timber examples - tedds

19
TCI Project Job no. Calcs for Start page no./Revision 1 Calcs by Y Calcs date 18/04/2012 Checked by Checked date Approved by Approved date GLULAM BEAM ANALYSIS & DESIGN T O AS1720.1-2010 TEDDS calculation version 1.5. 01 mm 4600 1 A B  Unfactore d Loads 0.0 1.250 Self weight included Pe r ma ne n t Li ve mm 4600 1 A B  Load Envelope - Combination 1 0.0 3.000 mm 4600 1 A B  Load Combination 1 (shown in proportion) mm 4600 1 A B Permanent Live  Bending Moment Envelope 0.0 11.945 kNm mm 4600 1 A B 9.2 9.2 11.9  

Upload: tom-kwo

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 1/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

GLULAM BEAM ANALYSIS & DESIGN T O AS1720.1-2010

TEDDS calculation version 1.5.0

mm 4600

1A B  

Unfactored Loads

0.0

1.250

Self weight included

Permanent L ive

mm 4600

1A B  

Load Envelope - Combination 1

0.0

3.000

mm 4600

1A B

 Load Combination 1 (shown in proportion)

mm 4600

1A B

Permanent

Live

 

Bending Moment Envelope

0.0

11.945

kNm

mm 4600

1A B

9.29.2

11.9

 

Page 2: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 2/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Shear Force Envelope

0.0

8.847

-9.239

kN

mm 4600

1A B

8.86.56.5

1.11.1

-9.2

 Applied loading

Beam loads

Permanent self weight of beam × 1

Permanent full UDL 0.750 kN/m

Live full UDL 0.500 kN/m

Permanent point load 1.250 kN at 1200 mm

Live point load 1.000 kN at 1200 mm

Permanent point load 1.250 kN at 2400 mm

Live point load 1.000 kN at 2400 mm

Permanent point load 1.250 kN at 3600 mm

Live point load 1.000 kN at 3600 mm

Load com binations

Load combination 1 Support A Permanent × 1.20

Live × 1.50

Span 1 Permanent × 1.20

Live × 1.50

Support B Permanent × 1.20

Live × 1.50

Analysis results

Maximum moment; Mmax = 11.945 kNm ; Mmin = 0.000 kNm

Design moment; M∗ = max(abs(Mmax ),abs(Mmin)) = 11.945 kNm

Maximum shear; Vmax = 8.847 kN; Vmin = -9.239 kN

Design shear; V∗ = max(abs(Vmax),abs(Vmin)) = 9.239 kN

Total load on member; W tot = 18.086 kN

Reactions at support A; RA_max = 8.847 kN; RA_min = 8.847 kN

Unfactored permanent load reaction at support A; RA_Permanent = 4.142 kN

Unfactored live load reaction at support A ; RA_Live = 2.585 kN

Reactions at support B; RB_max = 9.239 kN; RB_min = 9.239 kN

Unfactored permanent load reaction at support B; RB_Permanent = 4.305 kN

Unfactored live load reaction at support B ; RB_Live = 2.715 kN

       3       1       5

135

100  

Page 3: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 3/19

TCI

Project Job no.

Calcs for Start page no./Revision

3

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Glulam section details

Breadth of glulam section; b = 135 mm

Depth of glulam section; d = 315 mm

Number of glulam sections in member; N = 1

Overall breadth of glulam member; bb = N × b = 135 mm

Glulam strength grade - Table 7.1; GL8

Strength group - Table 2.3(A); SD4

Member details

Load duration - cl.2.4.1; Long-term

Length of bearing; Lb = 100 mm

Section properties

Cross sectional area of member; A = N × b × d = 42525 mm 2

Section modulus; Zx = N × b × d2 / 6 = 2232562 mm 3

Zy = d × (N × b)2 / 6 = 956812 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 351628594 mm 4

