ti-al-nb system

9
8/13/2019 Ti-Al-Nb system http://slidepdf.com/reader/full/ti-al-nb-system 1/9 Materials Science and Engineering A 152 (1992) 9-17 9 Thermodynamic calculation of the ternary Ti A1 Nb system U. R. Kattner* and W. J. Boettinger Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA) Abstract Phase equilibria of the ternary Ti-A I-Nb system are dominated by the large range of homogeneity of (fl-Ti,Nb), the binary intermetallic compounds of the Nb-AI and Ti-AI systems and the formation of two ternary compounds. The available ternary experimental data, together with a thermodynamic extrapolation of the ternary system from the binary systems, have been used to calculate the ternary phase diagram. The model descriptions of the Gibbs energies of most of these compounds are given by the existing calculations of the binary systems. In order to model a phase which is present in only one binary system, but has a ternary homogeneity range, a hypothetical phase with the same structure was analyti- cally described for each binary system. Such a phase would, of course, be metastable in the other binary systems. Constraints on the Gibbs energies of formation were derived from the crystal structures of the corresponding ordered compounds. These same constraints were employed for the corresponding phases in the ternary system. In a final optimization step, ternary parameters were introduced and adjusted to the available experimental data. The as-derived description of the ternary Ti-AI-N b system can be used to estimate single or multiphase fields and thermodynamic quantities where no experimental data are yet available. It is also useful as an indicator of problem areas for which additional experimental data are required. 1. Introduction The Ti-A1-Nb system is of interest for the develop- ment of high temperature/low density intermetallic materials. Knowledge of stable and metastable phase relations in multicomponent materials provides valuable information for the development of process- ing strategies for these materials. Once derived, this thermodynamic description can be used to provide information which is not easily accessible through experimental techniques, such as metastable extensions or the temperatures where two phases have the same Gibbs energies at a given composition T, curves). Despite their importance, the phase relationships of this system are only partially known for certain tem- perature regimes [1-8]. From the available experi- mental data the following points can be determined. 1) The intermetallic compounds of the binary Nb-A1 and Ti-A1 systems have relatively wide ranges of homogeneity in the ternary system. 2) The compounds NbA13 and TiA I 3 form a con- tinuous D022) olid solution. 3) At least two ternary compounds exist near the compositions Ti2A1Nb and Ti4A13Nb. 4) The fl-Ti, Nb) phase with b.c.c, structure orders to the fl0-Ti, Nb) with B2 CsCI) structure. *Also at: Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. 5) A miscibility gap may exist in the ordered fl,- Ti,Nb) phase. The available ternary experimental data, together with a thermodynamic extrapolation of the ternary system from the binary systems, have been used to calculate the ternary phase diagram. This attempt at modeling the Ti-AI-Nb system must be viewed as preliminary. However, it provides a basis for the com- bination of data from several sources in a thermo- dynamically consistent manner and indicates composition and temperature regimes where further experimentation is essential. A continued interchange between calculation and experimentation is the quickest route to the true diagram. 2. History of calculations of the Ti AI Nb system Previous calculations of the Ti-A1-Nb system were based on the then accepted calculations of the binary systems and available experimental data. In a first calculation of the Ti-A1-Nb system [9], the thermo- dynamic descriptions of the binary systems of Nb-AI and Ti-A1 by Murray [10, 11] and of Ti-Nb by Kauf- man and Bernstein [12] were used. Since this calcula- tion, the experimental data and thermodynamic descriptions of the binary Ti-A1 and Nb-A1 systems have been subject to revision. For the calculation of the Nb-AI system, Murray [10] used phase diagram as well 0921-5093/92/ 5.00 © 1992--Elsevier Sequoia. All rights reserved

Upload: amlan-kar

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 1/9

Materials Science and Engineering A 152 ( 1 9 9 2 ) 9 - 1 7 9

Thermodynam ic calculation of the ternary T i A 1 N b system

U . R . K a t t n e r * a n d W . J . B o e t t i n g e r

Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, M D 20899 USA )

Abstract

P h a s e e q u i l i b r i a o f t h e t e r n a r y T i - A I - N b s y s t e m a r e d o m i n a t e d b y t h e l a r g e r a n g e o f h o m o g e n e i t y o f ( f l- T i ,N b ) , t h eb i n a ry i n t er m e t a ll i c c o m p o u n d s o f t h e N b - A I a n d T i - A I s y s t em s a n d t h e f o r m a t io n o f t w o t e r n a r y c o m p o u n d s . T h e

a v a i l a b le t e rn a r y e x p e r i m e n t a l d a t a , t o g e t h e r w i th a t h e r m o d y n a m i c e x t r a p o l a t i o n o f t h e t e r n a r y s y s t e m f r o m t h e b i n a r y

s y s te m s , h a v e b e e n u s e d t o c a l c u l a t e t h e t e r n a r y p h a s e d i a g r a m . T h e m o d e l d e s c r i p t i o n s o f th e G i b b s e n e r g i e s o f m o s t o f

t h e s e c o m p o u n d s a r e g i v e n b y t h e e x i s ti n g c a l c u l a ti o n s o f th e b i n a r y s y s te m s . In o r d e r t o m o d e l a p h a s e w h i c h i s p r e s e n t in

o n l y o n e b i n a r y s y s t e m , b u t h a s a t e r n a r y h o m o g e n e i t y r a n g e , a h y p o t h e t i c a l p h a s e w i t h t h e s a m e s t r u c t u r e w a s a n a l y t i -

c a l ly d e s c r i b e d f o r e a c h b i n a r y s y s t e m . S uc h a p h a s e w o u l d , o f c o u r s e , b e m e t a s t a b l e i n t h e o t h e r b i n a r y s y s t e m s .

C o n s t r a i n t s o n t h e G i b b s e n e r g i e s o f f o r m a t i o n w e r e d e r i v e d f r o m t h e c r y s t a l s t r u c t u r e s o f t h e c o r r e s p o n d i n g o r d e r e d

c o m p o u n d s . T h e s e s a m e c o n s t r a i n t s w e r e e m p l o y e d f o r t h e c o r r e s p o n d i n g p h a s e s i n t h e t e r n a r y s y s t e m . I n a f i n a lo p t i m i z a t i o n s t ep , t e r n a r y p a r a m e t e r s w e r e i n t r o d u c e d a n d a d j u s t e d t o t h e a v a i l a b l e e x p e r i m e n t a l d a t a . T h e a s - d e r i v e d

d e s c r i p t i o n o f t h e t e r n a r y T i - A I - N b s y s t e m c a n b e u s e d t o e s t im a t e s i n gl e o r m u l t i p h a s e f i e ld s a n d t h e r m o d y n a m i c

quan t i t i e s w here no expe r im en ta l da t a a r e ye t ava i l ab l e . I t i s a l so use fu l a s an i nd i ca to r o f p rob l em a reas fo r w h icha d d i t i o n a l e x p e r i m e n t a l d a t a a r e r e q u i r e d .

1 . I n t r od u c t i on

T h e T i - A 1 - N b s y s t e m is o f i n t er e s t f o r th e d e v e l o p -

m e n t o f h i g h t e m p e r a t u r e / l o w d e n s i t y i n t e r m e t a l l i c

m a t e r i a l s . K n o w l e d g e o f s t a b l e a n d m e t a s t a b l e p h a s er e l a ti o n s i n m u l t i c o m p o n e n t m a t e ri a l s p r o v i d e s

v a l u ab l e i n f o r m a t i o n f o r t h e d e v e l o p m e n t o f p r o c e s s -

i n g s t r a t e g i e s f o r t h e s e m a t e r i a l s . O n c e d e r i v e d , t h i s

t h e r m o d y n a m i c d e s c r i p t i o n c a n b e u s e d t o p r o v i d e

i n f o r m a t i o n w h i c h i s n o t e a s i l y a c c e s s i b l e t h r o u g h

e x p e r i m e n t a l t e c h n i q u e s , s u c h a s m e t a s t a b l e e x t e n s io n s

o r t h e t e m p e r a t u r e s w h e r e t w o p h a s e s h a v e t h e s a m e

G i b b s e n e r g i e s at a g i v e n c o m p o s i t i o n T , c u r v e s ).

D e s p i t e t h e i r i m p o r t a n c e , t h e p h a s e r e l a ti o n s h ip s o f

t h i s s y s t e m a r e o n l y p a r t i a l l y k n o w n f o r c e r t a i n t e m -

p e r a t u r e r e g i m e s [ 1 - 8 ] . F r o m t h e a v a i l a b l e e x p e r i -

m e n t a l d a t a t h e f o l l o w i n g p o i n t s c a n b e d e t e r m i n e d .

1 ) T h e i n t er m e t a l li c c o m p o u n d s o f th e b i n a r y

N b - A 1 a n d T i - A 1 s y s t em s h a v e r e l a ti v el y w i d e r a n ge s

o f h o m o g e n e i t y i n t h e t e r n a r y s y s t e m .

2 ) T h e c o m p o u n d s N bA 13 a n d T i A I 3 f o r m a c o n -

t i n u o u s D022) o l i d s o l u t i o n .

3 ) A t l e a s t t w o t e r n a r y c o m p o u n d s e x i s t n e a r t h e

c o m p o s i t i o n s T i 2 A 1 N b a n d T i 4A 1 3N b .

