title - bioportfolio — the biotechnology, · web viewmolecular diagnostics part ii:...

771
Molecular Diagnostics Part II: Regulations, Markets & Companies

Upload: truongtuyen

Post on 19-Mar-2018

242 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Molecular DiagnosticsPart II: Regulations, Markets & Companies

A Jain PharmaBiotech Report

Page 2: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,
Page 3: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Molecular DiagnosticsPart II: Regulations, Markets & Companies

By

Prof. K. K. JainMD, FRACS, FFPM

Jain PharmaBiotechBasel, Switzerland

June 2011

A Jain PharmaBiotech Report

Page 4: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

A U T H O R ' S B I O G R A P H YProfessor K. K. Jain is a neurologist/neurosurgeon by training and has been working in the biotechnology/biopharmaceuticals industry for several years. He received graduate training in both Europe and USA, has held academic positions in several countries, and is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK. Currently, he is a consultant at Jain PharmaBiotech.

Prof. Jain is the author of 427 publications including 18 books (2 as editor) and 49 special reports, which have covered important areas in biotechnology, gene therapy and biopharmaceuticals. His books include "Role of Nanobiotechnology in Molecular Diagnostics", published in 2006 and "Handbook of Nanomedicine", which is published in 2008 at Humana/Springer Biosciences. His other recent books include “Textbook of Personalized Medicine” (Springer 2009), "Handbook of Biomarkers" (Springer 2010), and “Applications of Biotechnology in Cardiovascular Therapeutics” (Springer 2011).

A B O U T T H I S R E P O R TProf. Jain wrote the first report on DNA Diagnostics covering scientific and commercial aspects in March 1995, which was published by PJB Publication, London. This was updated in 1997 as Molecular Diagnostics I and the next edition, Molecular Diagnostics II, was published in 1999 both by Decision Resources Inc, USA. All the three versions of the reports were well accepted and sold widely. The current version was originally published by Jain PharmaBiotech in 2001 and is constantly updated since then. Not only was this the first such report on molecular diagnostics, it is the longest continuously published report (15 years). It is also the most comprehensive and detailed report on this topic containing profiles of the largest number of companies involved in molecular diagnostics.

- 2 -

June 2011 (continuously published since 1995)Copyright 2011 by

Jain PharmaBiotechBläsiring 7CH-4057 BaselSwitzerland

Tel & Fax: +4161-6924461Email: [email protected] site: http://pharmabiotech.ch/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior written permission of the Publisher. This report may not be lent, resold or otherwise traded in any manner without the consent of the Publisher. While all reasonable steps have been taken to ensure the accuracy of the information presented, the Publisher cannot accept responsibility for inadvertent errors or omissions.

Page 5: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table of Contents

11. Ethics, Patents and Regulatory issues.......................................................11Introduction.......................................................................................................11Ethical concerns about genetic diagnosis.............................................................11

Ethical guidelines for molecular diagnostics........................................................................12Ethical aspects of direct-to-consumer genetic services.......................................................13US public attitudes about genetic testing............................................................................14Genetic testing for susceptibility to adult-onset cancer......................................................14Ethics of preimplantation genetic diagnosis........................................................................15

Preimplantation genetic diagnosis to screen for hereditary diseases............................15PGD to test for susceptibiliy to cancer...........................................................................15PGD and stem cells........................................................................................................16

Genetic research on stored tissues.....................................................................................16Informed consent in clinical trials of in vitro devices...........................................................16Concluding remarks about ethical issues............................................................................17Insurance underwriting and gene tests...............................................................................17

Should genetic information be available to health insurers?.........................................17A need for the re-examination of current views.............................................................18Genetic Information Nondiscrimination Act of US..........................................................18Impact of the US health care reform bill on genetic testing issues................................19

Patents for molecular diagnostics.......................................................................19PCR patents.........................................................................................................................19Patenting DNA sequences...................................................................................................19US policy on gene patenting relevant to molecular diagnostics..........................................20The impact of disease gene patents on molecular diagnostics...........................................20Licensing problems associated with genetic testing............................................................21BRCA1 and BRCA2 gene patents.........................................................................................21

Role of the WHO in genetic testing standards......................................................22NIH's Genetic Testing Registry............................................................................22Regulatory issues in the US................................................................................22

Assay Migration Studies for In Vitro Diagnostic Devices......................................................22Assessment of diagnostic accuracy.....................................................................................23

Sensitivity and specificity..............................................................................................23Documentation of diagnostic accuracy..........................................................................24

Discovery of incidental findings on genetic screening.........................................................24Evaluation of companion diagnostics/therapeutic for cancer..............................................25FDA regulation of multivariate index assays.......................................................................25FDA guidance for IVDs to detect pathogens........................................................................26FDA guidelines for devices to detect and differentiate HPV.................................................27FDA's Microarray Quality Control.........................................................................................27FDA and point-of-care diagnosis..........................................................................................28Genetic testing of rare disorders.........................................................................................28Quality control of molecular diagnostic laboratory procedures...........................................29Quality control of point-of-care tests...................................................................................29Regulation of IVD by the FDA..............................................................................................30Regulation of in vivo diagnostics by the FDA.......................................................................31Regulation of laboratory developed tests............................................................................31

Home-brew tests............................................................................................................31Laboratory-developed tests used by Medicare recipients..............................................32Oversight of LDTs by the FDA........................................................................................32

Regulatory aspects of FISH..................................................................................................33Regulation of genetic testing...............................................................................................33

Role of the FDA in genetic testing..................................................................................33Regulation of direct-to-consumer genetic testing................................................................34

Need for regulatory oversight of DTC............................................................................34Regulatory issues concerning blood and plasma products..................................................36United States Diagnostics Standards...................................................................................36

Regulation of in vitro diagnostics in the EU..........................................................37EU regulations for testing of blood products.......................................................................37Regulation of genetic testing in EU.....................................................................................37Evaluation of diagnostic laboratory tests in the UK.............................................................38Pre-implantation genetic diagnosis in the UK......................................................................39

12. Markets for Molecular Diagnostics............................................41Introduction.......................................................................................................41Methods for study of molecular diagnostic markets..............................................41The overall market for diagnostic technologies....................................................42Molecular diagnostic markets according to technologies......................................42

Marketing strategies according to technologies..................................................................43Nucleic acid isolation market...............................................................................................43Market for PCR-based tests.................................................................................................43

Markets for PCR instrumentation...................................................................................43

- 3 -

Page 6: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Markets for real-time PCR and qRT-PCR.........................................................................44PCR market players.......................................................................................................44

DNA sequencing market......................................................................................................45Cytogenetic market.............................................................................................................45

Market for FISH technologies.........................................................................................45Biochip/microarray market..................................................................................................46Biosensor market................................................................................................................46Nanobiotechnology for molecular diagnostics.....................................................................46Markets for gene expression technologies..........................................................................47Reagents and other disposable laboratory materials..........................................................47Market for immunochemistry diagnostic.............................................................................47Markets for tissue diagnostics.............................................................................................47

Molecular diagnostic markets according to therapeutic areas...............................47Genetic disorders................................................................................................................48Prenatal testing...................................................................................................................49Cancer.................................................................................................................................49

Potential markets for cancer diagnosis according to type of cancer..............................50Infectious diseases..............................................................................................................51

Sexually transmitted diseases.......................................................................................52Hospital-acquired infections...........................................................................................53Testing for HIV drug resistance......................................................................................54Potential markets for avian influenza diagnostics..........................................................54

Cardiovascular diseases......................................................................................................54Neurological disorders.........................................................................................................55Food testing........................................................................................................................55Screening of blood for transfusion.......................................................................................55Tissue typing for transplantation.........................................................................................56

Molecular diagnostic markets relevant to pharmaceutical industry.......................56Molecular diagnosis and personalized medicine markets....................................................56Growth of markets relevant to personalized medicine........................................................56

Marketing opportunities according to geographic areas.......................................57Unmet needs in molecular diagnostics.................................................................57Major market trends...........................................................................................58

Markets according to home-brew and FDA-approved tests.................................................58Decentralization of molecular diagnostics...........................................................................59Point-of-care testing............................................................................................................59Development of personalized medicine...............................................................................60

Cost of sequencing the human genome.........................................................................60Cost of genotyping.........................................................................................................61Marketing companion diagnostics for personalized medicine........................................61

Development of low-cost tests............................................................................................62Simplification of test procedures.........................................................................................62Increasing role of proteomics in clinical diagnostics............................................................62Forensic and legal applications...........................................................................................63

Marketing strategies..........................................................................................63Role of alliances in commercialization of molecular diagnostics.........................................63

Acquisitions vs collaborations........................................................................................64Analysis of collaborations in molecular diagnostics.......................................................67Licensing of the technologies.........................................................................................68

Strategies related to laboratory facilities and technologies.................................................68Strategies relevant to the healthcare system......................................................................68

Cost-Benefit studies.......................................................................................................68Genetic susceptibility testing.........................................................................................69Preventive medicine strategies......................................................................................69Targeting treatable and common diseases....................................................................69

Information/education.........................................................................................................70Physician education.......................................................................................................70Patient education...........................................................................................................70European diagnostic information platform.....................................................................71

Regulatory strategies..........................................................................................................71Merger of in vitro and in vivo diagnostics............................................................................71Integration of diagnostics with therapeutics........................................................................72Diagnostic applications in clinical trials...............................................................................72

Prospects for development of new technologies...................................................72Drivers for the development of molecular diagnostics........................................................72Factors slowing the development of molecular diagnostics................................................73Government support of research relevant to molecular diagnostics...................................74

Cost of sequencing the human genome.........................................................................74European projects for improving molecular diagnostics......................................................76

European Consortium for developing new DNA analysis tools.......................................76EU project for improvement of IVD tools procedures.....................................................76Genetic knowledge parks in the UK...............................................................................76

Molecular diagnostic opportunities in defense against bioterrorism....................................77Molecular diagnostics for food safety..................................................................................77POC diagnostics for the developing countries.....................................................................78

- 4 -

Page 7: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

13. Companies involved in molecular diagnostics............................79Introduction.......................................................................................................79Major players in molecular diagnostics................................................................79Profiles of selected companies............................................................................80Collaborations.........................................................................................................................462

Tables

Table 12-1: Share of in vitro diagnostics in the global diagnostic market 2010-2020....................42Table 12-2: Molecular diagnostics markets according to technologies from 2010-2020................42Table 12-3: PCR market 2010-2020................................................................................................43Table 12-4: Molecular diagnostics markets according to applications 2010-2020..........................47Table 12-5: Markets in 2010 for tests to screen healthy persons for genetic disorders..................48Table 12-6: Markets in 2010 for molecular diagnostic tests for cancer..........................................50Table 12-7: Molecular diagnostic markets for selected cancers 2010-2020...................................50Table 12-8: Markets value in 2010 for molecular diagnostic screening for infections....................51Table 12-9: Future markets for molecular diagnosis of infections 2011-2015................................52Table 12-10: Future markets for HAI diagnostics 2010-2015..........................................................53Table 12-11: Growth of markets relevant to personalized medicine 2010-2020............................56Table 12-12: Molecular diagnostic markets according to geographical areas 2010-2020..............57Table 12-13: Molecular diagnostic markets according to home-brew and approved tests.............59Table 12-14: Marketing strategies for molecular diagnostics.........................................................63Table 12-15: Takeovers of molecular diagnostic companies..........................................................64Table 12-16: Advantages of the integration of diagnostics with therapeutics................................72Table 13-1: Top ten players in molecular diagnostics.....................................................................79Table 13-2: Collaborations of companies in molecular diagnostics...............................................462

Figures

Figure 12-1: Unmet needs in applications of molecular diagnostics...............................................58Figure 12-2: Proportion of various areas in molecular diagnostic collaborations............................67

- 5 -

Page 8: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 6 -

Page 9: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

1 1 . E T H I C S , P A T E N T S A N D R E G U L A T O R Y I S S U E S

Introduction

The basic principles of ethics are well recognized in medical practice: do good and "do no harm." Moral values involved in ethics include the right of an individual to truthful information and confidentiality. Unfortunately, the rapid discovery of genes for diseases poses certain dilemmas for consumers, health care providers, and policy makers in relation to molecular diagnostic testing. In addition, the issues of providing equal access to health services and avoiding unnecessary or wasteful procedures are important considerations in the acceptance of these technologies. Because genetic information is an integral part of the human being, developments in molecular technology have attracted public attention and are being monitored by statutory bodies and ethics committees.

Genes are becoming the preferred way of explaining all types of ill health and unwanted behavior. Although some of these associations are clear-cut, many are being presented without any critical evaluation. Genetic testing has its pitfalls. Our increasing knowledge about the DNA sequences that constitute genes is changing the concept of wild type and normal genes and their mutations, for example, but the relationships between such sequences and their clinical manifestations are highly complex. In familial conditions, the actual nucleotide sequences are more variable than phenotype manifestations. On the other hand, persons with the same DNA pattern can have a range of clinical manifestations.

Legal issues related to molecular diagnostics involve patenting of DNA technology and the potential for breaches of ethics and rights of individuals. Most of the debate in this area has focused on the identification of genetic defects and cancer diagnosis. The use of molecular diagnostics for infections has created fewer ethical and legal dilemmas, with the exception of sexually transmitted diseases such as AIDS.

Ethical concerns about genetic diagnosis

Several issues arose after the discovery of disease genes, including those for which no treatment has been developed as yet. Concerns that have been expressed about this new knowledge focus on the following issues:

Communication problems can arise when the patient is deciding whether to undergo genetic testing and when the clinician must provide information as part of the informed consent process.

Counseling support is recommended to support genetic testing but facilities for such a service are rarely adequate.

Confidentiality and disclosure problems have emerged in this area. For example, if a physician discloses that he or she intends to inform the patient’s relatives of the results of genetic testing without the patient’s permission, and then the patient must be free to refuse testing from that physician. Such a policy could be coercive if the patient has no alternative providers, and it would raise complicated legal questions.

- 7 -

Page 10: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Early diagnosis of a serious illness like Huntington's disease in a latent stage poses a dilemma if no treatment has been developed for the disorder.

It remains unresolved whether parents are entitled to make decisions for the genetic testing of their children.

Preimplantation genetic diagnosis could potentially lead to the practice of eugenics.

The danger of discrimination by health insurers is readily apparent.

Ethical guidelines for molecular diagnostics

Some of the guidelines generally accepted to apply to genetic testing are:

Confidentiality in the area of genetic information is essential.

No large-scale screening program should be undertaken in a population unless its potential value has been shown by a pilot study.

Follow-up care should be provided for individuals undergoing screening, including proper provision of counseling services and appropriate medical care.

Screening for disorders that occur in certain racial and ethnic groups should take into consideration the sensitivity of this area (i.e., the potential for discrimination).

Guidelines for genetic testing have been proposed by various professional organizations throughout the United States and Europe as well as by the World Medical Association. Important points of most of these guidelines are:

Genetic investigations are permitted in persons who are legally of age, if they give consent. In minors and legally incapacitated persons, such testing may be performed only if the results have immediate relevance for their health or for the health of close blood relatives.

Patients with hereditary diseases or handicaps should be informed, in good time and in a proper way, of the existing opportunities for genetic investigations.

Genetic investigations must be accompanied by appropriate counseling before, during, and after the investigation.

The decision to carry out, continue, or stop the investigation rests exclusively with the patient, who will also decide whether and to what extent he or she wishes to be informed of, and to draw conclusions from, the results of the investigation.

In case of persons incapable of judgment, the consent of a legal representative is required. Minors capable of judgment and legally incapacitated persons under guardianship have their own right of decision.

The decision whether a prenatal genetic investigation should be carried out and what conclusions are to be drawn from the results belongs within the framework of the legal dispositions to the pregnant woman. It is desirable to involve the woman's partner in the decision-making process.

- 8 -

Page 11: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Persons subjected to a genetic investigation must be supported and given access to long-term medical, psychiatric, and social care, irrespective of any conclusions they may draw from the results of the investigation.

Genetic laboratory investigations must be undertaken by institutions that can show that their procedures and methods of working are impeccable and subject to external and internal quality control.

For results obtained in the course of genetic investigations, the same regulations governing professional and medical secrecy and data protection apply as for the other medical data.

The physician may make the medico-genetic findings available to third parties only with the consent of the person investigated or of his legal representative, and only after the implications of such disclosure of information have been explained to them.

From the medical point of view, genetic investigations must not be carried out with the purpose of assessing the suitability of a person for certain activities or work.

The guidelines for research investigations in humans also apply for the collection and the use of genetic data for scientific purposes.

Ethical aspects of direct-to-consumer genetic services

Companies offering direct-to-consumer (DTC) genetic screening tests are listed in Chapter 5 (Part I). Only ethical issues are discussed in this section and the regulatory aspects are discussed in a following section. DTC advertising for genetic tests that lack independent professional oversight raises troubling questions about appropriate use and interpretation of these tests by consumers and carries implications for the standards of patient care (Geransar and Einsiedel 2008). Concern has been expressed that these premature attempts at popularizing genetic testing neglect key aspects of the established multifaceted evaluation of genetic tests for clinical applications and could confound treatment or complicate doctor-patient relations (Hunter et al 2008).

A statement released by the American College of Medicine Genetics Board of Directors in 2003 states: "Genetic tests of individuals or families for the presence of or susceptibility to disease are medical tests. At the present time, genetic testing should be provided to the public only through the services of an appropriately qualified health care professional. The health care professional should be responsible for both ordering and interpreting the genetic tests, as well as for pretest and posttest counseling of individuals and families regarding the medical significance of test results and the need, if any, for follow-up. Due to the complexities of genetic testing and counseling, the self-ordering of genetic tests by patients over the telephone or the Internet, and their use of genetic “home testing” kits, is potentially harmful. Potential harms include inappropriate test utilization, misinterpretation of test results, lack of necessary follow-up, and other adverse consequences."

A commentary in the Journal of American Medical Association offers several caveats and recommendations to help doctors and counselors as they consider offering these research-based tests in clinical practice (Offit 2008):

There is concern about the scientific accuracy of some of these tests, because they have not yet been validated in prospective clinical studies. In addition, the laboratory accuracy of these tests may vary.

- 9 -

Page 12: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Direct to consumer aspect of the marketing of these tests excludes guidance from healthcare professionals. This limits the sources of information available to consumers about these tests and their accuracy from those marketing the tests. This critical lack of information raises concerns that patients/individuals may not have the resources to make unbiased decisions regarding whether to proceed with genetic testing.

Once these self ordered test results are relayed, individuals receiving the results may not receive counseling regarding appropriate medical interventions for prevention and early detection of genetic disorders.

As the controversy about DTC tests continues, the concern of the medical profession about the potential harm is reflected in the following comments (Annes et al 2010):

Most genetic screening currently cannot meet the expectations of established principles in order to avoid undue harm and expense and may place a substantial burden on the health care system without providing demonstrable benefit.

US Government Accountability Office's investigative report of 22 July 2010, cited erroneous medical management advice from DTC genetic-testing companies, and a lack of standardization of results — clinically valid tests for the same condition should yield concordant results.

Potential harms of DTC genetic testing include the loss of protections for patients offered by established health care delivery systems such as doctor–patient confidentiality, invalid analytic or clinical results from medical devices, and population screening without consensus on interpretation and follow-up.

Use of DTC genomewide profiling to assess disease risk is controversial, and little is known about the effect of this technology on consumers. A study on volunteers examined the psychological, behavioral, and clinical effects of risk scanning with the Navigenics Health Compass. In subjects who completed follow-up after undergoing DTC genomewide testing, there were no measurable short-term changes in psychological health, diet or exercise behavior, or use of screening tests (Bloss et al 2011). Therefore, potential effects of this type of genetic testing on the population at large remain known.

US public attitudes about genetic testing

According to a 2008 telephone survey of public attitudes about biomedical science, a majority of Americans support advancing genetics research and genetic testing, although more than one third are concerned about the safety guarantees of such science. According to Virginia Commonwealth University’s Life Sciences Survey in 2008, 80% of Americans favor making genetic testing easily available to all who want it, approximately the same number who felt that way in 2001 and in 2004. Americans also see genetics as playing a role in their lives, with 45% of adults saying that they have a disease or a medical condition that is strongly related to genetic factors, an increase of 7% over the 2007 survey. Among the 80% who support making genetic tests easily available to all who want them, 38% were somewhat in favor of such access and 42%% were strongly supportive. The margin of error for the survey is plus or minus 3.8 percentage points.

- 10 -

Page 13: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genetic testing for susceptibility to adult-onset cancer

Both hereditary and acquired genetic mutations play an important part in the development of cancer. Genetic and epidemiological research in families whose members have an increased incidence of cancer has provided useful information about risk-conferring mutations that are present in germline cells. Although predictive genetic testing for many cancer-predisposing mutations is technically possible, the usefulness of its results for early detection and prevention of cancer is limited.

As these tests become offered to consumers on a more widespread basis, it is important that an informed consent be obtained after educating the patients properly. The Task Force on Informed Consent, a part of the Cancer Genetics Studies Consortium (recipients of NIH grants), has made a number of recommendations regarding testing for susceptibility to cancer. The group’s important points, which also apply to other diseases with a genetic basis, are listed below.

Informed consent is more than passive transmission of information; it is an ongoing process in which both medical professionals and participants become partners in decision-making.

Patients should be educated by the most effective method according to their level of education.

Confidentiality should be maintained to minimize the risk of stigmatization.

The participant must be clearly informed of the purpose of the test and, in the case of a research project, the aims and design of the project.

Participants should be informed of the potential for adverse responses, such as anxiety, depression, and guilt feeling that can occur in those found to be mutation carriers.

An essential element of informed consent is the description of alternatives that may be relevant to the patient’s decision on whether to participate.

Some of the important research issues for genetic counseling for hereditary cancer are:

Correlation between genotype and phenotype (clinical outcome)

Efficacy of early detection and prevention strategies

Cost-effectiveness of genetic counseling and testing

Long-term psychological impact of testing on the individual

Ethics of preimplantation genetic diagnosis

Preimplantation genetic diagnosis to screen for hereditary diseases

Preimplantation genetic diagnosis (PGD), in conjunction with in vitro fertilization (IVF), has been used for over a decade to screen for genes certain to cause childhood diseases that are severe and largely untreatable. Ethical issues have been raised now as PGD is used to detect a predisposition to cancers that may or may not develop later in life, and are often treatable if they are detected early. For those who believe life begins with conception, PGD is as unethical as abortion and perhaps more pernicious because it is

- 11 -

Page 14: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

psychologically less burdensome. The procedure has also been used to avoid passing on Huntington’s disease, a severe neurological disease that typically does not manifest until middle age but spares no one who carries the mutation that causes it.

In the future, many IVFs will be performed for fertile couples seeking PGD, not as a treatment for infertility. But as it becomes easier to identify the possible consequences of more genetic mutations, the decisions for parents may become harder.

PGD to test for susceptibiliy to cancer

PGD, which requires IVF, is also difficult as well as expensive and can cost as much as $25,000 in the US. While insurance companies often pay for the more traditional uses of the procedure, they have not done so for cancer-risk genes. The barrier to affordability could make PGD for cancer risk the first significant step toward a genetic class divide in which the wealthy will become more genetically pure than the poor.

There are other reasons that the use of PGD to test for cancer predisposition is not widespread although the exact number of such tests is not known. Cancer-prone families are only just beginning to hear about PGD as the medical channels of information on these issues are not defined. Oncologists tend not to think about family planning, and obstetricians tend not to think about cancer genetics. Physicians may also avoid getting involved in unnatural selection. Moreover, persons without the cancer-risk genes can still develop cancer, and those who do carry the genetic mutations are just as likely as anyone else to develop other diseases. In spite of these concerns, clinics around the US have been quietly performing PGD for hereditary cancers of the breast and the colon.

While constituting new reproductive options for families affected by cancer, the medical indications and ethical acceptance of assisted reproductive technologies for adult-onset cancer predisposition syndromes remain to be defined. Continued discussion of the role of PGD in the reproductive setting is needed to inform the responsible use of these technologies to decrease the burden of heritable cancers (Offit K, et al. Cancer Genetic Testing and Assisted Reproduction. J Clin Oncol 2006;24:4775-82).

In the US, where the technology is not regulated, decisions about when it is appropriate are left largely to fertility specialists and their patients. Reflecting the growing demand for the procedure, the company that owns the tests for the breast cancer genes, Myriad Genetics, has licensed the right to use them to three fertility centers. The interest in PGD is being driven largely by a greater knowledge of genetics among cancer patients and their family members. In the last five years, nearly 10 times as many Americans have been tested for the breast-cancer-risk genes as in the previous five, according to Myriad, surpassing a total of 100,000 since the test was made available in 1996.

In Europe, divergent values are quite explicitly shaping different PGD policies. UK has approved the use of PGD for the breast and colon cancer risk genes. In Italy, the procedure has been effectively banned for any condition.

PGD and stem cells

A common objection to using PGD to choose an embryo that may produce a child who would provide stem cells for an existing person is that children conceived for the benefit of their siblings are not valued in their own right. In

- 12 -

Page 15: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

some countries, the use of this procedure will have few social consequences and is likely to be a reasonable use of limited health resources. Using PGD to choose a stem cell donor is unlikely to cause harm to anyone and is likely be beneficial to some. In countries where PGD is already permitted, using PGD solely for choosing a HLA compatible embryo to provide stem cells for treating an existing person should also be permitted. Now that a technique has been described that enables creation of human embryonic stem cell lines from a single cell removed from the 8-cell embryo without destroying the embryo provides an opportunity to combine PGD with creation of stem cells.

Genetic research on stored tissues

Several agencies maintain collections of DNA samples of human tissues. The U.S. Centers for Disease Control and Prevention (CDC), for example, has an archive of DNA samples blood collected from persons of different ethnic backgrounds for research on genetic disorders. Genetic research using such stored tissue samples presents an array of risks and benefits to both individual researchers and society as a whole. Those who believe that the use of stored tissue samples should be tightly regulated worry that the DNA in these samples could be examined for disease-related genes. Finding such genes in residual tissues collected for another purpose raises a host of ethical issues. If the testing detects an incurable disease, should this genetic information be disclosed to patients who were unaware that such tests were performed? If these samples are made anonymous for research purposes, physicians would face the ethical dilemma of not being able to disclose such information to patients, preventing them from receiving potentially desirable and helpful information. Accepted ethical guidelines for such research on tissues are:

Informed consent is required for all genetic research using identifiable samples unless conditions for limitation or waiver are met.

