time: work, kinetic energy, work energy theorem today ...plaster/phy211/lectures/... · work,...

22
Last Time: Work, Kinetic Energy, WorkEnergy Theorem Today : Gravitational Potential Energy, Conservation of Energy, Spring Potential Energy, Power HW #4 extension to Friday 5:00 p m HW #4 extension to Friday , 5:00 p.m. HW #5 il bl HW #5 now available Due Thursday, October 7, 11:59 p.m. 1

Upload: others

Post on 26-Aug-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

• Last Time:

Work, Kinetic Energy, Work‐Energy Theorem

• Today:

Gravitational Potential Energy, Conservation of Energy, Spring Potential Energy, Power

HW #4 extension to Friday 5:00 p mHW #4 extension to Friday, 5:00 p.m.

HW #5 il blHW #5 now available

Due Thursday, October 7, 11:59 p.m.

1

Page 2: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Conceptual Question

A 10 N force acts on a block, as shown below (other forces may also b ti ) Th bl k th h i t l di t D i thbe acting).  The block moves the same horizontal distance D in the +x‐direction in all four cases below.  Rank the amount of work done by the 10 N force, in order of most positive, to most negative.by the 10 N force, in order of most positive, to most negative.

A B C D

θ

y

2

x

Page 3: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Conservative vs. Non‐Conservative Forces

In general, there are two kinds of forces :

“Conservative” Forces “Non‐Conservative” Forces

E b E bEnergy can be recovered

Energy cannot be recovered

E g Gravity E g FrictionE.g., Gravity E.g., Friction

3Generally:  Dissipative

Page 4: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Gravitational Potential EnergySuppose an object falls from some height to a lower height.    

How much work has been done by gravity ?How much work has been done by gravity ?

y0)0(cos|| ifg yymgW

|F| |Δ | θ

mg

|F| |Δy| cos θ

Δymgyi If an object is raised to some height, there is the “potential” for gravity to d iti k P iti kyf do positive work.  Positive work means an increase in the object’s kinetic energy.

4

kinetic energy.

Page 5: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Gravitational Potential EnergySo we then define the “gravitational potential energy” 

Gravitational Potential Energy

PE = mgy

y:  vertical position relative to Earth’s 

f ( thPE  =  mgy surface (or another reference point)

SI unit:  Joule

The gravitational potential energy quantifies the magnitude of work that can be done by gravity.

By the Work‐Energy Theorem, the gravitational potential energy is then equal to the change in the object’s kinetic energy if it falls di

5

a distance y.

Page 6: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Reference Level for Potential EnergyWe have defined the gravitational potential energy to be:

mgyPE

Q:  Does it matter where we define y = 0 to be ?

A:  No, it doesn’t matter.  All that matters is the difference in the potential energy,  ΔPE = mg Δy .  It doesn’t matter where we define zero to bedefine zero to be.

100 m 5 mIn both of these, the object falls 5 m.

695 m 0 m

object falls 5 m.

Page 7: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Gravity and Conservation of EnergyConservation Law :  If a physical quantity is “conserved”, the numerical value of the physical quantity remains unchangednumerical value of the physical quantity remains unchanged.

PEKEPEKE

Conservation of Mechanical Energy :

ffii PEKEPEKE

Sum of kinetic energy and gravitational potential energy remains constant at all times.  It is a conserved quantity.

If we denote the total mechanical energy as  E = KE + PE,  the total mechanical energy E is conserved at all times

7

total mechanical energy E is conserved at all times.

Page 8: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Gravity and Conservation of EnergyIgnoring dissipative forces (air resistance), at all times the total mechanical energy will be conserved :mechanical energy will be conserved :

112

221

21 2

121 mgymvmgymv

initial total final totalinitial total mechanical energy

final total mechanical energy

8

Page 9: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

ExampleA 25‐kg object is dropped from a height of 15.0 m above the ground Assuming air resistance is negligibleground.  Assuming air resistance is negligible …

(a) What is its speed 7 0 m above the ground ?(a) What is its speed 7.0 m above the ground ?

(b) What is its speed when it hits the ground ?( ) p g

9

Page 10: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

ExampleA skier starts from rest at the top of a frictionless ramp of height 20 0 m At the bottom of the ramp the skier encounters a20.0‐m.  At the  bottom of the ramp, the skier encounters a horizontal surface where the coefficient of kinetic friction is        μk = 0.210. Neglect air resistance.μk  0.210.  Neglect air resistance.