Iy = d × (N × b)3 / 12 = 64584844 mm 4

Radius of gyration; rx = √(Ix / A) = 90.9 mm

ry = √(Iy / A) = 39.0 mm

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.80

Moisture condition factor - cl.2.4.2.3; k4 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Length and position of bearing factor - Table 2.6; k7 = 1.00

Strength sharing factor - cl.7.4.3; k9 = 1.00

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 0.88

Distance between discrete lateral restraints; Lay = 1200 mm ; Lay / d < 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - cl.3.2.3.2(b); S1 = 0.00

Major axis bending stability factor - exp.3.2(10); k12bx = 1.00

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Bearing strength - cl.3.2.6

Capacity factor - Table 2.1; φp = 0.95

Bearing area for loading pe rpendicular to grain; Ap = N × b × Lb = 13500 mm 2

Design capacity in bearing perpendicular to grain - exp.3.2(16)

φNp = φp × k1 × k4 × k6 × k7 × f'p × Ap = 174.420 kN

PASS - Design capacity in bearing perpen dicular to the grain exceeds design bearing load

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.95

Design capacity in bending - cl.3.2(2); φM = φb × k1 × k4 × k6 × k9 × k12bx × f'b × Zx = 32.238 kNm

PASS - Design capacity in bending exceeds design bending momen

Flexural shear strength - cl.3.2.5

Capacity factor - Table 2.1; φs = 0.95

Shear plane area; As = N × b × d × 2 / 3 = 28350 mm 2

Design shear capacity - exp.3.2(14); φV = φs × k1 × k4 × k6 × f's × As = 79.720 kN

Page 4: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 4/19

TCI

Project Job no.

Calcs for Start page no./Revision

4

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

PASS - Design shear capacity exceeds design shear force

Deflection - AS/NZS 1170.0

Deflection limit - Table C1; δ lim = min(14 mm, 0.004 × Ls1) = 14.000 mm

Deflection due to permanent load; δG = 4.499 mm

Deflection due to imposed load; δQ = 2.898 mm

Load factor - Table 4.1; ψ = 0.7

Creep factor (Long-term);  j2 = 1.850

Total deflection; δtot = j2 × [δG + ψ  × δQ] = 12.075 mm

PASS - Total deflection is less than the deflection limi

Page 5: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 5/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

TIMBER BEAM ANALYSIS & DESIGN TO AS1720.1-2010

TEDDS calculation version 1.5.0

mm 3000

1A B  

Unfactored Loads

0.0

2.500

Self weight included

Permanent L ive

mm 3000

1A B  

Load Envelope - Combination 1

0.0

5.302

mm 3000

1A B

 Load Combination 1 (shown in proportion)

mm 3000

1A B

Permanent

Live

 

Bending Moment Envelope

0.0

5.965

kNm

mm 3000

1A B

6.0

 

Page 6: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 6/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Shear Force Envelope

0.0

7.953

-7.953

kN

mm 3000

1A B

8.0

-8.0

 Applied loading

Beam loads

Permanent self weight of beam × 1

Permanent full UDL 2.500 kN/m

Live full UDL 1.450 kN/m

Load com binations

Load combination 1 Support A Permanent × 1.20Live × 1.50

Span 1 Permanent × 1.20

Live × 1.50

Support B Permanent × 1.20

Live × 1.50

Analysis results

Maximum moment; Mmax = 5.965 kNm; Mmin = 0.000 kNm

Design moment; M∗ = max(abs(Mmax ),abs(Mmin)) = 5.965 kNm

Maximum shear; Vmax = 7.953 kN; Vmin = -7.953 kN

Design shear; V∗ = max(abs(Vmax),abs(Vmin)) = 7.953 kN

Total load on member; W tot = 15.906 kNReactions at support A; RA_max = 7.953 kN; RA_min = 7.953 kN

Unfactored permanent load reaction at support A; RA_Permanent = 3.909 kN

Unfactored live load reaction at support A ; RA_Live = 2.175 kN

Reactions at support B; RB_max = 7.953 kN; RB_min = 7.953 kN

Unfactored permanent load reaction at support B; RB_Permanent = 3.909 kN

Unfactored live load reaction at support B ; RB_Live = 2.175 kN

       2       4       0

90

100  Timber section details

Breadth of timber sections; b = 45 mm

Depth of timber sections; d = 240 mm

Number of timber sections in member; N = 2

Overall breadth of timber member; bb = N × b = 90 mm

Page 7: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 7/19

TCI

Project Job no.