Informed consent is not required for genetic research using anonymous samples, but may be considered in the case in which identifiers are removed from currently identifiable samples.

Institutional review boards should carefully review all protocols that propose to use samples for genetic research.

Informed consent in clinical trials of in vitro devices

The need for informed consent from human subjects whose specimens are used in in vitro diagnostic studies are sometimes questioned. This is more so if the research carries only minimal risk to the subject. However, the ethical principles require consent from the subject to participate in research regardless of any risk. The FDA regulations and guidance require Institutional Review Board review of the IVD studies and informed consent from the participants. Many manufacturers of IVD feel that most Class I and II studies (minimal risk to the patient) should be considered for exemption from informed consent requirements to balance the concerns of patient privacy and advancement of medical care. It is agreed that for Class III (high risk) studies that involve extensive patient data, informed consent would be required.

Concluding remarks about ethical issues

There is a continuing discussion on ethical implications of genetic testing as new genetic tests become available. There is emphasis on the respect for

- 13 -

Page 16: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

patient autonomy and confidentiality of test results to avoid abuse of test results. Proper communication of genetic principles and counseling is required for the patients to make informed and autonomous decisions regarding a genetic test, free from coercion by family members or the medical profession.

One of the most critical issues is the use of genetic information in making reproductive decisions, where the interests of future generations are at stake. Another issue is presymptomatic testing of children, particularly in situations where children do not understand the implications of genetic testing. When it is deemed appropriate to offer presymptomatic testing to a child for a carrier status, the pediatrician or the geneticist must discuss the pros and cons with the family so that an informed decision can be made.

As genetic testing extends beyond single gene disorders to testing large segments of society for genes associated with common disorders, the psychological impact on the individual and the families needs to be assessed. There is evidence that stress associated with genetic screening can be reduced by careful assessment of psychological status before and after assessment, counseling, and support. Research is needed to determine the most effective and practical counseling strategies for the increasingly large number of persons who will be offered genetic testing for treatable conditions.

Finally, many of the ethical issues are linked to socioeconomic factors. Allocation of scarce health care resources may eventually determine which diseases are subject to molecular analysis. Those for which beneficial medical interventions are available may receive top priority.

Insurance underwriting and gene tests

Insurance-related concerns figure prominently in all discussions of advances in molecular genetic testing. Several types of insurance exist. Health care insurance may exclude the genetic disorders to which an individual is prone if the insurance company knows about information gleaned from genetic testing. An even more critical issue arises if life insurance is denied to a person or his or her close relatives based on the results of genetic testing. In some cases, such discrimination may be unfair. For example, a woman with a positive BRCA1 test may undergo prophylactic bilateral mastectomy, thus eliminating her risk of developing breast cancer; nevertheless, her genetic information goes on record and may still prove detrimental to her in obtaining insurance.

Should genetic information be available to health insurers?

A key question is whether genetic information should be made available to health insurance and life insurance companies or whether these firms should be allowed to ask prospective customers to undergo genetic testing as a condition for taking out an insurance policy. Opinions on this issue are divided. The US working group on Ethical Legal and Social Implications (ELSI) of the Human Genome Project and some public affairs groups maintain that genetic information should not be released to these companies. Several states prohibit genetic testing and the use of genetic information for public health insurance purposes. Only some 10% of the US population is eligible for public insurance, however; the majority of residents are covered by private insurance. To date, no restrictions prohibit such private insurers from requesting genetic tests. Although these companies do not ask for genetic testing yet, they have stated a preference for obtaining the results of genetic information so as to better estimate life expectancy and, therefore,

- 14 -

Page 17: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

calculate premiums more accurately. Of course, the danger is that they might use this information to deny coverage altogether.

The insurers' view that genetic information is important to accurately assess the future risk of an individual making a claim is questionable. Single genes can have several mutations occurring anywhere, all with varying levels of influence. Some mutations may remain clinically insignificant. Moreover, the time of onset of disease is often unpredictable, further complicating early detection and prevention efforts using genetic test results. It is important, therefore, for policy-makers and other stakeholders to recognize that in many cases the causality between a particular gene and its associative illness is somewhat weak.

As an alternative to genetic testing, some insurers would like to gain access to the family history of disease. Critics of this approach note that information about predisposition to a disorder is not the same as medical history; such information, unlike genetic tests, does not indicate how long a person would live. Sufferers from monogenic disorders such as Huntington’s disease fall within the 5% of cases that currently have to pay more for insurance. It is questionable whether the insurance industry would be capable of handling and interpreting sensitive and complex medical information in cases of polygenic disorders that arise within the remaining 95% of insured. The prospects of higher insurance premiums might deter people from undergoing genetic testing, thereby hindering the effectiveness of various genetic testing programs.

A need for the re-examination of current views

The growing use of genetic testing will require a re-examination of current health information management protocols to prevent the misuse of test results. Lack of such guarantees could create severe disincentives for genetic testing in general. Fears of discrimination or isolation, and now the recognition that insurance might not be available, have caused patients to forgo a test that would otherwise prove medically beneficial. The impact of a deterrent effect can be devastating for patients, the research community and the area of preventive medicine. Alternatively, people might seek such tests outside the doctor–patient relationship. This could have severe implications for both the health of the patient and the provision of health services. The nature of genetic testing makes the establishment of one standard with regard to familial disclosure difficult and doctors could be torn between their duty to protect a patient's confidentiality and informing family members about a potentially life threatening disease. Fear and unease could force patients to conceal their results from their physicians and families, posing dire consequences for early detection and prevention efforts. It is also widely held that the complexity surrounding genetic testing demonstrates a clear need for extensive pre-test and post-test counseling.

There is a clear need for further discussion of genetic testing and genetic information. This will need to take account of not only the implications for insurance but also the wider social and ethical dilemmas, such as confidentiality, discrimination and changes in the doctor-patient relationship.

Genetic Information Nondiscrimination Act of US

In 2008, the US Congress passed the legislation, known as the Genetic Information Nondiscrimination Act (GINA), which prohibits the following (Hudson et al 2008): (1) group and individual health insurers from using a person's genetic information in determining eligibility or premiums; (2) an insurer from requesting or requiring that a person undergo a genetic test;

- 15 -

Page 18: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

and (3) employers from using a person's genetic information in making employment decisions such as hiring, firing, job assignments, or any other terms of employment. GINA does not prevent health care providers from recommending genetic tests to their patients or mandate coverage for any particular test or treatment.

As a result of GINA, more people are expected to take advantage of genetic testing and to participate in genetic research. However, the health insurance measure would not go into effect until a year after, and the employment measure would take effect only after 18 months. Even then, there may be reason to be cautious. The bill may be hard to enforce and it does not address discrimination by long-term care insurers or life insurers. The use of genetic information that the bill is likely to encourage may raise still more questions about how it should be used.

Impact of the US health care reform bill on genetic testing issues

The US health care bill, which is in the process of finalization in March 2010, will have a significant impact on some of the issues discussed in this section. The insurers could no longer deny coverage to any person because of genetic testing results, removing one factor that discourages people with family history of genetic disorders from having genetic tests. In a universal healthcare system, the use of molecular diagnostics will increase, particularly in the previously uninsured population of approximately 32 million.

Patents for molecular diagnostics

PCR patents

The fundamental patents of PCR expired in the US in 2005, unlocking considerable market opportunities. Smaller companies entering the clinical diagnostic kits development may be able to offer tests without developing a novel nucleic acid technology, which will normally require heavy R&D investment in addition to licensing fees.

Patenting DNA sequences

Patenting in life sciences is a very broad and controversial field. Patents obviously go way back to the US Constitution. The Patent Act permits exclusive control for a limited time (currently 20 years) of any "process, machine, manufacture, or composition of matter," and since its inception, the USPTO has granted patents on new pharmaceuticals and medical devices. However, as recently as the 1970s, the view among many medical researchers and legal scholars, as well as members of the USPTO, was that DNA sequences were not patentable, primarily because DNA is a naturally occurring substance rather than a human invention. This perception changed in 1980 with the Supreme Court's landmark ruling in Diamond v. Chakrabarty which involved a dispute over the patentability of a microbe that dissolves oil and that had been specially constructed to include a DNA plasmid (Diamond v. Chakrabarty, 447 US 303. 1980). The Court held that although the Patent Act did not authorize ownership of laws of nature, "products of nature," or physical phenomena, "anything under the sun made by man" was patentable, including the human-made bacterium at issue in the case. The USPTO considered DNA sequences to be large chemical compounds when determining their patentability. Nevertheless, DNA sequences are discovered, not invented, and are therefore quite different from genetically engineered products such as those in the Chakrabarty case.

- 16 -

Page 19: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

By the 1990s, technological advances in DNA-sequencing strategies began enabling scientists to discover and isolate new genes at a rapid rate. Ultimately, thousands of patents were awarded on different parts of the human genome sequence; reportedly, about 20% of human gene DNA sequences are currently patented. On the one hand, this approach benefits applicants who seek patents for previously unidentified DNA sequences. On the other hand, it represents a disadvantage for discoverers of biological functions and disease relevance for previously identified genes. Companies that identify novel genes could obtain patents on the basis of only preliminary identification of gene function. In this environment, patentability of discoveries related to gene function may be critical in deciding whether to allocate the commercial investment necessary to develop products from knowledge of the genome. However, the questions about the patentability of human genes and the process of comparing DNA sequences remained under discussion for several years. Academic scientists and funding agencies opposed large proprietary claims on the human genome and encourage researchers to deposit EST data in public databases. Such an approach would reduce the value of private databases held by some companies working in this field. In addition, if DNA data are published before a patent application is filed, genes may be considered "obvious" and unpatentable.

US policy on gene patenting relevant to molecular diagnostics

In 2008, a US government panel was assigned the task of developing policy options about gene patenting. The task force so far has focused on assessing the positive and negative effects of current gene patenting and licensing practices, and it has covered gene patents for diagnostic, predictive, and other clinical purposes, as well as the effects on translational research. The studies have avoided studying drug and other therapeutic product development. So far, the task force came up with a range of possible policy recommendations for the committee to consider developing and passing on to the secretary. Recommendations were made for commissioning a series of case studies to be conducted by Duke University’s Center for Genome Ethics, Law and Policy. The center reviewed and analyzed a number of case samples, including those relating to BRCA1 and BRCA2 for hereditary breast and ovarian cancers, as well as tests for Alzheimer’s disease, hearing loss, Tay-Sachs and Canavan diseases, Long QT syndrome, and other diseases. From this range of studies, the panel drew a number of preliminary conclusions. The case studies suggest that the use and enforcement of intellectual property rights (IP), and not so much whether a gene is patented or unpatented, could potentially create barriers to clinical use of the gene. The group found that there is no clear relationship between patents, license exclusivity, and price of a genetic diagnostic test. Another finding was that the regulation of IP rights may not be the best action for fixing problems regarding the quality of genetic testing as these issues may be better addressed through evaluation and regulation of genetic tests and by coverage and reimbursement systems. The group developed a number of draft policy options covering a variety of related areas. These policies would address advocacy efforts by stakeholders that would ensure access and those that would enhance transparency in patents and licensing. Some policy recommendations are related to how research agencies should handle data related to genetic IP and report it to federal funding agencies, and some are aimed at guiding agencies such as the NIH as they promote adoption of best practices for genomic and genetic inventions. The NIH in particular could consider the feasibility of making compliance with its best practices for licensing genomic inventions a consideration in future grants awards.

- 17 -

Page 20: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

The impact of disease gene patents on molecular diagnostics

In the past, patented diagnostic tests were made broadly available to the medical community in the form of test kits or licenses to use the patented test. The rapidly growing number of disease gene patents that claim all methods of diagnosis of a particular genetic condition has led to monopolization of some testing services in clinical laboratory medicine. Arguments against monopolization of medical testing services are:

It threatens to restrict research activities.

It creates unacceptable conflict of interest.

It reduces the patient access to testing.

It may lead to inequitable extensions of patent terms on tests and related discoveries.

It grants to patent holders the ability to dictate the standards of care and interfere with the practice of medicine.

US laboratories have discontinued genetic testing for hereditary hemochromatosis because of the cost of the patent. This was the first evidence to support growing concern about the effects on clinical practice of commercializing molecular-genetics discoveries. Patents are important in ensuring that costly research is rewarded, but royalties must be realistically set if they are not to stifle the advances they are meant to encourage. Physician groups voiced concern about the impact that patents have on the use of the genetic test in patient care. The BRACAnalysis test, which costs over $3,000, may be too expensive for some patients. DNA patents also prohibit sale of less expensive tests based on the same genes, even if the test technologies are different.

Licensing problems associated with genetic testing

Advances in genetic diagnostic technologies are accompanied by an increasing number of patents covering not only the genes and their fragments but also the technologies. This might be a hinderance to the use of these tests by clinicians and researchers as well as for drug discovery. Patents and licenses have had a significant effect on the ability of clinical laboratories to develop and provide genetic tests. Most of the clinical laboratory directors, believe that patents have a negative effect on the cost, access, and development of genetic tests, or data sharing among researchers. Clinical geneticists feel that their research is inhibited by patents. Some of the causes of this hinderance are:

Patentees exercise their rights to exclude the use of their technologies to anyone other than the exclusive licensees.

Potential users of genetic tests may have to acquire multiple licenses to cover all components of the technologies.

Several solutions have been proposed to this problem. “Patent pools” has been suggested, which involves an arrangement in which two or more owners agree to license certain of their patents to one another, and/or third parties.

- 18 -

Page 21: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BRCA1 and BRCA2 gene patents

A particular example is Myriad Genetics' patents covering the BRCA1 and BRCA2 genes and their use in screening for elevated risks of breast and ovarian cancer. Myriad's team, with academic collaborators working on government grants, won a race with several other groups to identify the nucleotide sequences composing the BRCA1 gene. Myriad also filed for a patent on the BRCA2 gene, although it may not have been the first to identify its sequence. Myriad's patents, the earliest of which expire in 2014 and 2015, cover isolated gene sequences, as well as methods of "analyzing" and "comparing" the gene sequences to determine whether the mutations conferring an increased risk of breast or ovarian cancer are present. Myriad launched its combined genetic test, BRACAnalysis, in 1996.

BRCA gene patents were owned by the University of Utah and exclusively licensed to Myriad Genetics, which commerlcialized breast and ovarian cancer tests based on this gene. In 2004, the European Patent Office rejected some of Myriad's patent claims and limited others because they did not meet its legal standard of inventiveness. A lawsuit was brought against Myriad, USPTO and the University of Utah Research Foundation by the Association for Molecular Pathology of USA and the American Civil Liberties Union, challenging the legality and constitutionality of BRCA gene patents. Plaintiffs claimed that the BRCA gene patents stifle research that could lead to cures and limit women's options regarding their medical care. Myriad also is co-owner of several patents challenged in the suit. In total, the plaintiffs challenged the legality and constitutionality of 4 categories of claims in 7 US patents. In July 2009, the USPTO filed a motion to dismiss the case, arguing that the plaintiffs lack standing to sue the USPTO, the Court lacks subject matter jurisdiction, and the action is barred by the sovereign immunity. This argument was rejected by the court and the case was set for trial. On 29 March 2010, a federal district court judge invalidated many of Myriad's patent claims, citing the Supreme Court's prior rulings that patentable products must have "markedly different characteristics" from what is found in nature. Purification alone does not change the nucleotide sequence of DNA, which determines its ability to detect mutations. This ruling, if upheld, will have far-reaching effects for the research and genetic diagnostics fields (Kesselheim and Mello 2010). Genes themselves will be off-limits for patents, and tests that consist of comparing gene sequences will not be patentable because they do not involve a transformative step. Such tests could still be marketed but could face competition much earlier than they have in the past.

Role of the WHO in genetic testing standards

In 2004, the first international standard for a human genetic test was approved by the WHO Expert Committee on Quality Assurance and Safety of Biologicals. Use of the standard will help to improve the accuracy and quality of laboratory results worldwide from a frequently used genetic test. The newly established standard, formally called an International Reference Panel, relates to the testing of patients for Factor V Leiden genetic mutation, which is one of the most common genetic risk factors for venous thrombosis and is involved in 20-40% of all cases. The standard for Factor V Leiden was developed by WHO partner and the leading international laboratory for biological standards, the National Institute for Biological Standards and Control (NIBSC) in the UK, in collaboration with colleagues from the clinical National Quality Assessment schemes for Blood Coagulation and the Royal Hallamshire Hospital in Sheffield, UK. The rigorous assessment of the standard for the Factor V Leiden genetic test was carried out by an international panel of investigators in conjunction with the International Society on Thrombosis and Hemostasis.

- 19 -

Page 22: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

A standard for a biological product is essentially a yardstick (either on paper or in an ampoule, in which there is a specially prepared reference material) which enables laboratories around the world to compare results. The work of the WHO Expert Committee on Biological Standardization contributes to global public health in a fundamental way since the written guidance and reference preparations established on its recommendations define international technical specifications for the quality and safety of biological medicines and in vitro diagnostic procedures.

NIH's Genetic Testing Registry

In March 2010, the NIH announced that it is starting the Genetic Testing Registry (GTR) – a public database on genetic testing that will allow consumers, researchers, health care providers, and others to search through information submitted by genetic test providers.

GTR will serve as a resource of information about the availability, validity, and utility of the more than 1,600 genetic tests currently on the market. The goal of the GTR project is to use that information to advance both public health and research. The program will encourage test providers to enhance transparency by sharing information about their tests with the public, will provide a resource for patients and scientists to find labs that offer particular tests, and will facilitate genomic data sharing. Genetic test data will be integrated with information from other genetic, scientific, and medical databases in order to facilitate new research. GTR will help consumers and health care providers determine the best options for genetic testing, which is being used more often and is accessible. GTR, which is expected to be available in 2011, will be overseen by the Office of Director of NIH, and its development will be handled by the National Center for Biotechnology Information. Although NIH is developing the site, it will engage with a range of stakeholders, including genetic test developers, test kit makers, health care providers, patients, and researchers, for the best ways to collect and display test information.

Regulatory issues in the US

Assay Migration Studies for In Vitro Diagnostic Devices

In January 2009, the FDA released a draft guidance, “Assay Migration Studies for In Vitro Diagnostic Devices”, covering submission regulations for diagnostics developers seeking approval for Class III IVD devices. The guidance proposes a set of updates that FDA believes would create a less burdensome regulatory path to approval for a previously approved or licensed assay that is being migrated for use with another system for which it has not been approved. FDA will take comments through 6 April 2009, after which it will begin working on a final version of the guidance. FDA believes that with proper controls and review, migration studies will meet regulatory thresholds for pre-market review in a manner that will be least burdensome for both companies and FDA while protecting public health. The new methods would not apply to diagnostic systems that are intended for over-the-counter use, for prescription home use, or for point-of-care use.

The guidance includes recommendations on a number of areas for submitters to consider, including qualitative and quantitative results, reproducibility studies, comparison panels, testing venues, analyte performance levels, statistical analysis information, and recommendations on other areas. FDA also lays out specific criteria it deems unique to nucleic acid tests, and it said

- 20 -

Page 23: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

that such tests present specific concerns that are different from serological and antigen assays. Some of these criteria include suggestions about validating and controlling material and calibrators, sample stability, sample processing, and carryover studies.

Assessment of diagnostic accuracy

The concept of diagnostic accuracy is well defined in laboratory standards and is determined by the sensitivity and specificity of new diagnostic tests in comparison with "gold standard" and by the prevalence of the condition in the test population.

Sensitivity and specificity

Sensitivity is the proportion of positives correctly identified by the test, and specificity is the proportion of negatives correctly identified by the test. Sensitivity and specificity do not tell us the probability of the test resulting in a correct diagnosis, whether it is positive or negative. For this we use positive and negative predictive values. Positive predictive value is the proportion of patients with positive test results who are correctly diagnosed; negative predictive value is the proportion of patients with negative test results who are correctly diagnosed. Positive and negative predictive values give a direct assessment of the usefulness of the test in practice. The 4 possibilities are as follows:

a) True positive: The test is positive, and the disease is present.

b) False positive: The test is positive, but the disease is absent.

c) False negative: The test is negative, but the disease is present

d) True negative: The test is negative, and disease is absent.

These quantities can be represented as follows:

Sensitivity = a/(a + c)

Specificity = d/(b + d)

Positive predictive value (PPV) = a/(a + b)

Negative predictive value (NPV) = d/(c + d)

Prevalence of the disease in the study can be calculated as (a + c)/n if the study is carried out in a definable group of patients.

With the above information, positive predictive value and negative predictive value can be calculated as shown in the formulae in the box below:

- 21 -

PPV=

NPV = )prevalence-(1x yspecificit prevalencex y)sensitivit-(1)prevalence-(1x yspecificit

Page 24: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Documentation of diagnostic accuracy

Exaggerated and biased results from poorly designed and reported diagnostic studies can trigger their premature dissemination and lead physicians into making incorrect treatment decisions. A rigorous evaluation of diagnostic tests before introduction into clinical practice could not only reduce the number of unwanted clinical consequences related to misleading estimates of test accuracy but also limit healthcare costs by preventing unnecessary testing. Studies to determine the diagnostic accuracy of a test are a vital part of this evaluation process.

In studies of diagnostic accuracy, the outcomes from one or more tests under evaluation are compared with outcomes from the reference standard both measured in subjects who are suspected of having the condition of interest. The reference standard can be a single method, or a combination of methods, to establish the presence of the target condition. It can include laboratory tests, imaging tests, and pathology, as well as dedicated clinical follow up of subjects. The term accuracy refers to the amount of agreement between the information from the test under evaluation, referred to as the index test, and the reference standard. Diagnostic accuracy can be expressed in many ways, including sensitivity and specificity, likelihood ratios, diagnostic odds ratio, and the area under a receiver-operator characteristic curve. Ensuring a standardized approach to data gathering has been emphasized by publication of a standardized approach. The objective of the Standards for Reporting of Diagnostic Accuracy (STARD) initiative is to improve the quality of reporting of studies of diagnostic accuracy. Complete and accurate reporting allows readers to detect the potential for bias in a study (internal validity) and to assess the general applicability of results (external validity).

EZValidation™ Online Tool (Life Technologies) is designed to aid molecular diagnostic laboratories in the verification, validation, or calibration verification of a molecular test. It is intended to assist laboratories in meeting their verification and validation requirements. Each laboratory is responsible for ensuring compliance with applicable international, national, and local clinical laboratory regulations and other specific accreditations requirements. This tool will guide the validation and verification of a molecular assay.

Choose guidelines applicable to a lab (CAP/CLIA/New York State or ISO 15189)

Design additional custom guidelines to meet a laboratory’s needs

Set acceptance criteria for a study

Print a final report of validation or verification

Discovery of incidental findings on genetic screening

New genome-scale screening tests may lead to a phenomenon in which multiple abnormal genomic findings are incidentally discovered, analogous to the “incidentalomas” that are often discovered in radiological studies. The “Incidentalome” in radiology has some benefits resulting from discovery of unexpected potentially life-threatening conditions that can be treated prior to clinical manifestations. However, the incidentalome resulting from molecular diagnostics threatens to undermine the promise of molecular medicine in at least three ways (Kohane IS, et al. The incidentalome: a threat to genomic medicine. JAMA 2006;296:212-5):

- 22 -

Page 25: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

1. Physicians will be overwhelmed by the complexity of pursuing unexpected genomic measurements.

2. Patients will be subjected to unnecessary follow-up tests, causing additional morbidity.

3. The cost of genomic medicine will increase substantially with little benefit to patients.

Given the current limitations of sensitivity and specificity of many genomic tests, application of these for screening of large populations to detect conditions with low prevalence will result in large numbers of false positives. Even if genomic tests were to achieve 100% sensitivity and a false-positive rate of zero, the risk of the incidentalome still remains. Some pathology of disease discovered incidentally never reaches clinical significance and may not influence decision for management. For example, a large number of prostate carcinomas accurately diagnosed after the finding of an elevated prostate-specific antigen level in all likelihood would not contribute to an individual’s death and may not be treated.

The role of a genome-wide panel (i.e. a panel of 500, 000 genetic polymorphisms all ordered and measured together), however cost-effective to measure, needs to be compared with a series of more focused genomic-based panels with clear indications for use and proper protocols for workup of unexpected findings. The physicians need to be educated to ensure that there is appropriate clinical justification to perform these tests in a manner that ushers in the era of personalized medicine and does not allow the incidentalome to block its arrival.

Evaluation of companion diagnostics/therapeutic for cancer

Currently, there is no proven development pathway for FDA approval of the necessary companion diagnostic tests and their associated targeted therapies. In 2007, the Critical Path Institute (Tempe, AZ) used a $2.1 million Arizona state grant to work with the FDA and the NCI to standardize how companion diagnostics and therapies for cancer are evaluated. Ventana Medical Systems tested the resulting process. The goal of this collaboration was to establish the performance standards that would serve as the model for future FDA co-submissions of companion diagnostic tests and cancer drugs. The first test to which the standards were applied was a diagnostic for lung cancer produced by Ventana. The ultimate goal of the project is to guide the choice of targeted therapy so that patients receive the most effective treatments.

FDA regulation of multivariate index assays

In 2006, the FDA took a step toward regulating a new category of complex genetic diagnostic tests that are expected to play a growing role in tailoring medical treatments to specific patients. The FDA is calling these tests “multivariate index assays (MIAs).” According to the FDA, such tests require approval before they can be marketed to ensure that the tests are valid. The new policy, published as draft guidelines, is open for public comment and would also be a step toward expanding the FDA’s oversight to clinical laboratories (http://www.fda.gov/cdrh/oivd/guidance/1610.html). The FDA published a notice of availability of a revised draft guidance, on "In Vitro Diagnostic Multivariate Index Assays'' in the Federal Register of 26 July 2007 (72 FR 41081) and comments were invited. As of December 2008, no decision had been made by the FDA. At this time Genentech filed a Citizen Petition with the FDA urging the agency to take on greater oversight of

- 23 -

Page 26: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

diagnostic tests that are intended to guide therapeutic decisions and to regulate all laboratory-developed tests. According to Genentech, pharmacogenomic information is contained on the label of around 10 percent of all FDA-approved drugs. Included among those are Genentech’s trastuzumab (Herceptin), which requires that patients be tested for particular genetic characteristics and the results be considered before the drug is administered.

