tight oil geochemistry: an introduction · introduction background sampling geochemical analyses...

47
Geoconvention 2019 13 May 2019 Jarvie Presentation on Geochemistry 1 Tight Oil Geochemistry: an introduction © Daniel M Jarvie Wildcat Technologies TCU Energy Institute © 2019 Copyright Daniel M Jarvie. All rights reserved. Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 2 Goals of Presentation Introduce you to a few principles of organic geochemistry Food for thought related to producibility from tight oil and gas systems Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 3 1 2 3

Upload: others

Post on 14-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 1

Tight Oil Geochemistry:an introduction ©

Daniel M JarvieWildcat Technologies

TCU Energy Institute

© 2019 Copyright Daniel M Jarvie. All rights reserved.

IntroductionBackground

SamplingGeochemical Analyses

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 2

Goals of Presentation

• Introduce you to a few principles of organic geochemistry

• Food for thought related to producibility from tight oil and gas systems

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 3

1

2

3

Page 2: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 2

Exploration and ProductionGeochemical Input

• Exploration– Source potential

– Source maturity

– Kerogen type

– Depositional facies

– Product type

– Oil shows

– Product quality

– Hybrid nature, if any

– Leaky or tight seals

– Risk assessment

– Conventional opportunities

• Production

– Commerciality• OOIP

• Product (oil, NGLs, dry gas)

– Producibility• Baffles/barriers

• API gravity, viscosity

• Present of HM waxes

• Gas exsolution

• GOR

– Connectivity• Compartmentalization

• Allocation

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 4

PRODUCIBILITYOIL QUALITY

andPHASE

TOMTOH

OIL CONTENT(So, Sw)

BRITTLENESSand

Fracture Network

FRAC BARRIERS

or BAFFLES

SYSTEMTYPE

POR/PERM

PRESSURE

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 5

Unconventional Resource Systems

SourceRock

PetroleumSystem

{source, trap, seal}

A bit more complicated…

Variable source rock, interbeds, barriers / baffles, expulsion, expulsion/migration fractionation

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 6

4

5

6

Page 3: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 3

Scaling

EOG Resources, 2010 Investor Presentation

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 7

Polarity: chemical attraction

+ - + ------

+ -+-

The presence of Sulfur and Nitrogen results in polarity in resins and asphaltenes,i.e., they are attracted to various surfaces including oil wet or water wet

The resin and asphaltene molecules also happen to be LARGE and VISCOUS.

Surface tension, Interfacial Tension

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 8

Background

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 9

7

8

9

Page 4: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 4

Important Definitions Remainmissing in many scientific presentations

The nomenclature and scientific classification of petroleum are in a state of uncertainty and confusion. Geologists, chemists, lawyers, refiners, and engineers have all made attempts to define the naturally occurring forms, but for one reason or another, few of their definitions have gained widespread acceptance.

Levorsen, 1954Geology of Petroleum

Chapter 1, 2nd paragraph

Oil, hydrocarbons, petroleum, bitumen, pyrobitumen, primary and secondary cracking

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 10

Question Everything but note,often evidence and its interpretation are elusive

This does not just apply to the internet, Facebook and the like.It also applies to scientific journals (AAPG Bull.), presentations, news

articles and includes this author and presenter.

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 11

Sampling

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 12

10

11

12

Page 5: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 5

Mud or Production Gasand cuttings sampling

Excellent data for both tight oil and gas plays (as well as conventional plays)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 13

Rock Sample Sizefor routine geochem analyses

1 teaspoon of cuttings or core chips = 10 grams

1 tablespoon of cuttings or core chips = 30 grams

Sufficient forall geochemical

work

Sufficient forall work

includingmineralogy,

fluid inclusion,etc.

14Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 14

Know or specify samplepreparation!

Sieving:4 mesh on top (removes cavings)60 mesh in middle (portion to be analyzed)Pan on bottom (catches fines) There are organic detergents that aid in

the removal of surface contamination including OBM.*** Chips are recommended for best S1 yields

4 mesh

60 mesh

PowderedRock

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 15

13

14

15

Page 6: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 6

Center-cut Core Plugs(avoid OBM contamination)

for geochem

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 16

Optimum quantity of Oil needed for geochem analysis

Volume is from 1 – 7 millilitersOnly a drop of oil is needed for GC fingerprinting

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 17

Basic Geochemical Analyses:

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 18

16

17

18

Page 7: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 7

Depiction of TOC and Pyrolysis Data

TOC (wt.%)

Generative Organic Carbon (wt.%)

Non-Generative Organic Carbon (wt.%)

Jarvie, 1991; 2015

S2 (pyrolysis yield),Tmax

S4 (yield of organic carbon in hydrogen-poor TOC)

S1 (oil

yield)

S3 (kerogen CO2 yield)

Note: TOC can be oil/bitumen-free or with oil/bitumen

Organic carbon in oil as measured by S1 is only 0.085% carbon

S2 is only measuring the GOC portion of kerogen

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 19

Thermal Extraction-Pyrolysis

ThermalExtraction

S1 Oil

PyrolysisReactiveKerogen

(S2)

Non-ReactiveKerogen

(S4)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 20

Which is the better Source Rock?

TOCo = 3.00 wt.% TOCo = 5.00 wt.%

Total Petroleum Generation Potential:

HIo = 500 mg/gT HIo = 200 mg/gT

S2o = TOCo x HIo / 100 = 15 mg/gRTR = 1.00boe/acre-ft = 23 x 15 = 345 boe/afThickness (ft) = 100boe/section/100 ft = 345 x 640 x 100

= 22.1 mmboe/section/100 ft

S2o = TOCo x HIo / 100 = 10 mg/gRTR = 1.00boe/acre-ft = 23 x 10 = 230 boe/afThickness (ft) = 100boe/section/100 ft = 230 x 640 x 100

= 14.7 mmboe/section/100 ft

23 is a conversion factor derived by assuming a petroleum density of 0.85 g/cc and rock density of 2.7 g/cc

Original hydrogen content is equally important as original TOC content

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 21

19

20

21

Page 8: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 8

Change from Original to Present-dayis amount of petroleum generated

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 22

Determining Oil Content

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 23

Factors Affecting Measured Oil Content (S1 oil)

• Type of sample (cuttings, SWC, core)

• Organic richness (sorption)

• Type of oil in rock (black oil vs condensate)

• Type of lithofacies (shale, carbonate, sandstone)

• Permeability

• Sample storage, handling and processing

• Oil-based mud (OBM) or organic additives to drilling fluids

• Instrument and program used for analysis

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 24

22

23

24

Page 9: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 9

S1 Oil Measurement

S1(oil)

S1’ (oil in S2)

Evap. Lossof oil

S2 (kerogen)

Total Oil = (S1 WR - S1 extracted rock) + (S2 whole rock – S2 extracted rock) + E.L.

S2 extracted rock

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 25

Comparison of Composition of Oil in measured S1 vs extracted S1

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 26

Duvernay (EOG Cygnet well):Change in S1 after extraction

Data provided by and from Dong et al., 2019

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 27

25

26

27

Page 10: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 10

Routine vs HAWK-PAM S1 Analysis

Classical Pyrolysis “S2 shoulder” is

resolved on HAWK-PAM

Maende, 2015

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 28

Evaporative Loss

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 29

Evaporative Loss from Reservoir Rockvs produced oil and source rock

U. Bakken Shale

Middle Member Bakken Formation

Produced OilMiddle Member

Organic-rich,siliceous shale

S1m = 7.52 mg/g

Organic-lean,dolomite

S1m = 1.12 mg/g

42oAPIproduced oil

Jarvie et al., 2011

Evaporative lossWilliston Basin,Parshall Field

Bakken FormationMiddle Member

Production

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 30

28

29

30

Page 11: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 11

GC Fingerprinting:basically a histogram of resolvable compounds

0

50

100

150

200

250

300

350

400

450

n-C4 n-C5 n-C6 n-C7 n-C8 n-C9 n-C10 n-C11 n-C12 n-C13 n-C14 n-C15 n-C16 n-C17 n-C18 n-C19 n-C20 n-C21 n-C22 n-C23 n-C24 n-C25 n-C26 n-C27 n-C28 n-C29 n-C30 n-C31 n-C32 n-C33 n-C34 n-C35 n-C36 n-C37 n-C38 n-C39 n-C40 n-C41 n-C42

YIE

LD

Compound Name

YIELD

DISTRIBUTION (n-alkanes by increasing molecular weight)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 31

Petroleum Correlation, Alteration, Organofacies

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 32

Thompson, 1988; Dow, 1994

GC for Correlation and Alteration(also for connectivity and allocation assessments)

Correlated Oils

AlteredOils

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 33

31

32

33

Page 12: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 12

Pimienta Extract GC Histogram of Molar Yields of normal Alkanes (slide overlays)

Evaporative Loss

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Mo

lar

Yiel

d

n-Alkane Carbon Number

Exponential Restoration of C1 through C40

Predicted in situ Gas to Oil Index: 63%

GC Profile Analysis and Restoration

Restoration is only applicable to unaltered volatile oils and condensates

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 34

This allows restoring the lost petroleum(oil and gas) in S1 for volatile oils and condensates

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 35

Prediction of GORfrom restored GC data

(also ethane and propane gas isotopes)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 36

34

35

36

Page 13: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 13

Prediction of Gas to Oil Indexfrom restored GC

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 37

Permian Wolfcamp FormationDelaware (Permian) Basin

Jarvie, 2017

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 38

Oil Crossover Effect

S1 oil content normalized by TOC(oil saturation index (OSI))

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 39

37

38

39

Page 14: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 14

Oil Crossover Effect

S1/TOC > 1or when

Oil Saturation Index

(S1/TOCx100) > 100 mg oil/g

TOC

Data from Lopatin et al., 2003; Jarvie, 2012 AAPG Memoir 97

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 40

EOG Cygnet Duvernay: S1 Oil vs TOC

Data from Dong et al., 2019Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 41