4 ) T h e f l- T i, N b ) p h a s e w i t h b. c .c , s t r u c t u r e o r d e r s

t o t h e f l0 -T i , Nb ) w i t h B 2 C s C I ) s t ru c t u re .

* A l s o a t : D e p a r t m e n t o f M a t e r i a l s S c i e n c e a n d E n g i n e e r i n g ,U n i v e r s i t y o f W i s c o n s i n - M a d i s o n , M a d i s o n , W I 5 3 7 0 6 , U S A .

5 ) A m i s c ib i l it y g a p m a y e x i s t i n t h e o r d e r e d f l ,-

T i , N b ) p h a s e .

T h e a v a i l a b l e t e r n a r y e x p e r i m e n t a l d a t a , t o g e t h e r

w i t h a t h e r m o d y n a m i c e x t r a p o l a t i o n o f t h e t e r n a r y

s y s t e m f r o m t h e b i n a r y s y s t e m s , h a v e b e e n u s e d t oc a l c u l a t e t h e t e r n a r y p h a s e d i a g r a m . T h i s a t t e m p t a t

m o d e l i n g t h e T i - A I - N b s y st e m m u s t b e v ie w e d a s

p r e l i m i n a r y . H o w e v e r , i t p r o v i d e s a b a s i s f o r t h e c o m -

b i n a t i o n o f d a t a f r o m s e v e ra l s o u r c e s i n a t h e r m o -

d y n a m i c a l l y c o n s i s t e n t m a n n e r a n d i n d i c a t e s

c o m p o s i t i o n a n d t e m p e r a t u r e r e g i m e s w h e r e f u r th e r

e x p e r i m e n t a t i o n i s e s s e n t i a l . A c o n t i n u e d i n t e r c h a n g e

b e t w e e n c a l c u l a t i o n a n d e x p e r i m e n t a t i o n i s t h e

q u i c k e s t r o u t e t o t h e t r u e d i a g r a m .

2 . H i s t o ry o f c a l c u l a t io n s o f t h e T i A I N b s y s t e m

P r e v i o u s c a lc u l a ti o n s o f t h e T i - A 1 - N b s y s t e m w e r e

b a s e d o n t h e t h e n a c c e p t e d c a l c u l a t i o n s o f t h e b i n a r y

s y s t e m s a n d a v a i l a b l e e x p e r i m e n t a l d a t a . I n a f i r s t

c a l c u la t i o n o f t h e T i - A 1 - N b s y s t e m [9 ], th e t h e r m o -

d y n a m i c d e s c r i p t i o n s o f t h e b i n a r y s y s t e m s o f N b - A I

a n d T i - A 1 b y M u r r a y [ 1 0, 1 1] a n d o f T i - N b b y K a u f -

m a n a n d B e r n s t e i n [ 1 2 ] w e r e u s e d . S i n c e t h i s c a l c u l a -

t i o n , t h e e x p e r i m e n t a l d a t a a n d t h e r m o d y n a m i c

d e s c r i p t i o n s o f t h e b i n a ry T i - A 1 a n d N b - A 1 s y s te m s

h a v e b e e n s u b j e c t t o r e v i s io n . F o r t h e c a l c u l a t i o n o f t h e

N b - A I s y s te m , M u r r a y [ 10 ] u s e d p h a s e d i a g r a m a s w e ll

0921-5 093 /92 / 5 . 00 © 1992- -E l sev i e r S equo ia . A l l r igh ts r e se rved

Page 2: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 2/9

l 0 U . R . K a t t n e r 1 4/. J . B o e t t i n g e r / T e r n a ~ T i - A I - N b s y s t e m

a s t h e r m o d y n a m i c d a t a t o d e r i v e t h e t h e rm o d y n a m i c

de sc r ip t i on f o r t h i s sys t e m . A r e - e va lua t i on o f t he

e xpe r im e nta l da t a f o r t h i s sys t e m sugge s t e d t ha t som e

o f t h e t h e r m o d y n a m i c d a t a a r e i n c o n s i s t e n t w i t h t h e

pha se d i a gr a m da t a . T he c a l c u l a t i on ba se d on t h i s r e -

e v a l u a t i o n y i e l d e d a s i m p l i f i e d t h e r m o d y n a m i c

d e s c r i p t io n a n d a m o r e a c c u r a t e f it b e t w e e n t h e c a l cu -l a t e d a nd e xpe r im e nta l pha se bounda r i e s [ 13] . For t he

T i - A I s y s t e m , n e w e x p e r i m e n t a l r e s u l t s s h o w e d t h a t

( a - T i ) i s i n e qu i l i b r ium wi th t he l i qu id pha se a nd h ighe r

l i q u i d u s t e m p e r a t u r e s w e r e e s t a b l i s h e d f o r t h e c o m -

p o s i t io n r an g e o f 3 5 - 8 0 a t. A l . T h e s e c h a n g e s i n t h e

e xpe r im e nta l pha se d i a gr a m a r e r e f l e c t e d by a se r i es o f

c a l c u l a t ions i n t h e l i t e r a tu r e ( se e Ka t tne r e t a l [14] for a

s u m m a r y ) .

S i n c e t h e a c c u r a c y o f t h e t h e r m o d y n a m i c d e s c r i p -

t i ons o f t he b ina r y sys t e m s is c r uc i a l f o r t he c a l c u l a t i on

o f a t e r n a r y p h a s e d i a g r a m , t h e m o s t r e c e n t c a l c u l a -

t io n s o f t h e b i n a r y N b - A I a n d T i - A 1 s y s t e m s w e r eu s e d f o r a n e w a p p r o x i m a ti o n o f t h e T i - A I - N b s y st em .

T h e se t h r e e c a l c u l a t e d b ina r ie s a r e show n in F ig . 1 .

3 Ava i lab le expe r im enta l da ta

T h e a v a i l a b l e e x p e r i m e n t a l d a t a f o r t h e T i - A I - N b

s y s t e m a r e sp a r s e w h e n c o m p a r e d w i th t h e c o m p l e x i t y

of t h is sys t e m . M os t o f t he e xp e r im e n ta l i n f o r m a t ion i s

a va i l a b le f o r t he i so the r m a l se c t i on a t 1200 °C . T h e t i e -

l i ne da t a o f r e fs . 6 a nd 15 a r e i n goo d a gr e e m e nt a nd

e s t a b l ish t he p ha se bou nda r i e s w i th su f f ic i e n t a c c ur a c y .

T h e da t a o f re f . 2 f o r t he (f l- Ti , Nb) - Nb 3A1 - Nb2 AI a nd

Nb 2A I - T iA I - ( T i , Nb)A13 th r e e - ph a se e qu i l ib r i a a r e i n

g e n e r a l a g r e e m e n t w i t h th e p h a s e b o u n d a r i e s i n d i c a t e d

by r e f s. 6 a nd 15 . I t is no t e w or th y t o m e nt ion t ha t t he

t i e -l i ne da t a o f r e f. 6 i nd i c a t e a n i so l a t ed s ing l e - pha se

area n ear th e co mp osi t io n Nb~0A145Ti45. Th is s ing le

pha se i s be l ie ve d t o ha ve t he B 2 ( CsC1) s t r uc tu r e . I t is

a l so kn ow n tha t t he ( fl -T i, Nb) pha se un de r g oe s a n

or de r ing t r a ns i ti on f r om th e d i so r de r e d b .c .c , s t r uc tu r e

to t he o r d e r e d B2 s t r uc tu r e ( f l0 -T i, Nb) i n t he t e r n a r y

sys t e m [ 1, 3 , 6] . T h e oc c ur r e nc e o f two s ing l e - pha se

f i elds w i th t he sa m e c r ys t a l s t r uc tu r e i s sugge s ti ve o f a

misc ibi l i ty gap.

M o s t o f t h e e x p e r i m e n t a l d a t a w h i c h a r e a v a i l a b l e

f o r t he 1100 °C se c t i on de t e r m ine t he ( fl - T i,Nb) - T i3A1

b o u n d a r y . T h e d a t a o f P e r e p e z k o [ 7] s h o w a r e l a ti v e ly

w i d e t w o - p h a s e a r e a , w h i le t h e d a t a o f M u r a l e e d h a r a n

a nd Ba n e r j e e [4 ] show a r e l a t ive ly na r r o w on e . Fur -

the r e xpe r im e nta l da t a r e por t a t i e - l i ne f o r ( / 30-

T i , Nb ) - Nb2A I [ 1 ] , a s w e l l as da t a f o r tw o t i e -t r i ang l e s

( /30- T i ,Nb) - Nb2A1- T iAI [ 16] a nd ( f l 0 - T iNb) - T i3Al -

T iA1 [ 5 ] . T h e c om pos i t i ons o f t he ( f l0 -T i,Nb) pha ser e p o r t e d f o r t h e s e t w o t h r e e - p h a s e e q u i l i b r i a a r e

c o n t r a d i c t o r y t o t h e e x t r a p o l a ti o n o f t h e p h a s e b o u n d -

o

?

o

0 )

b -

8 Lr...

8u , I - - ~

r-° ( i T i , )

(AJo , , , , f , , f ,

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T A t . % A I A I

( . 3

~3

0ib°o

O 1 ' 0 2 ' 0 3 0 4 ' 0 5 ' 0 6 ' 0 7 ' 0

I I I I I I

~ N b A I s

W8 0 9 1 0 0

N b A t . % A I A I

o

~

2o

p - -o

8-

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 g 0 1 0 0

T i A t . % N b N b

F i g . 1 . T h e c a l c u l a te d b i n a r y p h a s e d i a g r a m s . (a ) T i - A I , ( b )N b - A I a n d (c ) T i - N b .

a r y da t a g ive n by P e r e pe z ko [ 7 ] . T h i s c onf l i c t c a n be

r e so lve d i f t he a s su m p t ion i s m a d e t ha t two s ing l e -

ph ase a reas of the ( fl0-Ti , Nb ) p has e a lso exis t a t th ist e m p e r a tu r e . I n t h i s c a se on e ( fl 0- Ti , Nb) wo uld be

Page 3: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 3/9

U . R . K a t t n e r , W . J . B o e t t i n g e r / T e r n a r y T i - A I - N b s y s t e m 1 1

obse r ve d i n t he t h r e e - p ha se e qu i l ib r i a [ 8 ] , whi l e t he

o th e r ( /30-T i,Nb) wa s o bse r v e d by Pe r e p e z ko [ 7] .

