tilburg university on measures of nonnormality of matrices ... · 1 on measures of nonnormality of...

33
Tilburg University On measures of nonnormality of matrices Elsner, L.; Paardekooper, M.H.C. Publication date: 1984 Link to publication Citation for published version (APA): Elsner, L., & Paardekooper, M. H. C. (1984). On measures of nonnormality of matrices. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 167). Unknown Publisher. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research - You may not further distribute the material or use it for any profit-making activity or commercial gain - You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 30. Apr. 2020

Upload: others

Post on 27-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

Tilburg University

On measures of nonnormality of matrices

Elsner, L.; Paardekooper, M.H.C.

Publication date:1984

Link to publication

Citation for published version (APA):Elsner, L., & Paardekooper, M. H. C. (1984). On measures of nonnormality of matrices. (Researchmemorandum / Tilburg University, Department of Economics; Vol. FEW 167). Unknown Publisher.

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright ownersand it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research - You may not further distribute the material or use it for any profit-making activity or commercial gain - You may freely distribute the URL identifying the publication in the public portal

Take down policyIf you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Download date: 30. Apr. 2020

Page 2: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

CBMR

76261984167

subfaculteit der econometrie

RESEARCH MEMORANDUM

i~ nmiuiqoii iuii m iui iii iu i iniu i~ngi i

TILBURG UNIVERSITY

DEPARTMENT OF ECONOMICSPostbus 90153 - 5000 LE TilburgNetherlands

~

Page 3: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,
Page 4: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

ON MEASURES OF NONNORMALITY OF MATRICES

L. Elsner, M.H.C. Paardekooper

December 1984

Page 5: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

1

ON MEASURES OF NONNORMALITY OF MATRICES

L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach8640, 4800 Bielefeld, FRG.

M.H.C. Paardekooper, Department of Econometrics, Tilburg University,5000 LE Tilburg, The Netherlands.

Abstract

This paper discusses measures ui, i~ 1,...,9, of nonnormality of matri-ces and their interrelations. Some of the measures are new. Each non-negative measure ui(A) equals zero iff A is normal. We compare thesemeasures with several new inequalities. Some of these comparisons, e.g.,(C12), (C15) and (C16), manifest wellknown phenomena of ill conditionedeigenproblems.

1. Introduction

The class of nonnormal matrices has received some attention of numericalanalysts. In particular in connection with certain eigenvalue algorithmsnormal and nonnormal matrices show quite different behaviour. Related tothis fact is the difference in the sensitivity of the eigenvalues andeígenvectors under perturbations of the entries of the matrix.For analyzing these diffícultíes several measures of nonnormality haveappeared in [he literature. We gíve here an overview of the measuresused, introduce some new ones and give in particular comparisons betweenthem.

Througiiout this paper n~ 1 is a fíxed integer. Let Cn~n denote the setof all complex n x n matrices and A E Cn~n. We associate with A the fol-lowin~; maKnitudes.

- its eigenvalues a, and its singular values ai, ordered such thati

Page 6: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

z

Ial~ ~ ~az~ ~ ... lanl , al ~ Qz ~ ... ~ an;- i[s polar factors H1,H2, i .e., the uniquely determined positive semi-

definite square roots of AA~ and A~A;- ai, i- 1,...,n, wíth al ~ a2 ~... ~ a~, the eigenvalues of the her-

mitean part (AfA~) of A; - a- Si, i- 1,...,n, with B1 ~ B2 ~... ~ Sn, the eigenvalues of the skew-

hermitean part (A-A~)~(2i) of A. a

A is normal, if A~A - AA~ 3 0 holds. Let N denote the set of all normalmatrices in Cn~n, U the set of all unítary matrices in Cn~n, and D thesetand

of diagonal matrices í n Cn'n. We denote by q.p2 the spectral normby tl.~F the Frobenius

.- pXUi tlX 1111, i- 2,F is

norm of a matrix. For X nonsingular Ki(X) :the condition number of X.