Prediction of Apparent Water Saturation (Sw) from pyrolysis data

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 42

40

41

42

Page 15: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 15

Sorption(adsorption and absorption)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 43

Relationship between Sorptionof Petroleum and TOC

Modified from Longjiang and Barker, 1989 in Hunt, 1995; with adsorption from Sandvik et al., 1992

This shows that all oil cannot be expelled and that this retained oil is

ultimately cracked to gas

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 44

Sorption bykerogen and petroleum (bitumen)

This is also related to

organoporosity

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 45

43

44

45

Page 16: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 16

Geochemical Logsshowing adsorption and producible oil index

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 46

Difference in SARA yields between Production and Reservoir Rock

Produced PetroleumSARA Analysis

Extracted Petroleumfrom reservoir rock

SARA Analysis

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 47

Thermal Maturity

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 48

46

47

48

Page 17: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 17

Assume we could track a source rock from deposition to present-day

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 49

Maturation Profile through Time

700 350

200

50

Oil

Oil- Gas

Gas

Dry Gas

Oil

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 50

Barnett Shale Maturation Results

S2

Jarvie and Lundell, 1991

Pyrogram Maturity Tmax %Roe TOC S2 HI

Red Immature 432 0.62 5.21 19.80 380

Blue Early oil 435 0.67 4.53 13.45 297

Green Peak oil 437 0.71 4.11 10.27 250

Cyan Late oil 443 0.81 3.77 5.88 156

Orange Early gas 455 1.03 3.41 1.81 53

White Late wet gas 470 1.30 3.32 1.36 41

Black Dry gas 480 1.48 3.23 0.25 8

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 51

49

50

51

Page 18: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 18

Change in vitrinite reflectivity

histograms with related chemical structural change

Sample selection is critical to provide the petrologist the

best opportunity to find vitrinite particles(Type III kerogen)

After Oberlin, 1980; Bordenave, 1993

Histogram of Vitrinite Reflectance Readings

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 52

Correlation of Aromatic Ratios to Vitrinite Reflectance

Data from Don Rocher, Geomark Research

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 53

Optimum window for tight oil

Optimum window for open-fracture shale

Optimum window for high yield shale gas

Lean-to-dry gas

Factors:MaturitySystem typePermeabilityAlteration

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 54

52

53

54

Page 19: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 19

Duvernay data set

Graphic from Dong et al., 2019

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 55

Sigmoidal Fit provides indication of original HI

2D Graph 2f = a/(1+exp(-(x-x0)/b))

X Data

400 420 440 460 480 500 520 540 560

Y D

ata

-200

0

200

400

600

800

x column 1 vs y column 1 Col 1 vs Col 2 95% Confidence Band 95% Prediction Band

Tmax (oC)

Hyd

roge

n I

nd

ex (

mg

/g)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 56

TOCo = (TOCpd - (S1*.085) - (TOCpd * HIpd * 0.00085))/(1 - HIo * 0.00085)

TR1 = (HIo - HIpd) / HIo

TR2 = (1200 x (HIo - HIpd)) / (HIo x (1200 - HIpd))

Computed Total Petroleum Generationat given level of conversion (TR)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 57

55

56

57

Page 20: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 20

Range of Original HIfor Type II Kerogens

Distribution HIo GOCo (%) NGOCo (%)

P90 340 29% 71%

P50 475 40% 60%

P10 645 55% 45%

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 58

Modeled Source Rock Conversionfrom source rock database

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 59

Kinetic Models:Hydrous Isothermal vs Anhydrous Non-Isothermal

Only one technique models Monterey data maturation

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 60

Ref: Lewan and Ruble, 2002, Organic Geochemistry Journal

58

59

60

Page 21: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 21

Kerogen Type:

Visual and Chemical

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 61

Visual Kerogen Macerals

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 62

Hexane (C6 H14)

H/C: 2.35Cyclohexane (C6 H12)

H/C: 2.02Benzene (C6 H6)

H/C: 1.01

Six Carbon Atom Hydrocarbons:All with different relative hydrogen contents

Linear alkanes Cycloalkanes Aromatics

H

H

H

H

H

HH

H

H

H

H

H

HH

H

H

H

H

H

H

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 63

61

62

63

Page 22: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 22

Kerogen Type for Immature OMbased on HI vs OI

Type I

Type II

Type III

Derived from Espitalie et al, 1977

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 64

Visual and Chemical Characteristicsof oil, mixed, or gas prone OM

Sources: Jones, 1984; Hunt, 1995

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 65

Bulk Petroleum Composition

SARASaturatesAromatics

ResinsAsphaltenes

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 66

64

65

66

Page 23: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 23

When is Petroleum Fractionated?any time it moves…

Source Rock

Conventional Trap

ProducedPetroleum

2o Conventional Trap

Gas

Exs

olu

tion

Gas sampleOil sample

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 67

SATURATES AROMATICS RESINS ASPHALTENES

EOM

MINERAL MATTER MINERAL MATTER

Extractable Organic Matter (EOM)

KEROGEN

LIPTINITE AMORPHOUS VITRINITE INERTINITEEXINITE

POLLEN SPORES

DINO-FLAGELLATES

andACRITARCHS

ALGAE CHITINOZOA SCOLECODONTS

PARTIALLY STRUCTURED

(CUTICLES, CELLULAR DEBRIS)

MICROFOSSIBLE ASSEMBLAGES

WOODY PLANT DEBRIS

CARBONACEOUS

CHAR

???

OIL PRONEGAS

PRONENO

POTENTIAL

UNKNOWN OIL/GASJarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 68

Composition and Structure of Polar Compoundsaffects chemical properties(polars include resins and asphaltenes)

Polar Compounds Alkyl branches on polycondensed aromatics

• Carbon• Hydrogen• Oxygen• Sulfur• Nitrogen

sulfurnitrogen

oxygen Polarity allows interaction of oil

with water

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 69

67

68

69

Page 24: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 24

Duvernay Oil - Severe Fractionationbetween reservoir rock and produced oil

This suggests that while produced oil is 43oAPI, reservoir rock is ca. 33oAPI

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 70

Kerogen and PetroleumCracking

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 71

Cracking of Kerogen and Petroleum

Temperatures modified from Hunt, 1995

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 72

70

71

72

Page 25: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 25

Petroleum (Bitumen)

Sats Aros Resins

Asphaltenes

Asphaltenes

Asp

hs

ResinsArosSats Prechar

Sats

Aro

sResinsG

as

Gas

Gas

Res

ins

ArosSatsGas

Gas Sats Aros

Prechar-Pyrobitumen

Prechar-Pyrobitumen

Aro

sSa

tsGas Pyrobitumen

Bio

mar

kers

Bio

mar

kers

Bio

mar

kers

H2OCO2

H2S

H2

OCO2

H2S

H2S

Black Oil Phase

Bitumen Phase

Volatile Oil Phase

Condensate Phase

Dry Gas Phase

NGL Phase

SecondaryCracking

Bio

mar

ker

s

H2OCO2

H2S

Jarvie, 2015 (AAPG)Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 73

Cracking of Resinsresults in increase in saturates and API gravity

Data from Han et al. 2014

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 74

Structural Rearrangementsleading to more refractory (pore

throat blocking) organics??

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 75

73

74

75

Page 26: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 26

Risking Maturity

DGR LGR Oil Vitrinite Interpreted

(C1/C1..C4)) C6+/(C1..C6)) Yield Mole % Reflectance Tmax Maturity

(%) (%) (bbls/mmcf) C7+ (%Roe) (oC) PI Window

< 0.55 <427 < 0.10 Immature

< 50 > 50 0 - 1999 > 500 > 20.0 <0.75 <440 Black

50 - 74 19.9 - 49.9 2000 - 3499 300 - 499 12.5 - 20.0 0.75 - 0.99 440 - 454 Volatile Oil

75 - 84 5.0 - 19.9 3500 - 49999 20 - 299 < 12.5 1.00 - 1.19 455 - 464 Condensate-Wet Gas

80 - 90 1.0 - 4.9 50,000 - 99,999 10 - 19 < 12.5 1.20 - 1.39 465 - 475 Wet Gas

> 90 < 1 < 10 >1.40 > 475 Dry Gas

Gas-to Oil

Ratio (GOR)

(scf/bbl)

>100,000

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 76

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 77

Thermal Disassociation of Carbonates to CO2modeled using an arbitrary 3.3oC/my constant heating rate

Jarvie and Jarvie, 2007, IMOG

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 78

Do Organic Acids affect carbonate rocks???including carbonic acid formed from CO2 and water from kerogen decomposition

Acid etching noted in various plays:

• Eagle Ford• Bakken• Smackover/Brown Dense

Jarvie, 2012b

76

77

78

Page 27: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 27

Biomarkersand

Diamondoids

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 79

Applications

• Correlations

– Oil to oil

– Oil to rock

• Organofacies Assessment

• Thermal Maturity

Correlation and Organofacies Assessment

79

80

81

Page 28: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 28

Using Biomarker Datato correlate oils

Dembicki, 2017

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 82

Low Maturity Oilswith high diamondoids: secondary charge

Zumberge et al., 2017

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 83

Gas Compositionand

Isotopes

82

83

84

Page 29: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 29

Gas CompositionC1/(C1..C4) vs BTU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000 2500 3000

Gas Calorific Content (btu)

Dry

Gas R

ati

o

Jarvie et al., 2003a,b; Jarvie et al., 2005

Early Oil Window

Peak Oil Window

Condensate-Wet Gas Window

Wet Gas WindowDry Gas Window

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 85

Predictive Gas Composition Ratios

Dembicki, 2017

Oil zone

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 86

Discrimination of Barnett Shalematurity windows by isotopic values

Illich et al., 2013

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 87

85

86

87

Page 30: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 30

Rollover alters Isotopic Maturity Plots

Data from Zumberge et al., 2012

Expected maturity trendbut reversed when rollover

occurs, ca. 1.5%Ro

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 88

Targeting Using Various Geochemicaland Rock Properties

EOG Resources, Investor Presentation, Nov 2016Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 89

Thank You !