F o r t e m p e r a t u r e s o t h e r t h a n 1 2 0 0 a n d 1 1 0 0 ° C , o n l y

f e w t i e - l i ne da t a a r e a va i l a b l e . For 700 °C , Be nde r sky

e t a l . [8] repor ted t ie - l ine da ta be tween ( /3-Ti , N b ) a n d

T i 2 A I N b , a n d B e n d e r s k y e t a l . [ 5 ] r e por t e d da t a

be tw e e n T ia AI 3Nb a nd T iA1 in e qu i l i b r ium wi th a t r a c eof Ti3AI.

E xpe r im e nta l da t a i nvo lv ing t he l i qu id pha se a r e

a va i la b l e on ly f o r t he T iA l3- r i c h pa r t o f t he qua s ib ina r y

NbA13- T iAi~ se c t i on [ 6 ] . Ba se d on t he o bse r va t i o n o f

pr im a r y f i e lds o f c r ys t a l l iz a t i on a nd p r e l im ina r y d i f f e r-

e n t i a l t he r m a l a na lys i s ( DT A) r e su l t s , Pe r e pe z ko e t a l .

[6 ] p r op ose d a n e s t im a te d l i qu idus p r o j e c t i on .

E xpe r im e nta l r e su l t s ha ve e s t a b l i she d t he e x i s t e nc e

of two t e r na r y c om pou nds : T i2A1Nb [ 17] a nd T i4AI 3Nb

[ 5] . T h e T i~ A 1N b c o m p o u n d h a s a n o r t h o r h o m b i c

o r d e r e d s t ru c t u r e . It is b a s e d o n t e r n a r y o r d e r i n g o f t h e

D0z 9 s t r uc tu r e o f T i3AI whic h is a n o r d e r e d de r iva t i veof h .c .p . The Ti4A13Nb compound has the B82 (Ni2In)

s t r uc tu r e a nd i s be l i e ve d t o ha ve a r e l a t i ve ly sm a l l

r a n g e o f h o m o g e n e i t y . N e i t h e r t e r n a r y c o m p o u n d w a s

obs e r ve d i n a l loys t ha t we r e a n ne a l e d a t 1100 °C [5 , 8]

o r h i g h e r t e m p e r a t u r e s . B e n d e r s k y e t a l . [ 8 ] r e por t e d

t h e o c c u r r e n c e o f t h e T i 2 A I N b c o m p o u n d i n s a m p l e s

t h a t w e r e a n n e a l e d a t a n d b e l o w 9 7 0 ° C , a n d t h e

T i ~ A I ~ N b c o m p o u n d w a s o b s e r v e d i n s a m p l e s t h a t

we r e a n ne a l e d a t 700 °C [5 ].

4 . A n a l y t i c a l d e s c r i p t i o n o f t h e p h a s e s

T h e p h a s e s c o n s i d e r e d i n t h e c a l c u l a t i o n o f t h e

T i - A I - N b s y s te m a r e t h e d i s o r d e re d s o lu t io n p h a s es

( l iquid, ( /3-Ti ,Nb) , ( a -Ti ) and (AI) ) , the ordered inte r -

m e t a l l i c c o m p o u n d s o f t h e N b - A I a n d T i - A 1 b i n a r i e s

(Nb3AI , Nb2A1, (T i , Nb)A I3, T i3A1, T iA1, T iA1 2 and

T i 2A I s) a n d t h e o r d e r e d t e r n a r y c o m p o u n d s (T i2 A 1N b

a nd T i4AI 3Nb) . S inc e t he t r a ns i t i on be twe e n d i s -

o r de r e d ( f l - T i ,Nb) a nd o r de r e d ( f l o - T i ,Nb) i s be l i e ve d

t o b e a s e c o n d - o r d e r t ra n s i ti o n , a n d i n o r d e r t o k e e p

the a na ly t i c a l de sc r ip t i on a s s im ple a s poss ib l e , t he se

two s t r uc tu r e s w i l l no t be d i s t i ngu i she d i n t he p r e se n t

ca lcula t ion; both a re re pres ente d as the ( fl -T i , Nb) p hase .

For t he c a l c u l a t i on o f pha se e qu i l i b r i a , t he G ibbs

e n e r g i e s ( G ) o f t h e p h a s e s p r e s e n t m u s t b e e x p r e s s e d a s

a na ly t i c a l f unc t i ons o f t he va r i a b l e s o f i n t e r e s t , i . e .

c o m p o s i t i o n a n d t e m p e r a t u r e . F o r t h e c a l c u l a t i o n o f

t h e t e r n a r y s y s t e m , t h e t y p e o f e q u a t i o n ( m o d e l ) f o r t h e

p h a s e s e x i s ti n g in t h e b i n a r i es h a s b e e n p r e d e t e r m i n e d

b y t h e t h e r m o d y n a m i c d e s c r i p t i o n u s e d i n t h e c a l c u la -

t i on o f t he b ina r y sys t e m s . I n a l l t h r e e b ina r y sys t e m s

t h e d i s o r d e r e d s o l u t i o n p h a s e s w e r e d e s c r i b e d w i t h

q u a s i - s u b r e g u la r s o l u t i o n m o d e l s . T h e r a n g e s o f h o m o -g e n e i t y o f t h e o r d e r e d i n t e r m e t a l l i c c o m p o u n d s w e r e

de sc r ibe d w i th a sub l a t t ic e m od e l , c ons ide r ing two or

m or e sub l a t t i c e s a nd a l l owing subs t i t u t i on t o oc c ur on

a t l e a s t one o f t he m . Pha se s f o r whic h f e w da t a we r e

a v a il a b le o n t h e i r h o m o g e n e i t y r a n g e s w e r e a s s u m e d t o

be s to i c h iom e t r i c . For t he p r e se n t c a l c u l a t i on , t he

p r o g r a m P M L F K T b y L u k a s e t a l . [18] was us ed. In this

p r o g r a m t h e d i f f e r e n t m o d e l d e s c r i p t i o n s c a n a l l b et r e a t e d w i t h a n e q u a t i o n o f t h e f o r m

G = E a E Yk G k + R T l n y k ) )k

+ ~ A l y p y , l v z , v , i I

Ii l l It

+ Z B o y p Y ,I Y ,jj

wi th

v v = yp + ( 1 - yp - yq)

a n d

t ,t = Y q + ( 1 - y p - y q )

whe r e i i s t he pha se i nde x ; l i s t he sub l a t t i c e i nde x ;

k, p , q , r a re the spec ies indices ; j i s the polynomia l

i nde x ( b ina r y t e r m s) ; 1 ) i s the po ly nom ia l i nde x ( t e r na r y

t e r m s) ; G i i s t he m o la r G ibbs e ne r g y o f pha se i ; a z s t he

fra ct io n o f su bla ttic e l in ph as e i; Yk, Y~,, Y,~, Yr ar e t he

c o n c e n t r a t i o n o f s p e c i e s , r e f e r r e d t o 1 m o l e o f s u b -

la t t ice s ites ; Gk i s the G ibbs ene rgy of spec ies k; Aj is

t h e G i b b s e n e r g y c o e f f i c i e n t s o f b i n a r y p o l y n o m i a l

t e r m s ; B jj i s t he G ibb s e ne r g y c oe f f i c i e n ts o f t e r na r yp o l y n o m i a l t e r m s ; a n d m , n , o a r e t h e e x p o n e n t s o f

po ly nom ia l t e r m s . T h e Gk , A j a nd Bjj pa r a m e te r s a r e

e i t h e r c o n s t a n t o r l i n e a r f u n c ti o n s o f t h e t e m p e r a t u r e .

T h e e x pon e n t s m , n a nd o a s we l l a s t he i nd i c e s p , q

a nd r a r e g ive n i nd iv idua l ly f o r e a c h j o r j j.