2. Characterization of normal matrices

There are quite aTheorem 1. For A

few charactiza[ions for A being normal.E Cn,n wíth eigenvalues { ai }, singular values { ai },

polar factors Hi (í - 1,2) and eigenvalues {ai}, {Si} of (AtA~)~2 and~(A-A )~(21) resp. as above the following are equivalent.(i) A is normal, i.e., A~A - AA~ ~ 0;

(ii) There exists a V E U such that V~AV a diag(ai);n

(iii) tlAaF - E ~~i~2 - 0;i-1

(iv) A 3 X diag(ai)X 1 for some X E Cn'n nonsingular and K2(X) ~ 1;

- ai - 0, i - 1,...,n;(vi) H1 - HZ;

(vii) There exists a V E ~~ such that

diagonal;

(viii) There exist permutations

~ ~~both V A2A V and V AZA V are

p and q of {1,...,n} such that

a~ -aP(J) } i~q(~) ' j' 1,...,n. ~

We refrain from giving a proof, as the results are either trivial oreasy consequences of the quantitative statements in theorem 2.

Page 7: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

3

We make one exceptíon. (viii) ímplies (iii) as can be seen from the sím-ple equali[ies

É 2 "l ~ AfA~ 2j-1 (oP(.7) } Bq(j) ~-tlF t

3. Measures of Nonnormality of Matrices

~AZi tlF ~ tlA IF .

Theorem 1 motivates the introduction of several measures of nonnormalí-ty.The most natural measure of nonnormality seems to be

ul(A) :- min{IA-NNF I N E N }~

and

ul(A) :- min{pA-Ntl2 ~ N E N }.

Besides this we consider

u2(A) :- IIA~A - AA~UF, u2(A) :- dA~A - AA~N

u3(A) :- (YApF - E ~ai~2)~~1-1

u4(A) :- max ~ ~ ai ~- ai ~,i

u5(A) :- NH1 - Hz tlF

2'

nV6(A) :- min{(JE1 Ia~-(aP(J) -i

isq(j)) }2)~, P.q Permute {1,...,n}}

u~(A) :- min {IU-VtlF IU~(AfA~) U,V~(A-A~) V E D, U, V E U

V~(A) :- min {tlU-VB2 IU~(AtA~) U,V~(A-A~) V E D, U, V E U

V8(A) :- min { IU-V tlF I U A V~ E D, U, V E U},

~u8 (A) :- min { IU-V tl2 ~ U A V E D. U, V E jJ }~

Page 8: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

4

and for A diagonalizable

u9(A) :- min

u9(A) :- min

{KF(X)-n IX E Cn'n, X lA X a diag(ai) a A},

{K2(X)-1 I X E Cn'n, X lA X~ diag (ai )~ A}.

It is easy to see that each of these measures is ínvariant with reapectto unitary transformation, and conjugate transposition, i.e.,

~ui(A) - u2(U A U), U

~ui(A) s ui(A ).

i ~ 1,...,9

and similarly for ui(A), i a 1,2,7,8,9.These measures, except for u4, u5 and u8, u8, arerespect to shift transformation:

ui(A) - ui(AfwI), w E C.

4. Comparisons between Measures of Nonnormality

also invariant with

Comparisons between the measures ui(A), ui(A) are given inTheorem 2. For A C Cn'n the following singularities hold.

(CU) ui ~ ui ~ Jn ui, i~ 1,2,7,8 ;

(cl)6NAN

2

u2 ~ u3 ~ (n12n)} u2 :T

F

(C2) u2 C 2( qANF f E ai 2) ~ 2 NANF u3 ;i-1

(C3)

(C4)

2u2 ~ 4 aAq2 ul :

u2 ~ 4 NANF ul f 2r ul ,

Page 9: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

5

(CS) ul ~ u3 ;

(C6)

(C7)

(C8)

u4 ~ u3 ;

u3 ~ 2~ NAIF u4 ~ 2n IA12 u4 ;

NA}121 u5 ~ u2 ~ 2 NA12 u5 ;

(C9) u2 ~ 2 NA12 u8 ;

(C10) u2 ~ 8 pAtl2 u~ ;

(C11) u6 ~ u3 ~ max{EANF u6, 2 NAIF u6 - u6} ~ 2 IAIF u6 ;

(C12) u9 (1-FU9)-1 ~u9 ~ 2 n u9 (lfu9)-1~

and if all eiKenvalues aj of A are slmple, then

n

(C13)

n-1

u ~ E(lf(n-1)-1 dj2 u3) 2- n,9 - j-1

where dj - min{laj-ai~ ~i ~ j};

u2 ~ 2 uA12 NA6Fy9(2tu9) ~ 2 MAMF u9(2tu9),

(C14) u3 ~ 6AOF u9(2fu9) ~ pANF u9(2ty9).