[email protected]

Presentation with additional slides available at: www.wildcattechnologies.com

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 90

88

89

90

Page 31: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 31

Appendices

• Meaning of acronyms

• Further definition of acronyms

• Conversions

• Flow charts

• GC peak identifications

• Biomarker peak identifications

• Visual kerogen examples and petroleum type

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 91

91

92

93

Page 32: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 32

QUICK START GEOCHEMISTRY(various esoteric abbreviations)

Organic richnessRelative oil contentConvertible kerogen contentRelative oxygenates yieldThermal maturity indicatorRelative hydrogen contentRelative oxygenates contentRatio of oil to oil+ S2 kerogenRatio of oil (S1) to TOCExtent of kerogen conversion

• TOC: total organic carbon

• S1: signal 1 in pyrolysis

• S2: signal 2 in pyrolysis

• S3: signal 3 in pyrolysis

• Tmax

• HI: hydrogen index

• OI: oxygen index

• PI: production index

• OSI: oil saturation index

• TR: transformation ratio

QUICK START GEOCHEMISTRY(various esoteric abbreviations)

• Vitrinite reflectance (%Ro):

• Visual kerogen (Vk):

• Gas chromatography (GC):

• Pyrolysis GC (PyGC):

• SARA (saturates, aromatics, resins, asphtenes):

• S-A carbon isotopes:

• Biomarkers (GCMS):

• Quantitative Aromatics, diamondoids (GCMSMS):

• Kinetics:

Visual thermal maturityKerogen type, color indexOil and extracted oil typeProducts generatedConstituents of petroleumCorrelation; typeCorrelation; organofacies

Chemical thermal maturityRate of OM decomposition

94

95

96

Page 33: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 33

Screening Data Parameters

• CC carbonate carbon (wt.%)• TOC Total organic carbon (wt.%)• S1 free oil that volatilizes at 300oC• S2 organic matter that pyrolyzes (cracks)

between 300-600oC• S3 “organic” carbon dioxide from kerogen• Tmax the temperature at maximum evolution of S2 peak• S4 not reported, but the oxidation of residual carbon when Rock-Eval

TOC is utilized• %Ro Reflectivity of vitrinite in oil immersion (VR often used)• %Roe conversion of Tmax to an approximate vitrinite reflectivity value• Vk visual kerogen – description of macerals in kerogen• GC gas chromatography• GCMS gas chromatography mass spectrometry• SARA saturates, aromatics, resins, and asphaltenes

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 97

Ratios from Rock-Eval and combined TOC data

• Hydrogen Index (Espitalie et al., 1977)– S2 / TOC x 100 (mg HC/g TOC)– relative hydrogen abundance

• Oxygen Index (Espitalie et al., 1977)– S3 / TOC x 100 (mg CO2 / – sometimes affected by weathering

• S2/S3 (Daly et al., 1979)– ratio of hydrogen to oxygen; sometimes useful at high thermal maturity for kerogen type

• Production Index (Espitalie et al., 1977)– S1/(S1+S2) (unitless) 0-1– an indication of free oil to total oil and kerogen, i.e., kerogen conversion– will be lower where expulsion has occurred; will be higher when migration into a

sediment (e.g., reservoir rocks)

• Normalized oil content (Jarvie and Baker, 1984)– free oil (S1) divided by TOC x 100 (mg HC/g TOC)– an indication of thermal maturity, but also reservoir intervals

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 98

Conversions

• TOC to hydrocarbons– divide TOC by 0.085 (some literature uses 0.083)– Why? (ca. 85% carbon in hydrocarbons and TOC is in

wt.percent whereas S2 (or S1) is parts per thousand (mg HC/g rock)

– TOCroc=10.00 (reactive organic carbon), S2 = 117.65

• Hydrocarbons to TOC– multiply hydrocarbons (S1 or S2) by 0.085 (or 0.083)– S2 = 10.00 mg HC/g rock, thereby contains 0.85 %TOC

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 99

97

98

99

Page 34: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 34

Conversions

• Rock-Eval hydrocarbon units to useful units

– Rock-Eval S1 or S2 = mg HC/g rock• To obtain results in ppm

– Multiple S1 or S2 by 1000• To obtain the oil content or remaining generation potential in bo/af

– Multiple S1 by 21.89 to 25.00 (heavier to lighter oil)– Multiple S2 by 21.89 to 25.00

– Conversion to total gas is more complicated:• Must know how much oil vs gas is formed in primary cracking of

kerogen• Must know how much gas and oil is expelled/retained• Must know how much oil can be cracked to gas

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 100

Some Terms…

• Kerogen– Organic matter that is insoluble

in organic solvents and acids

• Petroleum– Gas and Oil

• Gas– C1 = dry gas– C2-C4,5 = wet gas

• Oil– Black oil– Volatile oil– Condensate

– Hydrocarbons• Saturates• Aromatics

– Non-hydrocarbons• Resins• Asphaltenes

• Bitumen = Petroleum (Momper, 1975)– Earliest formed petroleum that

contains a high percentage of non-hydrocarbons

• Pyrobitumen– Any residue formed from kerogen or

petroleum cracking

• Sorption– Adsorption– Absorption

• SARA– Saturates– Aromatics– Resins– Asphaltene

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 101

Consideration of the term ‘bitumen’

Bitumen: “a smelly but useful material of interest”

Bitumen: “any of various natural substances, as asphalt, maltha, or gilsonitethat consist mainly of hydrocarbons

Bitumen: soluble in carbon disulfide (pyrobitumen is not soluble) (Hunt, 1995)

“Solid bitumens are allochthonous, non-disseminated organic matter.Definition by solubility, fusibility, and H/C ratios are neither source-distinctive nor indicative of genesis” (Curiale, 1986)… Solid bitumens associated with source rocks classified as:

pre-oil: immature, early generation products of source rockspost-oil: alteration of once liquid oil which

is also a product of source rocksmigrated from a mature source rockFollowing generation and expulsion, both are subject to modification processes

However, the use of the term ‘bitumen’ is a catch-all and generally a visual description.Jarvie, 2015

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 102

100

101

102

Page 35: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 35

Definitions

• Kerogen Cracking

• This is primary cracking•Yields

• gas and oil (petroleum)• carbonaceous residue

• Petroleum (bitumen or full SARA) cracking

• This is secondary cracking•Yields

•Gas and oil•carbonaceous residue

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 103

Shale Resource System

A continuous system having an organic-rich source rock with or without

juxtaposed organic lean lithofacies

requiring hydraulic stimulation to flow commercial amounts of petroleum.

Jarvie, 2007

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 104

Petroleum SystemComponents and Processes

• Components

– Source rock

– Migration pathway

– Trap

– Seal

– Overburden

• Processes

– Generation

– Expulsion

– Migration

– Accumulation

– Preservation

– Alteration espfractionation

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 105

103

104

105

Page 36: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 36

Source Rocks

• Proven (effective)

• Hypothetical

• Speculative

Correlation between source rock and reservoired petroleum has been achieved

Limited evidence of source rock (e.g., TOC)

Possible geological formation

Magoon and Dow, 1995

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 106

Processes that AlterPetroleum Composition

• Thermal maturity

• Biodegradation

• Gas washing

• Gas exsolution

• Bacterial sulfate reduction (BSR)

• Thermochemical Sulfate Reduction (TSR)

• Primary Expulsion– Within source rock

• Secondary Expulsion– Out of source rock

• Fractionation• Wettability

• Production – From reservoir to surface

• Composition at surface• API• GOR

• Production operations– Choke dimensions– Separator conditions

Jarvie, 2015

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 107

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 108

Analytical Chart with Objective

106

107

108

Page 37: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 37

1 i-C4 21 11-DMCP 41 n-C9 60 n-C21

2 n-C4 22 3-MH 42 n-C10 61 n-C22

3 i-C5 23 c-13-DMCP 43 n-C11 62 n-C23

4 n-C5 24 t-13-DCMCP 44 n-C12 63 n-C24

5 22-DMB 25 3-EP 45 i-C13 64 n-C25

6 CP 26 t-12-DMCP 46 i-C14 65 n-C26

7 23-DMB 27 c-12-DMCP (cal) 47 n-C13 66 n-C27

8 2-MP 28 n-C7 48 i-C15 67 n-C28

9 3-MP 29 MCH 49 n-C14 68 n-C29

10 I-Std 30 ECP 50 i-C16 69 n-C30

11 n-C6 31 Tol 51 n-C15 70 n-C31

12 22-DMP 32 2-Methylheptane 52 n-C16 71 n-C32

13 MCP 33 4-Methylheptane 53 i-C18 72 n-C33

14 24-DMP 34 3-Methylheptane 54 n-C17 73 n-C34

15 223-TMB 35 n-C8 55 Pr 74 n-C35

16 Bz 36 E-Bz 56 n-C18 75 n-C36

17 33-DMP 37 m-xylene 57 Phy 76 n-C37

18 CH 38 p-xylene 58 n-C19 77 n-C38

19 2-MH 39 o-xylene 59 n-C20 78 n-C39

20 23-DMP 40 79 n-C40

GC Peaks

Peak Abbreviations

Oil GC Ratios by Area Thompson Ratios

Pristane / Phytane 1.07 Bz / n C6 0.05Pristane / n C17 0.37 Tol / n C7 0.24Phytane / n C18 0.42 (n C6 + n C7) / (CH + MCH) 2.76n C18 / (n C18 + n C19) 0.53 Isoheptane Value 2.21n C17 / (n C17 + n C27) 0.80 n C7 / MCH 2.05