Calcs for Start page no./Revision

3

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Timber species; Mixed softwood s pecies (excl.Pinus species)

Moisture condition; Seasoned

Timber strength grade - Table H2.1; F8

Member details

Load duration - cl.2.4.1; Long-term

Length of bearing; Lb = 100 mm

Section properties

Cross sectional area of member; A = N × b × d = 21600 mm 2

Section modulus; Zx = N × b × d2 / 6 = 864000 mm 3

Zy = d × (N × b)2 / 6 = 324000 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 103680000 mm 4

Iy = d × (N × b)3 / 12 = 14580000 mm 4

Radius of gyration; rx = √(Ix / A) = 69.3 mm

ry = √(Iy / A) = 26.0 mm

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.80

Moisture condition factor - cl.2.4.2.3; k4 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Length and position of bearing factor - Table 2.6; k7 = 1.00

Strength sharing factor - Table 2.7; k9 = 1.14

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 0.89

Distance between discrete lateral restraints; Lay = 1200 mm ; Lay / d < 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - cl.3.2.3.2(b); S1 = 0.00

Major axis bending stability factor - exp.3.2(10); k12bx = 1.00

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Bearing strength - cl.3.2.6

Capacity factor - Table 2.1; φp = 0.9

Bearing area for loading pe rpendicular to grain; Ap = N × b × Lb = 9000 mm 2

Design capacity in bearing perpendicular to grain - exp.3.2(16)

φNp = φp × k1 × k4 × k6 × k7 × f'p × Ap = 44.064 kN

PASS - Design capacity in bearing perpen dicular to the grain exceeds design bearing load

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.9

Design capacity in bending - cl.3.2(2); φM = φb × k1 × k4 × k6 × k9 × k12bx × f'b × Zx = 15.602 kNm

PASS - Design capacity in bending exceeds design bending momen

Flexural shear strength - cl.3.2.5

Capacity factor - Table 2.1; φs = 0.9

Shear plane area; As = N × b × d × 2 / 3 = 14400 mm 2

Design shear capacity - exp.3.2(14); φV = φs × k1 × k4 × k6 × f's × As = 22.810 kN

PASS - Design shear capacity exceeds design shear force

Deflection - AS/NZS 1170.0

Deflection limit - Table C1; δ lim = min(14 mm, 0.004 × Ls1) = 12.000 mm

Deflection due to permanent load; δG = 3.180 mm

Page 8: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 8/19

TCI

Project Job no.

Calcs for Start page no./Revision

4

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Deflection due to imposed load; δQ = 1.769 mm

Load factor - Table 4.1; ψ = 0.7

Creep factor (Long-term);  j2 = 1.850

Total deflection; δtot = j2 × [δG + ψ  × δQ] = 8.173 mm

PASS - Total deflection is less than the deflection limi

Page 9: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 9/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

STRUCTURAL LVL BEAM ANALYSIS & DESIGN TO AS1720.1-2010

TEDDS calculation version 1.5.0

mm 4250

1A

3750

2B C  

Unfactored Loads

0.0

6.000

Self weight included

Permanent L ive

mm 4250

1A

3750

2B C  

Load Envelope - Combination 1

0.0

12.889

mm 4250

1A

3750

2B C

 Load Envelope - Combination 2

0.0

12.889

mm 4250

1A

3750

2B C  

Load Envelope - Combination 3

0.0

12.889

mm 4250

1A

3750

2B C  

Page 10: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 10/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Load Combination 1 (shown in proportion)

mm 4250

1A

3750

2B C

Permanent

Live

 