(C15) if u5 ~ r:- min i ~ai-o~ I IQi

u8 ~( ntl ) r 1 u5;

: Q~ } , then

~(C16) íf the eigenvalues 6j, j ~ 1,...,n, of (A-A )~(2i) are pairwisedis[inct and

u2 ~ (6-41) dd,

where

Page 10: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

6

d:- min la.-a I , 6 a min ~S -g.l,ai~a, 1 j i~j i d

Jthen

u~ ~ r( dá - Z y2)-1 yz .

In all these comparísons

yi ' yi(A). i z 1,...,9 and ui a ui(A). i z 1,2,7,8,9.

The comparisons in thís theorem can be visualized with a directed graph,see fig. 1. There is a directed edge from node yi ( , or yi) to yj (, orVj), i ~ j, iff

(4.1) yi(A) ~ W(yj(A))

for some monotonically contínuous ~ with lim ~(t) Q 0.ti0

Fig. 1. The directed graph for equivalent measures.

Page 11: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

7

The measures ui, 1 3 1,...,9 and ui, i 3 1,2,7,8,9 are nodes in a com-pletely connected graph, for relation 4.1 is transitive.

Proof of theorem 2. Assume ul ~ IA-N12, ul a IA-NIF, N, N EX .Then

ul ~ IA-N 12 ~ NA-N 12 ~ NA-N IF ~ ul

and

ul - IA-NIF ~ 0A-NMF ~~ IA-N12 e dnul~

The same reasoning applies to ui, ui, 1~ 2,7,8. This proofs (CO).The first inequality in (C1) is a result of Eberlein [1], the second isa result of Henrici [2] in its original form.The second inequality of (C2) í s a consequence of

n nE I ai I2 ~ IAIF - E oi

i-1 ial

(also known as "Schurs Lemma"), the first inequality is just a rear-rangement of the inequality

(4.2) í E ~ai ~2) ~ qAqF - 2 U? .ial -

established by Kress-de Vries-Wegmann [3].For the proof of (C3) we use that for N E N

(4.3) A~A - AA~ L A~(A-N) - (A-N)N~ t(A-N)~ N-A (A-N)~

holds. Hence for any N E N (, with the wellknown inequality GAB IF ~~ tlA12 IBYF,)

(4.4) u2 ~ 2( IAN2 t IN12) tlA-NIF .

If N is such that ~`ul - IA-NYF and U NU - D E D for U E U , then it isobvious from

Page 12: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

8

(4.5) V1 - IA-NIF z min {IU~AU-DIF ID E D , U E U }

that D is the diagonal part of U~`AU. In particular

(4.6) INIZ - ID12 ~ IA12 .

As follows from the definition of the apectral norm (4.4) and (4.6) to-gether yield (C3).Similarly from (4.3)

(4.7) uZ ~ 2( IAIF t INIF) IA-N12 ,

and, using in (4.7)

INIF ~ IA-NIF t IAtlF ~ r IA-N12 t IAIF ,

(C4) follows.For (C5) we consider a unitary matrix V that transforms A to upper tri-angular form:

(4.8)

Then

Hence

~VAV- AtM.

IAtlF ~ IAIF t qMIF .

~~3 - UMIF - tlA-V A V dF .

This implies N3 ~ ul .(C6) is a result of Ruhe [5], while its counterpart (C7) is an easy con-sequence of

v3 - E(ai - lai Iz) a E (oi f Iai I)(oi -(aiI)isl 1~1

Page 13: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

9

~ u4 E (oi t lail) ~ u4(r ( E ai)~ f j( E IJ1i~2)})i'1 i'1 í~l

~ 2 ~ IAIF u4 .

The second inequalíty in (C7) follows from IBIF ~ r IB12 for everyB E Cn,n~

Eor the proof of the second inequality of (C8) we make use of the sin-gular value decomposition

(4.9) A ~ W E V~ ,

where W, V E U and E ~ diag(a ). Asi~r ,t

A s W E W W V,

and

~ tA~ W V V E V ,

we have that

A- H1U a U HZ ,

where

H13W EW~, H2z V EV~andU-WV~

An easy calculation gives

(4.10) H1-H2 a W(EY - YE)V~

and

(4.11) A~A - AA~ 3 W(YE2-EZY)V~

where

Page 14: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

lo

~Y3WVs (Yi~)EU.