Carbon Preference Index 0.99 CH / MCP 0.75BTEX (wt.%) 2.85 n C7 / 2-MH 4.26

n C6 / 2,2-DMB 475.36

Oil GC Ratios by Height Heptane Value 38.90

n-C6 / MCP 3.33Pristane / Phytane 1.16Pristane / n C17 0.29Phytane / n C18 0.29n C18 / (n C18 + n C19) 0.53

n C17 / (n C17 + n C27) 0.79Carbon Preference Index 0.97

Halpern Ratios Mango Ratios

Total C7 (17 compounds) 6.88Alteration-1 9.42 P1 34.71Alteration-2 39.69 P2 20.35

Alteration-3 13.95 P3 6.65Alteration-4 9.33 5N1 7.49Alteration-5 23.27 6N1 25.18Alteration-6 0.80 N2 5.62Alteration-7 5.12 K1 0.94Alteration-8 3.06 K2 0.26

Correlation-1 0.03 5N1 / 6N1 0.30Correlation-2 0.63 P3 / N2 1.18Correlation-3 0.14 2MH + 23DMP 0.85Correlation-4 0.02 3MH + 24DMP 0.90Correlation-5 0.18 P2 + N2 25.97

Invariant Ratio 1 0.94Invariant Ratio 2 0.26

CTemp (oC) 116GOR (calculated scf/bo) 622

Various GC

Ratios

GC Peak Identifications

109

110

111

Page 38: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 38

min2 4 6 8 10 12 14 16 18

Norm .

0

100

200

300

400

500

FID1 A, Front Signal (RREN-161203\RREN-161203A 2016-12-19 16-58-22\1203-001A.D)

i-C

4 n

-C4

i-C

5

n-C

5

22

-DM

B CP

23

-DM

B 2

-MP

3-M

P I

-Std

n-C

6

22

-DM

P M

CP

24

-DM

P

Bz

33

-DM

P C

H 2-M

H 2

3-D

MP

11

-DM

CP

3-M

H

c-1

3-D

MC

P t

-13

-DC

MC

P 3

-EP

t-1

2-D

MC

P

n-C

7

MC

H

EC

P

To

l

2-M

eth

ylh

ep

tan

e 4

-Me

thyl

he

pta

ne

3-M

eth

ylh

ep

tan

e

Peters et al., 2005

Comparison of Various Chemical Properties of Marine, Fluvial/Deltaic (Terrigenous), and Lacustrine source rocks

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 113

Comparison of Various Physicochemical and Chemical Properties of Shales and Carbonates

Peters et al., 2005Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 114

112

113

114

Page 39: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 39

Code Biomarker ID m/z

C19T C19H34 tricyclic diterpane 191

C20T C20H36 tricyclic diterpane 191

C21T C21H38 tricyclic diterpane 191

C22T C22H40 tricyclic terpane 191

C23T C23H42 tricyclic terpane 191

C24T C24H44 tricyclic terpane 191

C25S C25H46 tricyclic terpane 191

C25R C25H46 tricyclic terpane 191

TET C24H42 teteracyclic terpane 191

C26S C26H48 tricyclic terpane 191

C26R C26H48 tricyclic terpane 191

Ts 18a, 21b-22,29,30-trisnorhopane 191

C27T 17a,18a,21b-25,28,30-trisnorhopane 177

Tm 17a, 21b-22,29,30-trisnorhopane 191

C28DM C28 demethylated hopane 177

C28H 17a, 18a, 21b-28,30-bisnorhopane 191

C29DM C29 demethylated hopane 177

C29H Tm 17a, 21b-30-norhopane 191

C29D Ts 18a-30-norneohopane 191

C30X 17a, 15a-methyl-27-norhopane (diahopane) 191

OL oleanane 191

C30H 17a, 21b-hopane 191

C30M 17b, 21a-moretane 191

C31S 17a, 21b-30-homohopane (22S) 191

C31R 17a, 21b-30-homohopane (22S) 191

GA gammacerane 191

C32S 17a, 21b-bishomohopane (22S) 191

C32R 17a, 21b-bishomohopane (22R) 191

C33S 17a, 21b-trishomohopane (22S) 191

C33R 17a, 21b-trishomohopane (22R) 191

C34S 17a, 21b-extended hopane (22S) 191

C34R 17a, 21b-extended hopane (22R) 191

C35S 17a, 21b-extended hopane (22S) 191

C35R 17a, 21b-extended hopane (22R) 191

S1 13b, 17a-diacholestane (20S) 217

C35R 17a, 21b-extended hopane (22R) 191

S1 13b, 17a-diacholestane (20S) 217

S2 13b, 17a-diacholestane (20R) 217

S3 5a-cholestane (20S) + 5b-cholestane (20R) 217

S4 5a, 14b, 17b-cholestane (20R) +13b, 17a-diastigmastane (20S) 217

S4B same as S4 (m/z=218) 218

S5 5a, 14b, 17b-cholestane (20S) 217

S5B same as S5 (m/z=218) 218

S6 5a-cholestane (20R) 217

S7 diastigmastane 217

S8 5a-ergostane (20S) 217

S9 5a, 14b, 17b-ergostane (20R) + 5b-ergostane (20R) 217

S9B same as S9 (m/z=218) 218

S10 5a, 14b, 17b-ergostane (20S) 217

S10B same as S10 (m/z=218) 218

S11 5a-ergostane (20R) 217

S12 5a-stigmastane (20S) 217

S13 5a, 14b, 17b-stigmastane (20R) 217

S13B same as S13 (m/z=218) 218

S14 5a, 14b, 17b-stigmastane (20S) + 5b-stigmastane (20R) 217

S14B same as S14 (m/z=218) 218

ISTD d4-5a-stigmastane (20R) m/z=221 221

S15 5a-stigmastane (20R) 217

Common Biomarker Names and Diagnostic Ions

28 32 36 40 44 48

60 70 80

Tricyclic Terpanesm/z = 191

Pentacyclic Terpanesm/z = 191

C28S,R C29S,R C30S,R

C19T

C20T

C21T

C22T

C23T

C24T

C25S C25R

TET

C26S C26R

TsTm

C28H

C29H(Tm)

C29D(Ts)

C30XOL

C30H

C30M

C31S

C31R

GA

C32S

C32RC33S

C33RC34R

C34SC35S C35R

28 32 36 40 44 48

60 70 80

Tricyclic Terpanesm/z = 191

Pentacyclic Terpanesm/z = 191

C28S,R C29S,R C30S,R

C19T

C20T

C21T

C22T

C23T

C24T

C25S C25R

TET

C26S C26R

TsTm

C28H

C29H(Tm)

C29D(Ts)

C30XOL

C30H

C30M

C31S

C31R

GA

C32S

C32RC33S

C33RC34R

C34SC35S C35R

Steranesm/z = 217

Steranesm/z = 218

48 52 56 60 64 68 72

48 52 56 60 64 68 72

S1

S2 S3

S4

S5

S6

S7 S8

S9

S10

S11S12

S13

S14

S15

S14BS13B

S10B

S9BS5B

S4B

Steranesm/z = 217

Steranesm/z = 218

48 52 56 60 64 68 72

48 52 56 60 64 68 72

S1

S2 S3

S4

S5

S6

S7 S8

S9

S10

S11S12

S13

S14

S15

S14BS13B

S10B

S9BS5B

S4B

115

116

117

Page 40: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 40

Ratio PeaksC19/C23 Tricyclic Terpane C19/C23, peak heights from 191m/zC22/C21 Tricyclic Terpane C22/C21, peak heights from 191m/z

C24/C23 Tricyclic Terpane C24/C23, peak heights from 191m/zC26/C25 Tricyclic Terpane C26/C25, peak heights from 191m/z

Tet/C23 Tetracyclic C24 to Tricyclic Terpane C23 ratio, peak heights from 191m/zC27T/C27 25,28,30-trisnorhopane (177m/z)/191m/z(Ts+Tm)

C28/H Bisnorhopane/HopaneC29/H Norhopane/Hopane

X/H C30 diahopane/HopaneOL/H Oleanane/Hopane

C31R/H Homohopane (22R)/Hopane

GA/31R Gammacerane/HomohopaneC35S/C34S C35 Extended Hopane/C34 Extended Hopane (22S)

S/H S/H = (SS1-S15)/(Ts+Tm+C28H+C29D+C29H+C30H +SC31-C35SR)%C27 Relative % S5B

%C28 Relative % S10B%C29 Relative % S14B

S1/S6 C27 Rearranged/Regular SteranesC27Ts/Tm Trisnorhopane

C29Ts/Tm aka C29D/29HDM/H C29 demethylated hopane (177m/z)/Hopane 191m/z

Select Biomarker Ratios

Deposition of Source Rockand Hybrid Systems

Bishop et al., 2014

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 119

TOC Values

Ronov, 1958 – Russian Platform from Kiev to Ufa – Upper Devonian shales

– Petroliferous areas:

• 1.37% mean for shales

• 0.50% mean for carbonates– Nonpetroliferous areas:

• 0.40% mean for shales

• 0.16% mean for carbonates

Text Books often state these ranges for minimum TOC:Shales: 1.00 wt.%Carbonates: 0.50 wt.%

Need more information to answer: (1) are these mature TOC values? (2) what is original HI? (3) what type of sample?