Load Combination 2 (shown in proportion)

mm 4250

1A

3750

2B C

Permanent

Live

 Load Combination 3 (shown in proportion)

mm 4250

1A

3750

2B C

Permanent

Live

 

Bending Moment Envelope

0.0

-26.080

20.742

kNm

mm 4250

1A

3750

2B C

-26.1

20.716.0

 

Shear Force Envelope

0.0

31.122

-33.526

kN

mm 4250

1A

3750

2B C

23.131.1

-33.5

-20.3

 Applied loading

Beam loads

Permanent self weight of beam × 1

Permanent full UDL 3.000 kN/m

Live full UDL 6.000 kN/m

Page 11: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 11/19

TCI

Project Job no.

Calcs for Start page no./Revision

3

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Load com binations

Load combination 1 Support A Permanent × 1.20

Live × 1.50

Span 1 Permanent × 1.20

Live × 1.50

Support B Permanent × 1.20

Live × 1.50

Span 2 Permanent × 1.00

Live × 0.00

Support C Permanent × 1.00

Live × 0.00

Load combination 2 Support A Permanent × 1.00

Live × 0.00

Span 1 Permanent × 1.00Live × 0.00

Support B Permanent × 1.20

Live × 1.50

Span 2 Permanent × 1.20

Live × 1.50

Support C Permanent × 1.20

Live × 1.50

Load combination 3 Support A Permanent × 1.20

Live × 1.50

Span 1 Permanent × 1.20

Live × 1.50Support B Permanent × 1.20

Live × 1.50

Span 2 Permanent × 1.20

Live × 1.50

Support C Permanent × 1.20

Live × 1.50

Analysis results

Maximum moment; Mmax = 20.742 kNm ; Mmin = -26.080 kNm

Design moment; M∗ = max(abs(Mmax ),abs(Mmin)) = 26.080 kNm

Maximum shear; Vmax = 31.122 kN; Vmin = -33.526 kN

Design shear; V∗ = max(abs(Vmax),abs(Vmin)) = 33.526 kNTotal load on member; W tot = 103.113 kN

Reactions at support A; RA_max = 23.123 kN; RA_min = 3.473 kN

Unfactored permanent load reaction at support A; RA_Permanent = 5.344 kN

Unfactored live load reaction at support A ; RA_Live = 9.893 kN

Reactions at support B; RB_max = 64.648 kN; RB_min = 38.336 kN

Unfactored permanent load reaction at support B; RB_Permanent = 16.256 kN

Unfactored live load reaction at support B ; RB_Live = 30.094 kN

Reactions at support C; RC_max = 20.298 kN; RC_min = 1.242 kN

Unfactored permanent load reaction at support C; RC_Permanent = 4.328 kN

Page 12: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 12/19

TCI

Project Job no.

Calcs for Start page no./Revision

4

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Unfactored live load reaction at support C ; RC_Live = 8.012 kN

       3       0       0

126

100  Structural LVL section de tails

Breadth of LVL section; b = 63 mm

Depth of LVL section; d = 300 mm

Number of LVL sections in member; N = 2

Overall breadth of LVL mem ber; bb = N × b = 126 mm

Structural LVL properties

Bending; f'b = 48 MPa

Tension parallel to grain; f't = 33 MPa

Shear in member; f's = 5.3 MPa

Compression parallel to grain; f'c = 45 MPa

Bearing perpendicular to grain; f'p = 12 MPa

Short duration average modulus of elasticity parallel to the grain

E = 13200 MPa

Short duration average modulus of rigidity for members

G = 660 MPa

Design density; ρ = 650 kg/m3

Member details

Load duration - cl.2.4.1; Long-term

Length of bearing; Lb = 100 mm

Section properties

Cross sectional area of member; A = N × b × d = 37800 mm 2

Section modulus; Zx = N × b × d2 / 6 = 1890000 mm 3

Zy = d × (N × b)2 / 6 = 793800 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 283500000 mm 4