T h e f i rs t t e r m on t he r i gh t - ha nd s ide o f e qn . ( 1 ) r e p -

r e se n t s t he G ibb s e n e r g i e s o f t he spe c i e s a nd t he i r c on-

t r ib u t i o n t o t h e c o n f i g u r a ti o n a l e n tr o p y , t h e s e c o n d a n d

t h i r d t e r m a r e b i n a r y a n d t e r n a r y p o l y n o m i a l i n t e r -

a c t i on e ne r g i e s , r e spe c t i ve ly . T he po lynom ia l i n t e r -

a c t i on t e r m s c ons i s t o f two type s ( as se e n i n T a b le 1 ).

T e r m s i n v o lv i n g p r o d u c t s o f c o n c e n t r a t i o n s o n d i ff e r-e n t s u b l a tt ic e s c o r r e s p o n d t o t h e e n e r g y o f f o r m a t i o n

o f t h e p h a s e w i t h o n l y o n e s p e c i e s p r e s e n t o n e a c h s u b -

l a t t i c e . T e r m s invo lv ing p r oduc t s o f c onc e n t r a t i ons on

t h e s a m e s u b l a tt ic e c o r r e s p o n d t o t h e c h a n g e i n e n e r g y

owing to t h e m ix ing o f t he spe c i e s o n t h i s sub l a t ti c e .

T h e a b o v e e q u a t i o n r e d u c e s t o t h e b i n a r y q u a s i -

subr e gu la r so lu t i on m o de l i f on ly one sub l a t t ic e ( l = 1

a nd a ~= 1 .0 ) is c ons ide r e d . I n t h i s c a se t he spe c i e s c on-

c e n t r a t i on , Yk, i s ide n t i c a l t o t h e e l e m e nta l c on c e n t r a -

t i on , xk , a nd t he r e f o r e , t he va r i a b l e xk i s use d i ns t e a d o f

Yk, an d with

t l = x I + 1 - x , - x 2 ) = x I

Page 4: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 4/9

1 2 U . R . K a t t n e r , W . J . B o e t t i n g e r / T e r n a r y T i - A I - N b s y s t e m

T A B L E 1 . T h e r m o d y n a m i c d e s c r i p t i o n o f t h e T i - A I - N b s y s t e m (a ll q u a n t i t ie s ar e g i v e n i n J m o l - ~ )

M u l t i p l i e r P a r a m e t e r G ~ , A j o r B H M u l t i p l i e r P a r a m e t e r G k , A / o r B jj

L i q u i d

X N b 0 . 0 0

X A j 0 . 00

Xm i 0 . 0 0

XNt,XAIt NI, - - - 1 0 3 7 3 7 . 1 0 + 2 9 . 4 5 9 0 4 T

XNbXAII~NblIAI 2 8 9 7 1 6 . 2 0 + 8 7 . 9 7 0 0 6 T

X N b X A l l A I 2 1 2 7 7 1 3 . 1 0 + 5 8 . 5 1 1 0 2 T

X-I.iXAIUTi - - 1 2 0 5 2 1 . 0 0 + 4 1 . 1 1 3 7 8 T

XTiXAII AI 1 0 4 6 1 9 . 4 0 + 4 1 . 1 1 3 7 8 T

X T i X N b 1 3 0 5 8 . 2 6

X N b X A I X T i - - 1 0 0 0 0 0 . 0 0

( f l - T i , N b )

XNb - 3 0 0 0 0 . 0 0 + 1 0 . 9 0 9 1 0 T

XAI - - 6 2 8 . 0 0 + 6 . 6 5 9 8 0 T

X fi - 1 4 1 4 6 . 0 0 + 7 . 2 8 8 0 0 T

XNbXAWNI - - 1 3 3 9 8 2 . 5 0 + 4 1 . 6 9 4 2 2 T

X Nb XA ll A I 1 2 5 4 0 1 . 5 0 + 4 1 . 6 9 4 2 2 T

XTiXAI - - 1 2 9 3 9 6 . 7 0 + 4 0 . 0 6 3 1 0 TXTiXNb 1 3 0 7 5 . 0 0

XNb2XA~X.I,i 8 0 0 0 0 . 0 0 + 6 0 . 0 0 0 0 0 T

XNbXAI2XTi - - 1 8 0 0 0 0 . 0 0 + 6 0 . 0 0 0 0 0 T

XNbXAIXTi 2 7 0 0 0 0 . 0 0 + 6 0 . 0 0 0 0 0 T

( a - T i )

XNh - - 1 3 0 0 0 . 0 0 + 9 . 7 0 9 1 0 T

XAj - - 5 1 5 1 . 4 0 + 9 . 6 1 7 8 0 T

x -li - 1 8 3 1 6 . 0 0 + 1 0 . 8 9 8 4 0 T

XNhXAI - - 1 2 0 0 0 0 . 0 0 + 4 0 . 0 0 0 0 0 T

XTiXalt, .ri - - 1 3 9 8 2 3 . 4 0 + 4 5 . 3 9 1 7 4 T

XTiXAIUAI 1 0 7 7 5 3 . 6 0 + 2 1 . 0 2 6 3 0 T

XTiXNI~ 1 3 0 7 5 . 0 0

XNbXAIXTi 1 1 5 0 0 0 . 0 0

( A l )

Xy/~ - 8 0 0 0 . 0 0 + 8 , 7 0 9 1 0 T

xA~ - 1 0 7 1 1 . 0 0 + 1 1 . 4 7 2 8 0 T

XTi 1 2 3 1 6 . 0 0 + 1 0 . 7 9 8 4 0 T

XNbXAI 1 8 5 7 8 3 . 3 0 + 9 2 . 5 7 4 9 0 T

X ,riX Ai - - 1 2 4 2 6 9 . 6 0 + 4 3 . 8 9 6 7 5 T

X T i X N ~ 1 3 0 7 5 . 0 0

N b 3 A I ( t w o s u b l a t t i c e s )

N i o b i u m s u b l at t ic e : a N b = 0 . 7 5

y s b Nb - - 2 4 5 0 0 . 0 0 + 1 0 . 3 5 9 1 0 T

Y A l N b - - 3 1 4 8 . 8 0 + 7 . 8 6 3 0 5 T

y T i N b - - 1 3 6 8 8 . 5 0 + 8 . 1 6 5 6 0 T

y N b Y b Y T iN b 9 8 0 6 . 2 5

A l u m i n u m s u b l a t t i c e : a A~ = 0 . 2 5 T

y y h a~ - 2 4 5 0 0 . 0 0 + 1 0 . 3 5 9 1 0 T

Y A i A I - - 3 1 4 8 . 8 0 + 7 . 8 6 3 0 5 T

Y T i A I 1 3 6 8 8 . 5 0 + 8 . 1 6 5 6 0 T

Y A i g l y N b g l - - 8 6 7 5 . 0 1 + 2 . 4 7 0 1 2 T

y y bA ly T i A r 3 2 6 8 . 7 5

Y Ti AlyA IA I - - 4 0 0 0 . 0 0

P o l y n o m i a l t e r m s b e t w e e n s p e c i e s o n d i f fe r e n t s u b l a tt i c e s

Y N b N b y A i a l 3 5 5 1 8 . 5 0 + 6 . 9 3 6 1 7 T

Y A I N b y N b A I 3 5 5 1 8 . 5 0 - 6 . 9 3 6 1 7 T

yTiYbyAiAI - - 2 6 0 0 0 . 0 0 + 7 . 0 0 0 0 0 T

y A i N b y w iAI 2 6 0 0 0 . 0 0 - 7 . 0 0 0 0 0 T

YNbNbyTiNbyAiAI - - 6 0 0 0 . 0 0

N b 2 A I ( t h re e s u b l a t t i c e s )

N i o b i u m s u b l a tt i ce : a y b = 0 . 5 3 3 3 3 3 4 0

yNbNb - - 2 2 6 6 6 . 7 0 + 1 0 . 1 7 5 6 7 T

y A i N l - - 3 9 8 9 . 0 0 + 8 . 2 6 4 1 3 TYTiNb - - 1 3 5 3 6 . 0 0 + 8 . 4 5 8 1 3 T

Y A i N b y T i N b 8 0 4 6 . 1 5

Y T i N b y A N b - - 1 0 0 0 0 . 0 0

A l u m i n u m s u b l a tt i ce : a a~ = 0 . 3 3 3 3 3 3 3 0

Y N b A I - - 2 2 6 6 6 . 7 0 + 1 0 . 1 7 5 6 7 T

yAiAI - - 3 9 8 9 . 0 0 + 8 . 2 6 4 1 3 T

y Ti AI - 1 3 5 3 6 . 0 0 + 8 . 4 5 8 1 3 T

yAtalyN b AI - - 5 4 9 9 . 8 2 + 1 . 6 6 8 2 5 T

YNbAlyTiAI 5 0 2 8 . 8 5

Y T i A l y a l A I - - 6 0 0 0 . 0 0

N i o b i u m s u b l at t ic e : a Nb = 0 . 1 3 3 3 3 3 3 0

y N b N b 2 2 6 6 6 . 7 0 + 1 0 . 1 7 5 6 7 T

P o l y n o m i a l t e r m s b e t w e e n s p e c i e s o n d i f f e re n t s u b l a t t ic e s