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 120

118

119

120

Page 41: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 41

Sample Issues

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 121

Archived Cuttings Samplesmay yield lower values for TOC, S1, S2

17.60

3.04

1.05

7.45

0.38

6.24

5.43 5.75

20.68

0.27

0

5

10

15

20

25

CC TOC S1 S2 S3

Val

ue

(w

t.%

, m

g o

il/g

rock

, or

mg

CO

2/g

ro

ck)

Measurement

Old cuttings

Fresh RSWC

d 35%

d 178%d 547%

d 278%

d 71%

Jarvie, 2012

Comparison of offset well to a

well drilled in late 1970s;

cuttings were stored in Midland,

TX for 30 years

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 122

Cracking of Organic Matter:Kerogen and SARA

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 123

121

122

123

Page 42: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 42

Cracking of Organic Matter:much SARA cracking occurs in oil window

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 124

Restored Petroleum Potential

10

100

1000

0.1 2

OR

IGIN

AL

HYD

RO

GEN

IN

DEX

(m

g/g

)

ORIGINAL TOC (wt.%)

EXCELLENT OIL SOURCE(390-4600 boe/af)

GOOD OIL SOURCE(115-950 boe/af)

TRANSITIONAL OIL-GAS SOURCE (30-920 boe/af)

GAS SOURCE(10-250 boe/af)

POOR GAS SOURCE(1-70 boe/af) GOOD GAS SOURCE

(50-920 boe/af)FAIR GAS SOURCE(20-184 boe/af)

POOR DRY GAS ONLY SOURCE(1-230 boe/af)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 125

Prediction of in situ Oil Qualityfrom rock chips

Maende, 2015

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 126

124

125

126

Page 43: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 43

Maturation results in Polycondensation of Aromatics

Taylor et al. (1998)

Devolatilization (cracking) polycondensation

(Hydrogen-rich hydrogen-poor

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 127

Restoring Measured Values (present-day) to Original Values

Ways to approximate original hydrogen index

1. Immature samples

2. Visual kerogen percentages: oil vs gas prone macerals x kerogen type HI values

3. Maturation series

4. P10, P50, and P90 values

5. Maturation equation to compute kerogen transformation ratio (not shown)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 128

Producibility less Sorption

Adsorption index is directly proportional to TOC

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 129

127

128

129

Page 44: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 44

Gas Composition Ratios

Haworth et al., 1985 (AAPG Bulletin)

Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada, 13-17 May 2019 130

References

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 132

Akulinitseva, V. and R. Boros, 2017, Wolfcamp Delaware: An assessment of recent activity with a GIS approach, in Oil & Gas Financial Jour., October 2017, p. 14-17. (shows GOR map of Delaware basin)Alpern, B., B. Durand, J. Espitalie, B. Tissot, 1972, Localisation, caractérisation et classification pétrographique des substances

organiques sédimentaires fossiles, in Adv. Org. Geochem., 1971, von Gaertner, H.R., and H. Werner, eds., Oxford-Braunschweig, Pergamon Press, 1972, pp. 1-28.

Bailey, N.J.L., C.R. Evans, and C.W.D. Milner, 1974, Applying Petroleum Geochemistry to Search for Oil: Examples from WesternCanada Basin, AAPG Bull., Vol. 58, No. 11, pp. 2284-2294.

Baker, D. R., 1962, Organic geochemistry of Cherokee Group in southeastern Kansas and northeastern Oklahoma, AAPG Bull., 46, pp. 1621-1642.Barker, Colin, 1974, Pyrolysis techniques for source rock evaluation, AAPG Bull., v. 58, no. 11, pp 2349-2361.Baskin, D., A. Kornacki, and M.A. McCaffrey, 2014, Allocating the contribution of oil from the Eagle Ford formation, the Buda formation, and the Austin Chalk to commingled production from horizontal wells in south Texas using geochemical fingerprinting technology, Search and Discovery article #41268, 19p.Behar, F., F. Lorant, and M. Lewan, 2008, Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite, Org. Geochem, 39, p. 1-22Behar, F. and M. Vandenbroucke, 1987, Chemical modelling of kerogens: Org. Geochem., no. 11, p. 15-24.Bentley, P., 2017, Unexpected lessons learned from mid-century atomic bomb explosions, The Graduate School of Arts and Sciences

Harvard University, March 30, 2017 blog, https://i1.wp.com/sitn.hms.harvard.edu/wp-content/uploads/2017/03/Carbon- 14-Figure-1.jpgBeMent, W. O., R. A. Levey, and F. D. Mango, 1994, The temperature of oil generation as defined with a C7 chemistry maturity

parameter (2,4-DMP/2,3-DMP ratio), First Joint AAPG/AMPG Research Conference, Geological Aspects of Petroleum Systems, October 2-6, 1994, Mexico City, Mexico, http://wwgeochem.com/references/BeMentetalabstract.pdf, (accessed November 12, 2010).

Bishop, J., T. Playton, C.J. Lipinski, P. Harris, F. Harris, and P. Landis, 2014, The less conventional side of carbonates, Houston Geol. Soc. Bull., p. 31-37.Burgess, J.D., 1974, Microscopic examination of kerogen (dispersed organic matter) in petroleum exploration, Geol. Soc. of American, Special Paper 153, 19-30.Bordenave, M.L., J. Espitalie, P. Leplat, J.L. Oudin, and M. Vandenbroucke, 1993a, Screening techniques for source rock evaluation,

Chapter II.2, in. Applied Petroleum Geochemistry, M.L. Bordenave, ed., Editions Technip, Paris, 524 p.Cheng, Ai-Ling and Wuu-Liang Huang, 2004, Selective adsorption of hydrocarbon gases on clays and organic matter, Organic

Geochemistry, v. 35, p. 413-423. Christmann, J., 2016, Barclays CEO Energy-Power Conference, September 7, 2016, slide presentation, 49 p.Claxton, M. J., R. L. Patience, and P. J. D. Park, 1993, Molecular modelling of bond energies in potential kerogen sub-units, in Organic

Geochemistry: Poster Sessions from the 16th International Meeting on Organic Geochemistry, Stavanger, 1993, KjellOygard, ed., pp. 198-201.

Clementz, D. M., 1979, Effect of Oil and Bitumen Saturation on Source Rock Pyrolysis: AAPG Bull., v. 63, p. 2227-2232.Cooles, G.P., A.S. Mackenzie, and T.M. Quigley, 1986, Calculation of petroleum masses generated and expelled from source rocks, in

Advances in Organic Geochemistry 1985, Part I, D. Leythaeuser and J. Rullkotter, eds., Org. Geochem., Vol. 10, pp. 235- 245.Curiale, J.A., 1986, Origin of solid bitumens, with emphasis on biological marker results, Org. Geochem., 10, 559-580.

130

131

132

Page 45: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 45

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 133

Curry, David. J., 1996, The pyrolysis yield index: A rapid and reproducible technique for estimating the oil generation potential of coals and terrestrial kerogens, Organic Geochemistry: Developments and Applications to Energy, Climate, Environment, and Human History, Joan O. Grimaltand Carmen Dorronsoro, eds., Extended Abstracts book from the 17th International Meeting on Organic Geochemistry, San Sebastian, Spain, pp. 763-765.Curtis, J.B., 2002, Fractured shale-gas systems, AAPG Bull., 86, 11, 1921-1938.Dahl, J.E., J.M. Moldowan, K.E. Peters, G.E. Claypool, M.A. Rooney, G.E. Michael, M.R. Mello, and M.L. Kohnen, 1999, Diamondoid hydrocarbon as indicators of natural oil cracking, Nature, v. 3999, 6 May 1999, p. 54-57.Daly, A. R. and J. D. Edman, 1985, Loss of organic carbon from source rocks during thermal maturation: AAPG Bull., v. 71, no. 5, p. 546.Dow, W.G., 1977, Kerogen studies and geological interpretations, Jour. Geochem. Explor., 7, 79-99.Dembicki, H. Jr., 1984, An interlabatory comparison of source rock data, Geochim. Cosmochim. Acta, 48, 2641-2649.Demaison, G., 1983, Lectures on petroleum formation and occurrence, Am. Assoc. Pet. Geol., Petroleum Formation and Occurrence School, 17 p.Dembicki, H. Jr., 2017, Practical Petroleum Geochemistry for Exploration and Production, Elsevier, 331 p.Dolle, N., F. Gelin, F. Tendo, 2007, Combining testing-by-difference, geochemical fingerprinting, and data-driven models: An integrated

solution to production allocation in a long subsea tieback, SPE 108957, 7 p.Durand, B., 1993, Composition and structure of organic matter in immature sediments, Chapter I.3, in. Applied Petroleum Geochemistry, M.L. Bordenave, ed., Editions Technip, Paris, 524 p.EOG Resources, 2016, Investor Relations Presentation, 8 May 2016, 32p.EOG Resources, Investor Presentation, April 2010, EOG_2010, 223 p.,

http://wwgeochem.com/references/EOGMay2010Investorpresentation.pdf, (accessed November 12, 2010).Ellis, L., Schoell, M., Uchytil S., Brown, A., 2000, Mud Gas Isotope Logging (MGIL): A new field technique for exploration and production,

Oil&Gas Journal, Week of May 26, 2003, pp. 32-41.Elsinger, R.J., E. M.H. Leenaarts, J.C. Kleingeld, P. van Bergen, and F. Gelin, 2010, Otter-Edier geochemical production allocation: 6+ years of continuous monitoring to provide fiscal measurements for hydrocarbon accounting, in AAPG Hedberg Conf., Applications of Reservoir Fluid Geochemistry, June 8-11, 2010, Vail, Colorado, 4 p.Espitalie, J., M. Madec, B. Tissot, J. J. Mennig, and P. Leplat, 1977, Source rock characterization method for petroleum exploration: Proceedings of the 9th Offshore Technology Conference, Vol. 3, Paper 2935, pp. 439-444.Espitalie, J., M. Madec, and B. Tissot, 1984, Geochemical logging, in K. J. Voorhees, ed., Analytical pyrolysis – techniques and applications: Boston, Butterworth, p. 276-304.Espitalie, J., G. Deroo, and F. Marquis, 1985, Rock-Eval Pyrolysis and its applications, Institut Francais du Petrole, Direction de Recherche, Géologie et Géochimie, 119p.Espitalie, J., 1986, Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance, in Thermal Modeling in Sedimentary Basins, ed. J. Burris, Editions Technip, Paris, 475-496.Evans, C. R., M.A. Rogers, and N.J.L. Bailey, 1971, Evolution and Alteration of Petroleum in Western Canada, Chem. Geol., Vol. 8, pp. 147-170.Ferworn, K., J. Zumberge, and S. Brown, 2009, Gas isotopes in shale gas systems, Houston Geol. Soc. Mudstone Conference, Houston, TX 2013, 13p.Grabowski, G. J., 1995,Organic-rich chalks and calcareous mudstones of the Upper Cretaceous Austin Chalk and Eagleford Formation, South-Central Texas, USA, in B. J. Katz, ed., Petroleum Source Rocks, Springer-Verlag, p. 209-234.