Iy = d × (N × b)3 / 12 = 50009400 mm 4

Radius of gyration; rx = √(Ix / A) = 86.6 mm

ry = √(Iy / A) = 36.4 mm

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.80

Moisture content factor for bending - Table 8.1; k4b = 1.00

Moisture content factor for compression - Table 8.1 ; k4c = 1.00

Moisture content factor for tension - Table 8.1; k4t = 1.00

Moisture content factor for shear - Table 8.1; k4s = 1.00

Moisture content factor for modulus of elasticity - Table 8.1

 j6 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Page 13: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 13/19

TCI

Project Job no.

Calcs for Start page no./Revision

5

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Length and position of bearing factor - Table 2.6; k7 = 1.13

Strength sharing factor - cl.8.4.6; k9 = 1.00

Size factor for bending - cl.8.3.1; k11b = min((300 mm / d)0.167, 1) = 1.00

Size factor for tension parallel - cl.8.3.1; k11t = min((150 mm / d)0.167, 1) = 0.89

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 1.08

Distance between discrete lateral restraints; Lay = 1200 mm ; Lay / d < 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - cl.3.2.3.2(b); S1 = 0.00

Major axis bending stability factor - exp.3.2(10); k12bx = 1.00

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Bearing strength - cl.3.2.6

Capacity factor - Table 2.1; φp = 0.95

Bearing area for loading pe rpendicular to grain; Ap = N × b × Lb = 12600 mm 2

Design capacity in bearing perpendicular to grain - exp.3.2(16)φNp = φp × k1 × k4c × k6 × k7 × f'p × Ap = 129.276 kN

PASS - Design capacity in bearing perpen dicular to the grain exceeds design bearing load

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.95

Design capacity in bending - cl.3.2(2); φM = φb × k1 × k4b × k6 × k9 × k11b  × k12bx × f'b × Zx = 68.947 kNm

PASS - Design capacity in bending exceeds design bending momen

Flexural shear strength - cl.3.2.5

Capacity factor - Table 2.1; φs = 0.95

Shear plane area; As = N × b × d × 2 / 3 = 25200 mm 2

Design shear capacity - exp.3.2(14); φV = φs × k1 × k4s × k6 × f's × As = 101.506 kN

PASS - Design shear capacity exceeds design shear force

Deflection - AS/NZS 1170.0

Deflection limit - Table C1; δ lim = min(14 mm, 0.004 × Ls1) = 14.000 mm

Deflection due to permanent load; δG = 2.271 mm

Deflection due to imposed load; δQ = 4.205 mm

Load factor - Table 4.1; ψ = 0.7

Creep factor (Long-term);  j2 = 1.850

Total deflection; δtot = j2 × [δG + ψ  × δQ] = 9.646 mm

PASS - Total deflection is less than the deflection limi

Page 14: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 14/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

GLULAM MEMBER DE SIGN TO AS1720.1-2010

TEDDS calculation version 1.5.0

Analysis resultsDesign moment in m ajor axis; M∗

x = 75.900 kNm

Design axial compression; N∗c = 113.500 kN

       5       4       0

135  Glulam section details

Breadth of glulam section; b = 135 mm

Depth of glulam section; d = 540 mm

Number of glulam sections in member; N = 1

Overall breadth of glulam member; bb = N × b = 135 mm

Glulam strength grade - Table 7.1; GL8

Strength group - Table 2.3(A); SD4

Member details

Load duration - cl.2.4.1; Medium-term

Overall length of member; Lx = 8100 mm

Effective length factor - Table 3.2; g13 = 1

Distance between lateral restraints in major axis ; Lax = 8100 mm

Distance between lateral restraints in minor axis ; Lay = 1620 mm

Section properties

Cross sectional area of member; A = N × b × d = 72900 mm 2

Section modulus; Zx = N × b × d2 / 6 = 6561000 mm 3

Zy = d × (N × b)2 / 6 = 1640250 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 1771470000 mm 4