Currently, tests developed and performed by a single laboratory, known as home-brew tests, have been generally considered laboratory services and outside FDA purview. Now the FDA will regulate at least one category of such tests: those that measure multiple genes, proteins or other pieces of clinical information taken from a patient and then use an algorithm or software program to analyze the data.

The best known of these tests is Oncotype DX (Genomic Health). It analyzes the activities of 21 genes in a sample of breast tumor and then computes a score that is said to be predictive of whether a patient’s cancer will recur and whether she would benefit from chemotherapy. While there are only a few such complex tests on the market now, their number is expected to grow. For personalized medicine, a combination of genes or proteins is a better indicator of disease or disease risk than a single gene or protein. FDA considers regulation of such tests because the algorithms used are usually proprietary, making it difficult for physicians to interpret the test results. Therefore, the agency needs to look at the data on which these tests are developed. The FDA would decide case by case what to do about the tests already on the market. Some might have to come off the market until the developer can provide enough data for approval. The FDA approach will meet the need for an oversight of genetic tests, which have proliferated and are becoming increasingly complex. Government agencies have been criticized for not doing more to clamp down on questionable genetic tests that are being sold directly to consumers.

Three components are needed to ensure the safety and quality of genetic tests: (1) the laboratories that conduct the tests must have quality control and personnel standards in place to prevent mistakes; (2) the tests themselves must be valid and reliable, i.e. detect genes that are actually related to disease or disease risk accurately over time; and (3) health care providers must understand when to order the tests, how to in interpret them, and what to do with the results. Once these mechanisms are in place, uses and outcomes also must be evaluated over time in order to pinpoint any problems that may require attention, particularly as new tests enter wider use

However, the requirement could also discourage the development of diagnostics by raising the costs of introducing them. Requiring clinical trials and FDA approval would discourage development of tests, which do not usually command the same profits as drugs. The requirement could discourage gradual improvements of tests because each change in a test might require a new regulatory submission. The draft policy has raised speculation that the FDA will eventually move to regulate additional laboratory tests beyond the complex ones.

In 2007, in a change of its policy described earlier in this chapter under the heading "Regulation of IVD by the FDA", the FDA classified gene expression-based breast cancer prognostic tests as Class II devices and released a “special controls” guidance for companies developing such tests. The document is designed as a prototype guidance that will provide a general framework for how the FDA’s Office of In Vitro Diagnostics approaches IVD MIAs. The FDA cleared the first such IVDMIA device – Agendia’s

- 24 -

Page 27: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MammaPrint test – in February 2007. In a Federal Register notice on 8 May 2007, FDA explained that it had originally classified MammaPrint as a Class III device, which would have required full premarket approval, but Agendia filed a petition requesting that the device be reclassified into Class II, which only requires 510(k) premarket notification. The FDA determined that MammaPrint, as well as future genomic breast cancer prognostics tests, can be classified as class II devices with the establishment of special controls, which are outlined in the guidance document as follows: “Any firm submitting a 510(k) premarket notification for a gene expression profiling test system for breast cancer prognosis will need to address the issues covered in this special controls guidance,” the agency said in the document." The recommendations in the guidance document apply to RNA expression assays used for cancer prognosis, including RT-PCR and gene expression microarrays, in which an algorithm is applied to such measurements to yield a result that can be used by physicians as a prognostic marker, in combination with clinicopathological factors, to assess the risk of cancer recurrence. The process for reviewing such tests is “contingent on the intended use of the device, therefore, design of studies and data sets required will be influenced by a particular use. In this instance, a test for the prognosis of breast cancer would require different data than a test used to diagnose the disease. A number of tumor markers have already cleared as Class II devices.

FDA guidance for IVDs to detect pathogens

In 2005, the FDA released draft guidance for industry on the types of information the agency would consider during the premarket review of nucleic acid-based IVDs that detect exposure to pathogens. The document, which represented the FDA's thinking on nucleic acid-based IVDs, comes at a time when the US government and many companies were actively engaged in developing microarrays and diagnostics tools to detect and manage such pathogenic diseases as bird flu and anthrax. The FDA acknowledged that the recommendations were "purposefully" general as they are intended to be a "framework" for the types of data that should be addressed in the premarket review of these devices. The document outlines its recommendations under four headings:

1. Risks to health. This recommends providing sufficient detail to indicate the device has been designed to reduce errors in performance or in interpreting test results.

2. Device descriptive characteristics. This seeks information on the patient population to be tested, targeted disease and organism, testing methods, reagent components, instruments to be used, and safety aspects.

3. Performance. The recommendations specify data indicating reliability, diagnostic accuracy, and reproducibility.

4. Labeling requests information on how specimens were collected and the types of collection devices used.

FDA guidelines for devices to detect and differentiate HPV

In September 2009, the FDA’s Center for Devices and Radiological Health issued a draft guidance for its staff and industry covering analytical/clinical performance of IVD devices to detect and differentiate HPV in conjunction with cervical cancer screening (http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm181509.htm). FDA has proposed a number of recommendations, covering

- 25 -

Page 28: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

performance characteristics for analytical studies, the risks to health, detection limits, repeatability, specimen and reagent storage rules, and intended use. Specifically, the guidance addresses devices for detecting HPV nucleic acid from cervical specimens, but many of the recommendations will be applicable to protein-based tests. The failure of devices that detect and differentiate HPV strains to correctly interpret results can lead to incorrect patient management decisions in cervical cancer screening and treatment. Because cervical cancer screening is recommended for virtually all sexually active women and a number of them will be tested for HPV, the potential risk and harm of poor testing technology and practices could cause significant harm to public health. False negative test results could lead to delays in diagnosis and treatment, which could allow an undetected cancer to worsen. False positive results could lead many women to have unnecessarily frequent screening and potentially invasive procedures such as colposcopy and biopsy. In addition, false positive results for high-risk HPV types, such as HPV 16 or 18, could lead to unnecessarily aggressive treatment of cervical lesions that could impair fertility.

FDA's Microarray Quality Control

Microarrays have played an enormous role in development of molecular diagnostics and identifying a new generation of drug leads, driving the development of the biotechnology industry. But some publications in recent years have reported that the different systems on the market can produce widely varying results on similar samples. To resolve some of the issues, the FDA, in collaboration with the manufacturers, set out to determine how accurate they were in delivering results. The articles not only raised doubts that meaningful comparisons could be made between scientific studies done on different equipment, but also called into question the validity of the entire class of instruments. The FDA's Microarray Quality Control project has delivered a badly needed endorsement of the microarray technologies on the market. The agency found that the microarrays delivered consistent results, which should allay the suspicion that the data delivered could be fundamentally erroneous (Casciano DA, Woodcock J. Empowering microarrays in the regulatory setting. Nat Biotechnol 2006;24:1103). Tests using different manufacturers' microarrays on the same samples generally tracked well with each other by certain measures. However, comparisons between the systems are still very complex. The different devices do not measure exactly the same things in exactly the same way, or analyze the data by the same methods. Part of the problem lay in the statistical methods chosen to evaluate the results. The study's findings should help scientists assess the numerous options for analyzing the same findings. Another important finding was that commercial microarray systems compared well with "home brew'' methods of measuring gene activity developed by various laboratories. The studies, published in a special issue of Nature Biotechnology (http://www.nature.com/nbt/focus/maqc/index.html) in 2006, hold out hope for a new era of quality control and standardization in the field of DNA microarrays. The study' dataset is expected to be widely utilized by the microarray community in order to reach and promote consensus on the appropriate analysis of data. While microarrays are now primarily a research tool, greater standardization and confidence in their results could establish them as elements of diagnostic tools that could guide physicians in their treatment decisions, or provide proof to the FDA that a drug is effective. This use of genetic biomarkers in drug development, pharmacogenomics, is being advanced by the microarray project. That project moved into a second phase on 18 Sep 2006 and will look for a consensus on the best practices for everything from quality control measures for microarray studies to using the best analytical methods.

- 26 -

Page 29: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

FDA and point-of-care diagnosis

Despite the appeal of point-of-care (POC) devices, manufacturers seeking to bring such IVDs to market can face some barriers. First, there are the multitiered regulatory barriers established by FDA's premarket review requirements and the laboratory regulations under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). Another significant barrier is the potential cost of POC tests used in settings such as physician office laboratories, which, in turn, are affected by regulatory considerations. To ensure that they can move their products onto the market as smoothly as possible, manufacturers should be familiar with the barriers they will face and how they interrelate.

FDA has determined that it is necessary to conduct independent premarket reviews of POC tests, even if the same devices had previously been cleared or approved for use in a clinical laboratory. Manufacturers are expected to submit performance data to demonstrate that POC-site personnel are capable of using the devices and can obtain results comparable to those of tests used in a clinical laboratory. FDA does not usually reevaluate cleared or approved prescription non-IVD devices for use in new settings so long as the intended use, conditions for use, target patient population, and test performance characteristics remain unchanged. If a manufacturer wishes to advance a new type of IVD into the prescription home-use market, a separate FDA clearance is needed. An additional clearance would be necessary for over-the-counter POC sales. Under CLIA, tests may be waived if they are cleared by FDA for home use, if they employ methodos that are so simple and accurate as to render the likelihood of erroneous results negligible or pose no reasonable risk of harm to the patient if the test is performed incorrectly.

In the past decade, manufacturers have made substantial technological progress in the design and development of POC tests. FDA has kept pace with this progress, and most IVD manufacturers are favorably disposed to having the premarket review and categorization processes for such devices consolidated within the agency. Even so, the regulatory barriers for POC tests are likely to remain considerable.

Genetic testing of rare disorders

A rare disease in the US is considered to be one with fewer than 200,000 afflicted persons. There are over 5,000 rare diseases. Genetic testing for rare diseases now faces the same plight that held back drugs for rare diseases from the marketplace before the Orphan Drug Act was passed in 1983. With the isolation of genes for rare diseases, such tests are scientifically possible but commercially not viable. The initial work is done in the academic scientific research laboratories but biotechnology companies do not step in to conduct the commercial development. The reasons are simply commercial as the market for these tests is small. The Orphan Drug Act covers drugs and biologics but says nothing about genetic tests or devices. Some of the reasons given to justify non-orphan status for genetic tests are:

The tests are too experimental to be lumped in with drugs, which have shown their efficacy in Phase III trials.

It is difficult to find specialists with expertise in rare diseases to assist in the clinical diagnosis. This also makes collaboration for studies difficult.

Possible solutions to the problem of lack of genetic tests for rare diseases are:

- 27 -

Page 30: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CLIA approval of the research laboratories with expertise in a rare disease where such tests could be conducted. This would be difficult to achieve considering the requirements for such approval. Moreover, most scientists are not anxious to have federal bureaucracy involved in the running of their research laboratories.

Establishment of a National Center or a series of regional centers for the diagnosis of rare diseases. This idea was rejected previously by the NIH-DOE Task Force on Genetic Testing.

Links between research laboratories and CLIA-approved laboratories enabling, referral of patients who approach research laboratories for genetic testing. This has been done only in isolated instances.

In conclusion, the problem of genetic diagnosis of rare diseases still needs to be solved. This problem would get worse with further discoveries of rare disease genes.

Quality control of molecular diagnostic laboratory procedures

As the result of federal legislative action, molecular diagnostics became subject to the same regulations governing laboratory procedures as traditional laboratory reagents. Because molecular genetic testing frequently requires use of some reagents that are not approved by the FDA, is technical, and requires complex interpretation, specific regulation of such laboratories has been suggested. Congress passed the Clinical Laboratory Improvement Amendment (CLIA) of 1988 in an attempt to ensure safe and effective performance of laboratory tests (Medicare, Medicaid, and CLIA Programs, 1992). The CLIA includes provisions for extensive quality control and quality assurance procedures, with the goal of guaranteeing excellence in US clinical laboratory testing. Although the high-complexity testing category in CLIA includes nine specialty quality assurance (QA) categories, a separate category for genetic testing does not exist. Recently, the NIH-Department of Energy (DOE) Task Force on Genetic Testing recommended that a specialty category of genetics be established for defining specific personnel standards for genetic testing and to monitor laboratory performance, including development of proficiency testing programs. Both personnel qualifications and laboratory practice standards are still in need of improvement to ensure quality in US clinical molecular genetic testing laboratories.

Quality control of point-of-care tests

Point-of-care (POC) tests are done outside the laboratories but in the year 2000, the Connectivity Industry Consortium (CIC), an IVD industry group comprising device manufacturers, information system vendors, and healthcare providers, set out to establish standards that create a universal way to integrate POC data with laboratory information systems. In 2001, the CIC managed to accomplish that goal, and new connectivity standards are on their way to being formally accepted and published.

Until the time that fundamental training for nursing and other patient-care personnel changes, there is a greater burden on the manufacturers of quality control material to provide adequate training material for POC. This does not exclude the primary need for reliable quality controls. As an example, one test within the complex field of coagulation, the activated clotting time (ACT) test, presents a unique example of this dual need. The most successful of ACT quality control manufacturers must provide services and materials. The controls must fit all of the requirements of high quality that make any quality

- 28 -

Page 31: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

control product useful, and the technical support must address the unique needs of a medical care system in flux.

Regulation of IVD by the FDA

Molecular diagnostics fall into the category of in vitro diagnostics (IVD) for regulation by the FDA in the US. In vitro diagnostic devices are defined as those reagents, instruments and systems intended for use in the diagnosis of diseases or other conditions, including a determination of the state of health, to cure, mitigate, treat, or prevent disease or its sequelae. Such products are usually intended for use in the collection, preparation and examination of specimens taken from the human body. IVDs are usually exempt from requirements for filing of Investigational Device Exemption (IDE) before start of a study.

Addressing IVD needs at an early stage can support a timely and effective transition of findings and developments into routine diagnosis. IVD needs reflect features that are useful in clinical practice. This helps to generate acceptance and assists the implementation process. To fulfill IVD requirements, it is essential to (1) provide diagnostic tests that allow for definite and reliable diagnosis tied to a decision on interventions (prevention, treatment, or nontreatment), (2) meet stringent performance characteristics for each analyte (in particular test accuracy, including both precision of the measurement and trueness of the measurement), and (3) provide adequate diagnostic accuracy, i.e., diagnostic sensitivity and diagnostic specificity, determined by the desired positive and negative predictive values which depend on disease frequency.

Clinical laboratory assays are defined in legal and regulatory terms as medical devices in the US. The FDA oversees the entry into the market of such new devices. Approval is obtained by showing that the device is similar to another device that is already approved and being legally marketed (substantial equivalence) or by demonstrating that it is safe and effective through extensive clinical testing.

In 1998 the FDA issued a draft guidance document entitled "Guidance for Industry: In the Manufacture and Clinical Evaluation of In Vitro Tests to Detect Nucleic Acid Sequences of Human Immunodeficiency Virus Type 1" (http://www.fda.gov/cber/). Regulatory hurdles for diagnostic devices do slow down commercialization of diagnostic devices. The process could take as little as a few months if the product is judged to be substantially equivalent to one already approved by the FDA. Approval of products that aren't judged to be substantially equivalent to previously approved devices could take much longer, up to a year and a half. In 1999, the FDA issued a staff guidance document "Regulating In Vitro Diagnostic Device Studies". This document described the agency's position on interpretation and enforcement of existing regulations regarding IVD investigational studies.

Currently, the FDA requires manufacturers of PCR tests to make a 510(k) filing (i.e., a statement of substantial equivalence); the agency has classified PCR tests used in microbiology as class I devices. In contrast, all tests for cancer were classified by statute in the US as class III medical devices; that is, they are legally associated with greater risks. These assays require substantial clinical testing and filing of the more onerous premarketing approval application (PMA). The PMA required data from studies that validate the assay with regard to sensitivity, specificity, reproducibility, and safety. These data are subjected to rigorous scientific and statistical scrutiny. As part of the PMA testing process, at least three clinical investigations must be performed for the new medical device at separate and geographically diverse sites. The sample size must be established prior to the start of the

- 29 -

Page 32: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

study, and study groups should include healthy subjects, individuals with the target disorder, and individuals with diseases other than the target disease. The similarities and differences between devices that are not subject to premarket review, and those that are required to undergo either a PMA or premarket notification 510(k) pathway should be considered.

Although the regulatory approval process for the clinical use of DNA diagnostics takes approximately one year in the US, the products can be sold for clinical research prior to the actual FDA decision. The demand for more rapidly available infectious disease diagnostics has led the FDA to create a regulatory category known as analyte specific reagents. This allows companies to market primer and probe sets without going through a full FDA submission and hence increases the availability of reagents to laboratories to perform testing. As more laboratories began to use ASR, the shortcomings of this approach are becoming rapidly known. As part of ASR, a company is not allowed to provide instructions for its use. Laboratories with little or no experience in molecular diagnostics cannot use ASR.

Although decisions regarding diagnostics for some infectious diseases may be received more promptly, predictive tests for common genetic disorders frequently run into governmental skepticism and hence delays in the approval process. Companies may encounter strong pressure to offer such tests before they are thoroughly tested in field studies. Members of the public, for example, may not be willing to wait the several years needed for the results of such pilot studies to become available. Government agencies that make decisions on whether a given test is no longer experimental might consider the recommendations of a broadly constituted national advisory committee such as the US Institute of Medicine Committee on Assessing Genetic Risks.

Regulation of in vivo diagnostics by the FDA

In vivo diagnostics are assuming a greater importance in the practice of medicine and molecular imaging described in this report falls in this category. FDA regulations relevant to in vivo diagnostics can be viewed online (http://www.fda.gov/cber/genadmin/invivo.txt). Radiopharmaceuticals are already used for a wide variety of diagnostic, monitoring, and therapeutic purposes. The action of most radiopharmaceuticals is derived from two components: a nonradioactive delivery component, i.e., a carrier and/or ligand; and a radioactive imaging component, i.e., a radionuclide. Nonradioactive delivery ligands and carriers are usually peptides, small proteins, or antibodies.

The proposed rule applies to the approval of in vivo radiopharmaceuticals (both drugs and biologics) used for diagnosis and monitoring. The proposed regulations will not apply to radiopharmaceuticals used for therapeutic purposes. A diagnostic radiopharmaceutical that is intended to provide disease or pathology detection or assessment information assists in the detection, location, or characterization of a specific disease or pathological state. Examples of this type of diagnostic radiopharmaceutical include a radiolabeled monoclonal antibody used to attach to a specific tumor antigen and thus detect a tumor and a peptide that participates in an identifiable transporter function associated with a disease.

Among recent discoveries, nanoparticles are being developed for IVD as well as in vivo diagnostics. Although there are no safety concerns of IVD, the exact fate of nanoparticles introduced into the body is not known. In vivo use of nanoparticles is likely to be controlled more strictly by the FDA.

- 30 -

Page 33: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Regulation of laboratory developed tests

Home-brew tests

Home-brew tests or analytic-specific reagents (ASRs) are built internally by a laboratory and are regulated only by the Clinical Laboratory Improvement Amendment (CLIA). Under the US federal law, only laboratories that conduct high-complexity testing are allowed to validate and perform ASRs. Many of the new molecular diagnostic tests were created initially as ASRs and their development is restricted to laboratories classified as "high-complexity". Currently CLIA addresses only the analytical validity of ASRs and clinical validity, i.e. whether the test is actually useful for a patient. As described later in the section on genetic testing, FDA is considering changing the system to begin regulating the laboratory-developed tests. Further details can be viewed at the FDA web site for CLIA (http://www.fda.gov/cdrh/CLIA/).

Laboratory-developed tests used by Medicare recipients

US Department of Health & Human Services' Agency for Healthcare Research and Quality's Technology Assessment Program (TAP) released a detailed report titled "Quality, Regulation and Clinical Utility of Laboratory-Developed Tests" of the kinds of molecular diagnostics prescribed to Medicare recipients, and the challenges clinical labs face when using the tests. The assessment is important because Medicare, the biggest purchaser of clinical lab services in the US, paid $7.1 billion for lab tests in 2008. These costs increased an average of 9% between 1999 and 2006. The report studied pharmacogenomic tests used to diagnose symptomatic individuals; to help make prognoses; to monitor drug response; and to choose therapies or to help physicians adjust dosing. The details of the report (May 2010) can be seen at the following web site: http://www.cms.gov/determinationprocess/downloads/id72TA.pdf/.

According to TAP, the assessment relied on more than 1,400 molecular tests “relevant to the Medicare over-65-year-old population” offered by 95 different labs. Some of the questions it sought to answer are:

How is analytic validity established for laboratory-developed molecular tests (LDMTs)?

What processes have been developed for examining clinical validity and clinical utility of molecular tests?

How are molecular tests regulated by CLIA?

What FDA guidance has been issued pertaining to oversight of laboratory-developed molecular testing'

What is the role of other Federal agencies (e.g. Federal Trade Commission) in regulating marketing claims regarding the clinical validity and utility of laboratory-developed tests not currently being actively regulated by the FDA?

How is proficiency testing accomplished for molecular tests, whether laboratory-developed or commercial?

What guidelines and standards exist for laboratories conducting molecular testing?

The report concludes that “given the dynamic nature of the molecular testing area, the assessments of the quality, regulation, or utility of LDMTs need to be frequently updated. One of the major challenges for those making

- 31 -

Page 34: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

decisions about the oversight of LDMTs will be to keep pace with the future developments in the area.............At this stage in the evolution of laboratory-developed tests, assessments of the appropriate clinical applications and evidence-based guidelines for using test results in decision making are only beginning to appear.............The Evaluation of Genomic Applications in Practice and Prevention program is making important contributions in this area, but with the rapid expansion of test offerings, guidance for the use of most laboratory-developed tests will lag far behind.”

The assessment also concludes that “in the absence of specific reimbursement codes for specific laboratory-developed and other molecular tests, it will be difficult to track practice patterns and to understand the impact of these tests on the patient outcomes and on the practice of medicine.”

Oversight of LDTs by the FDA

In the past, laboratories that develop and offer laboratory-developed tests (LDTs) have been overseen by the Centers for Medicare & Medicaid Services, but that oversight has not covered the clinical validity of these offerings, often referred to as 'homebrew' tests. Business models arose that leveraged the practice of discretion to get to the market without FDA oversight. According to the FDA "business model is not really problematic but the lack of oversight is problematic." As of 5 October 2010, the FDA is drafting its plans for regulating LDTs and is considering available options, such as using a risk-based approach for oversight and a registry of tests to know what services are available. Although no specific plans have yet been drawn up for regulating LDTs, the agency has completed a public comment phase, and it is now drafting an operational plan for oversight. FDA's Center for Devices and Radiological Health plans to regulate certain LDTs that currently are not regulated, because the new uses for these tests, as well as their complexity and their marketing, have increased their risks and now warrant oversight.

Regulatory aspects of FISH

Most relevant to the growing diagnostic use of FISH probes currently is the regulation of test materials by the FDA, but the FDA has not yet finalized guidelines by which FISH probes will be evaluated. It is possible that future regulatory guidelines may require the less strict "premarket clearance" (510-K) for metaphase FISH probes used as an adjunctive study with standard cytogenetics, and the full "premarket approval" (PMA) for probes designed for interphase FISH studies, which are not adjunctive studies to standard cytogenetics. The regulatory requirements for metaphase FISH probes designed to be used in studies such as microdeletion assessment and marker chromosome identification, for which standard cytogenetic confirmation is not possible, remain in a "grey" area. While the clinical use of molecular cytogenetics FISH probes is not the only area in which technological advancements have out-paced regulatory action, the current situation nonetheless leaves the providers of genetic services in a difficult position. Continued attempts to provide input to the FDA for use in designing guidelines by which FISH probes will be evaluated are probably worthwhile. Adherence to laboratory standards and quality assurance practices is essential during this time; and excellent laboratory practice guidelines are being formulated by the American College of Medical Genetics (ACMG). Other considerations include obtaining Institutional Review Board approval of protocols for FISH studies in situations where this is possible; obtaining informed consent for FISH studies whenever possible; and carefully wording cytogenetics reports to include a description of the investigational nature of the FISH studies.

- 32 -

Page 35: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Regulation of genetic testing

Role of the FDA in genetic testing

The FDA’s role in regulating genetic testing has not been defined as yet. Although the agency maintains that it has the authority to regulate genetic testing laboratories as medical services, it has chosen not to pursue this course. One reason explaining this apparent lack of interest is the absence of geneticists on the FDA staff. To circumvent the FDA regulatory process, companies involved in genetic testing do not market kits, but rather medical services.

The Task Force on Genetic Testing, which is sponsored by the Human Genome Project, is charged with making recommendations that will ensure the development of safe and effective genetic tests, their delivery to laboratories with assured quality, and their appropriate use by health care providers and consumers. Final recommendations of the task force have not been released as yet.

It has also been suggested that the CLIA (Clinical Laboratory Improvement Amendment), which is administered jointly by the Health Care Financing Administration and the CDC, could provide the proper oversight for genetic testing. In 2000, the CDC indicated that Centers for Medicare and Medicaid Services (CMS) would issue a proposed rule to establish a genetic testing specialty area under CLIA. However, more than five years later, there was no such specialty area. Genetic Alliance, a public advocacy group, believes that the establishment of a genetic testing specialty under CLIA will have a significant impact on the quality of genetic testing services in the US. This is a necessary first step toward a regulatory system that encourages new technology and ensures safety and accuracy when those technologies are implemented. In 2006, the Genetic Alliance urged the CMS to set standards for genetic testing as without a genetic testing specialty, CLIA cannot adequately ensure that consumers receive genetic testing services that are safe, accurate, and clinically useful.