Y N b N b y a l A l y N bN b - - 4 6 8 9 5 . 3 0 + 1 0 . 4 6 5 6 9 T

YAiNbyNbAlyNb N b 1 9 7 4 7 . 4 5

yalYbyalalyNb Nb - - 2 7 1 4 8 . 6 9 + 1 0 . 4 6 5 6 9 T

YTiNbyAiAlYNbNb - - 3 5 2 0 0 . 0 0 + 6 . 2 0 0 0 0 T

YAiNbyyiA lyN b Nb - - 3 5 2 0 0 . 0 0 + 6 . 2 0 0 0 0 T

( T i , N b ) A I ~ ( t w o s u b l a t t i c e s )

( T i , N b ) s u b l a t t i c e : a T M = 0 . 2 5

yNbTM - 8 0 0 0 . 0 0 + 8 . 7 0 9 1 0 T

y a j M - 1 0 7 1 1 . 0 0 + 1 1 . 4 7 2 8 0 T

yl , M - 1 2 3 1 6 . 0 0 + 1 0 . 7 9 8 4 0 T

yNuTNyAI M 1 2 5 0 0 . 0 0

yq-iTNyAiM

1 2 5 0 0 . 0 0yNbfNyTi TM 3 2 6 8 . 7 5

A l u m i n u m s u b l a t t i c e : a AI = 0 . 7 5

Y N b a l - - 8 0 0 0 . 0 0 + 8 . 7 0 9 1 0 T

yAWAI - - 1 0 7 1 1 . 0 0 + 1 1 . 4 7 2 8 0 T

YTiAI - - 1 2 3 1 6 . 0 0 + 1 0 . 7 9 8 4 0 T

Y A i A l Y N b A I - - 5 6 5 9 2 . 5 6 + 3 3 . 8 0 6 5 2 T

yAiAlYTiAI - - 6 1 8 4 9 . 4 6 + 3 6 . 5 3 3 7 0 T

YNbAlyTiA I 9 8 0 6 . 2 5

YNbAlyAiAlYTiAI - - 1 0 0 0 0 0 . 0 0

P o l y n o m i a l t e r m s b e t w e e n s p e c i e s o n d i f f e re n t s u b l a t t ic e s

yNbTNyA~AI - - 5 0 1 3 1 . 9 0 + 1 2 . 1 8 2 8 7 T

YAITNyNbAr 5 0 1 3 1 . 9 0 - - 1 2 . 1 8 2 8 7 T

YTi rNyAiAI - - 4 0 3 4 9 . 6 0 + 1 0 . 3 6 5 2 5 T

y A I T N y T i A I 4 0 3 4 9 . 6 0 - 1 0 . 3 6 5 2 5 T

Y N b T N y T i T N y A IA I - - 1 7 0 0 0 . 0 0 + 6 . 0 0 0 0 0 T

T i z A l 5 ( s t o i c h i o m e t r i c c o m p o u n d )

1 - 3 6 1 6 5 4 . 7 0 + 1 4 5 . 6 6 8 3 0 T

T i A I 2 ( s t o i c h io m e t r i c c o m p o u n d )

1 - 1 6 5 3 1 3 . 2 0 + 6 6 . 8 0 6 3 2 T

T i A I ( t w o s u b l a t t i c e s )

T i t a n i u m s u b l a tt i ce : a v~ = 0 . 5

yNbTi - - 8 0 0 0 . 0 0 + 8 . 7 0 9 1 0 T

yA~T~ - 1 0 7 1 1 . 0 0 + 1 1 . 4 7 2 8 0 T

Y T i T i - - 1 2 3 1 6 . 0 0 + 1 0 . 7 9 8 4 0 T

Y T i T i y A i T i i u T i T i 1 0 2 9 7 8 . 4 0 + 7 .7 9 2 8 2 T

Page 5: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 5/9

U . R . K a t t n e r , W . J . B o e t t i n g e r / 7 ~ ' rn a o ' T i - A I - N b s y s t e m 1 3

TABLE 1 ( c o n t i n u e d )

Multiplier Paramete r G k, A/ or B i , Multiplier Parameter G k , A j o r Bij

T i t a n i u m s u b l a t ti c e : aTi=0.5 ( c o n t i n u e d )

YTiTiyA iTi l 'A i T i 24001.71 + 7.79282 T

YNbT iyTi AI 6537.50

YNb TiyAiTiyTi I 'i -- 40000.00

Alu min um sublattice: a a~ = 0.5

yNt,al - 8000 .00 + 8.7 0910 T

Y A i A I - - 10711.00+ 11.47280 T

yli al - 123 16. 00+ 10.79840 T

Y N b A l y A i A I 60000.00 + 11.00000 T

Y i l y T i I 28311.63 + 10.85167 T

YNbAlyTiAI 6537.50

Polynomial t e r m s b e t w e e n s p e c i e s o n d i f f e re n t s u b l a t t ic e s

Y N b T i Y i I 42000.00 + 8.00000 T

Y A i T i y N b A I 42000.00 - 8.00000 T

y T i T i y i I 37445.10 + 16.79376 T

yAiTiyTi AA 37445.10-- 16.79376 T

yybTiyTiTiyAIAI -- 20000.00

Ti3AI two sublattices)

Tit aniu m sublattice: a f~ = 0.75

yybTi 13000.00 + 9.70910 T

Y A i l i -5151 .40+9 .61780 T

.YTi ri - 18 31 6. 00 + 10.8 9840 T

y y b T i y A i T i -- 30000.00

y T i f i y A i T i - 71277. 87 + 25.469 98 T

y N b T i y r i r i 9806.25

Alu min um sublattice: a AI = 0.25

Y N b A I 13000.00 + 9.70910 T

Y A i A I 5151.40 + 9.61780 T

Y T i A I - - 18316.00+ 10.89840 T

YNbAlyl iAI 3268.75

Polynomial t e r m s b e t w e e n s p e c i e s o n d i f f er e n t s u b l a t ti c e s

Y N b T i y A i A I - - 38000.00 + 7.00000 T

Y A i T i y N b A I 38000. 00 - 7.00000 T

Y T i T i y A i A I - - 29633. 60 + 6.70801 TyAiriyfi AI 29 63 3. 60 -- 6.7 080 1 T

Y N b T i y . l i l i y A i A I - - 9400.00

T i 2 A I N b t h r e e s u b l a t t ic e s )

Titanium sublattice: a f~ = 0.5

Y N b T i 13000.00 + 9.70910 T

yl] i - 1831 6.00 + 10.89840 T

Y n i T i y I i I i - - 10000.00

N i o b i u m s u b l a t t i c e : a N b = 0 . 2 5

Ynbnh -- 13000 .00 + 9.70 910 T

y-riNB - 183 16. 00 + 10. 898 40 T

Al um in um sublatti ce: a a~ = t.25

ya al -- 5151 .40 + 9.61 780 T

Polynomial t e r m s b e t w e e n s p e c i e s o n d i f f e re n t s u b l a t t ic e s

Y N b T i y N b N b y A i A I - - 38000.00 + 7.00000 T

Y T i T i y T i N b y A i A I - - 29633. 60 + 6.70801 T

y T i T i Y N b N b y A i A I 34000.00 + 7.00000 T

Y N b T i y T i n b y i I 34000.00- 7 .00000 T

Ti4A13Nb stoichiometric c o m p o u n d )

1 - 48000 0.00 + 180.00000 T

a n d

v , = x 2 + 1 - x I - x 2 ) = x 2

t h e e q u a t i o n c a n b e r e w r i t t e n a s

G i = x l G 1 + R T l n x I ) ) + x 2 G 2 + R T l n x 2 ) )

n l t l

~ AjXl x,J

I n o r d e r t o p r o v i d e a t h e r m o d y n a m i c d e s c r i p t i o n o f

a b i n a r y p h a s e w h o s e c o m p o s i t i o n a l s t a b i l i t i e s e x t e n d

i n t o t h e te r n a ry r e g i o n t h e G i b b s e n e r g i e s o f t h e

c o u n t e r p h a s e s i n t h e o t h e r b i n a r i e s n e e d t o b e e s t i -

m a t e d . T h e s e c o m p l i m e n t a r y p h a s e s a r e n o t s t a b l e i n t h e

r e s p e c t i v e b i n a r i es u n d e r o r d i n a r y c o n d i t i o n s . F o r t h e

N b - A I a n d T i - A I s y s t em s t h e G i b b s e n er g ie s o f

f o r m a t i o n o f t h e s t a b l e p h a s e s w e r e u s e d t o e s t i m a t e

t h e G i b b s e n e r g y o f f o r m a t i o n o f t h e h y p o t h e t i c a l

m e t a s t ab l e c o m p o u n d s . T h e p h a s e s in t h e T i - N b

s y s t e m e x h i b i t n o o r d e r i n g t e n d e n c y . T h e r e f o r e t h e

G i b b s e n e r g y o f fo r m a t i o n o f th e o r d e re d c o m p o u n d sw a s s e t t o z e r o f o r t h e T i - N b s y s t e m a n d t h e t o t a l

e x c e s s G i b b s e n e r g y w a s s e t e q u a l t o t h a t o f t h e d i s -

o r d e re d c o m p o u n d s .

