  • Boundedness Properties of Time-steppingMethods

    Anna Mozartova

    CWI, Amsterdam, The Netherlands

    Joint work with Willem Hundsdorfer and Mar Spijker.

    � General Linear Methods: RKMs and LMMs

    � Examples of boundedness properties:� TVB methods� Positivity properties

  • One-way wave equation: unidirectional waves through smooth models applied in seismic imaging

    Improved wave amplitudes obtained by➔ symmetric implementation of associate pseudo-

    differential operator➔ wave field normalization with pseudo-differential

    operator

    Theory and numerical simulation

    One-way wave propagation through smoothly varying media

    Tim Op 't Root

  • A Hamiltonian Discretization for

    the Hydrostatic Euler Equations

    Bob Peeters

    University of Twente

    Key results:

    1. Scheme is based on a (Lagrangian) particle methodand (Eulerian) finite elements.

    2. Numerical simulations,

    3. Convergence & accuracy.

  • Reconstruction of Non-periodic Structures from Scattered Light

    Maxim Pisarenco, Robert Mattheij, Jos Maubach, Ronald Rook

    October 2008

  • −2 −1 0 1 2 3 45 6−2

    −10

    12

    −0.14

    −0.12

    −0.1

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0.02

    Pressure field [Navier−Stokes, Re=200]

    Backward facing Step problem

    Streamlines: non−uniform [Navier−Stokes, Re = 200]

    0 100 200 300 400 500 600

    0

    100

    200

    300

    400

    500

    600

    Profile = 52195, Bandwidth = 570p−last ordering with lexicographic numbering

    To solve

    Preconditioned system :P−1Ax = P−1bSIMPLE-type preconditioners in combination with GCR

    Finite element discretization and linearization

    F BT

    B 0

    up

    =

    f0

    .

    The linear system is sparse, (Non-) symmetric.

    Model Equations

    The incompressible Navier-Stokes equations used to simulate thefluid flow, are given by

    −ν∇2u + u.∇u + ∇p = f in Ω

    ∇.u = 0 in Ω,ν is the viscosity,u is the velocity vector andp is the pressure.

    Mehfooz ur Rehman, Kees Vuik and Guus SegalDelft University of Technology, DIAM, Mekelweg 4, 2628 CD,Delft, The Netherlands

    SIMPLE-type preconditioners for the incompressible Navier-Stokes problem

  • Bounds for the lowest eigenvalue of rank-oneperturbations of Hermitian matrices

    Ricardo R. Silvajoint work with Jan Brandts

    Korteweg-de Vries Instituut voor Wiskunde

    XXXIII Woudschoten ConferenceOct 2008

  • Discontinuous Galerkin method for shallow two phase flows

    Sander Rhebergen - Woudschoten 2008

    University of Twente O. Bokhove and J.J.W. van der Vegt

  • AXo´Ë´âXùË�'>UlËùâl'±'ÈoUßâlË�'>Ë´UoË´âlöùâUßâ´$'X;'RßXùâùiUù

    U'®ËâÅÜâo�´ËùUX'óßXËl';Xß'Ëß´â´âXùU!'

    Ü$´Uo'âù'8UoX!$ùËoâl

    O ßXu�Uo

    Ü´Ëuâ�â´$'X;'£U˺'lX�âùi'oU´X!'!UUù!'Xù'$´Uo'ËßËoU´Uß'Ñ�âoâ´'Xù'oË'ßË´âXèÿ

    O ÜX�´âXù

    ®ËâÅâo�´ËùUX'oU´X!'lUË'ËßX�âoË´âXù'X;'´ßXùi'lX�âùiÿ'Ü´Ëuâ�â´$'â'ËlâUU!';Xß'Ë��'$´Uo'ËßËoU´Ußÿ'ÈX'uÅâ´UßË´âXù'ùUU!U!ÿ

    O ó�âlË´âXù

    - D�â!ÅÜ´ßl´ßU'[ù´UßËl´âXùÿ

    - rÅ ';�X£'lX�âùiÿ

    Rÿ'·XÎUoËå'óÿüÿÿ'�U�!oËùå'Èÿ>ÿ'>Ëßâ´

    öùâUßâ´$'X;'RßXùâùiUùå'öùâUßâ´$'>U!âlË�'AUù´Uß'RßXùâùiUù

     'U�Ë´âl'Ëß´Uß$

    r'lâßl�Ë´âXù'

    oX!U�

  • /centre for analysis, scientific computing and applications

    Technische UniversiteitEindhovenUniversity of Technology

    Woudschoten Conference 2008 of the Werkgemeenschap Scientific Computing

    Autofocus algorithms inelectron microscopy

    Maria [email protected]

  • Delft University of Technology

    Smoothness Increasing Accuracy Conserving Filtering for DGM

    Accuracy Enhancement:• Existing Discontinuous

    Galerkin Approximation,

    uh(x, t) =k∑

    l=0

    u(l)

    i(t)φ

    (l)

    i(x),

    is O(hk+1).• We can improve the

    convergence rate toO(h2k+1) and filter out theoscillations in the error bypost-processing

    u∗(x, T ) = Kh ⋆ uh(x, T ).