Iy = d × (N × b)3 / 12 = 110716875 mm 4

Radius of gyration; rx = √(Ix / A) = 155.9 mm

ry = √(Iy / A) = 39.0 mm

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.94

Moisture condition factor - cl.2.4.2.3; k4 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Length and position of bearing factor - cl.2.4.4; k7 = 1.00

Strength sharing factor - cl.7.4.3; k9 = 1.00

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 0.88

Distance between discrete lateral restraints; Lay = 1620 mm ; Lay / d < 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - cl.3.2.3.2(b); S1 = 0.00

Page 15: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 15/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Major axis bending stability factor - exp.3.2(10); k12bx = 1.00

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Material constant - exp.E2(3); ρc = 11.39 × (E / f'c)-0.408 × r-0.074 = 1.18

Major axis slenderness coefficient - exp.3.3(5); S3 = L ax / d = 15.00

Major axis comp.stability factor - exp.3.3(11b); k12cx = 1.5 - 0.05 × ρc × S3 = 0.62

Minor axis slenderness coefficient - exp.3.3(8); S4 = L ay / (N × b) = 12.00

Minor axis comp.stability factor - exp.3.3(11b); k12cy = 1.5 - 0.05 × ρc × S4 = 0.79

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.85

Design capacity in major axis bending - cl.3.2(2) ; φMx = φb × k1 × k4 × k6 × k9 × k12bx × f'b × Zx = 99.603 kNm

PASS - Design capacity in bending exceeds design bending momen

Compressive strength - cl.3.3.1

Capacity factor - Table 2.1; φc = 0.85

Cross-sectional area of m ember; Ac = N × b × d = 72900 mm 2

Major axis design capacity in compression - exp.3.3(2)

φNcx = φc × k1 × k4 × k6 × k12cx × f'c × Ac = 860.127 kN

Minor axis design capacity in compression - exp.3.3(2)

φNcy = φc × k1 × k4 × k6 × k12cy × f'c × Ac = 1107.481 kN

PASS - Design capacity in compression exceeds design compression

Combined bending and compression - cl.3.5.1

Combined bending and compression check - exp.3.5(1) and exp.3.5(2)

[M∗x / φMx]2 + [N ∗

c / φNcy] = 0.683; < 1

[M∗x / φMx] + [N∗

c / φNcx] = 0.894; < 1

PASS - Beam design meets combined bending and compression criteria

Page 16: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 16/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

TIMBER MEMBER DESIGNTIMBER MEMBER DESIGN TO AS1720.1-2010

TEDDS calculation version 1.5.0

Analysis resultsDesign moment in m ajor axis; M∗

x = 2.800 kNm

Design axial compression; N∗c = 8.100 kN

       1       9       4

60  Timber section details

Breadth of timber sections; b = 60 mm

Depth of timber sections; d = 194 mm

Number of timber sections in member; N = 1

Overall breadth of timber member; bb = N × b = 60 mm

Timber species; Mixed softwood s pecies (excl.Pinus species)

Moisture condition; Seasoned

Timber strength grade - Table H2.1; F8

Member details

Load duration - cl.2.4.1; Long-term

Overall length of member; Lx = 4200 mm

Effective length factor - Table 3.2; g13 = 1Distance between lateral restraints in major axis ; Lax = 4200 mm

Distance between lateral restraints in minor axis ; Lay = 1400 mm

Section properties

Cross sectional area of member; A = N × b × d = 11640 mm 2

Section modulus; Zx = N × b × d2 / 6 = 376360 mm 3

Zy = d × (N × b)2 / 6 = 116400 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 36506920 mm 4