Hence from (4.10)

(4.12) u5 a IHl-H21F a IEY - YEIF ~ E Iyi~ I2(ai-a~)2i,j~lwhere by (4.11)

(4.13)

V2 ~ IA~A - AA~IF a s IYi~I2(ai-a~)2~ E IYijI2(ai-a )2(ata )2 .i~~sl i,~~l ~ i ~

Thís shows

u2 ~ 4 ai U5 - 4 MA12 u5 ,

i.e., the second inequality of (C8).To prove the first inequalíty of (C8) we observe that with

IA d2 - max{a11Ia1 ~ 0, 1~ 1,...,n}

one has

Iai - a~I ~ IA}12 Iai - a~I,

(4.12) and (4.13) show now

u5 ~ qA}p2 u4

i.e., the first inequality of (C8).For the proof of inequality (C9) we~UO,VO E U and UO A VO z D E D . Then

assume that u8 a IUO-V012, where

~ ~ ~ ~ ~ ~A A- AA - VOD D VO - UOD D UO

Page 15: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

II

~ (VO-UO)~D~D VO - UOD~D(VO-UO).

Hence

u2 ~ 2 ID12 IV~ UOYZ - 2 IANZ u8 ,

For the proof of (C10) we assume that u~ a IUI-Vll~where

~ ~~ AfA ~ A-AU1 Z U1 ~ M E D ~ V1 2 VI a N E D ~

with

U1 , V1 E U .

So

A- U1M U1 -~ V1N V1 , A~ - U1M U1 - VIN V1 .

Let be

R 3 V1 - U1 .

Then

2(A~A - AA~) a U1M U1V1 N V1 - V1N VIUIM U1 .

~Hence, with W- V1 U1,

v i. z(n~`n-AA~ ) v[~ wMw~`N - NwMw~

- (W-[)MW~N i. M(W~-I)N-NM(W~-I)-N(W-I)MW~.

Consequently,

2 u2 ~ 1(W-I)MW~N12 f IM(W~-I)N12 f INM(W~-I)12 f IN(W-I)MW~12

Page 16: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

lz

~ 4 MW-IY2 tlNYNtlMNS( 4 IU1-V112 IAtlZ a 4 IA12 ~,

This proofs (C10).Without loss of generality we may assume in the proof of the first in-equality of (C11) that A is an uppertriangular matrix since both u6 asu3 are unitary invariants of A: u(A) ~ u(U~AU), (U~AU) (A)G 6 u3 ' u3for U L U . So let be

Aa Af R,

where

ri~ - 0, 1~ j~ i( n

and

A 3 día8(a~),

with

a~ - T~ -1~ i v~. ~- 1,...,n .

Then

~ ~AtA AtA N2 -~(RtR~)12 m 1 MR12 ~ 1 2

2 - 2 F 2 F 2 F 2 u3 ~

According to the Hoffman-Wielandt theorem [8j there exists a permutation~ i p(j) of {1,...,n} such that

E ( T-0 2 AfA~ AfA~ 2 1 2j-1 j P(~)) ~ tl-2-- 2 1F a 2 u3 ,

Similarly one finds for the skewhermitean part

~ ~A-A A-A 2 1 ~~- - 2 tlF ~ 2-(R-R ) IF ~ 2 MRIF ~ 2 u3 .

Page 17: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

13

For some permutation j; q(j) of { 1,...,n}

njEl (vj-9q(j))Z

~ 2 u3 ~

Consequently

ub ~ u3 .

So far as concerns the second inequality of (C11) observe

2 2 n 2 AfA~ 2 A-A~ 2 n 2u3 a GA AF - E I a ~ a 1--1 t F---1 - E I a Ijzl j 2 F 2 jj-1n

- Ej-1

(a~ t sj - ~aj ~2).

Assume aj - tj f 1 vj~ j- 1,,,,,n. Then

u2 ' E ( a2 - T2 )-F E ( 62 - v2 )3 j-1 P(j) j j~l q(j) j'

wliere the permutations p,q realize the minimum that occur in the defini-tion of u6. Hence

2 n nu3 ~ ~ (oP(j)-tj)(aP(j)}7j) } j~l(sq(~)-~j)(Bq(j)}~j)j-1

n2 ~~ u6( jEl ((a

P(j)}Tj) } (Bq(j)}vj) ))

n n~ u6(( E(a~ f 6~))~ t( L(T~q-v~))~)- j-1 j~1

- u6( IAIF -~ ( E laj I2)~) ~ u6( ~AIF f ( IAIF-u3)~).jsl

The last equation gives

Page 18: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

14

u3 - tlAtlF u6 ~( tlANF-u3)~ v6.