Regulation of direct-to-consumer genetic testing

Various states are beginning to tackle the problem of uncontrolled personal genetic services. In 2008, New York State, warned 23 companies that they must have permits to offer their services to New Yorkers. New York’s warning letter was a blow not only to new companies such as Navigenics and 23andMe that entered into the field of consumer genomics in 2007, but also to technology suppliers Affymetrix and Illumina, which make the tools the testing companies use. In 2008, Department of Health of the State of California, in an effort to prevent consumer genetic testing companies from offering their services to the state’s residents, sent letters to thirteen firms saying they are violating state law. One offense that genetic testing companies could commit would be to sell their products to California citizens over the Internet without the request or counsel of a physician. Another problem is that the companies’ tests have not been validated for accuracy or for clinical utility, which is required under California law.

Need for regulatory oversight of DTC

Within the genetic testing system, there are still questions about science, access, reimbursement, coverage, and oversight. The Genetic Alliance, a nonprofit health advocacy organization committed to transforming health through genetics, has suggested that informed decisions must be made on

- 33 -

Page 36: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

the basis of analytic and clinical validity, clinical utility, and individual usefulness, as well as an understanding of oversight, regulation, and reimbursement (Zonno and Terry 2009). Accurate, reliable, and validated information must be available to individuals and providers as they make decisions about testing and the information gained through the testing process. To maintain credibility and independence, a mandatory registry should be compiled and managed by a federal regulatory body, such as the FDA. Education regarding basic genetics and the testing process; professional society recommendations and guidelines, information for patients and providers on risk or diagnosis; and referral networks for specialists, researchers, and disease-specific organizations could all be built into or linked with the registry. Such a system would be transparent and coordinated with all stakeholders and agencies to balances safety, innovation, ethical and social issues.

Greater regulation is required to oversee the accuracy and quality of direct-to-consumer (DTC) genetic testing. Not doing so runs the risk of dangerously reassuring some and needlessly aggravating the already worried. Certain state health departments, e.g. that of New York, have indicated that genetic testing for disease risk must be requested by a licensed healthcare professional and must be performed in an approved clinical laboratory. On 12 January 2010, Navigenics received a license to offer its personal genomics services to residents of New York State.

There are three important issues that consumer genomic testing needs to address before it can become part of medical care:

Analytic validity . A small error rate in sample can “result in hundreds of misclassified variants for any individual patient.

Clinical validity . Many complex diseases are caused by multiple gene variants, and interactions between variants and environmental factors, which are not known yet.

Clinical utility . Few observational studies and almost no clinical trials demonstrate the risks and benefits associated with screening for individual gene variants.

Ensuring that the public has information adequate to making informed choices about genetic testing is a prerequisite to realizing the public health benefits that have been promised from genetic medicine. In order to get a better picture of the state of the new DTC genetic testing industry, how it works, and what buyers expect from these services, the National Human Genome Research Institute asked the Genetics and Public Policy Center (GPPC) at Johns Hopkins University to conduct studies under a grant awarded in 2008. The issues being studied relate particularly to the ways in which offering genotyping tests and services directly to customers by companies such as Navigenics, Decode Genetics, and 23andMe, differs from genetic testing offered by healthcare providers. GPPC is analyzing the current regulations that cover marketing, advertising, and selling of genetic testing directly to consumers, and trying to evaluate the validity of the claims sellers make in their advertising by comparing them to scientific literature. Another important question is how the utility of a DTC test can be measured and if the presence of a genetic mutation that is linked with levels of risk or predisposition toward an illness is usable. The researchers at GPPC are also looking at how state laws attempting to cover this very new field allow some incoherence and lack of uniformity. The center also will conduct some legal analysis that supports coordinated efforts to protect consumers. The study will not be completed until some time late in 2010.

- 34 -

Page 37: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

According to a study by an international team of researchers from the UK, US, Australia, Austria, and the Netherlands anticipatory governance is premature without a better understanding of how SNP-based whole-genome information is used by, and what it means to, a wide range of users (Prainsack et al 2008). The authors believe that DTC whole-genome tests should not necessarily be evaluated under the same regulatory frameworks used for traditional genetics. Although they did not advocate an unregulated genomics market, the authors urged regulators to wait until information is available on the effects of such tests before introducing regulation. For instance, the team noted that personal genomics is pushing the individualization of responsibility for health one step further, without necessarily providing clear information about how genetics ties into health and individual choices. Effective responses to this situation require clarification of the novel issues created by the convergence of information about health, consumer and lifestyle choices, and genealogy; novel relationships between geneticists, patients, consumers and corporate executives; and the continued intensification of collaboration, on both the research and the patient/consumer sides. In spite of the criticism of DTC testing, there are are some positive aspects. A study has concluded that individuals who present to health care providers with online DTC genetics information may be among the most motivated to take steps toward healthier lifestyles (McBride et al 2009). These motives might be leveraged by health care providers to promote positive health outcomes.

On 12 May 2010, Walgreens postponed its plans to sell personal genetic test kits from Pathway Genomics at its nationwide drug stores after the FDA intervened and issued the following statement: "Pathway Genomics has moved outside of the currently sanctioned boundaries for lab-developed tests by marketing a product in a retail store that asks consumers to collect a sample. These kits have not been proven safe, effective or accurate and patients could be making medical decisions based on data from a test that has not been validated by the FDA". On 11 June 2010, the FDA sent letters to five companies – 23andMe, Navigenics, DeCODE Genetics, Illumina and Knome – notifying them that they must submit their products for review or discuss with officials why their products do not require FDA approval. In its letter to 23andMe, the FDA said it wants to prevent consumers from being “misled by incorrect test results or unsupported clinical interpretations.” However, the FDA did not say that such genetic testing services should be taken off the market. The five companies had mixed responses to the FDA’s warning. 23andMe disagreed with the FDA’s decision, while Knome welcomed the FDA’s review. The FDA held a public meeting on 19-20 July 2010 to initiate a dialogue with stakeholders concerning the regulation of laboratory-developed tests.

Challenges faced by the introduction of personalized medicine include gaps in the oversight of genetic testing (including regulation of companies providing test interpretation services), ensuring that realistic claims are made in promotional materials for genetic testing, determining the appropriate role of new genomic technologies in patient care, ensuring the privacy of patients’ genomic data, and improving insurance coverage and reimbursement for genetic services (Evans et al 2010). The Secretary’s Advisory Committee on Genetics, Health, and Society (SACGHS) advises the US secretary of health and human services and on these issues. A 2008 SACGHS report identified multiple regulatory gaps in the oversight of genetic testing (http://oba.od.nih.gov/oba), and federal agencies have begun to address these gaps. For example, investigations by the Federal Trade Commission (FTC) of claims made by two nutrigenetics companies led to the discontinuation of the manufacturing and marketing of the MyCellf Program, which included a test kit and consultation service. SACGHS is also preparing a report on the need for genetics education for POC practitioners, public

- 35 -

Page 38: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

health officials, and consumers and has begun to explore the implications of affordable whole-genome sequencing.

To ensure that rapidly evolving genomic technologies are responsibly utilized and that their promise is not oversold to the public, it will be important to advocate for rigorous evaluations of the clinical validity and utility of genomic tests, as well as for adequate regulation that simultaneously preserves innovation. Clinicians, researchers, academics, the commercial sector, and the government must work together for realization of the remarkable potential of personalized medicine.

Regulatory issues concerning blood and plasma products

In 1998, the FDA announced the availability of a draft guidance document entitled "Guidance for Industry: for the Submission of Chemistry, Manufacturing and Controls and Establishment Description Information for Human Blood and Blood Components Intended for Transfusion or for Further Manufacture." (http://www.fda.gov/cber/). The recommendations remain in effect although some amendments have been issued on 14 September 2001 following the World Trace Center Disaster and emergency collection of blood. It was noted that nucleic acid tests (NAT) might remain unavailable at some centers. For products released without (or prior to) completion of NAT testing, the unit was required to be labeled to identify the tests that were not performed. Currently the FDA's Guidance for Industry requires laboratories testing donors for bloodborne pathogens in the US must meet CLIA regulations. CLIA regulations require the use of a minimum of two controls each day of testing. If a test kit includes two reagents labeled as negative control and positive control respectively, and the negative control is used to calculate the assay cutoff, the negative control serves as a calibrator and may not also serve as an assay control reagent. Controls from an external source should be included in the run to meet CLIA requirements. These external controls can be developed in-house or procured and each laboratory must develop acceptance/rejection criteria for their use.

United States Diagnostics Standards

In 2009, the Critical Path Institute (C-Path) plans to launch a new organization, United States Diagnostics Standards (USDS), to assess the performance of diagnostics before they are submitted to the FDA for evaluation. This non-governmental as well as non-profit organization, which would provide a non-required test evaluation service to companies and have no enforcement power, will also aim to help smooth the regulatory interaction between diagnostic companies and the FDA. It would function as a sort of underwriter for diagnostics firms and also could potentially help clear up confusion over regulations governing multi-analyte tests. Companies already submit their tests to data tests site for evaluation prior to FDA submission, and this service would take the place of a data test site. The organization, which would be funded by industry user fees, would initially operate under the C-Path Institute, but would eventually become an independent entity. The launch of USDS is one aspect of C-Path Institute’s larger goal of helping FDA standardize the evaluation of diagnostic tests. Diagnostic companies will pay USDS to assess their tests under a user-fee system similar to the FDA’s regulatory process. Following a USDS review, however, the company will own the data and is free to use it for FDA submissions, internal data, marketing, or in conversations with insurers. For lab-developed genetic tests, which are not intended for submission to the FDA as an in vitro diagnostic, could be evaluated by the USDS so that providers, consumers, payers, and investors would know whether or not the genetic test performed as claimed. In some cases, USDS will also look at

- 36 -

Page 39: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

clinical utility of diagnostic tests. USDS assessments could also potentially clear up some of the confusion in the industry over FDA’s regulation of certain algorithm-based laboratory-developed tests IVDMIAs.

Regulation of in vitro diagnostics in the EU

In the past, there were no hard and fast rules about marketing of IVD in the European Union (EU). Since the EU Directive 98/79/EC on IVD medical devices went into effect in 2003, all products and kits which are sold for use for in vitro diagnostic applications have to be compliant with this directive. The major goals of this CE directive are to standardize the diagnostic procedures within the EU, to increase reliability of diagnostic analysis and to enhance patients´ safety through the highest level of product safety. These goals are expected to be achieved by the enactment of a large number of mandatory regulations for product development, production, quality control and life cycle surveillance. Now IVDs that do not bear the CE Mark, which indicates EU marketing approval, will be banned from the EU market even if they are FDA-approved. The directive also will demand that firms selling IVDs in EU designate a European Commission-authorized representative in EU. The directive will prohibit European purchasing organizations from buying products that lack the CE Mark, even those already in the supply chain.

Mark/certification in compliance with the IVD Directive is logistically a complicated task and could be expensive and time-consuming. Keeping up with the labeling requirements according to the IVD directive is even more difficult due to a large number of languages in the expanded EU.

EU regulations for testing of blood products

Since 1999, the European CPMP (Committee for Proprietary Medicinal Products) has recommended that only batches of blood products derived from plasma pools tested and found nonreactive for HCV RNA by NAT, using validated test methods of suitable sensitivity and specificity, should be released by the marketing authorization holder. In addition, each validated assay should include a control with an HCV RNA content equivalent to 100 IU/ml. In order to comply with these recommendations, laboratories will have to establish and validate NAT assays for HCV RNA. Guidelines for validation of such assays have been drafted by the European Department for the Quality Control of Medicine, and working reagents and a WHO International Standard for HCV NAT assays, calibrated in IU/ml, are now available.

Regulation of genetic testing in EU

In 2007, the Council of Europe (CoE) released new guidelines for over-the-counter and mail order genetic tests. It was a part of the draft of protocol to be added to the Convention of Human Rights, and aimed to harmonize the quality and usage of offers made by genetic testing throughout Europe. The draft stated that diagnostic, predictive and pharmacogenetic tests should only be carried out under individualized medical supervision based on discreet face-to-face contact between the patient and the physician. It banned home-brew genetic tests from being sold over the Internet as these tests lacked proper quality control and were not accompanied by genetic counseling. CoE Steering Committee on Bioethics stated that genetic testing should be carried out only in response to specific indications. The EU-funded Eurogentest network began a campaign to promote the implementation of such guidelines for quality assurance in genetic testing. CoE's draft only

- 37 -

Page 40: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

defined one pre-requisite confidentiality of the information obtained must be secured. The proposals were sent to the 47 member states of CoE for further discussion.

The initiative comes at a time when drug regulatory agencies are supporting genetic testing before prescribing certain drugs in order to improve selection of responders. In 2008, EU heavily funded two major research efforts to identify biomarkers for use as genetic tests. These will aid the screening of drug responders, drug safety and improve drug efficacy.

The European Society of Human Genetics (ESHG) believes that regulations are needed to prevent DTC predictive genomic services without well-reviewed clinical validity and utility from making it into the market or into clinical practice. It has developed the following policy on advertising and provision of predictive genetic tests by such DTC companies (European Society of Human Genetics 2010):

1. Clinical utility of a genetic test shall be an essential criterion for deciding to offer this test to a person or a group of persons.

2. Laboratories providing genetic tests should comply with accepted quality standards, including those regarding laboratory personnel qualifications.

3. Information about the purpose and appropriateness of testing should be given before the test is done.

4. Genetic counseling appropriate to the type of test and disease should be offered; and for some tests psychosocial evaluation and follow-up should be available.

5. Privacy and confidentiality of sensitive genetic information should be secured and the data safely guarded.

6. Special measures should be taken to avoid inappropriate testing of minors and other legally incapacitated persons.

7. All claims regarding genetic tests should be transparent; advertisement should be unbiased and marketing of genetic tests should be fair.

8. In biomedical research, health care and marketing, respect should be given to relevant ethical principles, as well as international treaties and recommendations regarding genetic testing

9. Nationally approved guidelines considering all the above-mentioned aspects should be made and followed.

The Public and Professional Policy Committee of the ESHG, EuroGentest, and the Institute for Prospective Technological Studies convened to discuss genetic testing for common disorders from a healthcare perspective and published the concerns and considerations discussed at the meeting, as well as their full list of recommendations on genetic testing (van El and Cornel 2011). The recommendations focus on 3 areas: the translation of research findings into useful health-care applications, regulation and assessment, and access. ESHG cautions against high expectations of applications for diagnosis, treatment, and prevention of diseases and suggests the need for careful evaluation of clinical utility before large-scale genetic applications. The authors also recommend prioritizing translational research for findings that have proven clinical utility and cost effectiveness. In the absence of evidence that can substantiate clinical utility, ESHG recommends implementation of pilot programs.

- 38 -

Page 41: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Evaluation of diagnostic laboratory tests in the UK

There is need for evaluation and regulation of clinical laboratory tests and complex biomarkers. A Diagnostics Summit was held at the Genome Campus in Hinxton, Cambridge, UK on the 14-15 January 2008, organized by the Royal College of Pathologists and the Foundation for Genomics and Population Health. The objective of the meeting was to agree a set of recommendations for the evaluation and regulation of clinical laboratory tests and complex biomarkers. The proceedings of this conference include the following recommendations (www.phgfoundation.org/file/3998/):

1. A new body should be established to ensure the evaluation of laboratory diagnostic tests and the creation of a database of new and existing laboratory tests.

2. This body might be established de novo along the lines of the UK Genetic Testing Network, or the responsibility could be placed with existing professional societies such as the Royal College of Pathologists, the Association of Clinical Biochemistry or the Academy of Royal Colleges.

3. A publically available database of existing and new diagnostic laboratory tests should be set up containing evidence, or explicitly the lack of it, for the validity and utility of clinical laboratory tests.

4. Where a test evaluation had already been carried out and published by an appropriate agency, it should be linked to the database.

5. Where evidence is missing for existing tests, particularly evidence of clinical validity and utility, consideration should be given to funding the necessary studies.

6. Policy makers and all stakeholders should be encouraged to address issues around funding and gathering the necessary evidence for the clinical evaluation of new and complex biomarkers, and should consider the establishment of private-public partnerships to increase industry involvement.

7. An independent expert body should be responsible for the evaluation of the evidence for test performance and making recommendations about clinical use.

8. Commissioners and health care professionals should be encouraged to use only those tests where sufficient evidence of clinical performance exists.

9. Statutory regulators should be empowered to require that evidence (or lack of) relating to test performance be placed in the public domain.

10. A more responsive and proportionate risk assessment during pre-market approval is needed to ensure patient safety.

Pre-implantation genetic diagnosis in the UK

Since 2005, applications to perform pre-implantation genetic diagnosis (PGD) in the UK can be approved without first having to go through the lengthy application process of the license committee of the UK Human Fertilization and Embryology Authority (HFEA), as long as the applying clinic has proven expertise in performing embryo biopsies and wishes to screen for a condition already being successfully tested for in another clinic. Such conditions include sickle cell anemia, cystic fibrosis, and Duchenne’s muscular dystrophy. Clinics must have a qualified biopsy practitioner for the procedure. Eight clinics are currently licensed to carry out the procedure in the UK. A single cell is taken from an embryo produced by IVF and is tested for a disease. Only embryos free from the faulty gene are transferred into the

- 39 -

Page 42: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

womb. PCR and FISH are the two established tests for disease. The tests can detect a single gene disorder, e.g. cystic fibrosis, or detect the sex of the embryo and the presence of a chromosomal rearrangement. Certain applications to perform the procedure will still require approval under the old, lengthy system. These include applications to screen for conditions not already being tested for in the procedure, tissue typing, and screening for adult onset conditions.

- 40 -

Page 43: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 41 -

Page 44: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

1 2 . M A R K E T S F O R M O L E C U L A R D I A G N O S T I C S

Introduction

This chapter provides a global perspective of the molecular diagnostics business in the major markets: US, Western Europe (including France, Germany, Italy, Spain, and the UK), and Japan. The total figures for the market are also broken down according to the technologies and major disease areas in which they are applied: infections (with sexually transmitted diseases considered separately), cancer, and genetic disorders. Other applications such as tissue typing and forensic indications are included under “miscellaneous uses.” There are no defined markets yet for devices to detect biowarfare agents.

Methods for study of molecular diagnostic markets

An estimation of the exact size of the molecular diagnostics market remains problematic because of the following variable factors:

The molecular diagnostics markets overlap with markets for other diagnostic technologies.

The markets are less well defined than those for pharmaceuticals.

A breakdown of revenues into those from molecular and nonmolecular technologies is not available for companies with large diagnostic businesses.

Outside of the US, most of the diagnostic probes are sold without any approval from authorities; in the US, these products must be labeled “for research use only” until they receive FDA approval.

The term “in vitro diagnostics (IVD)” presents a problem in calculating market figures, because it does not distinguish between nucleic acid and non-nucleic acid technologies.

Some immunodiagnostics and monoclonal antibody (MAb)-based tests that use recombinant DNA technology may be classified under non-nucleic acid-based technologies, but still fall under the broad definition of molecular diagnostics.

The estimates presented here are based on several sources and incorporate epidemiological data about targeted diseases, test costs, and estimates of the percentage of patient populations in which these products are likely to be used. Projection in future is made on the basis of anticipated state of technology in a particular year. Only rough estimates could be made of the potential markets and the figures were rounded off. The expansion of the market cannot be reliably converted into figures for percentage growth per year. The basis of estimation of the markets is mainly the state of development of technologies and the utilization according to number of patients suffering from conditions for which the diagnostics are to be used. The variable factors are the percentage of patients to benefit from the tests and the cost of the test. At the end of each of the previous years, the estimates have been compared with the figures that were available for the actual sales of these tests during the year. In 2010, the combined available sales figures deviated 10-15% from the estimates that had been made in 2009

- 42 -

Page 45: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

with variations according to geographical regions and technologies. From some areas no information could be obtained. This disparity is due to the inherent lack of completeness of the financial information that can be assembled. The actual sales figures could even be higher than the estimates. The estimates are still considered to be better index of the market than actual available sales figures.

The overall market for diagnostic technologies

The overall worth of global market for diagnostic products is a mix of the cost of the disposable kits and equipment such as automated sequencing machines and PCR systems which may carry the price tag in $50,000-80,000 range. The 2010 global market for all diagnostics was worth approximately $250 billion. In vitro diagnostics (IVD) account for 25% of this market, i.e. $62.5 billion. Not only is the IVD market expanding, the share of molecular diagnostic technologies within it is increasing. Gene-based tests constitute the fastest growing component of molecular diagnostics. Estimation of the market share of molecular diagnostics is further complicated by the fact that some molecular diagnostics, such as FISH and in situ PCR, are not IVDs. Development of proteomic technologies will help the expansion of immunodiagnostic markets. A breakdown of the IVD market figures according to regions of the world and projected to the year 2010 is shown in Table 12-1.

Table 12-1: Share of in vitro diagnostics in the global diagnostic market 2010-2020

Year 2010 Year 2015 Year 2020

All diagnostics

In vitro diagnostics

All diagnostics

In vitro diagnostics

All diagnostics

In vitro diagnostics

USA $92.5 billion $26.4 billion $124.7 billion $37.0 billion $140.0 billion

$51.0 billion

Europe $72.3 billion $18.1 billion $90.0 billion $25.5 billion $93.0 billion $37.5 billion

Japan $21.0 billion $7.2 billion $32.0 billion $10.4 billion $40.5 billion $12.o billion

Rest of World

$44.2 billion $10.8 billion $71.8 billion $17.1 billion $112.5 billion

$34.5 billion

Total $250.0 billion $62.5 billion $318.5 billion $90.0 billion $386.0 billion

$135.0 billion

Jain PharmaBiotech

Molecular diagnostic markets according to technologies

Well known established technologies used for molecular diagnostics are assigned a market value and other technologies are lumped together as shown in Table 12-2. In 2010 this market was worth $9.1 billion, representing approximately 3.6% of the total diagnostics market and approximately 15% of the IVD market. The broad definition of molecular diagnostics includes PCR as well as non-PCR tests, in situ hybridization, protein-based tests, molecular imaging, biosensors and biochips. The molecular diagnostics market will expand to $15.7 billion by 2015. About half of it can be attributed to knowledge gained from genomics. Proteomics and nanobiotechnology will also make a significant contribution to molecular diagnostics. By 2020, molecular diagnostics market will be worth $42.8 billion representing 32% of the IVD market. These figures are higher than those in competing reports as they include a broader range of molecular diagnostics.

- 43 -

Page 46: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table 12-2: Molecular diagnostics markets according to technologies from 2010-2020

Technology Year 2010 Year 2015 Year 2020

PCR-based tests 1,500 2,250 5,800

PCR-related technologies

1,100 2,150 4,800

Non-PCR tests 1,110 2,000 4,300

FISH and innovations 1,150 2,300 5,700

Biochips/microarrays 2,160 3,500 10,600

Biosensors* 670 900 3,700

Molecular imaging 1,000 1,500 2,500

Other technologies 410 1,100 5,400

Total for each year 9,100 15,700 42,800

All values in millions of US$ * only clinical applictions in human molecular diagnostics Jain PharmaBiotech

Marketing strategies according to technologies

Major reference laboratories are not in the business of manufacturing kits or reagents and are not required to go through the lengthy FDA approval process. Instead, they are regulated by CLIA standards. These laboratories have an advantage in introducing new molecular diagnostic tests in the market after they have been developed in collaboration with biotechnology companies. With their distribution channel to hospitals, physicians and laboratories, they offer an important competitive marketing advantage and make ideal partners for biotechnology companies seeking immediate revenue streams.

In the market size estimates given in Table 12-2, PCR-based tests refer to the use of diagnostic tests based mainly on PCR. “All other tests” include nanotechnology-based tests and genotyping for patient profiling in clinical trials. This market was small in the year 2010 but this will expand to $5.4 billion by 2020 due to introduction of several novel technologies. Markets for nucleic acid preparation kits overlap with those of the technologies listed and the following note gives an estimate of this market segment.

Nucleic acid isolation market

The growth of the molecular diagnostics market and the increasing number of sequencing and functional genomics initiatives, along with interest in RNA in academic and pharmaceutical sectors, have expanded the nucleic acid isolation market. Genomic DNA and plasmid isolation kits are among the most commonly purchased. Traditional protocols with slow organic extraction steps have largely been replaced with aqueous chemistries that can be easily automated. This market was worth $560 in 2010. It will expand to $770 million by the year 2015 and cross $1 billion mark by the year 2020.

Market for PCR-based tests

PCR technology includes equipment such as automated diagnostic systems as well as the use of PCR in other areas besides IVD (e.g. quantitative PCR as a guide to therapy or in gene therapy). The market for PCR is shown in Table 12-3. PCR market can be split into market for instruments and reagents. The market size for PCR-based diagnostic assays and other PCR-related technologies was worth $2.6 billion in the year 2010 and will increase to $4.4 billion in the year 2015 and $10.6 billion in the year 2020.

- 44 -

Page 47: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table 12-3: PCR market 2010-2020

Category of PCR Year 2010 Year 2015 Year 2020

Instruments for conventional PCR $1.5 billion $2.0. billion $4.8 billion

Reagents for conventional PCR $0.5 billion $1.0 billion $2.0 billion

Instruments for real-time PCR $0.4 billion $1.0 billion $2.8 billion

Reagents for real-time PCR $0.2 billion $0.5 billion $1.0 billion

Total $2.6 billion $4.5 billion $10.6 billion

© Jain PharmaBiotech

Markets for PCR instrumentation

These markets can be divided into those for instruments (cyclers) for conventional (standard) PCR and instruments for real-time PCR. The estimates take into consideration several surveys of the use of instruments by scientists and the approximate number of instruments in use worldwide. Sales figures from various manufacturers of PCR instruments are also taken into consideration. More than half of the scientists using amplification technology use PCR and this is likely to increase even through many non-amplification alternatives have been developed.

Markets for standard PCR will also continue to grow with a large share in life sciences research. Innovations will lead to development of IVD test for human diseases and other applications will be in pharmaceutical industry. The share of IVD was less than 90% in 2009 and is not expected to increase significantly.