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 134

Ferworn, K., J. Zumberge, and S. Brown, 2009, Gas isotopes in shale gas systems, Houston Geol. Soc. Mudstone Conference, Houston, TX 2013, 13p.Halpern, H.I., 1995, Development and Applications of Light-Hydrocarbon-Based Star Diagrams, AAPG Bull., Vol. 79, No. 6, pp. 801-815.Han, Y., Mahlstedt, N., and Horsfield, B., 2015, The Barnett Shale: Compositional fractionation associated with intraformational petroleum

migration, retention, and expulsion: AAPG Bulletin, v. 99, p. 2173-2202.Haworth, J.H., M. Sellens, and A. Whittaker, 1985, Interpretation of hydrocarbon shows using light (C1/(C1-C5)) hydrocarbon gases from

mud-log data, AAPG Bull., v. 69, no. 8, pp. 1305-1310.Hill, R.J., S-T. Lu, Y. Tang, M. Henry, and I.R. Kaplan, 2004, C4-benzene and C4-napthalene thermal maturity indicators for pyrolysates, oils, and condensates, in Geochemical Investigations in Earth and Space Science: A tribute to Isaac R. Kaplan, eds. R.J. Hill, J. Levanthal, Z. Aizenshtat, M.J. Baedecker, G. Claypool, R. Eganhouse, M. Goldhaber, and K. Peters, The Geochemical Society, Pub. 9, 303-319.Hill, R. J., D. M. Jarvie, R. M. Pollastro, M. Henry, and J. D. King, 2007, Oil and Gas Geochemistry and Petroleum Systems of the Fort Worth Basin, AAPG Bull. Special Issue: Barnett Shale, Ronald J. Hill and Daniel M. Jarvie, eds., v. 91, no. 4, pp. 475-499.Hughes, W.B., Albert G. Holba, and Leon I. Dzou, 1995, The ratios of dibenzothiophene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks, Geochimica et Cosmochimica Acta., Vol. 59, No. 17, pp. 3581-3598.Hunt, John M., 1995, Petroleum Geochemistry and Geology, 2nd edition, W. H. Freeman and Company, New York, 743p.Hunt, J. M., M. D. Lewan, R. J-C. Hennet, 1991, Modeling oil generation with time-temperature index graphs based on the Arrhenius equation, AAPG Bull., vol. 75, pp. 795-807.Illich, H., K. Ferworn, G. Nilson, F. Hernandez, and D. Williamson, 2012, Barnett gas geochemistry and thermal maturity, Fort Worth basin, Unconventional Resources Technology Conference, URTeC paper 1578482, 9p.Hoefs, J., 2004, Stable Isotope Geochemistry, 5th edition, Springer-Verlag, Berlin, 241 p.Holba, A.G., R.L. Bone, B.J. Huizinga, J.R. Vasquez, and S.M. Stokes, 2014, Petroleum-fluid property prediction from gas

chromatographic analysis of rock extracts or fluid samples, U.S. Patent PCT/US2013/053461, International Publication Number WO2014/022794 A2, 33p. Horsfield, B., 1989, Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography, Geochim. Cosmochim. Acta, 53, 891-901.Jacob, H., 1989, Classification, structure, genesis, and practical importance of natural solid oil bitumen (“migrabitumen”), Int. Coal Geol.,

11, 65-79.Jarvie, D.M. and Baker, D.R., 1984, Application of the Rock-Eval III Oil Show Analyzer to the study of gaseous hydrocarbons in an Oklahoma gas well, 187th ACS National Meeting, St. Louis Missouri, April 8-13, 1984,

http://wwgeochem.com/references/JarvieandBaker1984ApplicationofRock-Evalforfindingbypassedpayzones.pdf, (accessed November 12, 2010).Jarvie, D.M. and Lundell, L.L., 1991, Hydrocarbon generation modeling of naturally and artificially matured Barnett shale, Ft. Worth Basin,

Texas: Southwest Regional Geochemistry Meeting, Sept. 8-9, 1991, The Woodlands, Texas, 1991.Jarvie, D.M., 1991, Factors affecting Rock-Eval derived kinetic parameters, Chemical Geology, Vol. 93, pp 79-99.

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 135

Jarvie, Daniel M., Joseph T. Senftle, William Hughes, Leon Dzou, James J. Emme, and Robert J. Elsinger, 1995, Examples and New Applications in Applying Organic Geochemistry for Detection and Qualitative Assessment of Overlooked Petroleum Reservoirs, in Organic Geochemistry: Developments and Applications to Energy, Climate, Environment, and Human History, Joan O. Grimalt and Carmen Dorronsoro, eds., 17th International

Meeting on Organic Geochemistry, pp. 380-382, http://wwgeochem.com/references/Jarvieetal1995Examplesandnewapplicationsinapplyingorganicgeochemistry.pdf, (accessed November 12, 2010).

Jarvie, Daniel M., Jack D. Burgess, Alex Morelos, Robert K. Olson, Phil A. Mariotti, and Robert Lindsey, 2001a, Permian Basin Petroleum Systems Investigations: Inferences from Oil Geochemistry and Source Rocks, AAPG Mid- Continent Section Meeting, Amarillo, Texas, September 30-October 2, 2001, AAPG Bull. Vol. 85, No.9, pp. 1693-1694, http://www.wwgeochem.co/references/Jarvieetal-AAPGAmarillo2001- PermianBasinPetroleumSystem.pdf, (accessed November 12, 2010).Jarvie, Daniel M., Alejandro Morelos, and Zhiwen Han, 2001b, Detection of Pay Zones and Pay Quality, Gulf of Mexico:

Application of Geochemical Techniques, Gulf Coast Assoc. of Geol. Soc. Transactions, Volume LI, 2001, pp. 151-160.Jarvie, Daniel M., 2001, Williston Basin Petroleum Systems: Inferences from Oil Geochemistry and Geology, The Mountain

Geologist, Vol. 38, No. 1, pp. 19-41.Jarvie, Daniel M., Brenda L. Claxton, Floyd "Bo" Henk, and John T. Breyer, 2001, Oil and Shale Gas from the Barnett Shale,

Ft. Worth Basin, Texas, AAPG National Convention, June 3-6, 2001, Denver, CO, AAPG Bull. Vol. 85, No. 13 (Supplement), p. A100.

Jarvie, D.M. and L.L. Lundell, 2001, Chapter 15: Amount, type, and kinetics of thermal transformation of organic matter in the Miocene Monterey Formation: in Caroline M. Isaacs and Jurgen Rullkotter, eds., The Monterey Formation: From

Rocks to Molecules, Columbia University Press, New York, pp. 268-295Jarvie, Daniel M., Mark A. McCaffrey, Frank Mango, and Ron Hill, 2002, Evaluation of Petroleum Systems with Dual Hydrocarbon Charges: Complementary application of light hydrocarbon, mid-range hydrocarbons, and biomarker assessments, ALAGO meeting, Cartegena, Colombia, October 2002, poster presentationJarvie, Daniel M., David A. Wavrek, and Peter Jones, 2002, Geochemical Logging Applications and Strategies: Assessment

of pay zone quality and compartmentalization using well cuttings or side wall cores, ALAGO meeting, Cartegena, Colombia, October 2002, oral presentationJarvie, D.M., R.J. Hill, R.M. Pollastro, D.A. Wavrek, K.A. Bowker, B.L. Claxton, and M.H. Tobey, 2003a, Evaluation of unconventional natural gas prospects: The Barnett Shale Shale Model, International Meeting on Organic Geochem., Krakow, Poland, Jarvie, D.M., B. Claxton, M.H. Tobey, 2003b, Development of unconventional gas prospects and evaluation of production

using organic geochemical techniques, AAPG Midcontinent Meeting, Tulsa, OK, 19 p.Jarvie, Daniel M., Ronald J. Hill, and Richard M. Pollastro, 2005, Assessment of the gas potential and yields from shales:

the Barnett Shale model: in Cardott, Brian, ed., Okla. Geol. Survey Cir. 110, Unconventional Gas of the Southern Mid-Continent Symposium, March 9-10, 2005, Oklahoma City, OK, p. 37-50.

133

134

135

Page 46: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 46

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 136

Jarvie, Brian M., Daniel M. Jarvie, Tim E. Ruble, Hossein Alimi, and Valentina Baum, 2006, Detailed geochemical evaluation of green river shale core: implication for an unconventional source of hydrocarbons, AAPG Annual Meeting, Houston, Texas, April 9-12, 2006, v. 90, Program Abstracts (digital),

http://wwgeochem.com/references/jarviebrianetaldetailedgeochemicalevaluationofgreenrivershalecoreAAPG2006.pdf, (accessed November 12, 2010).