Either

V3 ~ BAGF u6 ,

or by squaring

u3 ~ 2 qA1F u6 - u6 .

Hence

u3 ~ max {pA1F u6, 2 tlA1F u6 - u6} ~ 2 IAIFu6 .

This proofs (C11).The results of (C12) are due to Smith [6]. There he proofs, for

K:- inf{KF(X)I X 1 A X E D , X E Cn'nl

and

k:- inf{K2(X) ~ X 1 A X E D ~ X E Cn,nlthat

n- 2-F k f k 1~ K~ 2 n(kfk 1).

Since

u9- K- n, u9-k- 1

this yields

u9 (li-u9)-1 ~ u9 ~ 2 n u9(lty9)-1 .

In the same paper Smith derives, if all eigenvalues of A are simple,with

Page 19: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

15

d- min I a, - a I.J i~~ J i

that

nK t E(lf(n-1)-1 a~z u3)-1 ,

j-1

being the last inequalíty ín (C12).For the proof of (C13) we use the following facts:a. If S is hermitean and X nonsingular, then Schurs Lemma applied to-1

X S X yields

(4.14) qSYF ~ NX 1S XbF .

b. If Y is positive definite and G E Cn'n, then

(4.15) pY G Y 1- GNF ~(K2(Y)-1) tlGIF .

This can be shown by writing the línear operator

L: Cn'n a Cn'n,L(G) :~ Y G Y 1- G

in the usual vectorized form ( , see Marcus-Minc, [4j, p. 9):vec(L(G)) -(Y 1~ y- ln ~ ln) vec(G) ~ L vec(G), where ~ denotes theKronecker product. As L is hermitean and has eigenvalues -1 f~~n(, ni eigenvalues of Y~ and as IGIF ie the usual euclidean norm ofthe vector vec(G) E Cn , the result (4.15) follows.

Assume u9 -,c2(X1)-1. From A- X11 A X1 we derive the following relation

X1(A~A-AA~)X11 ~(Y A~Y-1- A~) A-A(Y A~ Y 1- A~)

where

~Y - X1 X1 ~ 0.

Usíng (4.14) and (4.15) yields

Page 20: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

9

16

u2 C 2 IA12 IYA~Y 1-A~ IF ~ 2 IA12 IA~ IF (K2(Y)-1)

a 2 IA12 NAIF (KZ(X1)-1)

- 2 IA12 IAIF u9 (2 t u9)

~ 2 IAIF u9 (2 t u9).

For the proof of (C14) we observe that A~ X11 A X1 yields

IAIF ~ KZ(X1) IAIF .

Hence, with u9 - K2(X1) - 1,

u3 ~ IAAF - IAtlF ~( 1(2(X1) - 1) IAIF : y9(2 t yq) IAIF

~ IAUF u9(2 t u9)~

i.e. (C14).In the proof of inequality (C15) we make use of two lemmata. These des-cribe the relation between several measures of non-unitarity of matri-ces. For that purpose we introduce the following notations

nl(A) :- min{IA-UtlFI U E U}, ul(A) :a

nZ(A) :- min{IUAU~A-IIFIU E U,A E(J E D},

{ IA-U IZ ~U E U },

~n3(A) :e IA A-I IF

~n2(A) :- min{IUAU A-I12I U E U , A E U n D }, a3(A) :~ IA~A-I12.

Lemma 1. nl(A) - nZ(A), nl(A) ~ n2(A).Proof. Let be nl(A) - IA-VIF, V E U . Then there exiats a unitary Q anda unitary diagonal matrix A such that Q V Q~A ~ I. If A~ V t E, then

n2(A) ~ IQ(VtE)Q~A-IIF ~ IQEQ~OMF ~ nl(A).

Page 21: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

5

17

~Reservely, let be nZ(A) - BQ A Q ~-IIF with Q E U and ~ E U n D. If~ ~ ~ ~ ~

Q A Q 0- I t G, then A- Q (I-4.G)~ Q and Q ~ Q E U . So

nl(A) C qA-Q~A~QqF - BQ~G A~Q4F - NGIF ~ a2(A).