The instruments range in price from $20,000 to $50,000 per piece. As the real-time PCR use increases and forms a significant segment of PCR market, there is increase in the market of instruments for it. Applied Biosystems is a worldwide leader in real-time PCR instruments. The 510(k) clearance in 2008 for the 7500 Fast Dx Instrument is the company's first clearance for a real-time PCR instrument for the clinical diagnostics market. It employs 96-well format reaction plates and enables scientists to complete real-time PCR amplification in less than 40 minutes. The approval of its use by the FDA for combination with rRT-PCR Flu Panel from the CDC further boosted its market.

Markets for real-time PCR and qRT-PCR

Within the PCR market, real-time (kinetic or quantitative) PCR is an increasingly important segment and the size of this segment is increasing, including kits, fluorescent detection chemistries and instrumentation. Of the total value of PCR market on 4.5 billion in 2015, the largest segment will be real-time PCR with approximate value of $1.5 billion. This share will increase to $3.8 billion in a total PCR market of $10.6 billion by the year 2020. Major players in this market are Life Technologies, Roche Applied Science and Qiagen. More suppliers are being attracted to this market because of easy entry and opportunities for further development. Reasons for growth of this market include cost-effectiveness, simultaneous recording of multiple genetic events, and clinical applications.

Both real-time and reverse-transcriptase quantitative PCR (qRT-PCR) provide only relative quantitation and there is need for technologies that can provide absolute quantitation. qRT-PCR is not considered separate from real-time PCR due to mix-up in market assessments with both techniques. Real-time PCR can be performed either with RNA or DNA templates of which the

- 45 -

Page 48: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

former is used more frequently as RT-PCR, because it provides greater analytical sensitivity. Applications include basic research as well as clinical applications such as the detection of infections and pharmaceutical assays.

As mentioned earlier in this chapter, IVD market is a larger market that includes other diagnostic technologies besides those that meet the strict definition of molecular diagnostics. At the same time some molecular diagnostics are not used for IVD but in vivo diagnosis. PCR is mostly for IVD although there are are non-IVD applications such as in pharmaceuticals and gene therapy. In 2010, IVD applications constituted over 90% of applications of real-time PCR and the largest segment (>70%) was for gene expression. IVD applications of real-time PCR are expected to expand further along with increasing use for diagnostics. Changes in future healthcare patters, e.g. POC diagnosis and developments in alternatives to real-time PCR and non-PCR methods as described in part I have been taken into consideration if estimation of future markets.

PCR market players

Currently one company holds 50% of market for this technology Roche Diagnostics. With expiry of the Roche PCR patent in the US in 2005, core PCR technology came into the public domain. In the EU, the patent expired in 2006. This increased the use of PCR and reduced the cost of PCR-based tests and also the drug discovery costs in the developing countries. However, the patent expiry did not reduce Roche's income because several new tests based on PCR such as realtime PCR are still protected by patents.

Life Technologies, also a major player in PCR has the broadest product offering in PCR and has millions of PCR assays available on demand. In 2010, the firm launched the ViiA next-generation PCR system, a platform that was newly built from the ground up with the intention of making it the basis for all derivatives for the next decade. Customer response to ViiA was very positive.

Thermo Fisher and Illumina have both entered into the PCR market. PCR remains a new and small part of Thermo Fisher's business, but during 2010, it purchased Fermentas and Finnzymes, which adds PCR instrumentation capabilities. Illumina acquired PCR firm Helixis during 2010 and introduced the benchtop Eco real-time PCR system, launching the company into PCR space. Many of Illumina's sequencing customers need PCR instrumentation either in the front-end or for sample preparation, Illumina has a built-in market.

DNA sequencing market

DNA sequencing is currently mostly used in research with applications in drug discovery and molecular diagnostics. It has been a hot technology space for the genomics tools market during 2009 to 2010. Overlapping markets for sequencing are covered in other technologies as well. The value of DNA sequencing market in 2010 was $700 million worldwide and over $500 million was in the US. This market will expand to $900 million in 2015 and $1.8 billion in 2020. This market is discussed in more detail in the report on DNA Sequencing (Jain 2011g)

Cytogenetic market

Cytogenetic market, which includes some of the technologies listed in Table 12-2 (FISH, biochips and other technologies), was valued at approximately

- 46 -

Page 49: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

$2.3 billion in 2010 and is expected to grow to $5.2 billion by the year 2015 and $10.0 billion in 2020. This market is discussed in more detail in the report on cytogenetics (Jain 2010i).

Market for FISH technologies

FISH and various modifications of it have a wide range of applications (see Chapter 2). The markets for these technologies overlap with those of other gene expression technologies. There are several companies that provide diagnostics based on FISH and many others supply materials for research laboratories. The separation between these two market segments is not well demarcated but the total market for FISH and innovations was worth $1.15 billion in the year 2010. It is expected to grow to $2.3 billion in the year 2015, and $5.7 billion in the year 2020. The greater growth of the market beyond 2010 is anticipated on the basis of greater use of FISH in clinical diagnostics. New technologies could replace conventional forms of FISH and other karyotyping in the future estimates.

There is a trend towards the replacement for enzymatic incorporation of labeled nucleotides by labeling DNA probes with fluorescent dyes. FISH is compatible with new molecular diagnostic technologies. One example is that of quantum dot nanocrystals, which light up in selected colors when exposed to ultraviolet light and can be incorporated in FISH assays.

One of the potential high growth sectors in the market is the personalized treatment of cancer. The classification of cancer is quickly changing from standard morphological classification to the molecular classification by cellular genomics to identify the most appropriate treatment. FISH as well as microarray technologies will play an important role in this. Screening of breast carcinomas with IHC and confirmation of weakly positive IHC results by FISH is an effective evolving strategy for testing HER2/neu as a predictor of response to targeted therapy. FISH will also be important in the genetic molecular diagnostic markets, which was lagging behind the infectious diseases and cancer and beginning to expand now.

The two top players in the HER2 market are currently Dako, which sells the IHC-based HercepTest, and Vysis/Abbott. Both tests are approved by the FDA. In a survey of US physicians in November 2009 to determine the method used for determining HER2 status, 80% of the respondents said that they used PathVysion FISH (Abbott/Vysis); 8% INFORM assay (Ventana/Roche); 8% real-time qPCR; and 4% “other” lab-developed tests. The results of this survey refuted guidelines developed by the American Society of Clinical Oncology and the College of American Pathologists that recommended IHC as the preferred diagnostic method for determining a breast-cancer patient’s HER2 status.

Biochip/microarray market

Biochips and microarrays are already being applied to molecular diagnostics. Markets for this sector are analyzed in a special report on biochips/microarrays (Jain 2011k). The market value of this technology for applications in molecular diagnostics was approximately $2.15 billion in the year 2010. It is expected to grow to $3.5 billion by the year 2015, and $10.6 billion by the year 2020. Currently about 75% of the biochips fall into the category of DNA chips and 15% into protein chips with the rest 10% use other technologies. By 2015, 20% of the biochip market is expected to be so-called "lab-on-a-chip" products, which will make up the dominant share of biochip industry output. This will include microfluidic and nanotechnologies. Protein microarrays, although they have many advantages over DNA

- 47 -

Page 50: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

microarrays, have better prospects in biomarker than in molecular diagnostics markets so far. Protein microarrays based on the sandwich immunoassay format are constantly growing and such types of protein microarray are nowadays broadly used in biomarker screening programs, to generate panels of disease-specific biomarkers. Further growth of this market will depend on the number of validated disease-specific biomarkers as well as on their therapeutic relevance, whether such assays will be performed using a protein microarray format. Medical need, combined with an overall cost reduction, should become the driving force, in order for protein arrays to gain a substantial share of the molecular diagnostic market. With the current trends, the share of protein microarrays/ biochips is expected to increase. As this technology develops, the cost of each biochip is dropping with some available at around $200 per piece currently whereas others cost over $500. A closely watched test in this segment is AmpliChip (Roche) for pharmacogenetics, which has not been adopted as widely as expected even though its benefits have been proven. Roche sells AmpliChip for $400, but the test is offered by a small number of clinical reference laboratories, which charge between 600-$1200 for the test with no evidence that it is regularly reimbursed by insurance companies.

Microarray companies have not yet decided whether new copy number variation (CNV) products will take the form of a standalone “CNV chip” or if it will be incorporated into existing product lines. However, most agree that CNV content will play an important role in next-generation microarray products. With the rise of sequencing technologies, there will be some intrusion into the growth of biochip/microarrays but the technologies will continue to be be used extensively at least until the year 2015. Microarrays will continue to be the platform of choice for genotyping, and whole-transcriptome differential gene expression will eventually displace expression arrays.

Biosensor market

Biosensors involve a number of technologies such as optical and nanotechnology. The markets overlap with those of other categories of diagnostics such as biochips. Many of the applications of biosensors are outside human clinical molecular diagnostics. Some applications in current development are for detection of chemical as well as microbial agents for bioterrorism. The total biosensor market in 2010 was approximately $3.5 billion and is expected to increase to $5 billion by the year 2015 and $7 billion by the year 2020. Of this human clinical molecular diagnostic applications were worth $670 million in 2010 and will increase to $900 million by the year 2015 and jump to $3.7 billion by the year 2020 due to introduction of several new biosensor technologies in clinical diagnostics. It will take several years for biosensor technologies to become competitive with other technologies in use in human clinical diagnostics.

Nanobiotechnology for molecular diagnostics

This market partly overlaps some of the technologies such as biosensors and biochips as well as “other technologies” listed in Table 10-2. Nanodiagnostic market was worth approximately $1.3 billion in 2010 and is expected to grow to $2.7 billion in 2015 by introduction of new nanotechnology-based diagnostics suitable for point-of-care and field detection. Nanodiagnostics will be worth $10 billion by the year 2020 and will be the most important component of molecular diagnostics (Jain 2011b).

- 48 -

Page 51: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Markets for gene expression technologies

Molecular diagnostic technologies are related to gene expression which has a large market segment because of applications in drug discovery. Bioinformatics is involved in analysis of data. A fair bit of gene expression market overlaps FISH and biochip markets because these technologies are used for gene expression analysis. In 2010, this market was worth $1.5 billion and is expected to increase to $2.7 billion by the year 2015 and $4.8 billion by the year 2020.

Reagents and other disposable laboratory materials

The market for consumables was approximately $1.3 billion in 2010 and will continue to grow parallel to the molecular diagnostic technologies markets. As these are sold under the category of laboratory material, this figure is not included in the market estimates of molecular diagnostic technologies.

Market for immunochemistry diagnostic

Immunocytochemistry is an important segment of IVD market constituting approximately $7 billion in the 2010 total IVD market of $60.5 billion. Roche Diagnostics is the leading company in this field which is growing at more than 10% per annum. In 2010, Roche’s immunochemistry business grew by 15%, significantly outpacing the market. Roche’s strategy then was focused on leveraging the value of the Elecsys immunochemistry technology in the human diagnostics market. With earlier acquisition of BioVeris in 2007, Roche owns the complete patent estate of the electrochemiluminescence technology deployed in the Elecsys product line which gives Roche the opportunity to fully exploit the entire immunochemistry market.

Markets for tissue diagnostics

Market for tissue diagnostics does not have a separate entry in Table 12-2 because some of the technologies listed in that table are used in tissue diagnostics in addition to technologies that are not strictly classified under molecular diagnostics. It is an important market connected to molecular diagnostics. Tissue imaging by molecular imaging technologies and in vivo fluorescence imaging for tissue diagnostics will be important additions. The value of this market was approximately $1.4 billion in the year 2010 and is expected to grow to $2 billion in 2015 and $3.5 billion in the year 2020. Much of this growth will be fueled by integration with molecular diagnostics and was driven by takeover of Ventana, the most important company in tissue diagnostics by Roche.

Molecular diagnostic markets according to therapeutic areas

It is difficult to separate the molecular diagnostic markets according to therapeutic areas because diagnostic methods overlap in various areas of application. Nevertheless, an attempt has been made to break down the molecular diagnostics market by area of application for the years 2010-2020 (Table 12-4).

Table 12-4: Molecular diagnostics markets according to applications 2010-2020

Diagnostic Area Year 2010 Year 2015 Year 2020

Sexually transmitted diseases

1, 700 2,800 7,400

- 49 -

Page 52: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Other infections including HAI

1,800 2,700 8,200

Cancer 2,000 3,700 9,500

Genetic testing 1,400 2,900 7,500

Cardiovascular diseases 600 1,000 2,800

Neurological disorders 750 1,100 2,500

Food pathogen detection 350 500 1,100

Miscellaneous disorders 500 800 3,500

Total for each year 9,100 15,500 42,500

(values in millions of US$) Jain PharmaBiotech

An idea of the diagnostic markets according to therapeutic areas can be obtained from the total markets for diagnostics for cancer, infections, and genetic testing three large areas in which molecular diagnostics will play an increasingly important role. Other important applications include diagnosis of neurological disorders and cardiovascular diseases. Applications relevant to personalized medicine such as pharmacogenomic and pharmacogenetic testing overlap with therapeutic areas and are covered in a special report on personalized medicine (Jain 2011e). Identity testing by molecular diagnostics has potential annual worldwide sales of approximately $600 million in 2010. It is not included in the table as it is not relevant to therapeutics. Similarly, detection of biowarfare agents is not included as it is not a well-defined market.

The cancer diagnostics market was worth $19 billion in 2010 with molecular diagnostics representing approximately 10% of it, i.e. $1.9 billion. It is expected to reach $25 billion in 2015. In 2020, the total cancer diagnostic market will be worth $48 billion and molecular diagnostics will constitute 20% of this market. These estimates include markets for cancer immunodiagnostics, nanotechnology-based diagnostics, pharmacodiagnostics combined with anticancer therapies, and molecular imaging of cancer. Cardiovascular diseases and neurological disorders (tests for neurogenetic disorders are included under genetic testing) are small markets currently, but they will constitute significant markets in the near future. With increasing application of molecular diagnostics to these areas, both markets are expected to cross $2 billion mark by the yeare 2020.

Genetic disorders

In the earlier days of molecular diagnostics, the focus was on infectious diseases because the markets for genetic tests and the availability of tests were both limited. Testing for genetic diseases is now growing rapidly as new genes for diseases are discovered and assays are developed to detect some of their disease-causing mutations. Though the exact number is unknown, it is likely that millions of genetic tests are being carried out worldwide each year. In the European Union alone more than one million genetic tests were performed in 2010; at least 800 laboratories and over one thousand clinical centers in Europe were carrying out genetic tests. Genetic disorders can be taken together regardless of the therapeutic area. The genetic screening market was worth $1.4 billion in 2010 and is expected to grow to $2.9 billion by the year 2015. With greater availability and acceptance of genetic testing, resolution of ethical issues as well as development of personalized medicine, this market is estimated to grow to $7.5 billion in 2020. Table 12-5 provides estimates of the market for screening for some of the genetic disorders in the year 2010. These estimates are calculated by multiplying the number of persons who are likely candidates for screening (only a fraction of the actual

- 50 -

Page 53: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

number of cases) by the cost of testing. Although these costs are actually variable, an average of $500 per person is chosen arbitrarily.

Table 12-5: Markets in 2010 for tests to screen healthy persons for genetic disorders

Condition Test Frequency/size of global market

Number to be tested

Market value/ year 2010

Huntington's disease

PCR /CAG triplet repeats 1 in 10,000 35,000 $18 million

Fragile X syndrome (mental retardation)

CGG triplet repeats 1 in 1500 male and 11 in 2500 female

22,000 $11 million

Myotonic dystrophy

GCT triplet repeats 1 in 7500 25,000 $13 million

Alzheimer's disease

Apolipoprotein E genotypeBiomarkers: CSF, blood, urine

16 million 600,000 $300 million

Duchenne muscular dystrophy

Defect of the dystrophin gene on chromosome Xp21

1 in 3000 newborn

20,000 $10 million

Hemoglobinopathiese.g. sickle cell disease

PCR and LCR for detection of globin gene mutations

7% carrier rate in most populations

220,000 $110 million

Cystic fibrosis PCR for detection of mutation DF508 on CFTR gene

Carrier rate 20% in Caucasians

160,000 $80 million

Jain PharmaBiotech

The estimates presented here exclude a number of other disorders for which commercial testing is in development. For a complex polygenic disease like hypertension, for example, many genes have been implicated and the number of tests required may be enormous. Genetic factors play a role in 20-75% of hypertensive patients, but the exact percentage is difficult to determine. Although it is difficult to predict the size of the testing market for this application with any accuracy, it is clearly large, as 10% of the population has hypertension. In 2010, screening for genetic disorders assumed an increasingly important role in driving the growth of these diagnostic products. In the clinical areas of application, genetic screening will be an important part of personalized medicine by 2015 (see Chapter 8). By 2020, health care will place more emphasis on preventive medicine, and more methods of treatment will become available for genetic disorders that are currently untreatable. More disease genes will be identified, and new genetic tests will emerge. The value of the market for molecular diagnostics will expand even if the cost of testing declines.

Prenatal testing

The estimates in Table 10-4 do not include prenatal testing for genetic disorders (discussed in detail in Chapter 5). Prenatal diagnostic markets are split into many segments according to the methods used. Using cytogenetics alone the estimate is $100 million in 2010, expanding to $300 million in 2015 and further to $500 in 2020. These are rather conservative estimates. The worldwide market for prenatal genetic testing could reach $3 billion if all pregnant women over the age of 35 were screened, which is an unlikely goal. Detection of chromosome abnormalities is an important part of such screening. Molecular diagnostic technology will play an important role in the development of this market, although the emergence of a cell isolation

- 51 -

Page 54: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

system is essential for realizing the goal of a diagnostic based on examination of the blood.

Cancer

In the earlier days of introduction of molecular diagnostics, cancer was not a significant market as the knowledge of cancer genes was limited and there were few tests available. The market for cancer screening is beginning to open up with the availability of screening tests. Cancer molecular diagnostics is now advancing rapidly due to new technologies (see Chapter 7). Some of the tests are being tied in with treatments and cancer diagnostics will be an important feature of personalized cancer therapy. By 2010, screening for cancer had assumed an increasingly important role in driving the growth of these diagnostic products.

The cancer diagnostics sector consists of imaging devices, imaging and detection reagents, and laboratory tests (including biopsies and in vitro tests). The fastest growing sectors of this market consist of molecular imaging technologies such as MRI and IVD tests. Market for molecular diagnosis of cancer was worth $1.9 billion in 2010 and is expected to grow to $3.7 billion in 2015 and $9.5 billion in 2020. Markets for selected cancer screening tests (which were described in Chapter 7) are shown in Table 12-6.

Table 12-6: Markets in 2010 for molecular diagnostic tests for cancer

Condition Test Frequency/size of global market

Number tested

Cost of test

Market value

Familial adenomatous polyposis (precancerous)

APC gene testing

1 in 5000 persons 36,000 $750 $27 million

Hereditary non-polyposis cancer of colon

MSH2 gene mutations.

1 in 200 are carriers

120,000 $500 $60 million

Melanoma p16 sequencing

~6.5% in white populations

180,000 $500 $90 million

Cervical intraepithelial neoplasia (CIN), a pre-cancerous condition

DNA HPV in patients with atypical Pap smear

Most women in Western Europe and USA have routine Pap smears

2,000,000

$200 $400 million

Hereditary breast cancer

BRCA1/BCRA2 gene mutations/ sequencing

1 in 10 women has lifetime risk of breast cancer

1,200,000

$500 $600 million

Jain PharmaBiotech

The bulk of the market relates to breast cancer screening. Costs for tests for breast cancer range from $300 to $800, depending on the type of the test and the company providing it. The most expensive test involves mutational analysis of BRCA1/BRCA2 as well as sequencing of the p53 gene in individuals at risk. For calculation of the market, a testing cost of $500 per patient has been used. Other breast cancer tests such as HER2 now share this market. Oncotype DX™ (cost=$3820), used for prognosis and recurrence of breast cancer, is not included in this market but in personalized therapy market report.

- 52 -

Page 55: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

For familial adenomatous polyposis, the cost of testing is $750 if the APC gene mutation in the pedigree is unknown and $500 if the mutation is known. Screening for intraepithelial cancer of the cervix is less expensive because the HPV DNA test is one of a series of DNA probes for infectious diseases; these assays carry an average cost of $200. Taking all these factors into account, a figure of $500 per patient is used in the calculation of the market for molecular diagnostics aimed at various other cancers. In 2010, over 250 million Pap tests were performed worldwide. This is a fraction of over one billion women worldwide who need access to screening for cervical cancer. Therefore, the market potential for cervical cancer screening using biomarkers (e.g. InPath test from CytoCore) represents an annual opportunity of over $3 billion.

Potential markets for cancer diagnosis according to type of cancer

Potential fulture markets for selected cancers are shown in Table 12-7.

Table 12-7: Molecular diagnostic markets for selected cancers 2010-2020

Type of cancer Year 2010 Year 2015 Year 2020

Bladder cancer 150 million 300 million 900 million

Breast cancer 760 million 1,400 million 3,000 million

Cervical cancer 400 million 600 million 1,100 million

Colorectal cancer 210 million 300 million 1,300 million

Ovarian cancer 50 million 200 million 500 million

Prostate cancer 220 million 400 million 1,000 million

All others 210 million 500 million 1,700 million

Total for all cancers 2.0 billion 3.7 billion 9.5 billion

© Jain PharmaBiotech

Future growth of the cancer diagnostic market is due to two factors: (1) increase in prevalence of cancer due to aging population; (2) role of diagnostics throughout the life time of a cancer patient extending from screening to guiding treatment and follow-up even after presumed clinical cure. As methods of cancer treatment improve to convert it into a chronic disease, the life of cancer patients is extended.

Calculations of the future markets for selected organs is based on the availability of approved tests and prospects of tests in development. Many trends are taken into consideration. For example, there is tendency to avoid unnecessary biopsy for prostate cancer if a reliable test is available. Similarly bladder cancer screening will be done more often as approved tests are being used more widely. The greatest expansion of cancer diagnostic market will be between the years 2015 and 2020 as some of the tests in development now will be entering the market in that period.

A large segment of the market is breast cancer for which several diagnostic tests are described in Chapter 6, part I. Some are approved by the FDA, others are in development but are performed in various clinical laboratories. Most of the breast cancer diagnostic tests cost around $500 with the exception of HerMack, MammaPrint, and Oncotype, which cost over $1000.

With about 500,000 new cases and 300,000 related deaths annually around the world, cervical cancer is the second most frequent cancer in women. Early detection has been proven to reduce the burden of this disease, as cervical cancer can be effectively treated if found in its early stages. The value of HPV testing is increasingly recognized in treatment guidelines

- 53 -

Page 56: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

around the world, particularly in the US where nearly 45% of women who receive the traditional Pap test also undergo HPV screening. Many countries have established or are evaluating co-testing, primary screening or reflex HPV screening as a cornerstone of cervical cancer prevention programs. During the decade following its approval in 1999, more than 75 million digene HPV tests were delivered worldwide. This market was worth at least $400 million in 2010.

Infectious diseases

The total market for diagnosis of infectious diseases a segment in which the molecular diagnostic methods play an important role was worth approximately $13 billion in the year 2010, and is expected to grow to $19 billion by the year 2015, and $36 billion by the year 2020. The value of molecular diagnostics for infections was approximately 3.5 billion in 2010 and is expected to grow to $5.5 billion in 2015 and $15.6 billion in 2020. Currently, the major application of molecular diagnostics lies in infectious diseases. The markets for infectious diseases are presented according to organisms rather than body systems involved. Among non-sexually transmitted infections, those involving respiratory system contribute significantly, with a market share of 700 million in the year 2010.

Nucleic acid-based tests have a better specificity than ELISA for HCV and also enable differentiation between different geneotypes of the virus. This knowledge is useful for guiding appropriate treatment. For these reasons, nucleic acid-based tests are displacing immunoassays for HCV. Rapid molecular diagnostics for infectious diseases with tests that provide identification of the organisms within an hour will be the most essential and desirable tests for diagnosis of infections in clinical practice. Hospital-acquired infections (HAIs) is also a significant market. Other infections with very small markets are not included. Markets in 2010 for identification of infections for which molecular diagnostic tests are commercially available are shown in Table 12-8 and future projections are shown in Table 12-9.

Table 12-8: Markets value in 2010 for molecular diagnostic screening for infections

Disease Test Frequency/prevalence

Number tested

Market value

AIDS/HIV-1 Qualitative & quantitative PCR / HIV, NASBA, bDNA

40 million infected persons worldwide

7 million $850 million

Chlamyda trachomatis

PCR combined with that for N. gonorrhoea

4 million cases per year/ 280 million worldwide

3 million $450 million

Neisseria gonorrhoea

PCR combined with that for C. trachomatis

0.5% of the population is infected.

3.5 million $580 million

HSV PCR for HSV Universal in adults 2.5 million $550 million

HCV Qualitative and qualitative PCR for HCV DNA, bDNA

0.5% to 8% of blood donor population

3 million $560 million

HBV Qualitative and qualitative PCR for HBV DNAbDNA quantitative assay

300 million chronic cases worldwide

4 million $670 million

Tuberculosis

PCR for M. tuberculosis 8 million new cases/ year

5 million $500 million

- 54 -

Page 57: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Group B Streptococcus

PCR-based tests 25% of women carry this infection worldwide; transmission to newborn

1 million $250 million

Bordetella pertussis

PCR-based tests Causes whooping cough but may occur in immunosuppressed transplant patients

Whooping cough can affect millions during epidemics but >0.5 million in transplant patients

$100 million

Influenza H1N1

PCR-based tests (for companies developing tests see part I of report)

Variable epidemics. Number difficult to estimate or predict

? ?