    Filtering for Visualization• Can apply to entire field• Can implement in a

    one-dimensional manner formulti-dimensionalstreamlines.

    −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    Jennifer K. Ryan – p.1/1

  • University of Twente

    High-order discontinuous Galerkinmethods for the time-harmonic Maxwell

    equations in three dimensions

    D. Sármány, J.J.W. van der Vegt, M.A. Botchev

  • Numerical Analysis of the Ginzburg–Landau equationsNico Schlömer, Universiteit Antwerpen

    Problem

    0 = (−i∇∇∇− A)2ψ − ψ“1− |ψ|2

    ”0 = −κ2∆A−

    12i

    (ψ∗∇∇∇ψ − ψ∇∇∇ψ∗) + |ψ|2A

    solution space

    solution ψ

    Methods

    I Newton’s methodI “customized”

    GMRESI borderingI continuation

    Challenges

    I complex valuesI all solutions

    singularI complicated

    solution landscape

    Numericalsolution

  • 1

    Stability of the Super Node Algorithm for EM modelling of ICs

    Maria Ugryumova

    Technical University of Eindhoven

    Centre for Analysis, Scientific computing and Applications

  • 1

    Implicit time integration methods in trafficflow modellingFemke van Wageningen

    Continuum model: conservation of vehicles

    stabilitylarge CPU-timesnonlinearityphase errorsnumerical diffusion

  • Instationary solvers for chemically reacting flowproblems

    Sander van Veldhuizen, Kees Vuik & Chris Kleijn

    Delft Institute of Applied Mathematics and Multiscale Physics Department

  • 1

    Delft University of Technology & University of ZaragozaDelft University of Technology

    Analysis of a Vector StefanProblemFred Vermolen & Etelvina Javierre & Kees Vuik

    Woudschoten, 2008

  • Stability of finite differenceschemes for the

    Black–Scholes equation

    Kim Volders & Karel in ’t Hout

    Black-Scholes PDE: ut = 12σ2s2uss + rsus − ru.

    FD schemes:

    f ′(si) ≈f (si+1) − f (si−1)

    hi + hi+1,

    f ′(si) ≈1

    hi + hi+1

    [

    −hi+1hi

    f (si−1) +(

    hi+1hi

    −hi

    hi+1

    )

    f (si) +hi

    hi+1f (si+1)

    ]

    ,

    f ′′(si) ≈2

    hi(hi + hi+1)f (si−1) −

    2hihi+1

    f (si) +2

    hi+1(hi + hi+1)f (si+1).

    Results for the semi-discrete system U ′(t) = AU(t) + b(t):◮ Upper bounds for ||etA||H (scaled Euclidean norm).◮ Sufficient conditions for contractivity in the maximum norm.

    1 / 1

  • Reordered Stanford link matrixStanford link matrix

    Albert-Jan Yzelman & Rob BisselingDept. of Mathematics, Utrecht University

    Cache-oblivious sparse matrix-vector multiplication byusing sparse matrix partitioning methods

    32ms

    15ms

    Gain: 53%

  • Dual Solution

    Adaptive Mesh

    GOAL-ADAPTIVE DISCRETIZATIONOF FLUID-STRUCTURE INTERACTION

    Kris van der Zee, Harald van Brummelen, René de Borst

    postersessie.pdfwsc.project.cwi.nlWSC Werkgemeenschap Scientific Computing

    One-minute-poster-sessie.pdfBhowmik.pdfbin Zubair.pdfBotchev.pdf

    Daud.pdfSlide 1

    Delmont.pdfDijkema.pdfDubinkina.pdfEtaati.pdfGroot.pdfGrzelak.pdfHoitinga.pdfKakuba.pdf 2008 Conference of the Dutch and Flemish Numerical Analysis Communities

    Kreeft.pdfLarsen.pdfLucas.pdfEfficient unsteady flow computations

    Lutowska.pdf 2008 Conference of the Dutch and Flemish Numerical Analysis Communities

    Mozartova.pdfRoot.pdfPeeters.pdfPisarenco.pdfRehman.pdfReisdaSilva.pdfReps.pdfRhebergen.pdfRozema.pdfRudnaya.pdf Woudschoten Conference 2008 of the Werkgemeenschap Scientific Computing

    Ryan.pdfSmoothness Increasing Accuracy Conserving Filtering for DGM

    Sarmany.pdfSchloemer.pdfUgryumova.pdfWageningen.pdf

    Veldhuizen.pdfVermolen.pdfVolders.pdfYzelman.pdfZee.pdf