The same arguments yíeld nl(A) - n2(A) Q

Lemma 2. nl(A) ~ n3(A) ~ nl(A)(2tn1(A)), nl(A) ~ a3(A) ~ nl(A)(2t al(A)).Proof. Assume ~ -A- U E V , ttie singular value decomposition of A and letbe E- I f D. Then Dii ~-1 and

~ ~IIA-U V uF - YU D V NF - pD G

Furthermore

n3(A) - GA~A-I BF - YV( IfD)2V~-I AF - N2DtD2 tlF ~ ID GF ~ nl (A) ,

for Dii ~-1. With nl(A) - hA-VtlF, V E U and A- V f E one fínds

n3(A) - IIA~A-IIIF - il(V-}E)~(VfE)-IpF - tlV~E f E~V -f E~EbF

~ 2 uEUF t IIEUF - 2 nl(A) f nl(A).

The same arguments yield nl(A) ~ n3(A) ~~1(A) (2 } nl(A)) Q

~For the proof of (C15) let be A- U E V a singular value decompositionof A. Then H1 - U E U~ and HZ - V E V~. Then, with W~ U~`V one has

~U (H1-HZ)V - ):W - W): .

Without loss of generality we may assume that equal singular values areconsecutive in the diagonal of E. When the multiplicities of the r(, 2~ r~ n,) distinct singular values ak ,...,ak are nl,...,nr

resp. then-we write 1 r

i

Page 22: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

i8

ak I 1 01

0

0 ak I22

0

E- ; : : - I , Ij E CnJ~nj.

0 0

wieh a ~ a lur i~,j- Ilence t- min Iak -ak,I - Similarly we parti-k. k.tiun W.1So weJobtain i~J i J

(4.16) u5 - AU~(H1-H2)VAF - L (ak -ak )2AWijIF ~ t2 E dWijAF ,i;tj i J i~j

n.,n.where W. E C 1 J is a block in the partítioned matrix W. (4.16) yieldsij

(4.17)i~j

IIWij tlF ~( VS~r)Z -: e2 ~ 1. .

n.,n.In each diagonal block W., E C J J of W[he length of each column is in2 JJthe interval [(1-e )~,1] and the inner product of each paír of columnsof each Wjj is smaller than e2. Hence

~(4.18) n3(wjJ) - IIWjj WJj-ItlF ~ nj e, j- 1,...,r.

n.,n.In víew of lemma 2 there exists a unitary Qj E C J J and a unitary dia-

n.,n.gonal ~. E C J J such that

J

nl(w ) - n. (w ) - pQ~ w.-c2.o - IA ~ ,r ( w. ) ~ n. E,JJ ~ Jj J JJ J j F- 3 JJ - Jj - 1,...r.

These matríces Qj and ~, are used in the formation of the block diagonalJmatrices

Page 23: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

19

Q1 0 ... 0 ~

0

D1 -

Qz 0

, D2 ~

0 0 Qr

Let be

U :~ U D V :a V D2 .

Then

~~ ~U A V- D1 E DZ 9 diag(ak A~) E D

~

and

U Q2 ~2 0

0 0

~MV-UNF - NU V- I9F - ND1 U~ V D2 - INF

- Ndiag(Q~ W~~QjA~ - I)NF t E IWi IZ .i~j ~

With (4.17) one has

r rNV-UGF S E n~ e2 t e2 o e2(lt E n~) ~ e2(ltn2) .

~~1 jalThis means

u8 ~ e 1~ tn` ~(rrF1) uS~T

~-~ Qr~r

For the proof of (C16), as can be done without loss of generality, we~assume that M :~ (AfA )~2 ~ diag(aj).When the multiplicities of the r distinct eigenvaluesock ,...,ak (, 1 C r ~ n,) are nl~,,,~nr resp. we write

1 r

Page 24: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

20

1 nk1I10

~M- AfA ~

2

o~C2I2

1 0 0

0

' Ij Rnj~nj.

The matrix G-(A-A~)~(2i) is partitioned in the same way and we asswnethat each diagonal block Gjj has been unitarily díagonalized. Hence

0 G12

A-A2 1' "'' n

Gln

G2n

Gnl Gn2 "' 0

Then

(4.19) 4 IA~A-AA~ IF ~ NGM-MGNF a E(nk -o~ )2 NGij NF ~ d2 E NGi j NF,i~j i j itj

where ó - míni~j

~ ~1 - a~~ -

Hence (4.19) implies

min ~ai - aj~ .

ai ~nj

(4.20) ( E NGi qF)~ ~ ~ U~~a -i~j ~

With the theorem of Hoffman-Wielandt [8] one derives that there exists apennut.~tiun p uf thi ei~envalues (ij of C such that

n( Ej-1

(BP(j)-Yj)2)~ t 2 V2~6 .