Epstein-Barr virus (EBV)

ELISA for infectious mononucleosisPTLD: tissue biopsy; and the presence of EBV DNA, RNA, or protein in tissue

95% of adults carry EBVPosttransplant lymphoproliferative disorder (PTLD) affects ~2% of patients

Molecular diagnostics in >0.5 million PTLD patients

$250 million

Hospital-acquired infections

PCR-based tests: MRSAVREC. difficile

4 million worldwide2 million worldwide2 million worldwide

2 million1 million0.5 million

$560 million

© Jain PharmaBiotech

Table 12-9: Future markets for molecular diagnosis of infections 2011-2015

Infections 2011 2012 2013 2014 2015

HIV-1 $960 million $1.09 billion $1.24 billion $1.4 billion $1.69 billion

Chlamyda trachomatis $450 million $510 million $580 million $650 million $730 million

Neisseria gonorrhoea $580 million $650 million $760 million $860 million $980 million

HSV $550 million $630 million $720 million $830 million $940 million

HCV $560 million $660 million $750 million $870 million $900 million

HBV $670 million $750 million $890 million $1.0 billion $1.25 billion

Tuberculosis $500 million $570 million $650 million $750 million $870 million

Group B Streptococcus

$250 million $300 million $360 million $420 million $500 million

Bordetella pertussis $100 million $120 million $150 million $200 million $260 million

EBV-PTLD $250 million $280 million $320 million $370 million $430 million

Hospital-acquired infections

$700 million $850 million $1.08 billion $1.31 billion $1.58 billion

© Jain PharmaBiotech

The population estimates are projected from the US, the only major country with some reasonable statistics. From the patterns of use of molecular diagnostics for infections, it is estimated that 30-50% patients get investigated with higher percentage in US, Western Europe and Japan and lower percentage in developing countries. The cost of these tests, when available in developing countries has to be lower and revenues compensated with larger volumes of testing. The reagents and other materials for the tests are relatively inexpensive when bought in bulk. Quantitative tests are more expensive than qualitative tests. The market estimates are calculated on the basis of an average of $150 per test per patient. Note, however, that some patients may have more than one test, particularly during monitoring of viral load during therapy for viral infections. Part of the growth of this market will

- 55 -

Page 58: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

be genotyping to monitor therapy. For example, HCV genotyping market was estimated to be worth $350 million in 2010 and is growing rapidly.

Sexually transmitted diseases

Among infections, sexually transmitted diseases (STDs), which include HIV, N. gonorrhea, and C. trachomatis, will continue to dominate the market for molecular testing. This area produced 50% of the revenues for infectious disease segment of molecular diagnostics in 2010 and will continue to hold this share until 2020 as current infectious diseases are not expected to be eliminated by that time. Syphilis resurfaced as a danger in 2001, and cases went up by >16% between 2005 and 2010. Since the early 1980s, there has been a dramatic downturn in gonorrhea cases, but for the last 10 years, the rates have leveled off, especially in African-American populations. Reported cases of chlamydia and gonorrhea together surpassed 1.5 million in 2010. A record number of chlamydia cases were reported in the US in 2010 and it is the most common reportable STD as well as infectious disease.

Early diagnosis and treatment of STDs can be both medically and economically efficient. According to an estimate of the CDC, every dollar spent on Chlamydia screening saves $12 in future medical costs. Molecular diagnostic tests compare favorably with immunodiagnostic methods for detection of infections. For example, PCR is superior to direct viral culture both in time and cost: it takes 3-10 days and costs $200, compared with 3-4 weeks and $300-600 for viral culture.

Hospital-acquired infections

Detection of hospital-acquired (nosocomial) infections (HAI), particularly drug-resistant organisms such MRSA, are a potential market for diagnostics. Guidelines have been issued by the CDC outlining strategies to prevent the spread of drug-resistant infections in healthcare settings. The screening of patients at high risk for carrying drug-resistant bacteria was recommended for healthcare facilities that do not improve their healthcare-associated infection rates. Market for various HAIs described in Chapter 6 (MRSA, VRE, C. difficile, BK virus etc) was approximately $560 million in 2010. The reason for the relatively low value is that some of the diagnostic tests for these infections were included in non-HAIs, e.g. MDR-TB, and use of commercially available tests for these special infections were limited and no large scale screening was done. The incidence of HAI is much lower in developing countries due to lower rate of hospitalization and antibiotic use. Anticipated developments indicate that this market for HAIs discussed in this report will expand to $1.7 billion in 2015. Table 12-10 shows estimates for the future markets.

Table 12-10: Future markets for HAI diagnostics 2010-2015

Organism 2010 2011 2012 2013 2014 2015

MRSA $350 million $450 million $520 million $630 million $790 million $920 million

VRE $60 million $70 million $110 million $200 million $300 million $420 million

C. difficile $100 million $120 million $150 million $190 million $220 million $260 million

BK virus $50 million $60 million $70 million $80 million $90 million $100 million

Total $560 million $700 million $850 million $1.1 billion $1.4 billion $1.7 billion

© Jain PharmaBiotech

Influenza A, B

- 56 -

Page 59: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

The figures are rounded off to nearest 10 million. It is anticipated that MRSA testing will nearly triple in 5 years followed by C. difficile testing which will increase more than 2.5 times during this period. VRE and BK virus will grow at a slower rate initially, but will increase as the number of transplants increases; VRE will have the greatest growth, i.e. 7x. The large growth is significantly more than that of molecular diagnostic market, which has been growing at around 18% annually for most of the past years and future growths will be steady but not dramatic with exception of some breakthrough. The large growth rate figures shown here are attributed to:

Overlap of HAI with POC and hospital diagnostic markets, both of which are substantial.

Overlap of the larger non-HAI diagnostics with HAI as some technologies are common to both.

Overlap of molecular and non-molecular diagnostics.

Overlap with antibiotic resistance.

Drivers for the growth of HAI diagnostic markets include the following:

Increasing awareness of the problem of HAIs.

New technologies/products in development.

Increasing number of companies developing diagnostics for HAIs. Cepheid and BD Diagnostics, the two companies that have already received US and European marketing clearance for a variety of HAI tests, plan to expand their test menus in this market. Other companies are beginning to compete in this market, e.g. Human Genetic Signatures.

Increase in research funding by government agencies in US and EU for projects dealing with healthcare-related infections and antibiotic resistance. A fall-out from this would be better understanding of the molecular basis of these infections, which could be applied for improving diagnostics.

Current trend in personalized medicine incorporate diagnostics and link it to therapeutics. This is relevant to challenges in the management of HAIs.

Testing for HIV drug resistance

Apart from the clinical applications, biopharmaceutical companies are using HIV resistance testing technology to enhance next-generation HIV drug development as recommended by the FDA's antiviral drugs advisory committee. The industry currently has several approved HIV drugs and many new drugs in the pipeline, all of which will require resistance testing for their development. This will provides a substantial market for this technology.

Potential markets for avian influenza diagnostics

Markets for avian influenza diagnostics are not included in the tables and figures given so far. Along with bioterror agents, they are very variable and are not part of established diagnostic markets. However, there is considerable activity in development of molecular diagnostics for human affliction with this virus and fear of a pandemic as described in part I of this report. Although a number of tests have been approved, the use is restricted to areas where human cases of avian flu have been reported. In the US, the tests are being held in reserve in case of a pandemic. Under these

- 57 -

Page 60: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

circumstances, it would be inaccurate to predict any reasonable market value of such tests.

Cardiovascular diseases

Cardiovascular diseases are the largest category in therapeutics but it was a small market in diagnostics - $600 million - in 2010 and will expand to $1 billion in 2015 and $2.8 billion in 2020. This market overlaps with genetic disorders. Although a large number of cardiovascular diseases were identified with the molecular testing possibility in chapter 5, most of these are for prevention and population screening as risk factors. Well-known tests such as factor V mutation as a risk factor for thrombosis are not widely performed. The incidence of this mutation in persons who die of pulmonary embolism is no higher than that in the general population. There are multiple risk factors involved in thrombotic disorders, many of which cannot be detected by molecular diagnostics. The same applies to Quest Diagnostic's Lp PLA2 test, which indicates that increased levels of lipoprotein are associated with risk of cardiovascular events. Screening is not yet done on a large scale so that current market is very small for such tests.

Congestive heart failure (CHF) is one example where acute testing at the POC has a tremendous potential. For example, Triage BNP (Biosite) is an approved protein chip-based diagnostics. The other test ADVIA Centaur BNP (Siemen's Healthcare Diagnostics) is marketed only outside of USA. Roche Diagnostics's Elecsys® proBNP is an automated immunoassay for diagnosis of CHF by detecting the level of the NT-proBNP peptide. It has been approved by the FDA for risk stratification in CHF and in acute coronary syndrome. This will expand the market for this test. There are few other companies such as Abbott/Celera collaboration actively involved in developing tests for cardiovascular disorders. Many others mention it in their plans. Use of cardiovascular molecular diagnostics for drug discovery and personalized medicine are the areas where much of expansion will take place in the future. Much of the current research in discovering markers will have applications in providing new drug targets. Tests for cardiovascular disorders will be combined with therapeutics for developing personalized medicines.

Neurological disorders

Neurological disorders constitute a major therapeutics area with a large diagnostic market but only a small part of it involves approved molecular diagnostics - $750 million - in 2010, but this will expand to $1.1 billion in 2015 and $2.5 billion in 2020. This market overlaps with that for genetic disorders. A large segment of it is Alzheimer’s disease and the diagnostics for this disease are discussed in detail in a special report on this topic (Jain 2011j).

Food testing

Detection of food-borne infections remains a steady market for in vitro testing. Although the incidence of food-borne diseases has not changed significantly in the past few years, the market has expanded due to the availability of better and larger number of assays for the detection of food-borne diseases. Bovine spongiform encephalopathy (BSE) has been a significant problem in the livestock industry and a cause of significant economic loss in the EU. There is still soncern for the relationship to variant Jacob-Creutzfeldt disease (vJCD) in humans remains. Isolated cases have been reported in other countries. Diagnostic kits are now available for BSE. The potential commercial market of such a diagnostic kit for use in the

- 58 -

Page 61: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

livestock and human blood and tissues markets in Europe alone is in excess of $100 million per annum. Food testing market was worth $350 million in 2010 and will expand to $500 in 2015 and $1.1 billion in 2020.

An area for considerable potential expansion of IVD market is testing of food for genetically modified organisms (GMOs). Since 1999, the European Commission requires all food companies to label products containing foods derived from GMO sources. The Joint Research Center's Food Products Unit of the Institute has validated strategic Diagnostic's Soya Test Kits for Health and Consumer Protection, as a test for compliance with the GMO food labeling regulations within the EU member countries. They are being marketed in EU in collaboration with GeneScan Europe.

Screening of blood for transfusion

Role of molecular diagnostics in screening of blood transfusion for viruses has been described in Chapter 8. The exact extent of use of this testing procedure has not been measured but the market is of considerable size because blood transfusion is a common procedure in hospitals. Approximately 60 million units of whole blood and plasma are donated and screened annually in target markets throughout the world. The current potential value of the hepatitis and HIV clinical diagnostics market is over $1 billion. The exact share of nucleic acid-based technologies used in screening blood transfusion has not been determined and there is no separate entry for this item in any of the tables as the market overlaps that of detection of viruses associated with various diseases. There is still no satisfactory blood substitute and as long as donor blood is used for transfusion and other blood products, screening for HIV and hepatitis viruses would be essential.

Tissue typing for transplantation

The biggest segment of this market is human leukocyte antigen testing, which was worth $200 million in 2010. Approximatley 15% of this market was for identifying potential bone marrow donors. This market is anticipated to expand to $500 by the year 2020.

Molecular diagnostic markets relevant to pharmaceutical industry

Applications of molecular diagnostics in the pharmaceutical industry were described in Chapter 8 (Part I). There is no specific figure estimated for pharmaceutical applications of molecular diagnostics as such because most of these are not clinical diagnostics but use of the basic IVD technologies such as PCR and biochips/microarrays in pharmaceutical industry, e.g. drug discovery and detection of impurities or for tracking pharmaceuticals. Use relevant to personalized medicine, i.e. companion diagnostics, monitoring of clinical trials, pharmacogenetics, pharmacogenomics, etc discussed in the markets for personalized medicine in the report on that topic and are summarized in the following section (Jain 2011e).

Molecular diagnosis and personalized medicine markets

Several molecular diagnostic technologies are used in the development of personalized medicine and markets for these can be calculated. No matter which way one analyzes these markets, there is considerable overlap among the components as well as related fields. Eventually introduction of personalized medicine will increase the value of both pharmaceutical and diagnostic markets although the exact value of this enhancement may not be

- 59 -

Page 62: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

separable in markets that were growing even prior to the concept of personalized medicine. Currently, it makes no sense to detach a part of the healthcare market and label it as personalized medicine market. Even medicines that have companion diagnostics are not used exclusively in a personalized manner and diagnostics have other applications as well.

Once low-cost genotyping becomes available, the pharmaceutical revenues would actually increase due to the extended life cycle of a drug by a decrease in the overall length of the drug discovery/development process as well as earlier market introduction. This could translate into a 40% increase in revenues.

Growth of markets relevant to personalized medicine

Various technologies relevant to personalized medicine have been described throughout this report. Estimates of markets for these technologies relevant to personalized medicine are shown in Table 12-11. The figures are not totaled because of considerable overlap between markets, e.g. some technologies such as biochips are part of the overall molecular diagnostic market.

Table 12-11: Growth of markets relevant to personalized medicine 2010-2020

Market Year 2010 Year 2015 Year 2020

Pharmacogenomics $2.1 billion $2.8 billion $4.1 billion

SNP genotyping $1.0 billion $2.6 billion $3.9 billion

Pharmacogenetics $1.2 billion $2.3 billion $3.8 billion

Pharmacoproteomics $0.9 billion $1.8 billion $4.2 billion

Biochips $2.1 billion $3.4 billion $10.5 billion

Point-of-Care diagnosis $10.8 billion $18.0 billion $30.0 billion

Genetic screening $1.4 billion $2.9 billion $7.5 billion

Jain PharmaBiotech

Marketing opportunities according to geographic areas

Molecular diagnostic markets according to geographical areas are shown in Table 12-12.

Table 12-12: Molecular diagnostic markets according to geographical areas 2010-2020

Geographical area Year 2010 Year 2015 Year 2020

North America $4.2 billion $6.9 billion $16.9 billion

Europe $2.6 billion $4.8 billion $13.6 billion

Japan $0.7 billion $1.0 billion $1.5 billion

China $0.5 billion $0.7 billion $3.0 billion

India $0.4 billion $0.6 billion $2.5 billion

Rest of the world $0.7 billion $1.5 billion $5.0 billion

Total for each year $9.1 billion $15.5 billion $42.0 billion

© Jain PharmaBiotech

Geographically, the US represents the major market for these diagnostics, accounting for nearly half of the revenues in 2010. Despite its relatively stiff regulatory requirements and ethical debates about the role of molecular

- 60 -

Page 63: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

diagnostics, the US still represents the best environment for expansion of molecular diagnostics in genetic disorders and cancer screening. Number of molecular and genetics tests performed in the US is expected to exceed 100 million by 2015. Although the population of Western Europe is larger than that of the US, and the regulatory restraints in that region are less stringent, the market share of Western Europe is not expected to surpass that of the US for the following reasons:

The standards of medical care are not geographically uniform due to economic factors and differing systems of healthcare. Molecular diagnostics are likely to develop rapidly in Germany and the UK the two countries in Europe that also happen to have the most developed biotechnology industry but may lag behind in Italy and Spain.

Public awareness of molecular diagnostics and initiative in starting discussions on related topics with the physicians is less in Europe than in the US.

Among the Asian countries, only Japan has a sizeable molecular diagnostic market although the high cost is a limiting factor for expansion. China and India are large emerging markets but the financial value of the market is currently is considerably lower than in the West because of the low cost of testing. The financial potential of markets will increase considerably in the next decade. Considerable market expansion is expected in the rest of the world, particularly in the diagnosis of infectious diseases.

Unmet needs in molecular diagnostics

Figure 12-1 shows the level of unmet need remaining in the molecular diagnostics field. In the figure, diagnostic achievements with various emerging technologies have been depicted as percentages of desired goals in main areas of application.

- 61 -

Page 64: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Figure 12-1: Unmet needs in applications of molecular diagnostics

© Jain PharmaBiotech

Major market trends

Markets according to home-brew and FDA-approved tests

With a limited number of tests approved by the FDA, majority of tests are still home-brew using analyte-specific reagents (ASRs) but the value of this market with reduce as regulatory control is extended. Most of this market is in the US with few home-brew diagnostic products in Europe. Majority of home-brew tests currently are based on PCR and related technologies. Several non-PCR tests are based on MAbs. Many of the home-brew tests will gain FDA approval based on the data generated from use over years. By 2020 the value of approved tests will increase over home-brew tests. Global market values of home-brew tests as compare to approved tests are shown in Table 12-13. The total of various items in this table differs from that in Table 12-2 because molecular imaging is excluded as there are no homebrew tests in this category.

- 62 -

Drug development

0% 25% 50% 75% 100%

Drug discovery

Pharmacogenetics

Pharmacogenomics

Genetic disorders

0% 25% 50% 75% 100%

Diagnosis

Screening

Cancer

0% 25% 50% 75% 100%

Monitoring oftherapy

Screening

Diagnosis

Infectious Diseases

0% 25% 50% 75% 100%

Resistance testing

Diagnosis

Page 65: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table 12-13: Molecular diagnostic markets according to home-brew and approved tests

Technology 2010 2015 2020

Home-brew

Approved Home-brew

Approved

Home-brew

Approved

PCR & related technologies

$1.9 b $0.8 b $3.0 b $1.4 b $2.4 b $8.2 b

Non-PCR tests $1.0 b $0.1 b $1.4 b $0.5 b $1.7 b $2.6 b

FISH and innovations $0.9 b $0.2 b $1.8 b $0.5 b $1.7 b $4.0 b

Biochips/microarrays $1.9 b $0.2 b $2.7 b $0.8 b $3.6 b $7.0 b

Biosensors $0.6 b --- $0.8 b $0.1 b $2.6 b $1.1 b

Other technologies $0.4 b $0.1 b $1.0 b $0.2 b $3.3 b $2.1 b

Total $6.7 b $1.4 b $10.7 b $3.5 b $15.3 b $25.0 b

© Jain PharmaBiotech

Decentralization of molecular diagnostics

Currently, most molecular diagnostic tests are run in either large centralized labs, such as those operated by Laboratory Corporation of America and Quest Diagnostics, or in CLIA labs. But as more molecular diagnostic tests are developed, particularly for conditions for which physicians would like to have a rapid answer, decentralized labs and point-of-care (POC) are viewed as a viable and growing market. Key drivers of decentralization are:

The increasing virulence of infectious diseases, e.g. hospital-acquired infections.

Companion diagnostic, e.g. for selection of antibiotics.

Poor patient compliance to drug regimens and a need for better drug monitoring for diseases such as cancer.

Advances in personalized medicine will necessitate that some molecular diagnostics be brought into the physician’s office as well.

Some of the deterrants to decentralization of molecular diagnostics are:

The healthcare system’s focus on keeping the costs down tends to pushes diagnostic testing into centralized settings. It is likely that some molecular diagnostic tests will end up running in both centralized and decentralized labs.

Complexity of the new automated systems may require expertise that may not be available in the hospital laboratory setting. There is a needed for equipment that is easier to operate.

New FDA regulations, such as those governing multivariate assays, will likely make clearance for companion diagnostics more difficult and problematic for test developers. As a result, manufacturers will need to be more diligent in doing their R&D in molecular diagnostics.

Point-of-care testing

POC testing is now moving to the home and the physician's office. This has developed for ELISA and biochemical tests such as blood glucose. The POC testing market is about one-third of the IVD testing market with most of the products for pregnancy and monitoring of diabetes, but the role of molecular

- 63 -

Page 66: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

diagnostics is currently limited in this market. However, the role of molecular diagnostics is expected to expand, particularly with the introduction of diagnostic protein biochips which is an improvement over the standard ELISA tests. The following estimates refer to POC molecular diagnostics.

In 2010, over 53 million IVD tests were performed with US hospitals and laboratories; 70% of these were performed by skilled technicians. With public pressure to cut costs, healthcare providers have begun a major shift to alternate site testing such as the POC. Another driver for the development of POC testing is the need for rapid results in proper management of patients, particularly those with infectious diseases. The US POC market in 2010 was worth approximately $5.0 billion, which includes $1.3 billion for hospital-based, $1.6 billion for doctor's offices and $2.1 billion for home testing. POC testing is also playing an important role in the development of personalized medicine.

The global POC market was $10.8 billion (18% of the total IVD market) in 2010: $4.2 billion for home testing, $4.4 billion for doctor's office, and $2.2 billion for hospital based testing. Outside the US, European market was the largest with over 13 million IVD test and was worth $1.3 billion in 2010: $600 million for hospital-based, $500 million for physician offices and outpatient clinics and $200 million for home testing. Global POC market will increase to $18 billion (20% of the total IVD market) by the year 2015 with share of hospital POC at $5.6 billion. Bioelectronic microchip for DNA and protein chips are the technologies are currently most suited for POC care but nanotechnology-based products are expected to dominate in the future POC market in the year 2020, which is estimated to be worth $30 billion. The largest segment of the POC is for infectious disease testing. Although POC market is growing rapidly, its percentage within the total IVD market will not increase much as the total market is also expending in more expensive non-POC applications.

Development of personalized medicine

There is an increasing interest in the development of personalized medicine in the past few years. Molecular diagnostics is involved in various components of personalized medicine: pharmacogenetics, pharmacogenomics and pharmacoproteomics. Molecular diagnostics play a key role in this area both in drug development and as a guide to therapy in the clinic; integration of diagnostics with therapeutics. Financial implications of personalized medicine are discussed in a detailed report on this topic (Jain 2011e). Pharmacogenomic and pharmacogenetic testing is not considered separately but incorporated in the overall molecular diagnostic markets. Pharmacogenomic tests have an impact during drug development and pharmacogenetic testing will be a part of personalized management of various diseases. The value of markets of various therapeutic areas takes this into consideration. By the year 2020, personalized medicine will be recognized part of practice of medicine. POC diagnostics and biochips will enable the practical use of various tests. An important consideration in estimating markets for personalized medicine is the cost of genotyping.

Cost of sequencing the human genome

Currently it costs nearly $20 million to sequence the 3 billion base pairs of DNA found in humans. Therefore, large scale sequencing is carried out mostly at special sequencing centers and is restricted to major expensive projects. The immediate goal of the NIH’s National Human Genome Research Institute (NHGRI) is to support research to lower the cost of these projects more than 100-fold in order to allow scientists to sequence genomes of

- 64 -

Page 67: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

human subjects involved in studies to find genes relevant for disease. The longer-term goal of NHGRI’s “Revolutionary Genome Sequencing Technologies” grants totaling more than $32 million is the development of breakthrough technologies that will enable a human-sized genome to be sequenced for less than $1,000 by 2015 so that this process can be used in routine medical tests and allow physicians to tailor diagnosis, prevention, and treatment to a patient’s individual genetic makeup. On 9 May 2011, Illumina lowered the cost of its human whole-genome sequencing services to $5,000 per genome for projects of 10 samples or more, and $4,000 for projects of 50 samples or more. The services are offered through the Illumina Genome Network and compete directly with human whole-genome offerings from Complete Genomics and Life Technologies. Thus, there is a good possibility of this price price falling to $1,000 genome before 2015. The SOLiD 3 System (Life Technologies Corporation) will increasingly drive capabilities toward the $1,000 genome milestone.

Cost of genotyping

Currently, it typically costs a drug company about $800 million to develop, test, and bring to market a single drug. Pharmacogenomic data could hasten clinical drug trials, allowing researchers to design and conduct safer, more targeted trials on a particular drug. The results of such a trial would be far more conclusive and focused than those of trials that do not use pharmacogenomic data. By reducing both the time of drug development, the number of patients required and the failed clinical trials, pharmacogenomics is expected to reduce the cost of drug development. The question now is the cost of genotyping.

Genome-wide association studies will require at least 100,000 SNPs to be genotyped in, for example, 500 cases and 500 controls. This represents 100,000,000 genotypes for each analysis. Using today’s technology, an amplification methodology is required, whether it is on an individual SNP basis using PCR or by whole genome amplification. A rapid discrimination mechanism to determine the genotype of each sample and some way of rapidly reading out and capturing the data are required. Many technologies are being developed to solve these practical issues, but they invariably require a PCR step. The miniaturization of PCR using microfluidics may provide an opportunity to reduce costs, as well as multiplexing both the amplification steps and the detection steps. Nanotechnology with naopore DNA sequencing and single molecule detection is another promising approach. Another problem associated with the whole genome scans in humans is that the technology platform will have to deliver between 250,000 - 1,000,000 genotypes a day to make the time frame for these studies reasonable. Current cost ranges between 10¢ and $1 per genotype. For example using Taqman technology, 1,000,000 genotypes would cost $1 million ($1 per genotype) or oligo ligation assay and ABI 377 technology would cost $500,000 (50¢ per genotype). Even at the level of the individual patient, to genotype 300,000 SNPs is an expensive proposition. To enable such approaches to be utilized widely the cost per genotype has to come down from the current cost to 0.1¢ per genotype. VisiGen Biotechnologies Inc was awarded a “$1,000 Genome” grant from NHGRI to advance the development of innovative sequencing technologies intended to reduce the cost of DNA sequencing.

Currently the pharmacogenomic market consists mostly of application of genomic technologies to drug discovery and testing of patients in clinical trials. There is overlap with molecular diagnostic market in the areas of SNP genotyping. This market was worth $2.2 billion in the year 2010 and to grow to $2.9 billion by the year 2015 and $4.2 billion by the year 2020.

- 65 -

Page 68: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Marketing companion diagnostics for personalized medicine

Companion diagnostics do not constitute a distinct marketing entity as some of them are covered under pharmacogenetics/ pharmacogeneomics and other segments of molecular diagnostic market. The greatest challenge for IVD manufacturers in creating meaningful partnerships with pharmaceutical companies to advance the use and integration of personalized medicine into today's healthcare systems is ensuring commercial value on both sides of the partnership. These companion diagnostics make a tremendous impact in the methods of identifying the most appropriate course of treatment for individual disease states, but the creation of commercial value for partners is extremely difficult to obtain because of low reimbursement rates for diagnostic tests. Working in tangent with pharmaceutical companies is just the first step in negotiating the perilous route of commercializing viable IVD companion products.