Jarvie, D.M., R.J. Hill, T.E. Ruble, and R.M. Pollastro, 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of north- center Texas as one model for thermogenic shale-gas assessment, AAPG Bull., v. 91, no. 4, pp. 475-499.Jarvie, Daniel M., 2007, Organic geochemical constraints on mudstone productivity, HGS Applied Geoscience Conference (AGC) on Mudstones, October 1-2, 2007, Houston, Texas, http://wwgeochem.com/references/Jarvie-HGSMudstone2007.pdf, (accessed November 12, 2010).Jarvie, Brian M. and Daniel M. Jarvie, 2007, Thermal decomposition of various carbonates: kinetic results and geological temperatures of

conversion, The 23rd International Meeting on Organic Geochemistry, Torquay, England, 9-14 September 2007, Book of Abstracts, pp. 311-312.

Jarvie, Daniel M., Robert J. Coskey, Michael S. Johnson, and Jay E. Leonard, 2011, The Geology and Geochemistry of the Parshall Field Area, Mountrail County, North Dakota in RMAG's The Bakken-Three Forks Petroleum System in the Williston Basin, eds. John W. Robinson, Julie A. LeFever, and Stephanie B. Gaswirth, pp. 229-281.Jarvie, Daniel M., Robert J. Coskey, Michael S. Johnson, and Jay E. Leonard, 2011, The Geology and Geochemistry of the Parshall Field Area, Mountrail County, North Dakota in RMAG's The Bakken-Three Forks Petroleum System in the Williston Basin, eds. John W. Robinson, Julie A. LeFever, and Stephanie B. Gaswirth, pp. 229-281.Jarvie, Daniel M., 2012a, Shale resource systems for oil and gas: Part 1 – Shale-gas resource systems, in J. A. Breyer, ed., Shale reservoirs –Giant resources for the 21st century: AAPG Memoir 97, p. 69-87.Jarvie, Daniel M., 2012b, Shale resource systems for oil and gas: Part 2 – Shale oil resource systems, in J. Breyer, ed., Shale reservoirs – Giant resources for the 21st century, AAPG Memoir 97, pp. 1-31.Jarvie, D.M., 2012c, Geochemical properties and processes affecting production of Eagle Ford Shale Oil and Gas, AAPG Eagle Ford Shale Geoscience Technology Workshop (GTW), 26-28 San Antonio, TX, 31 p.Jarvie, D.M., 2015, Comparison of source/reservoir rock to produced petroleum composition, AAPG ACE, Denver, CO, 31 May – 2 June 2015, 13p.Jarvie, D.M., B.M. Jarvie, D. Weldon, and A. Maende, 2015, Geochemical assessment of in situ petroleum in unconventional resource systems, Unconventional Resources Technology Conf. (URTeC) Paper #2173379, 20-22 July 2015, San Antonio, TX, 20p.Jarvie, D.M., 2015, Geochemical assessment of unconventional shale gas resource systems, in Fundamentals of Gas Shale Reservoirs, 1st edition, R. Rezaee, ed., John Wiley & Sons, Inc., pp. 47-69.Jarvie, D.M. and A. Maende, 2016, Mexico’s Tithonian Pimienta Shale: Potential for unconventional production, URTeC paper #2433439,

15p.Jarvie, D.M., D. Prose, B.M. Jarvie, R. Drozd, and A. Maende, 2017, Conventional and unconventional petroleum systems of the Delaware basin, Search & Discovery Article #10949, 21 p.

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 137

Jarvie, D.M., 2017, The interaction of organic and inorganic matter: Impact on composition and fractionation of petroleum, 2017 HGS Mudstone Conference, Integrated Approaches of Unconventional Reservoir Assessment and Optimization, 16 p.

Jarvie, D.M., 2018, Correlation of Tmax and measured vitrinite reflectance, 13 p., http://www.wildcattechnologies.com/application/files/9915/1689/1979/Dan_Jarvie_Correlation_of_Tmax_and_measured_vitrinite_reflectance.pdf

Jones, R. W., 1984, Comparison of Carbonate and Shale Source Rocks, in Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks, AAPG Studies in Geology 18, J. Palacas, ed., pp. 163-180.Jweda, J., E. Michael, O. Jokanola, R. Hofer, and V. Parisi, 2017, Optimizing field development strategy using time-lapse geochemistry and production allocation in Eagle Ford, Unconventional Resources Technology Conference (URTeC) 2017, paper 2671245, 17p.Kaufman, R.L., C.S. Kabir, B. Abdul-Rahman, R. Quttainah, H. Dashti, J.M. Pederson, and M.S. Moon, 2000, Characterizing the Greater Burgan Field with Geochemical and Other Field Data, SPE Reservoir Eval. & Eng., Vol. 3, No. 2, pp. 118-126.Kaufman, R. L., A. S. Ahmed, and, Robert J. Elsinger, 1990, Gas Chromatography as a Development and Production Tool for Fingerprinting Oils from Individual Reservoirs: Applications in the Gulf of Mexico, in GCSSEPM Foundation Ninth Annual Research Conference Proceedings, p. 263-282.Kaufman, R. L., A. S. Ahmed, and W. B. Hempkins, 1987, A new technique for the analysis of commingled oils and its application to production allocation calculations, 16th Annual Indonesian Petro. Assoc., paper IPA 87-23/21.King, George, 2010, Thirty Years of Gas Shale Fracturing: What Have We Learned?, SPE 13345.Kissin, Y. V., 1987a, Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes, Geochim. Cosmo. Acta, Vol. 51, pp. 2445-2457.Kissin, Y. V., 1987b, Free-Radical Reactions of High Molecular Weight Isoalkanes, Ind. Eng. Chem. Res., No. 26, pp. 1633-1638.Kissin, Y. V., 1993, Catagenesis of light acyclic isoprenoids in petroleum, Org. Geochem., Vol. 20, No. 7, pp. 1077-1090.Kornacki, A. S., 1993, C7 chemistry and origin of Monterey oils and source rocks from the Santa Maria Basin, California, in: Annual Meeting Abstracts: AAPG and SEPM annual meeting, New Orleans, LA, April 25-28, 1993, p. 131 abstracts bookKuhn, P., R. di Primio, R. Hill, J.R. Lawrence, and B. Horsfield, 2012, Three-dimensional modeling study of the low-permeability petroleum system of the Bakken formation, AAPG Bull., v. 96, no. 10, pp. 1867-1897.Landis, C.R. and J.R. Castaño, 1995, Maturation and bulk chemical properties of a suite of solid hydrocarbons, Org. Geochem., v. 22, no. 1, p. 137-149.Langford, F. F. and M. –M. Blanc-Valleron, 1990, Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon: AAPG Bull., v. 74, no. 6, p. 799-804.Lewan, M.F., 1989, Hydrous pyrolysis study of oil and tar generation from Monterey Shale containing high sulfur kerogen, Symposium on

Geochemistry, American Chemical Society National Meeting, Dallas, Texas, April 9-14.Lewan, M.F. and T. E. Ruble, 2002, Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis, Org. Geochem., Advances in Organic Geochemistry 2001, Vol. 33, No. 12, pp. 1457-1475.Lewan, M.F. and M.J. Pawlewicz, 2017, Reevaluation of thermal maturity and stages of petroleum formation of the Mississippian Barnett Shale,

Fort Worth Basin, Texas, AAPG Bull., 101, 12, PP. 1245-1970.Lindgreen, H., 1987, Experiments on adsorption and molecular sieving and inferences on primary migration in Upper Jurassic claystone source

rocks, North Sea: AAPG Bull., v. 71, no. 3, p. 308-321.Longjiang, W. and C. Barker, 1989, Effects of organic matter content and maturity on oil expulsion from petroleum source rocks, AAPG Bull., v.

73, no. 8, p. 1051, abstract.Lopatin, N. V., S. L. Zubairaev, I. M. Kos, T. P. Emets, E. A. Romanov, and O. V. Malchikhina, 2003, Unconventional oil accumulations in the Upper Jurassic Bazhenov Black Shale formation, West Siberian Basin: a self-sourced reservoir system, Journal of Petroleum Geology, v. 26, no. 2, p. 225-244.

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 138

Landis, C.R. and J.R. Castaño, 1995, Maturation and bulk chemical properties of a suite of solid hydrocarbons, Org. Geochem., v. 22, no. 1, p. 137-149.Loucks, Robert G., Robert M. Reed, Stephen C. Ruppel, and Daniel M. Jarvie, 2009, Morphology, genesis, and distribution of

nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale, Journal of Sedimentary Research, v. 79, p. 848-861.Mahlstedt, N., B. Horsfield, and V. Dieckmann, 2008, Second order reactions as a prelude to gas generation at high maturity, Org.

Geochem., v. 39, pp. 1125-1129.Magoon, L. B. and W. G. Dow, 1994, The Petroleum System, in The Petroleum System - From Source to Trap, L. B. Magoon and W. G. Dow, eds., AAPG Memoir 60, pp. 3-24.Mango, F. D., 1987, An invariance in the isoheptanes of petroleum, Science, 273, pp. 514-517.Mango, F. D., 1992, Transition metal catalysis in the generation of petroleum: A genetic anomaly in Ordovician oils, Geochim. Cosmo. Acta, Vol. 56, pp. 3851-3854.Mango, F.D. and D.M. Jarvie, 2001, GOR prediction from oil composition, 20th Intl. Meeting on Org. Geochem., Abstracts Vol. 1, 406- 407.McCaffrey, M.A., D.H. Ohms, M. Werner, C. Stone, D. Baskin, and B. Patterson, 2011, Geochemical allocation of commingled oil

production or commingled gas, SPE 144618, 19 p.McCaffrey, M.A., D. Baskin, B. Patterson, D.H. Ohms, C. Stone, and D. Reisdorf, 2012, Oil fingerprinting dramatically reduces

production allocation costs, World Oil, March 2012, pp. 55-59.Maende, A., 2015, Wildcat compositional analysis for conventional and unconventional reservoir assessments: HAWK Petroleum

Assessment Method (HAWK-PAM), Wildcat Technologies Application Note (052016-1), http://www.wildcattechnologies.com/download_file/view/224/357, accessed May 15, 2017.