So~Sp(j)-Yjl C 2 u2,a ' j s

G - ~ diag(Y Y ) -E

1,...,n, and

G21 0

Page 25: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

zl

(4.21) ~Yi-Yj~ ~ I SP(i)-SP(j)I - I Sp(i)-yil - I Sp(j)-yj~ ~ 6- u2~ó,i s j,

where

6- min ~ Bi-Sj ~.i~j

the minimal distance of the distinct eigenvalues of G.Now we investigate the dístance between el ~(1,0,...,0)T and the nor-malized eigenvalues of G corresponding with s . For that purpose G ispartitioned in the following way

p(1)

T TY1 : 0 0 . g

G- ... ................ f . , G E Cn-l,n-10 : diag(Y2,...,yn) g..-~. ~

2Since min ~Y1-Y1I ~ d- u2~d as follows from ( 3.21) and IGGF ~ 2 u2~d2~i~n

as follows from (4.20),

min lyl-yi~- NGNF ~ d- 2 y2~d ~ 0.2~i~n

Moreover, IIgM2 C 2 V2~d, once again as a consequence of (4.20). ApplyingStewart's theorem on the sensitivity of an invariant subspace [7j weconclude that there exists a vector pl E C~1 satisfying

Ilpl u2 C 2 eg12~(d - 2 u2~d) ~ u2~(ód - 2 u2)

such that (l,pi)T E Cn is an eigenvector of G.

The distance between el and vl : z (1 f Ip112)~ ( l,pl)T equals

(2(1-(ltdpla~)-~)~ ~ ~P1N2 ~ u2I(dd - 2 y2).

By assumption

Page 26: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

zz

uZl(ad - 2 v2) ~ 2 T

so Yvl-ejl ~ NvI-ell for each unit vector ej with j~ 1.In an analogous manner one can derive the existence of eigenvaluesj~ 2,...,w, such that Ivj-ejN ~ u2l(6ó - 2 u2) ~ 2~.Let be vl,...,vn the columns of V E U. Then

u~ ~ IV-IGF ~ T u2(dd - 2 u2)-1,

vj,

This proofs inequality (C16) and ends the proof of theorem 2. 0

Page 27: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

23

ReEerences

1. P.J. Eberlein, On measures of non-normality for matrices, Amer. Math.Monthly, 72 (1965), pp. 995-996.

2. P. lie~irici, f3ounds for iteratea, inverses, apectral variation andfields of values of nonnormal matrices, Numer. Math., 4( 1962), pp.24-40. -

3. R. Kress, H.L. de Vries, R. Wegemann, On nonnormal matrices, Lin.Alg. Appl., 8, (1974), pp. 109-120.

4. M. Marcus - H. Mínc, A survey of matrix theory and matrix inequali-ties, Allyn and Bacon, 1964.

5. A. Ruhe, On the closeness of eigenvalues and singular values for al-most normal matrices, Lin. Alg. Appl., 11 (1975), pp. 87-94.

6. R.A. Smith, The conditíon number of the matrix eigenvalue problem,Numer. Math., 10 (1967), pp. 232-240.

7. G.W. Stewart, Error and Perturbation Bounds for Subspaces associatedwith certain Eigenvalue Problems, Siam Review, 15 (1973), pp. 727-764. -

8. A.J. Hoffman, H.W. Wíelandt, The variation of the spectrum of a nor-mal matrix, Duke Math. J., 20' (1953), pp. 37-39.

Page 28: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

i

IN 1983 REEDS VERSCHENEN

126 H.H. TigelaarIdentification of noisy linear systems with multiple arma inputs.

127 J.P.C. KleijnenStatistical Analysis of Steady-State Símulations: Survey of RecentProgress.

128 A.J. de ZeeuwTwo notes on Nash and Information.

129 H.L. Theuns en A.M.L. Passier-GrootjansToeristische ontwikkeling - voorwaarden en systematiek; een selec-tief literatuuroverzicht.

130 J. Plasmans en V. SomersA Maximum Likelihood Estimation Method of a Three Market Disequili-brium Model.

131 R. van Montfort, R. Schippers, R. HeutsJohnson SU-transformations for parameter estimation in arma-modelswhen data are non-gaussian.