I n t h e a n a l y t i c a l d e s c r i p t i o n s o f t h e o r d e r e d i n t e r -

m e t a ll ic c o m p o u n d s o f t h e N b - A I a n d T i - A 1 s y s te m s

t h e n u m b e r o f p a r a m e t e r s i n t h e d e s c r i p t i o n w a s m i n i -

m i z e d b y u s i n g c o n s t r a i n t s f o r t h e d i f f e r e n t G i b b s

e n e r g i e s o f f o r m a t i o n . If i n a n o r d e r e d c o m p o u n d a ll

t h e e l e m e n t s a r e a s s u m e d t o o c c u r o n a ll s u b l a t ti c e s o f

t h is c o m p o u n d t h is c o m p o u n d w i ll ex i st o v e r th e

e n t i r e c o m p o s i t i o n r a n g e . T h e s t r u c t u r e s o f m o s t o f

t h e s e c o m p o u n d s a r e o r d e r e d d e r i v a t iv e s o f t h e s tr u c -

t u r e s o f t h e p u r e e l e m e n t s . F o r c o m p l e t e s u b s t i t u ti o n

i e a t t h e c o m p o s i t i o n o f o n e o f th e p u r e el e m e n t s t h e

d e g r e e o f o r d e r i n g i n t h e s e c o m p o u n d s m u s t b e z e r o

a n d t h e G i b b s e n e rg y o f th e s e c o m p o u n d s m u s t t h en

b e e q u a l t o t h e G i b b s e n e r g y o f t h e p u r e e l e m e n t s o f

t h e c o r r e s p o n d i n g c r y s t a l s t r u c t u r e . T h i s i m p l i e s c o n -

s t r a i n t s f o r t h e G i b b s e n e r g y o f f o r m a t i o n o f t h e s u b -

s t it u t io n a l a t o m s . T h e s a m e c o n s t r a i n t s w e r e a p p l i e d t o

t h e t h e r m o d y n a m i c q u a n t i t i e s o f t h e h y p o t h e t i c a l

m e t a s t a b l e c o m p o u n d s i n th e r e s p e c t i v e b i n a r ie s .

Page 6: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 6/9

14 U . R . K a t t n e r W . J . B o e t t i n g e r / T e r n a r y T i - A I - N b s y s t e m

B e c a u s e t h e h o m o g e n e i t y r a n g e o f th e t e r n a r y

T i4A13Nb c o m p ou nd i s be l i e ve d t o be sm a l l , th i s pha se

i s m o d e l e d a s s t o i c h i o m e t r i c . T h e s t r u c t u r e o f t h e

o r d e r e d T i 2 A I N b p h a s e c a n b e d e r i v e d t h r o u g h

a d d i t i o n a l o r d e r i n g o f t i t a n i u m a n d n i o b i u m o n t h e

t i t a n ium sub l a t t i c e o f Ti3AI . I t wa s t he r e f o r e m ode le d

a s a so lu t i on pha se w i th t h r e e sub l a t ti c e s t he ti t a n ium ,n iob ium a nd a lum inum sub la t t i c e s ) . T h i s pha se r e ve a l s

a s i gn i fi c a n t r a nge o f hom oge ne i ty w i th r e spe c t t o

t it a n i u m a n d n i o b i u m , b u t t h e r a n g e o f h o m o g e n e i t y

T~

Colculo~ed

Liquidus

~ T [ 2 A I 5

÷o

, , O

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0N b A t . % AI A I

T i

b ° ~E x p e r i m e r ; to l QV T ~ ~ oL i q u i d u s / ~ :

S u r f o c e 7 k v ~

q ,g( # T i , N b

i 2 A I 5

2 , , , / ' ' . °0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

N b A t . % A I A I

F ig . 2 . Th e l i q u i d u s p r o j e c t i o n c i r cl e s , ma x i m u m ; s q u a r e s , m i n i -

m um ) . a ) Ca lcu la ted . b ) In it ia l ly , a f t e r Pe r epe zko et a l . [6],t h e c o m p o s i t i o n o f l i q u id o f t h e b i n a r y t h r e e - p h a s e e q u i l i b ri u mwa s t a k e n f r o m t h e b i n a r y c a l c u l a t io n s .

wi th r e spe c t t o a lum inum i s sm a l l e r . I t wa s , t he r e f o r e ,

a s s u m e d t h a t n i o b i u m a n d t i t a n iu m a t o m s m i x o n l y o n

the t i t a n ium a nd n iob ium sub l a t t i c e s a nd no m ix ing

o c c u r s o n t h e a l u m i n u m s u b l at ti c e. T h u s , t h e T i z A I N b

c om po un d c om pos i t i o n is c ons t r a ine d t o T i , Nb)3AI.

F o r c o m p l e t e s u b s t i t u t i o n o n e i t h e r t h e t i t a n i u m o r

n i o b i u m s u b la t ti c e, t h e d e g r e e o f o r d e r i n g m u s t a g a inb e z e r o a n d t h e G i b b s e n e r g y o f f o r m a t i o n m u s t t h e n

b e i d e n ti c a l to t h e c o r r e s p o n d i n g b i n a r y T i 3 A 1 a n d

Nb3A1 pha se s w i th t he D0j9 s t r uc tu r e .

No a t t e m pt wa s m a de t o d e ve lop a m i sc ib i l it y ga p i n

the f l0-Ti,Nb) ph ase in ord er to f it the da ta of

P e r e p e z k o e t a l . [ 6 ] . For t he p r e se n t c a l c u l a t i on , t he

s impl i f ica t ion o f t r ea t ing the f l-T i, Nb ) and f l0-Ti, Nb )

a s o n e d i s o r d e r e d p h a s e h a s t h e c o n s e q u e n c e th a t t hi s

m i sc ib il i ty ga p w ould ha ve t o oc c u r i n t he f l- Ti , Nb)

pha se . I n t he t h r e e b ina r y sys t e m s , t he f l -T i ,Nb) pha se

on ly f o r m s a m i sc ib i l it y ga p i n t he T i - N b sys t e m a t a

r e la t iv e l y lo w t e m p e r a t u r e . H o w e v e r , t h e e x p e r i m e n t a lda t a sugge s t t ha t t he t e r n a r y m i sc ib il i ty ga p o c c ur s on

the T i ,A l ) - r i c h s ide o f the sys t e m a t r e l a ti ve ly h igh

t e m p e r a t u r e s . I n o r d e r t o o b t a i n t h e s p e ci fi c c u r v a t u r e

o f t h e G i b b s e n e r g y n e e d e d f o r t h e f o r m a t i o n o f a

m i s c i b i l i t y g a p , t h e n u m b e r o f t e r n a r y p o l y n o m i a l

t e r m s w o u l d h a v e t o b e i n c r e a s e d . C o n s i d e r i n g t h e

s im pl i f i c a t i ons a l r e a dy i n t r oduc e d f o r t he a na ly t i c a l

d e s c r i p t i o n o f t h e f l / f l o - T i , N b ) pha se , i nc r e a s ing t he

n u m b e r o f p o l y n o m i a l t e rm s is n o t j u s t if ie d .

A t t he be g inn ing o f t he c a l c u l a t i on , a t t e m pt s we r e

m a d e t o u s e a l e a st s q u a r e s m e t h o d i n o r d e r t o a d j u s t

t h e G i b b s e n e r g y c o e f f ic i e n ts o f t h e p o l y n o m i a l t e rm s .S i n c e th e a m o u n t o f a v a il a b le d a t a w i t h r e s p e c t t o t h e

nu m be r o f a d jus t a b l e t e r m s i s re l a t ive ly sm a l l a nd m o s t

o f t h e s e d a t a c o v e r o n l y t h e t e m p e r a t u r e i n t e r v a l

b e t w e e n 1 1 0 0 a n d 1 2 0 0 ° C , t h e r e s u lt s o f t h e le a s t

squa r e s f i t t i ng c ou ld on ly be use d a s i n i t i a l va lue s f o r

t r i a l a nd e r r o r c a l c u l a t i ons . I n t he t r i a l a nd e r r o r

m e t h o d t h e v a l u e s o f t h e a d j u s t a b l e p a r a m e t e r s a r e

e s t i m a t e d . T h e c h a n g e o f t h e p h a s e b o u n d a r i e s

be tw e e n two s t e ps o f t he c a l c u l a t i on is use d t o e s t im a te

n e w v a l u e s i n o r d e r t o a d j u s t t h e c a l c u l a t e d p h a s e

b o u n d a r i e s t o t h e e x p e r i m e n t a l r e s u l t s . T h e r e p o r t e d

v a l u es o f t h e a d j u s t a b le p a r a m e t e r s w e r e e s t i m a t e d b y

s u c h a t r ia l a n d e r r o r a p p r o a c h .