The use of companion diagnostic is expanding. Currently there are over 50 companion diagnostics and several are in development. Although the value of companion diagnostics in improving drug efficacy and safety has been established in clinical trials, most physicians still do not know enough about the field to feel comfortable in ordering recommended tests. In a nationwide US physician survey conducted by Medco that reached approximately 400,000 practitioners, 98% agreed that genetics is important for drug therapy, but only about 10% were adequately informed about it. Additionally, about 12% stated that they have been ordering a genetic test over the preceding six months and about 25% indicated that they are planning to order genetic tests. This indicates a tremendous growth potential of this market.

Development of low-cost tests

A distinct trend toward lower pricing of test kits has emerged in recent. This consideration is an important factor for these molecular diagnostics in their competition with conventional technologies. DNA tests for identifying an individual are simple and cheap. Commercial laboratories offer DNA testing for paternity and other relationships for as little as $130. Legal setting raises the costs. There are over DNA 1200 tests available, mostly for diagnosis of diseases. The cost varies from $150 to over $1000 with an average of $500. The costs are expected to drop in the future as the use increases. The current aim is to sequence a human genome in 8h for <$100 (BioNanomatrix).

Given the current cost-containment trends in health care, offering a reasonable price is essential, as is demonstration of the superiority of molecular diagnostics relative to other methods. The customer of the future is not only the laboratory manager, but also the cost-conscious managed care administrator. Low costs will be essential if molecular diagnostics are to be employed for large-scale screening of populations for genetic disorders. Cost will also be an important factor for application in developing countries, which have large markets for infectious disease diagnostics

Simplification of test procedures

Test manufacturers are generally trying to develop simple-to-use kits with a minimal number of steps. Tests that do not require specialized equipment to be installed in the laboratory are considered more desirable.

Creation of a highly innovative and unique technology for molecular diagnostics is the most desired goal for all newcomers in the field of

- 66 -

Page 69: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

molecular diagnostics. As noted earlier, any of these technologies have versatile applications in infections, genetics, and cancer.

In recent years, PCR has been the fastest-growing segment of molecular diagnostic technology. Most of the diagnostic tests in the market are based on PCR, with automation being a key trend. A number of new tests based on other technologies, however, are now challenging PCR. Many existing laboratories will have immediate access to automation of these new technologies without the purchase of new equipment. Nucleic acid sequence-based amplification (NASBA), for example, allows direct detection and quantification of RNA viruses. Another promising test for this purpose is branched DNA test. Along with NASBA, it is considered an important advance for evaluating and monitoring antiviral therapy in HIV and HCV infections.

A significant challenge facing the molecular diagnostic industry is the transformation of laboratory tests now performed by researchers into commercial diagnostics that can be used by nonspecialist technicians in doctors' offices, and even by consumers at home.

Increasing role of proteomics in clinical diagnostics

There are two main reasons for a shift in trend towards the use of proteomic technologies in diagnostics as described in Chapter 4. One is a rapid growth in the understanding of the proteome, which redirects the attention from the genome back to the proteome. The other reason is that proteomic technologies refine the already established immunoassays and it may be easier to shift to protein assays than nucleic acid assays. Proteomic separation and analytical techniques are uniquely capable of detecting tumor-specific alterations in proteins. Proteomic technologies, therefore, have a potential in developing molecular diagnostics and markers for the early detection of cancer. Protein chip and microarray technology has made rapid advances and is moving in microfluidics and nanochips. Protein biochips are advancing to POC application ahead of DNA chips.

A full understanding of the pathogenesis of diseases would eventually require knowledge of levels of proteins and their variants. Therefore, identification of all protein variants, how they relate to each other, and functional consequences of changes in their levels must be considered in order to understand the clinical presentation of complex diseases. In addition, protein profiling, along with gene profiling, will play an important role in the integration of diagnostics with therapeutics and development of personalized medicines.

Forensic and legal applications

The worldwide market for paternity testing is estimated to be worth more than $1 billion and probably the largest potential diagnostic business in molecular genetics. Only a fraction of this has been exploited. The use of molecular diagnostic technologies for identification is being used increasingly for legal purposes. These technologies have been used extensively recently for identification of victims of war and terrorist attacks.

Marketing strategies

Various marketing strategies that have been found to be useful in the marketing of molecular diagnostics are listed in Table 12-14 and some of these will be discussed.

- 67 -

Page 70: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table 12-14: Marketing strategies for molecular diagnostics

Strategies based on alliances

Acquisitions vs collaborations

Licensing of the technologies

Strategies related to laboratory facilities

Company-owned laboratories

Collaboration with commercial laboratories

Strategies relevant to the healthcare system

Cost/benefit studies

Testing at point-of-care

Integration of diagnostics with therapeutics

Selection of the largest areas of indication for diagnostics

Selection of areas with the greatest unfulfilled needs

Regulatory strategies

Introduction of diagnostics into research laboratories

Approval in countries outside of US

Information/education

Physician education

Training of laboratory personnel

Public education

Pharmaceutical applications of molecular diagnostics Drug discovery and development, safety studies, and adjunct to clinical trials of drugs

Jain PharmaBiotech

Role of alliances in commercialization of molecular diagnostics

There are two types of alliances: collaborations and licensing. Collaboration is used to mean an arrangement where two parties are conducting joint research or development of a technology or product. License is used for the granting of intellectual property rights (IPRs). The two types of alliances may overlap because collaboration is likely to involve cross-licensing of IPRs and the licensing often involves some collaboration between the parties. The term “collaboration” covers both types of alliances. Although academic alliances are common, alliances between companies have played an important role in commercialization of molecular diagnostics.

Acquisitions vs collaborations

Along with alliances, acquisitions have also played a role but their number is limited as shown in Table 12-15. There is a tendency for the larger companies to form collaborations rather than acquire smaller companies because of their technologies. The acquired company often continues to function as before within the larger organization and collaboration continues between the two companies at a scientific level. The advantages of acquisition are financial security for the acquired company and exclusivity of use of technology by the acquiring company. The disadvantage is in case the acquiring company no longer wants to pursue the acquired technologies. It is more difficult to dispose of a company than simply not renew the collaboration, which is for a limited period.

- 68 -

Page 71: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Table 12-15: Takeovers of molecular diagnostic companies

Company Acquired company Year Amount

BD Biosciences Clontech 1999 $200 million

Epoch Biosciences Synthetic Genetics 2000 ?

Abbott Vysis 2001 $355 million

Applied Biosystems (now Life Technologies)

Boston Probes 2001 $32 million

bioMérieux Organon Teknika 2001 ?

Orchid Cellmark Lifecodes Corporation 2001 ?

Transgenomic Inc Annovis Inc 2001 ?

Johnson & Johnson Tibotec-Virco 2002 $320 million

QIAGEN Genovision AS 2002 $30 million

Quest Diagnostics Unilab Corporation 2002 $860 million

Amersham Biosciences(part of GE Healthcare)

CodeLink /Motorola Life Sciences

2002 $20 million

Serono SA Genset 2002 $143.8 million

Bayer Diagnostics Visible Genetics 2002 $61.4 million

LabCorp of America DIANON Systems 2003 600 million

Invitrogen PanVera unit of Vertex 2003 $95 million

Genaissance DNA Sciences 2003 $1.3 million

Caliper Life Sciences Zymark Corporation 2003 $57 million

Invitrogen Molecular Probes 2003 $325 million

Roche IGEN 2003 $1.42 billion

Gen-Probe Molecular Light Technology Ltd 2003 $11 million total valueCurrently owns 82.6%

Tepnel Life Sciences Diagnostic Unit of Orchid Cellmark

2003 $4.3 million

Abbott Laboratories i-STAT Corporation 2003 $392 million

Genaissance Lark Technologies 2003 $19.9 million

Nanogen SYN X Pharma Inc 2004 (April) $12 million

Genzyme Corporation

Impath 2004 (May) $215 million

Bio-Rad MJ GeneWorks 2004 (August) $32 million

QIAGEN Molecular Staging Inc 2004 (September)

$28.5 million

Invitrogen DNA Research Innovation 2004 (October) $35 million

Invitrogen Bio Asia (Shangai) 2004 (December)

$8 million

Invitrogen Zymed 2005 (January) $60 million

Invitrogen Dynal Biotech 2005 (February)

$375 million

Illumina CyVera Corporation 2005 (April) $17.5 million

QIAGEN Artus Gesellschaft 2005 (May) $39.2 million

LabCorp of America Esoterix Inc 2005 (May) ?

Affymetrix ParAllele 2005 (June) $120 million

- 69 -

Page 72: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Quest Diagnostics LabOne Inc 2005 (August) $934 million

Takara Biomedical Clontech unit of BD Biosciences 2005 (August) $60 million

QIAGEN PG Biotech Co Ltd (Shenzhen, China)

2005 (September)

$14.5 million

Inverness Medical Innovations

Thermo Biostar: POC and Rapid Diagnostic business of Thermo Electron Corporation

2005 (September)

$52.5 million

Caliper Life Sciences NovaScreen BioSciences Corporation

2005 (September)

$22 million

Nanogen Spectral Diagnostics' rapid cardiac immunoassay test business

2005 (December)

$7.7 million

QIAGEN Eppendorf AG’s reagent business 2006 (January) $3 million

BD GeneOhm 2006 (January) $255 million

Caliper Xenogen 2006 (February)

$80 million

Fisher Scientific Athena Diagnostics 2006 (March) $283 million

Novartis Chiron Corporation 2006 (April) $7.8 billion

Millipore Serologicals 2006 (April) $1.4 billion

Nanogen Diagnostics division of Amplimedical

2006 (April) $10 million

Siemens Medical Solutions

Diagnostic Products 2006 (April) $1.8 billion

QIAGEN Gentra Systems Inc 2006 (May) $38 million

Warnex Inc PRO-DNA Diagnostics 2006 (May) $1.7 million

Quest Diagnostics Focus Diagnostics 2006 (May) $185 million

PerkinElmer Spectral Genomics Inc 2006 (May) ?

Siemans Bayer Diagnostics+Diagnostic Products Corporation

2006 (June) completed (Dec)

$5.4 billion

GE Healthcare Biacore 2006 (June) $390 million

PerkinElmer NTD Laboratories and J.N. Macri Technologies

2006 (July) $56.65 million

Becton Dickinson & Co

TriPath Imaging Inc 2006 (August) $350 million

Bio-Reference Labs Inc

GeneDx 2006 (August) $17 million

Genetix Group plc Applied Imaging Corporation 2006 (September)

$18.3 million

Quest Enterix Inc 2006 (September)

$43 million

Bio-Rad Provalis plc (POC business) 2006 (September)

$3 million

Beckman Coulter Lumigen Inc 2006 (October) $185 million

QIAGEN Genaco Biomedical Products Inc 2006 (October) $40 million

Illumina Solexa 2006 (November)

$600 million

Siemens Bayer Healthcare Diagnostics 2007 (January) $5.7 billion

Quest Diagnostics HemoCue, a Swedish POC company

2007 (February)

$420 million

Cepheid Sangtec Molecular Diagnostics 2007 (February)

$27 million

Luminex Tm Bioscience 2007 (March) ?

- 70 -

Page 73: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NorDiag Genpoint, a Norwegian DNA company

2007 (March) $13.3 million

Roche Diagnostics 454 Life Sciences 2007 (March) $155 million

Roche Diagnostics BioVeris Corporation 2007 (April) $600 million

Agilent Technologies Stratagene 2007 (April) $246 million

QIAGEN eGene 2007 (April) $34 million

Inverness Medical Biosite 2007 (May) $1.6 billion

QIAGEN Digene Corporation 2007 (June) $1.6 billion

Roche Diagnostics NimbleGen 2007 (June) $273 million

DiagnoCure Catalyst Oncology 2007 (August) $3 million + milestones

Inverness Medical Matritech for 2007 (August) $36 million

Clinical Data Inc Epidauros Biotechnologie AG 2007 (August) $12 million

Celera Atria Genetics 2007 (September)

$33 million

Siemens Dade Behring Holdings 2007 (November)

$7 billion

Roche Diagnostics Ventana Medical Systems 2008 (January) $3.4 billion

3M Healthcare Acolyte Biomedica 2008 (February)

?

Solvay Innogenetics 2008 (April) $227 million

QIAGEN Corbett Life Sciences 2008 (June) $135 million

Johnson & Johnson Nordic AB

Amic 2008 (June) $40 million

Hologic Inc Third Wave Technologies 2008 (July) $580 million

Illumina Avantome Inc 2008 (August) $25 million

QIAGEN Explera srl (Italy) 2009 (August) $7.5 million

bioMerieux AviaraDx (renamed bioTheranostics)

2008(September)

$60 million

QIAGEN Biotage (Pyrosequencing business)

2008 (October) $60 million

Invitrogen (now Life Technologies)

VisiGen Biotechnologies 2008 (October) $20 million

Cepheid Stretton Scientific 2008 (November)

$1.9 million

Affymetrix Panomics 2008 (December)

$73 million

Invitrogen (now Life Technologies)

Applied Biosystems 2008 (December)

$6.7 billion

Abbott Laboratories Ibis Biosciences 2008 (December)

$215 million

Genzyme Corporation

EXACT Biosciences’ IP 2009 (January) $24.5 million

Beckman Coulter Cogenics division of Clinical Data Inc

2009 (April) $17 million

Elitech Group Nanogen Inc 2009 (June) $25.7 million

LabCorp of America Monogram Biosciences 2009 (August) $104 million

Beckman Coulter Olympus' lab-based diagnostics 2009 (August) $780 million

Agilent Varian (array-related business) 2009 (August) $1.5 billion

QIAGEN DxS 2009 (September)

$130 million

- 71 -

Page 74: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BD Diagnostics HandyLab Inc 2009 (November)

$275 million

QIAGEN SABiosciences Corporation 2009 (November)

$90 million

Life Technologies Biotrove 2009 (November)

?

Gen-Probe Prodesse Inc 2009 (November)

$60 million

QIAGEN ESE GmbH 2010 (January) $19 million

Life Technologies AcroMetrix 2010 (January) Undisclosed

Danaher Corporation AB SCIEX 2010 (January) $1.1 billion

Danaher Corporation Molecular Devices 2010 (February)

?

PerkinElmer Signature Genomic Labs 2010 (April) $90 million

Meridian Bioscience Bioline group of companies 2010 (July) $23.3 million

IRIS International AlliedPath 2010 (August) $6 million

LabCorp Genzyme Genetics 2010 (September)

$925 million

GE Healthcare Clarient Inc 2010 (October) $580 million

Caliper Life Sciences Cambridge Research & Instrumentation

2010 (December)

$20 million

Sigma-Aldrich Cerilliant 2010 (December

Undisclosed

Novartis Diagnostics Genoptix 2011 (January) $470 million

Danaher Corporation Beckman Coulter 2011 (February)

$6.8 billion.

PerkinElmer Chemagen Biopolymer-Technologie

2011 (February)

?

Quest Diagnostics Celera 2011 (March) $671 million

LabCorp of America Orchid Cellmark 2011 (April) $85.4 million

© Jain PharmaBiotech

Analysis of collaborations in molecular diagnostics

Historically large companies with established channels of distribution to hospitals and private laboratories and a well-trained sales force have been most successful in marketing new molecular diagnostic kits. Most of the earlier DNA diagnostic tests were developed by small biotechnology companies that did not have the capacity for such marketing operations. As a result, most of these tests have changed to the hands of larger companies, either by takeovers or outright purchases of the technology.

The results of a study of commercial alliances in molecular diagnostics conducted at Jain PharmaBiotech in Basel, Switzerland were presented at an IBC Colloquium in Boston in 2002. Of the 250 collaborations analyzed, the number of collaborations between molecular diagnostics and biotechnology companies is the largest (100) followed by collaborations between molecular diagnostic companies (94). Other companies including pharmaceutical companies are in the third place (56). The largest area for collaboration is for diagnostic assays but the following are expanding: pharmacogenomics; development and commercialization; and combination of technologies. Although the number of collaborations has more than doubled since this study was done, the patterns have not changed. Proportions of various areas of collaborations are shown in Figures 12-2.

- 72 -

Page 75: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Figure 12-2: Proportion of various areas in molecular diagnostic collaborations

The largest area for collaboration in molecular diagnostics was for diagnostic assays but the areas of biochips, pharmacogenomics and combination of diagnostics with therapeutics are expanding. Expanding areas with opportunities for collaborations for molecular diagnostic companies are:

Research and development with support of larger biotechnology or pharmaceutical companies

Integration of diagnostics with therapeutics in collaboration with pharmaceutical companies

Development of personalized medicine in collaboration with pharmaceutical companies

Service laboratories for application of tests

Licensing of the technologies

A small company or an academic institution that cannot commercialize its product successfully may pursue licensing. Even large companies may use this strategy, however. For example, Roche has licensed its PCR technology to several companies, even though Roche is very active in the development and marketing of PCR-based tests. This strategy gains a wider use for the technology and brings in revenues from royalties.

Strategies related to laboratory facilities and technologies

Several genetic and forensic tests are carried out in specialized research laboratories or in the home laboratories of the manufacturers. This strategy reduces the companies’ costs and ensures quality control. Companies that already operate a network of laboratories tend to be more successful in marketing new test kits. During the period the manufacturer awaits FDA approval, reference laboratories can offer diagnostic services based on the particular molecular technology. They may also serve as test grounds for new products developed by the companies.

The laboratories should encourage adoption of technological advances in molecular diagnostics. Initially, this may increase the workload and might slow down the test processing speed. Tedious steps in molecular diagnostics can be automated to accelerate the rate of processing tests and reduce labor

- 73 -

Page 76: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

costs. Integration of molecular diagnostics with conventional in vitro diagnostics in a common platform might save costs.

Strategies relevant to the healthcare system

Because of the anticipated widespread use of molecular diagnostics in healthcare, strategies relevant to the healthcare system are important and some of these are discussed in this section. Even though testing represents only 4-6% of total health expenditures, the results probably influence 70% of the treatment decisions. Accuracy, reliability and clinical relevance of molecular diagnostics is important as inaccurate tests might contribute to wrong treatment decisions and rise of healthcare costs.

Cost-Benefit studies

These are important because of the legal and cost implications of new technologies. Although the value of molecular diagnostics in identifying infectious and genetic diseases has been demonstrated, medical insurers hesitate to reimburse these services without adequate proof of their clinical and economic value. Although a few studies have shown the benefit of molecular diagnostics in monitoring therapy further studies are needed. Manufacturers of diagnostic products and testing laboratories should fund such studies. With such efforts, it should be possible to replace some of the conventional, but less effective tests with more-effective options based on molecular technologies.

Genetic susceptibility testing

This has an important role to play in the healthcare system and some important points are:

Improved outcomes . By keeping people healthy through the prevention of disease is clearly the outcome that everyone in the healthcare system wants. When prevention is not possible, early intervention and treatments that lead to successful outcomes become the goal. Moreover, genetic testing enables preventive measures and therapies to be tailored to an individual for achieving improved outcomes, cost effectiveness, and quality of care.

Improved decision-making . Assessing whether a person is at increased risk for a particular disease can be helpful in making knowledgeable choices about which treatments will be most appropriate for that individual patient. As a consequence, more informed decisions could be made about reimbursing a treatment based on expected benefits given specific costs. Genetic susceptibility tests for diseases that are preventable and treatable are a crucial part of risk assessment, treatment planning, and overall disease management.

Managed care . Risk assessment by genetic testing can assist in optimizing the allocation of limited healthcare resources. The economic benefit of this approach can be realized by all of the stakeholders in the healthcare system concerned with improving quality while managing care.

Although there are good medical grounds for genetic testing, ethical as well as social factors limit developments of genetic screening tests. Legal and ethical aspects of direct-to-consumer tests were discussed in the preceding chapter. Use of genetic testing will vary according to the geographic region

- 74 -

Page 77: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

and stratum of the society. Although the percentage of general population that would consider genetic testing is small, educated upper middle class in the US is more likely to have genetic testing. Among those who would take genetic testing, majority would do it through their physicians. Introduction and promotion of genetic tests should be done through physicians rather than direct-to-consumer advertising. With protection of genetic information in place and increasing awareness of the importance of genetic testing, both among the public and the physicians, the market for genetic testing with expand in the next decade. Physician and patient education, as discussed later in this chapter, would be an important factor in this development.

Preventive medicine strategies

The following are relevant to genetic information detected by molecular diagnostics:

Target individuals where detection of the initiating factor for the disease would require a definitive intervention to control the disease, e.g. bacterial plaque levels in patients with periodontal problems.

Investigate individuals early on who would benefit most from behavioral changes to prevent developing a severe form of the disease later in life, e.g. diet and exercise for prevention of coronary artery disease.

Identify individuals who may be more likely to benefit from and respond to specific treatment protocols, or who will need to be monitored more carefully using state-of-the art diagnostic tests looking for early signs of the disease before too much damage is done.

Targeting treatable and common diseases

Selection of the most promising indications for developing tests is an important consideration. After cancer and genetic disorder, the most promising indications for molecular diagnostics involve infectious diseases. Tests that can detect multiple, related infections would have a wider market than those that can identify only a single source of infection. In some infections such as tuberculosis, the goal is not only detection of the organism, but also determination of resistance to chemotherapy. For HIV-1, HCV, and HBV, quantification of the virus is important as a guide to treatment. Manufacturers must take these differing goals into account when developing tests for these indications.

Information/education

Physician education

One basic problem is that physicians who did not learn genetics in school must now make time to educate themselves. Even now, many medical school curriculums do not require much genetic training. And even if they did have the knowledge, many physicians in the US who feel they are squeezed by a managed health care system say they do not have the time to learn every detail of their patients' history. Patients, they say, may need to research their family backgrounds and learn which tests might best apply to them. Educational efforts should first take into consideration the attitudes of the physicians. For example, the detection of genetic diseases has inspired considerable debate in medical circles. Primary care physicians are optimistic about the future use of genetic testing in detecting these

- 75 -

Page 78: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

disorders. Nearly half of these physicians believe that it would be worthwhile to detect these disorders, even if no therapy is available.

The attitude of the practicing physician is an important factor in determining the acceptance of any molecular diagnostic device. Older physicians, who have received no exposure to molecular medicine, would appreciate information in this area. General physicians are rarely well informed about the potential of molecular diagnostics in the detection of infections and as a guide to the management of infectious disease. Thus, physician education is an important aspect of the promotion of molecular diagnostics. It may take the form of symposia and hands-on training workshops, which are generally more effective than promotional literature in helping the manufacturer’s cause. An example of an early effort is the announcement in 1999 by the American Medical Association that it has introduced a new Continuing Medical Education-accredited unit entitled, "The Role of Genetic Susceptibility Testing for Breast & Ovarian Cancer." The new unit, supported by an educational grant from Myriad Genetics, will provide physicians with current information on genetic testing for breast and ovarian cancer. The material includes the appropriate criteria for identifying patients for testing, the interpretation of test results and management strategies for patients found to have BRCA gene mutations. The material answers a need for physician information due to the increased patient awareness of BRCA testing and the resulting growth in inquiries to physicians regarding breast and ovarian cancer genetic testing.

Specialists in oncology are most knowledgeable about use of molecular techniques in screening for cancer. Most companies work with these physicians during the development of cancer diagnostic tests. Liaisons with oncologists and cancer epidemiologists represent an important strategy in building a market for cancer molecular diagnostics.

Patient education

There is lack of basic information for the public about DNA tests in each of the three areas where the tests are available: prenatal screening, newborn screening and screening for some cancers and other adult diseases. Even if they decide not to use the new technology because of expense or personal values, people say that they should have the choice. The public should be made aware of the potential of molecular diagnostics. Patients are mainly interested in obtaining test results that are both reliable and lacking in undue delay and pain. Patient education, counseling, and support are especially important considerations in genetic testing and cancer screening. Benefits of genetic testing should be pointed out to the public and some of the points to be emphasized are:

Objective information about a person's genetic makeup can help him/her make decisions about important preventive treatments.

Genetic information helps in the understanding the mechanism of disease and enables intelligent and rational decisions about prevention and treatment.

Genetic testing is cost-effective. Most of us would much rather pay now for knowledge that can help prevent a catastrophic event later in life. There are economic benefits for the individual as well as the society.

Genetic information enables each patient to be treated according to his or her specific needs, avoiding a standard approach to treatment. Physicians may need this information to prescribe the safest and most effective drug for a particular patient.

- 76 -

Page 79: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Various public surveys have assessed public attitudes towards genetic testing. The aim of one such study in the Netherlands was to assess public attitudes toward the availability and use of genetic tests to explore support for genomics developments and to help improve public discussion (Henneman et al 2006). The results showed that those who were familiar with a genetic disease, those who scored higher on a four-item scale on belief in personal benefits of testing, and those who believe that knowledge of the genetic background of disease will help people to live more healthy lives, were less likely to be opponents. Those who agreed that genetic testing is tampering with nature were more likely to be opponents. Other variables such as belief in genetic determinism, genetic knowledge, level of education, age, and gender were not significantly associated. These results suggest that in addition to moral acceptability, perceived usefulness is a precondition for supporting genetic testing. It is not expected that more information will necessarily result in more positive attitudes.

European diagnostic information platform

The European Diagnostic Manufacturers Association (EDMA) has an information platform (www.labtestonline.info), which offers peer-reviewed patient centered non-commercial source of information on laboratory tests, their related conditions and screening programs. This multilingual portal generates more public consciousness about the potential of modern in vitro diagnostic tests. This will drive the molecular diagnostics market.

Regulatory strategies

Research use of molecular diagnostics provides an ample opportunity for the evaluation of a technology prior to introduction into a clinical setting. The overall time from preclinical to approval is less for diagnostics as compared to pharmaceutical products. Introduction of a diagnostic, linked to an approved therapeutic product, can be accelerated. Several diagnostic kits were initially introduced in Western Europe, where the regulatory requirements are not as strict as those imposed by the FDA in the US. Data obtained from commercial use in Europe have been used to supplement that obtained in the US through the sale of the same diagnostic tests to laboratories for research purposes. With the complicated regulation of IVD devices in EU, this is not easy.