Iy = d × (N × b)3 / 12 = 3492000 mm 4

Radius of gyration; rx = √(Ix / A) = 56.0 mm

ry = √(Iy / A) = 17.3 mm

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.80

Moisture condition factor - cl.2.4.2.3; k4 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Length and position of bearing factor - cl.2.4.4; k7 = 1.00

Strength sharing factor - Table 2.7; k9 = 1.00

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 0.94

Distance between discrete lateral restraints; Lay = 1400 mm ; Lay / d > 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - exp.3.2(4); S1 = 1.25 × d / (N × b) × (Lay / d)0.5 = 10.86

Page 17: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 17/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Major axis bending stability factor - exp.3.2(11); k12bx = 1.5 - 0.05 × ρb × S1 = 0.99

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Material constant - exp.E2(3); ρc = 11.39 × (E / f'c)-0.408 × r-0.074 = 1.04

Major axis slenderness coefficient - exp.3.3(5); S3 = L ax / d = 21.65

Major axis comp.stability factor - exp.3.3(11c); k12cx = 200 / (ρc × S3)2 = 0.40

Minor axis slenderness coefficient - exp.3.3(8); S4 = L ay / (N × b) = 23.33

Minor axis comp.stability factor - exp.3.3(11c); k12cy = 200 / (ρc × S4)2 = 0.34

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.8

Design capacity in major axis bending - cl.3.2(2) ; φMx = φb × k1 × k4 × k6 × k9 × k12bx × f'b × Zx = 5.946 kNm

PASS - Design capacity in bending exceeds design bending momen

Compressive strength - cl.3.3.1

Capacity factor - Table 2.1; φc = 0.8

Cross-sectional area of m ember; Ac = N × b × d = 11640 mm 2

Major axis design capacity in compression - exp.3.3(2)

φNcx = φc × k1 × k4 × k6 × k12cx × f'c × Ac = 58.896 kN

Minor axis design capacity in compression - exp.3.3(2)

φNcy = φc × k1 × k4 × k6 × k12cy × f'c × Ac = 50.702 kN

PASS - Design capacity in compression exceeds design compression

Combined bending and compression - cl.3.5.1

Combined bending and compression check - exp.3.5(1) and exp.3.5(2)

[M∗x / φMx]2 + [N ∗

c / φNcy] = 0.381; < 1

[M∗x / φMx] + [N∗

c / φNcx] = 0.608; < 1

PASS - Beam design meets combined bending and compression criteria

Page 18: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 18/19

TCI

Project Job no.

Calcs for Start page no./Revision

1

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

TIMBER MEMBER DESIGNSTRUCTURAL LVL MEM BER DESIGN TO AS1720.1-2010

TEDDS calculation version 1.5.0

Analysis resultsDesign moment in m ajor axis; M∗

x = 3.700 kNm

Design axial compression; N∗c = 70.200 kN

       1       5       0

150  Structural LVL section de tails

Breadth of LVL section; b = 150 mm

Depth of LVL section; d = 150 mm

Number of LVL sections in member; N = 1

Overall breadth of LVL mem ber; bb = N × b = 150 mm

Structural LVL properties

Bending; f'b = 48 MPa

Tension parallel to grain; f't = 33 MPa

Shear in member; f's = 5.3 MPa

Compression parallel to grain; f'c = 45 MPa

Bearing perpendicular to grain; f'p = 12 MPa

Short duration average modulus of elasticity parallel to the grain

E = 13200 MPa

Short duration average modulus of rigidity for members

G = 660 MPa

Design density; ρ = 650 kg/m3

Member details

Load duration - cl.2.4.1; Medium-term

Overall length of member; Lx = 4250 mm

Effective length factor - Table 3.2; g13 = 1

Distance between lateral restraints in major axis ; Lax = 4250 mm

Distance between lateral restraints in minor axis ; Lay = 4250 mm

Section propertiesCross sectional area of member; A = N × b × d = 22500 mm 2

Section modulus; Zx = N × b × d2 / 6 = 562500 mm 3

Zy = d × (N × b)2 / 6 = 562500 mm 3

Second moment of area; Ix = N × b × d3 / 12 = 42187500 mm 4

Iy = d × (N × b)3 / 12 = 42187500 mm 4

Radius of gyration; rx = √(Ix / A) = 43.3 mm

ry = √(Iy / A) = 43.3 mm

Page 19: Timber Examples - Tedds

8/2/2019 Timber Examples - Tedds

http://slidepdf.com/reader/full/timber-examples-tedds 19/19

TCI

Project Job no.