Meande, A., 2016, HAWK petroleum assessment method (HAWK-PAM), Application Note (052016-1), 10 p., http://www.wildcattechnologies.com/application/files/1514/9686/0020/Application_Note_052016-1_HAWK_Petroleum_Assessment_Method.pdfMilner, C. W. D., M. A. Rogers, and C. R. Evans, 1977, Petroleum Transformations in Reservoirs, Jour. Geochem. Expl., 7, pp. 101-153.

Mello, M.R., 1988, Geochemical and molecular studies of the depositional environments of source rocks and their derived oils from the Brazilian marginal basins, Ph.D. thesis, Bristol University, 555 p.Milner, C. W. D., M. A. Rogers, and C. R. Evans, 1977, Petroleum Transformations in Reservoirs, Jour. Geochem. Expl., 7, pp. 101- 153.Noble, R. A., J. G. Kaldi, and C. D. Alkinson, 1997, Oil saturation in shales: applications in seal evaluation, in R. C. Surdam, ed., Seals, traps, and the petroleum system, AAPG Memoir 67, p. 13-29.Oberlin, A., J. L. Boulmier, M. Villey, 1980, Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen, in B. Durand, ed., Kerogen: insoluble organic matter from sedimentary rocks, Editions Technip, Paris, p. 191-241.Pepper, A. S., 1992, Estimating the petroleum expulsion behavior of source rocks: a novel quantitative approach, in W. A. England and A. L.

Fleet, eds, Petroleum Migration, Geological Soceity, Special Pub. 59, p.9-31Pepper, A.S. and P.J. Corvi, 1995, Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen, Marine and Petroleum Geology, Vol. 12, No. 3, pp. 291-319.Peters, K. E., Clifford C. Walters, and J. M. Moldowan, 2005, The Biomarker Guide: Vol. 1 Biomarkers and isotopes in the

environment and human history; Vol. 2 Biomarkers and isotopes in Petroleum Exploration and Earth History, Cambridge University Press: Cambridge, UK, Vol. 1 and Vol. 2, 1155 p.

136

137

138

Page 47: Tight Oil Geochemistry: an introduction · Introduction Background Sampling Geochemical Analyses Jarvie Unconventional Producibility Geoconvention 2019, Calgary , Albert, Canada,

Geoconvention 2019 13 May 2019

Jarvie Presentation on Geochemistry 47

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 139

Pixler, B.O., 1969, Formation Evaluation by Analysis of Hydrocarbon Ratios, Journal of Petroleum Technology, pp. 665-670.Reed, Robert and Robert Loucks, 2007, Imaging nanoscale pores in the Mississippian Barnett Shale of the northern Fort Worth Basin, AAPG Annual Convention, Long Beach, CA, April 1-4, 2007,

http://www.searchanddiscovery.net/abstracts/html/2007/annual/abstracts/lbReed.htm?q=%2Btext%3Ananopores, (accessed July 12, 2016).

Ritter, U. and A. Grøver, 2005, Adsorption of petroleum compounds in vitrinite: implications for petroleum expulsion from coal, Int’l Jour Coal Geol., v. 62, pp. 183-191.

Robison, C.R., 1997, Hydrocarbon source rock variability within the Austin Chalk and Eagle Frod Shale (Upper Cretaceous), East Texas, U.S.A., Int’l Jour. Coal Geol., v. 34, nos. 3-4, pp. 287-305.Rocher, D., C. Barrie, and J. Zumberge, 2015, Thermal maturity of light oils & condensates – ‘VREQ’ using GC-Triple Quad MS to measure

alkyl aromatics, GeoMark Research Workshop, 26 August 2015, 38p.Ross, L. M. and R. L. Ames, 1988, Stratification of oils in Columbus basin off Trinidad, Oil & Gas Journal, Sept. 26, 1988, pp. 72-76.Rystad Energy Shale Intel - Vaca Muerta Study, 2018, 151 p.Slentz, L. W., 1981, Geochemistry of Reservoir Fluids as a Unique Approach to Optimum Reservoir Management, Middle East Oil TechnicalConference of the SPE, paper SPE 9582, Manama, Baharain, oral presentation.Sandvik, E. I., W. A. Young, D. J. Curry, 1992, Expulsion from hydrocarbon sources: the role of organic absorption, in Advances in Organic

Geochemistry 1991, Organic Geochemistry, v. 19, nos. 1-3, p. 77-87.Santamaria Orozco, D.M., 2000, Organic geochemistry of Tithonian source rocks and associated oils from the Sonda de Campeche, Mexico, Ph.Dthesis, Rheinisch-Westfalischen Technischen Hochschule Aachen (RWTH), 170 p.Schettler, P.D., Jr., C.R. Parmely, and C. Juniata, 1991, Contributions to total storage capacity in Devonian Shales, SPE 23422, 12 p.Schoell, M., 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins, Geochim. Cosmo. Acta, v. 44, no. 5, 649-661.Schoell, Martin, 1983 Genetic Characterization of Natural Gases, AAPG Bull., Vol. 67, No. 12, pp. 2225-2238.Schoell, Martin, Leroy Ellis, Karlis Muehlenbachs, Dennis D. Coleman, and Ian Underdown, 2001, Gas Isotope Analyses while Drilling (GIAWD): An Emerging Technology for Exploration and Production, AAPG National Convention, June 3-6, Denver, CO, poster presentation on CD, abstract book p. A180.Senftle, J.T., S.R. Larter, B.W. Bromley, and J.H. Brown, 1986, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography: Rank variation of pyrolysis products, Org. Geochem., 9, 345-350.Shale Experts, 2017, Permian Basin Overview, https:/www.shaleexperts.com/plays/Permian-basin/overview, accessed December 2017.Sofer, Z., M.J. Leenheer, S.E. Palmer, and J.E. Zumberge, 1985, Geochemical correlation of oils and source rocks, North Slope, Alaska, in

USGS Interlaboratory Comparison Study: Source Rock Evaluation including isotopes and biomarkers, AAPG Studies in Geology, pp. 185-201.Staplin, F.L., 1969, Sedimentary organic matter, organic metamorphism, and oil and gas occurrence, Canadian Pet. Geol. Bull., Vol. 17, No.

1, pp. 47-66Tarka Petroleum, 2017, https://tarka.com/permian-basin, accessed December 2017.Taylor, G.H., M. Teichmuller, A. Davis, C.F.K. Diessel, R. Littke, and P. Robert, 1998, Organic petrology: Berlin & Stuttgart, Gebruder Borntraeger, 704 p.Taylor, R. W., K. Curry, M. S. Oh, and T. Coburn, 1987, Clay-induced oil loss and alkene isomerization during oil shale retorting, Lawrence

Livermore National Laboratory publication UCID -21124, 34p.Teichmuller, M. and B. Durand, 1983, Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison

with results of the Rock-Eval pyrolysis, Int. Jour. Coal Geol., 2, pp. 197-230.

Dan Jarvie, Worldwide Geochemistry WTGS Applied Geochemistry for Exploration and Production 21 March 2019 140

Thompson, K. F. M., 1983, Classification and thermal history of petroleum based on light hydrocarbons, Geochim. Cosmo. Acta, Vol. 47, pp. 303-316.

Thompson, K. F. M., 1988, Gas-condensate migration and oil fractionation in deltaic systems, Marine and Pet. Geol., Vol. 5, pp. 237-246.Thompson, K.F.M., 2004, Interpretation of charging phenomena based on reservoir fluid (PVT) data, in Cubbit, J.M., W. England, and S.

Larter, eds., Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach, Special Pub. 237, The Geological Society, London, pp. 7-26.

Tissot, B. P. and D. H. Welte, 1984, Petroleum Formation and Occurrence, 2nd edition, Springer-Verlag, Berlin, 699p.Tyson, R.V., 1995, Sedimentary Organic Matter, Springer, Netherlands, 615 p.Ungerer, P., 1993, Modelling of petroleum generation and migration, Chapter II.5, in. Applied Petroleum Geochemistry, M.L. Bordenave,

ed., Editions Technip, Paris, 524 p. (Tmax kinetics)van Aarssen. B.G.K., T.P. Bastow, A. Alexander, R.I. Kagi, 1999, Distribution of methylated naphthalenes in crude oils: indicators of maturity, biodegradation, and mixing, Org. Geochem., 30, 1213-1227.van Krevelen, D.M., 1961, Coal (Typology, Chemistry, Physics, Constitution), Elsevier: Amsterdam.Waples, D.W., 2000, The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and

from thermodynamics, Org. Geochem., Vol. 31, No. 6, pp. 553-575.Whitson, Curtis H. and Michael R. Brulé, 2000, Phase Behavior, SPE Monograph Volume 20, 240p.White, David, 1915, Some Relations in Origin Between Coal and Petroleum, Washington Academy of Science Journal, Vol. 5, No. 6, pp. 189-212.Williams, J. A., 1977, Characterization of Oil Types in the Permian Basin, AAPG Southwest Section Meeting, Abilene, Texas, October 1977, author’snotes..Ziegs, V., N. Mahlstedt, B. Bruns, and B. Horsfield, 2014, Predicted bulk composition of petroleum generated by Lower Cretaceous Wealden black

shales, Lower Saxony Basin, Germany, Int’l Jour. Earth Sci. (Geol Rundsch), 18 p.Zimmerman, W., 1969, Geschichte de Pfanzen, eine Ubersicht, Stuggart, Thieme.Zumberge, J., 2015, Biomarkers, Geomark Research, Ltd., half-day seminar, “Innovative geochemical analysis and application, August 26,

2015, 40p.Zumberge, J., K. Ferworn, and S. Brown, 2012, Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations, Mar. Pet. Geol., v. 31, p. 43-52.

139

140