(a) Find the skier’s speed at the bottom of the ramp.( ) p p

(b)  How far does the skier travel on the horizontal surface before coming to rest ?

10

Page 11: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Pendulum and Conservation of Energy

AC

B

A pendulum is released from rest at point A.  Ignoring friction …

What is its speed at the bottom of its trajectory at B ?What is its speed at the bottom of its trajectory at B ?

How high does it swing on its way up to C ?

11

When it swings back to A, does it return to its initial height ?

Page 12: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Springs

One must do work on a spring to compress or stretch itOne must do work on a spring to compress or stretch it.

The work it takes to compress or stretch the spring can be recovered as kinetic energy.

This means we can find a potential energy function for springs, which we can then use in the Work‐Energy Theorem.

12

Page 13: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Hooke’s Law

x 0 Position of spring when notx = 0 : Position of spring when not compressed/stretched

x

compressedx = 0 : Force exerted by spring :

F = –kx k: “spring constant”

x

p g

If compressed, x < 0, so F > 0 !

13

x

Page 14: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Hooke’s Law

x 0 Position of spring when notx = 0 : Position of spring when not compressed/stretched

x

stretchedx

x = 0 : Force exerted by spring :

F = –kxx

If stretched, x > 0, so F < 0 !

14

Page 15: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Spring Potential Energy

compressedx = 0

stretchedx = 0 :

compressed stretchedx

x

If spring is compressed or stretched, it will exert a force, and so it has the potential to do workhas the potential to do work.

Elastic potential energy associated with this spring force is :

21 kxPEs k :  “spring constant”

x : displacement of spring

15

2kxPEs x : displacement of spring

SI Unit:  Joules

Page 16: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Springs and Conservation of Energy

Assuming only conservative forces (i.e., no non‐conservative g y ( ,forces, such as friction), systems with springs will obey :

fgsigs PEPEKEPEPEKE

Initial Initial Initial Final Final FinalInitial KE

Initial Spring PE

Initial Grav. PE

Final KE

Final Spring PE

Final Grav. PE

16

Page 17: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Non‐Conservative Forces

If there is a non‐conservative force (e.g., friction) acting, work d b h fdone by this force is :

)()( PEKEPEKEW Mechanical energy )()( iiffnc PEKEPEKEW gychanges.  Work done by non‐conservative force dissipated as, e.g., heat.if EE if

17

Page 18: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Example 5.9 (p. 137)

A block with mass of 5.0 kg is attached to a horizontal spring with g p gspring constant k = 400 N/m.  The surface the block rests on is frictionless.  If the block is pulled out to xi = 0.05 m and released …

(a) Find the speed of the block when it reaches the equilibrium point (x = 0).

(b) Find the speed when x = 0.025 m.

(c) Repeat (a) if friction acts, with μk = 0 150

18

with μk  0.150.

Page 19: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Power

20 Watt CFL Light Bulb

300 hp Ford Mustang

If l f d k W bj i i l ΔIf an external force does work W on an object in some interval Δt, then the average power delivered to the object is the work done divided by the time intervaldivided by the time interval

WP W in JoulesΔt in seconds

tP

Δt in seconds

P in Watts = Joule/second

19

The higher the power, the more work that can be done in a given time interval.

Page 20: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Power

Note that we can write :

vFtxF

txF

tWP

ttt

A i t t f ti th dAverage power is a constant force times the average speed.

Note on units :

1 Watt = 1 Joule/second = 1 kg‐m2/s3

20

Page 21: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Example: 5.53The electric motor of a model train accelerates the train from rest of 0 620 m/s in 0 021 s The total mass of the train is 0 875 kgof 0.620 m/s in 0.021 s.  The total mass of the train is 0.875 kg.  Find the average power delivered to the train during its acceleration.acceleration.

21

Page 22: Time: Work, Kinetic Energy, Work Energy Theorem Today ...plaster/phy211/lectures/... · Work, Kinetic Energy, Work‐Energy Theorem • Today: Gravitational Potential Energy, Conservation

Next Class

• 6.1 – 6.2 :

Momentum, Impulse, Conservation of Momentum

22