Calcs for Start page no./Revision

2

Calcs by

Y

Calcs date

18/04/2012

Checked by Checked date Approved by Approved date

Modification factors

Duration of load factor for strength - Table 2.3; k1 = 0.94

Moisture content factor for bending - Table 8.1; k4b = 1.00

Moisture content factor for compression - Table 8.1 ; k4c = 1.00

Moisture content factor for tension - Table 8.1; k4t = 1.00

Moisture content factor for shear - Table 8.1; k4s = 1.00

Moisture content factor for modulus of elasticity - Table 8.1

 j6 = 1.00

Temperature factor - cl.2.4.3; k6 = 1.00

Length and position of bearing factor - cl.2.4.4; k7 = 1.00

Strength sharing factor - cl.8.4.6; k9 = 1.00

Size factor for bending - cl.8.3.1; k11b = min((300 mm / d)0.167, 1) = 1.00

Size factor for tension parallel - cl.8.3.1; k11t = min((150 mm / d)0.167, 1) = 1.00

Temporary design action ratio; r = 0.25

Material constant - exp.E2(1); ρb = 14.71 × (E / f'b)-0.480 × r-0.061 = 1.08

Distance between discrete lateral restraints; Lay = 4250 mm ; Lay / d < 64 × [N × b / (ρb × d)]2

Major axis slenderness coefficient - cl.3.2.3.2(b); S1 = 0.00

Major axis bending stability factor - exp.3.2(10); k12bx = 1.00

Minor axis slenderness coefficient - cl.3.2.3.2 (c); S2 = 0.00

Minor axis bending stability factor - cl.3.2.4; k12by = 1.00

Material constant - exp.E2(3); ρc = 11.39 × (E / f'c)-0.408 × r-0.074 = 1.24

Major axis slenderness coefficient - exp.3.3(5); S3 = L ax / d = 28.33

Major axis comp.stability factor - exp.3.3(11c); k12cx = 200 / (ρc × S3)2 = 0.16

Minor axis slenderness coefficient - exp.3.3(8); S4 = L ay / (N × b) = 28.33

Minor axis comp.stability factor - exp.3.3(11c); k12cy = 200 / (ρc × S4)2 = 0.16

Bending strength - cl.3.2.1

Capacity factor - Table 2.1; φb = 0.9

Design capacity in major axis bending - cl.3.2(2) ; φMx = φb × k1 × k4b × k6 × k9 × k11b  × k12bx × f'b × Zx = 22.842 kNm

PASS - Design capacity in bending exceeds design bending momen

Compressive strength - cl.3.3.1

Capacity factor - Table 2.1; φc = 0.9

Cross-sectional area of m ember; Ac = N × b × d = 22500 mm 2

Major axis design capacity in compression - exp.3.3(2)

φNcx = φc × k1 × k4c × k6 × k12cx × f'c × Ac = 138.170 kN

Minor axis design capacity in compression - exp.3.3(2)

φNcy = φc × k1 × k4c × k6 × k12cy × f'c × Ac = 138.170 kN

PASS - Design capacity in compression exceeds design compression

Combined bending and compression - cl.3.5.1

Combined bending and compression check - exp.3.5(1) and exp.3.5(2)

[M∗x / φMx]2 + [N ∗

c / φNcy] = 0.534; < 1

[M∗x / φMx] + [N∗

c / φNcx] = 0.670; < 1

PASS - Beam design meets combined bending and compression criteria