132 J. Glombowski en M. KrugerOn the R81e of Distríbution in Different Theories of CyclicalGrowth.

133 J.W.A. Vingerhoets en H.J.A. CoppensInternationale Grondstoffenovereenkomsten.Effecten, kosten en olígopolísten.

134 W.J. OomensThe economíc interpretation of the advertising effect of LydiaPinkham.

135 J.P.C. KleijnenRegression analysis: assumptíons, alternatives, applications.

136 J.P.C. KleijnenOn the ínterpretation of variables.

137 G. van der Laan en A.J.J. TalmanSímplicial approxímation of solutions to the nonlinear complemen-tarity problem with lower and upper bounds.

Page 29: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

ii

IN 1984 REEDS VERSCHENEN

138 G.J. Cuypers, J.P.C. Kleijnen en J.W.M. van RooyenTesting the Mean of an Asymetric Population:Four Procedures Evaluated

l39 T. Wansbeek en A. KapteynF.stimation 1n ei línear model with serially correlated errors whenobservations are missinl;

140 A. Kapteyn, S. van de Geer, H. van de Stadt, T. WansbeekInterdependent preferences: an econometric analysis

141 W.J.H. van GroenendaalDiscrete and continuous univariate modelling

142 J.P.C. Kleijnen, P. Cremers, F. van BelleThe power of weighted and ordinary least squares with estimatedunequal variances in experimental design

143 J.P.C. KleijnenSuperefficient estíma[ion of power functions in simulationexperíments

144 P.A. Bekker, D.S.G. PollockIdentifícation of linear stochastíc models with covariancerestrictions.

145 Max D. Merbis, Aart J, de ZeeuwFrom structural form to state-space form

146 T.M. Doup and A.J.J. TalmanA new variable dimension simplicial algorithm to find equilibria onthe product space of unit simplices.

147 G. van der Laan, A.J.J. Talman and L. Van der HeydenVaríable dimension algorithms for unproper labellings.

148 G.J.C.Th. van SchijndelDynamic firm behaviour and financial leverage clienteles

149 M. Plattel, J. PeilThe ethico-political and theoretical reconstruction of contemporaryeconomic doctrines

150 F.J.A.M. Hoes, C.W. VroomJapanese Business Policy: The Cash Flow Trianglean exercise in sociological demystification

151 T.M. Doup, G. van der Laan and A.J.J. TalmanThe (2nf1-2)-ray algori[hm: a new simplicial algorithm to computeeconomic equilibria

Page 30: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

iii

IN 1984 REEDS VERSCHENEN (vervolg)

152 A.L. Hempenius, P.G.H. Mulder'I'otal Mortality Analysis of the Rotterdam Sample of the Kaunas-Kotterdam Intervention Study (KKIS)

153 A. Kapteyn, P. KooremanA disaggregated analysis of the allocation of time within thehousehold.

154 T. Wansbeek, A. KapteynStatistically and Computationally Efficient Estimation of theGravity Model.

155 P.F.P.M. NederstigtOver de kosten per zíekenhuísopname en levensduurmodellen

156 B.R. MeijboomAn input-output like corporate model including multipletechnologies and make-or-buy decisions

157 P. Kooreman, A. KapteynEstimation of Rationed and Unrationed Household Labor SupplyFunctions Using Flexible Functional Forms

158 R. Heuts, J. van LieshoutAn implementatíon of an inventory model wíth stochastic lead time

159 P.A. BekkerComment on: Identification in the Linear Errors in Variables Model

160 P. MeysFunc[ies en vormen van de burgerlijke staatOver parlementarísme, corporatisme en autoritair etatisme

161 J.P.C. Kleijnen, H.M.M.T. Denis, R.M.G. KerckhoffsEfficient estimation of power functions

162 H.L. TheunsThe emergence of research on third world tourism: 1945 to 1970;An introductory essay cum bibliography

163 F. Boekema, L. VerhoefDe "Grijze" sector zwart op witWerklozenprojecten en ondersteunende instanties in Nederland inkaart gebracht

164 G. van der Laan, A.J.J. Talman, L. Van der HeydenShortest paths for simplicial algorithms

165 J.H.F. SchílderinckInterregíonal structure of the European CommunityPart lí: In[erregional ínput-output tables of the European Com-

munity 1959, 1965, 1970 and 1975.

Page 31: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

iv

166 P.J.F.G. MeulendíjksAn exercíse in welfare economics (I)

Page 32: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,
Page 33: Tilburg University On measures of nonnormality of matrices ... · 1 ON MEASURES OF NONNORMALITY OF MATRICES L. Elsner,Fakult~t fiir Mathematik, Universit~t Bielefeld, Postfach 8640,

i i im ~ u ~uiii~~u~ii~iu~iiiiui~ r i