5 R es u l t s a nd d i s cus s i o n

T h e t h e r m o d y n a m i c d e s c ri p ti o n o f t h e T i - A I - N b

sys t e m i s g ive n i n T a b le 1 . T h i s de sc r ip t i o n wa s use d t o

c a l c u l a t e t he l i qu idus p r o j e c t i on , s e ve r a l i so the r m a l

se c t i ons a nd a n i sop l e th . T he c a l c u l a t e d l i qu idus p r o -

j e c t i o n i s c o m p a r e d w i t h a p r e l i m i n a r y p r o j e c t i o n

e s t i m a t e d b y P e r e p e z k o e t a L [61 in Fig. 2 . The ca lcu-

l a t e d 1400 °C se c t i on is shown in F ig . 3 . T h e c a l c u l a t e d

Page 7: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 7/9

U. R . Katmer W. J . Boe t t inger / Ternary T i -A I-N b sys tem 15

T ;

C a l c u l a t e d ~ ~ / ~ ~o

7 Y

( ~ T ] , N b ) ° / x

o

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 I 8 0 9 0 1 0 0

N b A t . % A t ( T [ , N b b A I 3 A I

Fig. 3. Calculated isothermal section at 1400 °C.

i so the r m a l se c t i ons a t 1200 , 1100 a n d 700 °C a r e c om -

p a r e d w i t h t h e e x p e r i m e n t a l t i e - l i n e a n d p h a s e b o u n -

d a r y d a t a a s s h o w n i n F i g s . 4 - 6 . T h e i s o p l e t h a t 2 5

a t .% AI w i th t he e xp e r im e n ta l da t a i s show n in F ig . 7 .

T h e c a l c u l a t e d a n d t h e e s t i m a t e d e x p e r i m e n t a l

l i qu idus p r o j e c t i ons a s g ive n in F igs . 2 ( a ) a nd 2 ( b) a r e

in qua l i t a t i ve a gr e e m e nt . T he c a l c u l a t i on p r e d i c t s

c or r e c t l y t he pha se s oc c u r r ing in t he i nva r i a n t f our -

pha se e qu i l i b r i a . Howe ve r , t he l i qu idus t e m pe r a tu r e s

p r e d i c t e d b y t h e c a l c u l a t i o n f o r t h e p r i m a r y T i A I

r e g i o n a r e l o w e r t h a n t h e t e m p e r a t u r e s f r o m f i r s t

e xpe r im e n ta l re su l t s [ 6 ]. T h i s ha s a s a c ons e qu e nc e t ha t

t h e t e m p e r a t u r e o f t h e c a l c u l a t e d t h r e e - p h a s e e q u i -

l ib r iu m L + ( a - T i ) + T i A d e c r e as e s w i th i n cr ea s in g

n i o b i u m c o n c e n t r a t i o n w h i l e t h e f i r s t e x p e r i m e n t a l

r e su l t s i nd i c a t e t ha t t he t e m pe r a tu r e i nc r e a se s . A

tern ary eutec t ic (L ~ Nb2A I + (Ti , Nb)A13 + TiA I) i s

p r e d i c t e d f o r t he i nva r i a n t e qu i l i b r ium invo lv ing

L + Nb2A1 + ( Ti ,Nb)A13 + T iA l , bu t t he e xpe r im e nta lr e su l t s i nd i c a t e t ha t i t i s a t r a ns i t i on- type r e a c t i on

( L + ( Ti ,Nb)A13 ~ Nb2AI + T iAI ) . T h e c a l c u l a t i on

g i v e s a m a x i m u m f o r t h e t h r e e - p h a s e e q u i l i b r i u m

L + N b 2 A I + T i A 1 c l o se to t h e e u t e ct ic c o m p o s it io n .

S m a ll c h a n g e s o f G i b b s e n e r g i es o f t h e c o m p o u n d s

invo lve d i n t h i s e qu i l i b r ium c ou ld sh i f t t h i s m a xim um

c l o s e r to o r e v e n b e y o n d t h e e u t e c t i c c o m p o s i t io n . I n

the l a t t e r c a se , t he i nva r i a n t e qu i l ib r ium wo uld t he n be

a t ra n s i t io n t y p e a n d t h e m a x i m u m w o u l d o c c u r i n t h e

m e ta s t a b l e t h r e e - pha se e qu i l i b r ium .

T h e c a l c u l a t e d 1400 °C se c t i on r eve a l s a l a r ge r a nge

of hom o ge n e i ty f o r ( # - T i,Nb) . T h i s i s i n a gr e e m e ntwi th e x pe r im e nta l r e su l t s [ 1 ] , wh ic h i nd i c a t e t ha t t h is

Ti

G ° ~o

C a l c u l a t e d ~ . ~ o

oooc /

,,o %7 2 0

O 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

N b A t . % A I ( T i ' N b ) A ] 3 A I

T~

E x p e r i m e n t a l ~ ~ ~ R e f . 21 2 0 0 o c o R e f . 6

I s o t h e r m ~ / ~ 0 R e f . 1 5

q

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

N b A t . % A I A I

F i g . 4 . I s o t h e r m a l s e c t io n a t 1 2 0 0 ° C . ( a ) C a l c u l a t e d . ( b ) E x p e r i -

m e n t a l data and phase boundaries.

r a n g e o f h o m o g e n e i t y i s e v e n l a rg e r. T h e c a l c u la t e d

a nd e xpe r im e nta l pha se b oun da r i e s a gr e e fa i r ly we l l a t

1200 a nd 1100 °C, whi l e t he c a l c u l a t e d t i e -l i ne d i r e c -

t io n s d e v i a t e f r o m t h o s e e x p e r i m e n t a l ly d e t e r m i n e d .

T h e i n c r e a s e d r a n g e o f h o m o g e n e i t y o b s e r v e d f o r t h e

( T i , N b ) A I 3 p h a s e i n t h e t e r n a r y s y s t e m w a s w e l l

m a t c h e d b y t h e c a l c u la t io n a t 1 2 0 0 °C . In t h e p r e s e n t

c a l c u l a t i o n t h e t e m p e r a t u r e o f t h e b i n a r y e u t e c t o i d(a -T i) --*T i3AI + T iA1 de c r e a se s i n it ia l ly w i th i nc r e a s -

ing n iob ium c onc e n t r a t i on . T h i s r e su l t s i n a n i so l a t e d

t e r n a r y ( a - T i) p h a s e f i e l d b e t w e e n T i 3 A I a n d T i A I .

Page 8: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 8/9

  6 U. R . Ka t tner W. J . Boe t t inger I Ternary T i -A I -N b sys tem

T i

C a l c u l a t e d ~

00oc ¢ \I s o t h e r m ~ . / ~ e

/

o ~ .

/ / ~ / / / / / / S T i A X ~ T i A , 2

: 2 %

0 1 0 2 0 3 0 4 0 5 0 6 0 ' 7 ' 0 I 8 ' 0 ' 9 ' 0 ' 1 ( } 0

N b A t . % A I ( T i , N b )A I ~ A I

Ti

E x p e r i m e n t a t ~ / ~

11 o 7 <

I s o t h e r m ~ . / / \/

~ / / / / /~ ) ' / /

~ ' . / / _ -. / - .. / i ~ i _ ~/ ..~x i~~

. ~ . / , i , I , / , / 1 . . . .

N b

• R e f . 1

a R e f . 4t 3 R e f . 5

. , e R e f . 70 ~ / I

' ~u R e f . 1 6

T i ~ , ~ , o/ " . ' ~ . T i A I 2

' K ~ i 2 A I 5

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

A t . % A I A I

Fig. 5 . I sotherm al sec t ion a t 1100 °C. a) Calcula ted . b) Exp er i -m e n t a l da t a a nd pha s e bounda r i e s .

0

C u l c u l o t e d

7 0 0 ° C

I s o t h e r m

0 1 0 2 0 3 0 '

N b

T ic ) 0

4 0 5 ' 0 6 ' 0

N b2 AI A t . % A I

f i A I 2

o7 0 8 0 9 0 1 0 0

A I

Ti

b A~ ~

E x p e r i m e n t a l ~ / \ ~ ~o o R e f . 5

7 0 0 ° 0 ~ / ~ \ \ \' // ~ a T i ) e R e f . 8

I s o t h e r m ~ / / ~ ' - ' i, . ik ~

dko : / , '~ / . . . . . 1~ . , ~. ~

i . . . . , , , o

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

N b A t . % A I A I

Fig. 6 . I sothermal sec t ion a t 700 °C. a ) Calcula ted . b) Expe r i -m e n t a l da t a a nd pha s e b ounda r i e s .

The ag reemen t be tween the ca l cu l a t ed i so the rmalsect ion a t 700 °C and th e experim ental data i s poor.

The s ing l e -phase reg ion o f t he phase deno ted by

Ti2A1Nb exis ts in the p resent calcula t ion a t an ex ces-

s ively h igh n iobium content and, in fact , does notinclude the s to ichiometric composi t ion of Ti~A1Nb.

Thu s the impo rtant (f l-Ti,Nb) + Ti3AI + Ti2AIN bthree-phase equil ibrium also exists at an excessively

h igh n iob ium con ten t . Wi th t he cu r ren t t he rmo-dynam ic descrip t ion of the (f l-Ti,Nb) phase , th e phase

bou nda ries of the (fl-Ti, Nb )-T i3A l, (fl-Ti, Nb)-Ti2A1Nb

and (f l -Ti ,Nb)-NbaAl equ i l i b r i a have ve ry s imi l a r

s lopes and smal l changes in the Gibbs energy of the

Ti2AINb compound wou ld re su l t i n d i f fe ren t t opo lo -

gies for this section. Further experimental effort is

needed to establ i sh the phase boundaries for th is i so-therm al sect ion .

The process of adjust ing the Gibbs energy coeff i -

c i en ts o f t he po lynomia l t e rms showe d tha t t he phaserela t ionships obta ined from the calcula t ion are

ext remely sensi tive to smal l changes in the G ibbs ener-

gies . S imi lar behavior had been previously observeddur ing the ca l cu l a ti on o f t he T i -A I b ina ry sys t em [14,

19]. T he fact that smal l changes in the G ibbs en ergies

Page 9: Ti-Al-Nb system

8/13/2019 Ti-Al-Nb system

http://slidepdf.com/reader/full/ti-al-nb-system 9/9

U. R. Kattner, 14/.J. Boett inger / Terna O T i-A I-N b system 17

gr--

~D

o oo ~

L

~ g

J

c z o 2

® Re Ti ,n b) AI s

Ca lcu la ted

f . 6 : o L iqu idus

o • o l i d u s

o~ i [ i i i ~ I 1 1 1 1

- 0 ~0 20 50 40 50 60 70

N b A I 3 M o l e T i A I 3

o

, i i i ,

80 90 1 O0

TiAI 5

Fig. 7. Calculated isopleth at 25 at. AI and experimental data.Note that this section is quasibinary, except on the TiA13-richside.

p o s i t i o n a l a n d t e m p e r a t u r e r e g i o n s i n o r d e r t o e l u c i -

d a t e t h e p h a s e e q u i l i b r i a o f t h i s t e c h n o l o g i c a l l y

i m p o r t a n t s y s te m .

A c k n o w l e d g m e n t s

T h e a u t h o r s w i s h t o t h a n k D r . H . L . L u k a s o f t h e

M a x - P l a n c k - I n s t i t u t f i i r M e t a l l f o r s c h u n g ( S t u t t g a r t ,

F R G ) f o r p r o v i d i n g t h e s o f t w a r e u s e d i n t h e p r e s e n t

a s s e s s m e n t , P r o f e s s o r J . H . P e r e p e z k o o f t h e U n i v e r s i t y

o f W i s c o n s i n - M a d i s o n f o r h e l p f u l d i s c u s s i o n s a n d P r o -

f e s s o r Y . A . C h a n g o f t h e U n i v e r s i t y o f W i s c o n s i n -

M a d i s o n f o r c r i ti c a ll y r e a d i n g t h e m a n u s c r i p t . T h i s

r e s e a r c h w a s p a r t i a l l y s u p p o r t e d ( W . J . B . ) u n d e r

D A R P A O r d e r 7 4 6 9.

r e s u l t i n d i f f e r e n t p h a s e r e l a t i o n s h i p s m a y n o t o n l y

h e lp t o e x p l a in t h e e x p e r im e n ta l d i f f i c u l t ie s i n d e t e r -

m i n i n g t h e a c c u r a te p h a s e d i a g r a m f o r t h e T i - A I - N b

s y s t e m , b u t a l s o e x p l a in t h e d i f f i c u l ti e s o f o b t a in in g a

s a t is f a ct o r y t h e r m o d y n a m i c d e s c r i p to n f o r t h e p h a s e s

i n t h i s s y st e m . A c h a n g e i n t h e t h e r m o d y n a m i c d e s c r ip -

t i o n o f o n e p h a s e a f f e c t s a ll t h e p h a s e e q u i l i b r i a i n v o lv -

in g t h a t p h a s e . I n t h e t r i a l a n d e r r o r c a l c u l a t i o n i t i s

a d v i sa b l e t o m o d i f y o n l y a f e w p a r a m e t e r s b e t w e e n t w o

s t e p s o f t h e c a l c u l a t i o n i n o r d e r t o c l e a r l y r ec o g n i z e t h e

e f f e c t s o f t h e m o d i f i c a t i o n s o n t h e l o c a t i o n s o f t h e

c a l cu l a te d p h a s e b o u n d a r i es . T o m o d e l t h e w i d e h o m o -

g e n e i t y r a n g e s o f t h e o r d e r e d i n t e r m e t a l l ic c o m p o u n d a

l a rg e n u m b e r o f a d j u s t a b l e p a r a m e t e r s h a d t o b e

i n c l u d e d . T h i s l a r g e n u m b e r o f a d j u s t a b l e p a r a m e t e r s

m a k e s t h e t r i a l a n d e r r o r m e t h o d f o r t h e a d j u s t m e n t o f

t h e s e p a r a m e te r s r e l a t i v e ly i n e f f i c ie n t . A s t r a ig h t -

f o r w a r d m e t h o d o f a d j u s t i n g a l l o f t h e p a r a m e t e r s

s i m u l t a n e o u s l y is th e l e a s t s q u a r e s m e t h o d [ 2 0] . H o w -

e v e r, i n o r d e r t o a p p l y t h i s m e t h o d s u c c e ss f u ll y , m o r e

e x p e r im e n t a l d a t a a r e n e e d e d . T h e s e d a t a a r e n o t o n l y

n e e d e d t o c o n s t r a i n t h e p h a s e b o u n d a r i e s a t c e r t a i n

t e m p e r a t u r e s , b u t e v e n m o r e i m p o r t a n t l y , t o e s t a b l i s h

t h e c h a n g e o f t h e p h a s e b o u n d a r i e s o v e r a la r g e r t e m -

p e r a tu r e i n t e r v a l .

6 . C o n c l u s i o n

T h e c a l c u la t e d p h a s e d i ag r a m s o f t h e T i - A 1 - N b

t e r n a r y s y s t e m s a r e u n d o u b t e d l y s u b j e c t e d t o l a r g e

u n c e r t a i n t i e s o w i n g t o t h e l a c k o f s u f f i c i e n t t h e r m o -

d y n a m i c a n d p h a s e e q u i l i b r i a d a t a t o f ix t h e m o d e l

p a r a m e t e r v a l u e s a n d t h e c o m p l i c a t e d p h a s e r e l a -

t i o n s h i p s . H o w e v e r , t h e y d o p r o v i d e v a l u a b l e a n d

u s e f u l i n f o r m a t i o n f o r a l l o y d e v e l o p m e n t a n d i n d e e ds u g g e s t e x p e r i m e n t s t o b e c a r r i e d o u t i n c r i t i c a l corn

R e f e r e n c e s

I L. A . Bendersky and W. J. Boettinger, Mater, Res. Soc. Symp.

Proc., II (1989)45.2 K. Kaltenbach, S. Gam a, D. G. Pinatti, K. Schulze and E .-Th.

Henig, Z. Metallkd., 80(1989) 535.3 H.T . Kester-Weykam p,C. H. W ard, T. F. Broderick and M. J.

Kaufman, Scr. Metall ., 32 (1989) 1697.4 K. Muraleedharan and D. Banerjee, Metall . Trans . A, 20

(1989) 119.5 L. A. Bend ersky, W. J. Boettinger, B: P. Burton, E S. Bian-

caniello and C. B. Shoem aker, Acta Metal l . Mater . , 38(1990)931.

6 J. H. Perepezko, Y. A. Ch ang, L. E. Seitzman , J. C. Lin, N. R.Bond a, T. A. Jewett and J. C. Mishu rda, in Proc. Symp. High

Temperature Aluminides and lntermetall ics, Indianapolis,ASM /TM S-AIM E, M etals Park, OH, 1990, p. 19.

7 J. H. Perepezko, private commu nication, 1990.8 L. A. Bendersky, W. J. Boettinger and A. Roytburd, Ac t a

Metall . Mater. , 39 ( 1991 ) 1959.9 U.R . Kattner, unpub lished results, 1988.

10 J.L . Murray, Alcoa report, 1987.11 J .L. Murray, Metall . Trans . A, 19(1 988 ) 24.12 L. Kaufman and H. Bernstein, Com puter Cah ulation of

Phase Diagrams, Academic Press, New York, 1 970.13 U.R . Kattne r and H. L. Lukas, unpublished results, 1990.14 U. R. Kattner, J.-C . Lin and Y. A. Ch ang, Metall . Trans. A.,

Feb. (1992) accepted fo r publication.

15 D.T. Hoelzer an d F. Ebrahim i, in E. D. Verink Jr., Processingan d Protect ion of High T emp erature Structural Materials,An nua l Re por t, University of Florida, G ainesville, F L 1990,p. 26.

16 L.A . Benderski, private comm unication, 1991.17 D. Banerjee, A. K. Gogia, T. K. Nandi an d V. A. Joshi, Ac t a

Metall., 36 ( 1988 ) 871.B. Mozer, L. A. Bende rsky, W. J. Boettinger and R. G. Row e,Scr . Metal l. M ater ., 24 (19 90 ) 2363.

18 H. L. Lukas, J. W eiss and E.-Th . Henig, C A L P H A D , 6

(1982) 229.19 J. C. Lin, T. Jewett, J. C. Mishurda, Y. A. Chang and J. H.

Perepezko, Second Annual Report, supported by DARPAthrough ONR contract (0014-86-K-075), 1988.

20 H. L. Lukas, E.-Th. Henig and B. Zimm ermann, C A L P H A D ,1 (1977) 225.