Merger of in vitro and in vivo diagnostics

In the past, IVD industry had a major impact on the practice of laboratory medicine. These trends started with the development of movable testing platforms for all major areas of diagnostic testing. This trend continued with the introduction of molecular diagnostics, progressive automation, and the integration of general chemistry with immunochemistry; and culminated with total laboratory automation leading to consolidation of the IVD market. With development of in vivo diagnostics, there is a trend in merger of in vitro and in vivo diagnostics. Molecular imaging overlaps with molecular diagnostics as pointed out in part I of this report. This merger has been achieved by Siemens Healthcare Diagnostics, which provides the widest spectum of diagnostics. apart from increasing the clinical impact of diagnostics on management, this merger could reduce the cost of diagnostics and increase utilization of various test.

- 77 -

Page 80: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Integration of diagnostics with therapeutics

Integration of diagnostics with therapeutics and development of personalized medicine have been described in Chapter 8. This approach has advantages for the pharmaceutical companies, diagnostic companies as well as the healthcare system (Table 12-16).

Table 12-16: Advantages of the integration of diagnostics with therapeutics

Advantages to the pharmaceutical companies

Combination of drugs with diagnostics facilitates their marketing

High efficacy and safety of drugs

Smaller number of patients needed in clinical trials with faster approval and time to market

Advantages to the diagnostic companies

Systematic access to new diagnostic tests: drug targets and response profiles

Increasing opportunities for collaboration with pharmaceuktical companies

Diagnostic test validation in pharma clinical trials

Faster market penetration of diagnostics: promotion of the drug by two sales forces

Advantages to the healthcare system

Cost savings by reduced morbidity and mortality

Facilitation of personalized medicine

Support of patient management with diagnostics

© Jain PharmaBiotech

Diagnostic applications in clinical trials

Many IVD companies are expanding their business into the area of clinical trials. The market for clinical trials was worth about $350 million in 2007 and is growing at approximately 10% per annum, driven by both the increasing number of clinical trials and the larger numbers of patients enrolled in these trials. Roche Diagnostics is an important player in this growing market segment.

Prospects for development of new technologies

The number of companies involved in molecular diagnostics has more than doubled during the past five years. Many new technologies have been introduced. Keeping with advances in genomics and proteomics as well as the future needs of healthcare system, there is a plenty of room for development of innovative molecular diagnostic technologies. In addition to the clinical applications, all the new technologies in relation to genomics, proteomics and drug discovery involve an increase in molecular diagnostics market. The largest share of technologies in genomics market ($8 billion in 2006) was that of molecular diagnostics. Introduction of nanobiotechnology in diagnostics will further expand the molecular diagnostics market.

Drivers for the development of molecular diagnostics

The current market for molecular diagnostics, particularly in Europe, has been predicted to continue to grow fast. Drivers for the development of molecular diagnostics are:

- 78 -

Page 81: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Healthcare institutions in the developed countries are trying to minimize errors in diagnosis and control costs by eliminating unnecessary treatments.

Increasing acceptance of the personalized medicine approaches, which require integration of diagnostics with therapeutics and POC diagnosis.

The rising insurance coverage in countries such as France, Spain, and Germany will contribute largely to positive trends in the market.

Growth of the aging population with higher incidence of diseases that require molecular diagnostics, e.g. cancer.

Emerging new infections such as SARS and avian influenza, which are drivers for the development of molecular diagnostics.

Increasing use of molecular diagnostics in veterinary medicine.

Technological advances in molecular diagnostics, particulary those introduced by emergence of nanobiotechnology.

Factors slowing the development of molecular diagnostics

Although the global market will expand, there are some negative factors, which will tend to slow the growth in some of the markets.

In developing countries, poor healthcare infrastructures and struggling economies greatly impede modernization and create extremely price sensitive environments.

Distribution and logistical issues, local supplier presence, and minimal healthcare expenditure present considerable hurdles to achieving market growth.

Strict regulatory policies, such as those imposed by the FDA, have added to the difficulties in introducing the diagnostic innovations quickly.

In Europe, regulations such as the IVD Directive and CE marking also impede potential market entry of new competitors.

Due to the substantial cost of a CE mark, companies may have to abandon older generation devices and low-volume region-specific products.

Low prices, consolidating multiple tests on a single platform, and customer service also take on renewed importance as markets become highly competitive and consumers raise their demands. Understanding individual markets and clinical needs is becoming increasingly important to overcome obstacles and promote the adoption of new technologies. New IVD systems must also address unmet needs and provide substantial added value. Several smaller companies combat this challenge by collaborating with larger companies and thereby benefit from the latter's experience and economic resources.

Low cost for genome sequencing will be an important factor for widening the applications relevant to personalized medicine. In fall of 2006, Genome X Prize Foundation of New York announced a $10 million cash prize for the first team to develop a device that can sequence 100 diploid human genomes in 10 days for $1 million ($10,000 per genome). At present, the bar for data quality is set very high: Sequence data submitted must cover 98% of each genome with no more than one error per every 10,000 base pairs. Several industry players have already entered the quest, including VisiGen

- 79 -

Page 82: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Biotechnologies, 454 Life Sciences (a subsidiary of Roche Diagnostics), and the Foundation for Applied Molecular Evolution. In 2007, Reveo joined the race with Omni Molecular Recognizer Application, which uses principles from semiconductor electronics and photonics rather than indirect chemical methods to read the DNA sequence directly. The company plans to use arrays of nano-knife-edge probes to directly and non-destructively read the human gene sequence. In May 2007, 454 Life Sciences achieved the first under $1 million sequencing of the human genome.

Government support of research relevant to molecular diagnostics

The US Government has been the biggest supporter of genomic research with associated molecular diagnostic technologies. Various European governments are supporting genomic research, which is relevant to molecular diagnostics and will facilitate the development of molecular diagnostics.

Cost of sequencing the human genome

It is very expensive to sequence the 3 billion base pairs of DNA found in humans. Therefore, large scale sequencing has been carried out mostly at special sequencing centers and is restricted to major expensive projects. The immediate goal of the NIH’s National Human Genome Research Institute (NHGRI) is to support research to lower the cost of these projects more than 100-fold in order to allow scientists to sequence genomes of human subjects involved in studies to find genes relevant for disease. The longer-term goal of NHGRI’s “Revolutionary Genome Sequencing Technologies” grants totaling more than $32 million is the development of breakthrough technologies that will enable a human-sized genome to be sequenced for $1,000 by 2014 so that this process can be used in routine medical tests and allow physicians to tailor diagnosis, prevention, and treatment to a patient’s individual genetic makeup. A survey of the new approaches in development for reading the genome indicates the potential for breakthroughs that could to achieve this goal before the projected date.

In August 2007, NHGRI pumped over $15 million into 12 new grants to develop methods and technologies aimed at “dramatically” reducing the cost of genomic sequencing, with a target of lowering the price of sequencing individual human genomes down to $1,000. The current round of next-generation sequencing grants were awarded to eight researchers who are working on developing technology to enable the $1,000 genome, and to three scientists who will try to develop sequencing technology that will sequence the human genome for $100,000 or less. The different approaches will likely result in several successful and complementary technologies and NHGRI will monitor carefully to see how each technology progresses and which of them can ultimately be used by the average researcher or health care provider. Recipients of the NHGRI $1,000 Genome grants are:

1. Duke University's project “Continuous Sequencing-by-Synthesis, Based on a Digital Microfluidic Platform”. The team will use droplet-based microfluidics in sequencing-by-synthesis studies aimed at extending read length, minimizing reaction volume and increasing throughput to 10,000 reactions in a very small area.

2. Arizona State University's project “Sequencing by Recognition”. This research team seeks to develop molecular wires that are sufficiently flexible and sensitive to allow for use in ‘sequencing by recognition’ methods involving nanopores.

- 80 -

Page 83: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

3. Brown University's “Hybridization-Assisted Nanopore DNA Sequencing”. This group will use solid-state nanopores to find where DNA sequences attach by hybridization, which through repetition may allow determination of long strands of DNA.

4. University of Medicine and Dentistry of New Jersey's “Ribosome-Based Single Molecule Method to Acquire Sequence Data from Genomes”. The group will modify key ribosome components to read nucleotide sequences. By “sequencing” messenger RNA, DNA sequences could be determined, the group anticipates.

5. University of British Columbia (Vancouver, Canada) “Nanopore Array Force Spectroscopy Chip for Rapid Clinical Genotyping”. This team will develop solid-state, nanopore-based force spectroscopy to detect sequence variation. The team previously demonstrated the ability to detect sequences “at single base resolution using organic nanopore force spectroscopy.”

6. NABsys' “Hybridization-Assisted Nanopore Sequencing”. The company will work with a group at Brown University to develop biochemical and algorithmic components for a sequencing-by-hybridization method.

7. North Carolina State University's “Sequencing DNA by Transverse Electrical Measurements in Nanochannels”. The team aims to stretch long DNA molecules by passing them through nanofluidic channels, then to fit nanoelectrodes into those channels to detect electrical signal of DNA bases.

8. University of California at Irvine's “High-Throughput, Low-Cost DNA Sequencing Using Probe Tip Arrays”. The group will try to use nanoscale electrophoretic separation of DNA fragments on an atomic force microscope probe tip in an effort to speed up and scale down the Sanger sequencing method. Then it will implement these “very challenging separations” on a massively parallel sequencing platform that contains hundreds of probe tips.

Recipients of the NHGRI $100,000 Genome grants are:

1. University of New Mexico School of Medicine's “Polony Sequencing the Human Genome”. This group’s goal is to use polony genome sequencing technology to resequence the human genome “within a week for less than $10,000” by improving sequencing data and advancing the computational tools that are used in genome assembly.

2. Columbia University has two grants. In the first, “3'-O-Modified Nucleotide Reversible Terminators for Pyrosequencing”, the researcher will use the funds to design a library of synthetic molecular tools intended to optimize pyrosequencing.

3. In Columbia University's second grant, “An Integrated System for DNA Sequencing by Synthesis”, the group will continue to develop and optimize a set of fluorescent nucleotide reversible terminators for sequencing-by-synthesis, and it will work to develop a new method for prepping DNA beads for attachment to a substrate.

4. University of Wisconsin, Madison “Sequence Acquisition from Mapped Single DNA Molecules”. This team will develop a system for analyzing large amounts of human genome data that connects the location of sequence elements to map information, and will include information about structural variations and aberrations that could be linked to other sequencing data.

Five of the dozen funded projects are based on nanotechnology and one on microfluics.

- 81 -

Page 84: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 5 August 2008, NHGRI announced plans to support a number of researchers under four grant programs focused on developing transformative technologies and methods that can help to bring the cost of sequencing a mammalian-sized genome down to around $1,000 by around the year 2014. The “Revolutionary Genome Sequencing Technologies” grant programs will support high-risk, high-reward research that aims to develop full-scale sequencing systems or to investigate underlying system components or methods different than those currently being pursued.

The first human genome sequence, completed by the federally financed Human Genome Project in 2003, is estimated to have cost a few hundred million dollars. In 2007, the genome sequence of James D. Watson was completed at a cost of about $1 million. In 2008, the cost is about $100,000. Knome, a company that offers to provide consumers with their DNA sequence, charges $350,000 that includes not just the sequencing costs but also the analysis of the data and the customer service. Life Technologies expects that its newest machine would allow a human genome to be sequenced for $10,000, although that includes only the cost of consumable materials, not labor or the machinery. Thus the cost of DNA sequencing dropped by a factor of 10 every year for the from 2004 to 2008.

Complete Genomics start will charging $5,000 in 2009 for determining the sequence of the genetic code that makes up the DNA in one set of human chromosomes. Its sequencer does not work that much differently from rival machines, but miniaturization enables it to use only tiny amounts of enzymes and other materials. Such a price would represent another step toward the long-sought goal of the “$1,000 genome.” At that price point it might become commonplace for people to obtain their entire DNA sequences, giving them information on what diseases they might be predisposed to or what drugs would work best for them. Complete Genomics will not offer a service to consumers, but it will provide sequencing for consumer-oriented companies like Knome. Most of its customers are expected to be pharmaceutical companies or research laboratories that are conducting studies aimed at finding genes linked to diseases. Such studies might look at the DNA of 1,000 people with a disease and 1,000 people without the disease. Complete Genomics expects to perform 1,000 human genome sequences next year and 20,000 in 2010, with a goal of completing a million by 2013. Volume could further drive down prices.

European projects for improving molecular diagnostics

European Consortium for developing new DNA analysis tools

In December 2008, a consortium of 16 European academic and commercial organizations kicked off a 4-year project aimed at developing new DNA sequencing technologies and other methods for analyzing DNA and other nucleic acids. The Revolutionary Approaches and Devices for Nucleic Acid Analysis (READNA) consortium involves researchers from ten academic institutions, three small or medium enterprises, and three large companies. Oxford Nanopore Technologies, Life Technologies, Febit, Olink Bioscience, and Philips Research are among those participating in the project. The effort will receive €12 million ($15 million) in funding from EU’s Seventh Framework Program through May 2012. The consortium is focused on developing fast and cost-effective sequencing methods, improving existing sequencing technology, developing high-resolution techniques for assessing genome-wide methylation, assessing rare mutations and copy number variations, and analyzing RNA and DNA using a single device. In particular, READNA is focused on advancing sequencing technologies that will enable the sequencing of a human genome for €1,000 ($1,250). Oxford Nanopore

- 82 -

Page 85: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Technologies will receive €730,000 ($1 million) in grants under the READNA project to help develop an early exonuclease/nanopore DNA sequencing system. It will also work towards integrating protein nanopores and solid-state materials to advance its nanopore sequencing effort and hopes to apply nanopores to genome-wide methylation studies and droplet-based bilayer arrays for multiplexed genotyping. As part of the consortium, the company will collaborate with several researchers at the University of Oxford, including Oxford Nanopore founder Hagan Bayley. For its part, the University will receive €2 million ($2.5 million) in READNA funding.

EU project for improvement of IVD tools procedures

On 12 January 2009, the European Union launched a new research project targeting to expand the potentials and utility of IVD through the creation of new standards for the collection, handling and processing of blood, tissue, tumor and other sample materials. Under the 7th Framework Program, the European Commission approved the initiative's funding and scope to develop corresponding standards, tools and quality assurance schemes. The SPIDIA project (Standardisation and improvement of generic Pre-analytical tools and procedures for In-vitro DIAgnostics) is scheduled to run for four years and has a total budget of over €13 million ($17.5 million). The consortium, consisting of a total of 16 companies and research institutions from 11 countries, including companies such as TATAA Biocenter AB, PreAnalytiX GmbH (a QIAGEN/BD Company), Diagenic ASA, Aros Applied Biotechnology A/S, Dako Denmark A/S, Acies, ImmunID Technologies, academic partners such as universities and research institutes in Munich, Florence, Graz, Prague and Rotterdam. The International Agency for Research and Cancer and the European Standardization Committee are also members of the project, which is being led by QIAGEN GmbH. More information is available at http://www.spidia.eu/.

Genetic knowledge parks in the UK

In 2002, UK announced plans for a network of "genetic knowledge parks" designed to keep the country at the cutting edge of the genetics revolution. Health Secretary Alan Milburn said the six parks, which are backed by the UK government funding of £15 million ($25 million), would extend the range of diagnostic tests for single and multifactorial gene disorders. The centers would also develop new tests to identify which patients will respond best to which drugs and new testing procedures to more effectively monitor disease progression and treatment. Research carried out at the parks would also help create successful spin-out companies specializing in genetic technologies.

Molecular diagnostic opportunities in defense against bioterrorism

Since 2002, there is a competition for Department of Defense contracts for the development, manufacture and supply of environmental and clinical diagnostic products for use in the war against terrorism. The Joint Biological Agent Identification and Diagnostic System (JBAIDS) program is a multi-phased approach that had acquired approximately 450 instruments together with the related reagent kits by 2005. Various diagnostic projects funded by the US government agencies are listed in Chapter 9 and in the profiles of the companies involved.

The market potential for US biological warfare defense products has not yet been quantified beyond the potential to obtain a share of the approximately $9 billion the Federal Government is committing to support research in the coming years. Approximately $2 billion of this is for devices to detect and

- 83 -

Page 86: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

monitor agents used by bioterrorism and biowarfare. Since 2002, FDA has eased regulatory requirements for certain new drug and biological products used to diagnose or counter the toxicity of chemical, biological radiological, or nuclear substances. They may be approved for use in humans based on evidence of effectiveness derived only from appropriate animal studies and any additional supporting data. With this change in FDA policy, it would be possible to have a product ready for sale to federal and state agencies within a period that could be as short as two years compared to several years for other segments of the market.

The technologies developed under various programs will have markets that will overlap the POC and infectious disease diagnostic markets that are already covered in the molecular diagnostic market. Most of the applications initially will be in the US but within the next five years, these products will also enter the international markets as bioterrorism is a worldwide problem. Some of the technologies are already developed, e.g. for detection of anthrax. The environmental anthrax test market in the US includes testing at essential services such as hospitals, post offices, and police departments. The US public safety market for the environmental detection of anthrax was worth approximately $600 million in 2007. Considering the large number of tests in development, this market may be divided into several segments. The overall diagnostic market for bioterrorism and biowarfare will cross the $1 billion mark by 2012. These estimates are not included in the diagnostic markets tables in the preceding sections.

Molecular diagnostics for food safety

Food safety is an important consideration in any country and molecualr diagnostics for food safety has an established market. This market will grow in the developing countries such as China and India. Also other rapidly growing Asian economies need to ensure food safety for a growing number of their own consumers as recent incidents have shown. Many countries still lack the adequate technology or procedures to respond to these developments. According to the WHO, 20 million cases of food-borne infections occur in the Asian Pacific region alone, which accounts for more than 50% of global burden of this disease. The development and application of new molecular tests provide the most reliable way to mitigate or even prevent these illnesses caused by the consumption of unsafe food in Asia, while at the same time enhancing the region's value as food exporters. In recent years, China, has become a major exporter of a broad range of food products including rice and poultry and also host of various major international events such as the Olympics and the 2010 Shanghai World Expo. As such, governments of the region have been striving to raise food safety standards to the levels of their trading partners and western countries. Currently, the Chinese government is taking stringent measures to significantly enhance food safety testing, particularly in the dairy sector, following the recent incident involving contaminated dairy products.

Qiagen and the Chinese Academy of Sciences (CAS) started collaboration to develop new molecular testing solutions to improve the safety of food products. This will feed the growing demand for quicker, more accurate and more efficient tests for food-borne pathogens by employing the power of the most advanced molecular testing technologies. The collaboration takes place at the campus of the Institute of Nutritional Sciences (INS), Shanghai Institute of Biological Sciences in Xuhui district, and has been operational since mid-September 2008. Qiagen will equip the joint lab with instruments and consumables while CAS will provide the physical space and researchers. Under this collaboration, food safety experts from the INS will use Qiagen technologies, to develop a wide range of molecular tests for the detection of

- 84 -

Page 87: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

food-borne pathogens. These QIAplex multiplex assays allow the design of highly sensitive molecular tests for up to 50 different pathogens in one single run.

POC diagnostics for the developing countries

Most of the current molecular diagnostics has developed in response to the needs of the developed world and are used in well-funded laboratories in highly regulated and quality-assessed environments. Such approaches do not address the needs of the majority of the world's people afflicted with infectious diseases, who have, at best, access to poorly resourced health care facilities with almost no supporting clinical laboratory infrastructure. A major challenge is to develop diagnostic tests to meet the needs of these people, the majority of whom are in the developing world. POC diagnostics would be most appropriate for these markets. However, there is much room for innovation, adaptation, and cost reduction before these technologies can impact health care in the developing world (Yager et al 2008). The overall value of these markets could be considerable considering the over billion mark populations of India and China alone.

- 85 -

Page 88: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

1 3 . C O M P A N I E S I N V O L V E D I N M O L E C U L A R D I A G N O S T I C S

Introduction

There are over 500 companies involved in molecular diagnostics of which 312 are profiled here. They belong to several categories, some of which have already been identified in previous chapters: PNA-based diagnostics, biochip technology for molecular diagnostics, protein chip technology, biosensors and molecular labels, preimplantation genetic diagnosis, cancer screening and molecular diagnostics, molecular toxicology, combination of diagnostics and therapeutics, diagnosis of hospital-acquired infections, molecular diagnosis of food-borne infections, forensic applications of molecular diagnostics and detection of biological warfare agents.

Major players in molecular diagnostics

Top ten players in molecular diagnostics are shown in Table 13-17. Together, these companies account for approximately 80% of all revenues from molecular diagnostics. Income figures for their molecular diagnostics businesses are difficult to obtain because some of these companies, e.g. Abbott, are also major players in the immunodiagnostics market. The listing is not in the exact rank order but Roche is clearly the leader with about 20% of the diagnostic market and 50% of the world market of PCR-based testing and Abbott is the second largest in this business with 15% of the world diagnostic market and predominance in immunodiagnostics.

Table 13-17: Top ten players in molecular diagnostics

Company Technologies/comments

Roche Diagnostics Largest molecular diagnostics company with 50% share of the market: PCR technologies, reagents and equipment, LightCycler. Also has 19% share of the overall IVD market. Combines diagnostics and therapeutics with personalized medicine.

Siemens Healthcare Diagnostics Largest diagnostic company. Comprehensive portfolio covering both in vivo and IVD. Has 20% share of the overall IVD market.

Abbott Diagnostics Has 12% share of the overall IVD market. Third largest IVD business after Siemens and Roche.

Ortho Clinical Diagnostics (Johnson & Johnson)

Immunodiagnostics, screening of blood for transfusion. Has 10% share of the overall IVD market.

Life Technologies (formed by merger of Invitrogen Corporation and Applied Biosystems)

GeneAmp high-volume PCR Systems, genetic analysis, PNA technology, genotyping, sequencing, biomarkers, largest manufacturer and supplier of reagents used in diagnostics

QIAGEN (merger with Digene) Leading provider of innovative enabling technologies/products for the separation/purification of nucleic acids/molecular diagnosis with focus on infectious diseases (Digene's HPV test) and cancer.

BioMerieux Immunodiagnostics, NASBA technology (from Organon Teknika)

BD Biosciences PCR products, immunodiagnostics

Laboratory Corporation of America (with acquisition of Genzyme Genetics)

Largest service provider of molecular diagnostics. Develops tests and provides genetic testing and cancer diagnostics.

Sysmex Largest molecular diagnostic company in Asia. Use of

- 86 -

Page 89: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

new technologies and application in personalized medicine.

Jain PharmaBiotech

Profiles of selected companies

Selected companies are profiled in this section with essential contact information, overview, technology and collaborations, which are tabulated at the end.

2020 GeneSystems Inc

9430 Key West AveRockville MD 20850, USA Web site: http://www.2020gene.com/Tel: (240)453-6339Fax: (240)453-6208E-mail: [email protected]: Jonathan Cohen ([email protected])

Overview. 20/20 Gene Systems has developed and commercialized a new protein array platform with applications in pharmaceutical R&D, laboratory medicine and personalized medicine. 20/20 uses its technology in collaboration with a pharmaceutical company to identify differential proteomes of responders versus nonresponders of their drug candidates. This technology has also important advantages in proteomics, functional genomics, and the high-throughput screening of pharmaceutical compounds.

Technology/products relevant to molecular diagnostics. 20/20’s Layered Gene Scanning (LGS), unlike the classical techniques now in use, yields digital, numerical values from multiple genes or proteins while integrating this information with the shape and morphology of the tissue. Thus it marries the visual appeal of classical pathology with the throughput required of 21st century genomics and proteomics.

20/20 has launched proprietary Proteome Identification Kits, which enable large numbers of proteins to be identified in parallel using ordinary laboratory equipment (see Chapter 4). The screening is generally done using three proprietary components: a membrane stack that is applied to the sample, a transfer solution for moving the proteins onto the stack, and image analysis software for combining the images generated by each layer to produce a proteomic profile of the sample. Many advantages of this technology over other approaches are the ability to detect proteins of low abundance, including many important targets of pharmaceutical intervention that are hidden from most existing identification approaches. This is also believed to be the first technique for visualizing the location of numerous targets in a single tissue section.

BioCheck™ Powder Screening Kit works by quickly identifying the presence or absence of protein. It provides a rapid screen for the possible presence of multiple bioterrorism agents such as anthrax and ricin toxin, while ruling ordinary substances.

PAULAs™ (Protein Arrays Utilizing Lung Antibodies) multi-biomarker blood test may be able to detect NSCLC significantly earlier and with better accuracy than CT scans.

- 87 -

Page 90: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ErbBTest™ uses Layered Peptide Arrays and Layered Expression Scanning to profile tumors for response to drugs that target the ErbB1 and ErbB2 pathways.

Collaborations. In 2002. Wako Pure Chemical Industries Ltd, Japan, signed an exclusive marketing and distribution agreement with 20/20 to market 20/20 product for multiplex analysis of proteins separated on electrophoresis gels in the Far East. In the same year, 20/20 GeneSystems entered a Technology Access Agreement with Novartis, which provides funding and tissue samples while gaining early access to 20/20’s P-FILM to identify protein expression and activation patterns in tumor samples for subtyping.

In 2005, The University of Kentucky licensed a panel of protein biomarkers to 20/20, which has used these to develop a lung cancer diagnostic tool. These are multiple antibodies that the body's immune system produces in response to lung cancer. In 2008, 20/20 Gene licensed IP related to its blood-based biomarker test for early-stage lung cancer to Ortho-Clinical Diagnostics.

3M Medical Diagnostics

3M Corporate Headquarters3M CenterSt. Paul, MN 55144-1000, USAWeb site: http://www.3m.com/Contact: Angela Dillow PhD, Global Business Manager

Overview. 3M produces thousands of innovative products for dozens of diverse markets. 3M’s core strength is applying its more than 40 distinct technology platforms – often in combination – to a wide array of customer needs. With $24 billion in sales, 3M employs 75,000 people worldwide and has operations in more than 60 countries. 3M Healthcare has launched Medical Diagnostics business unit, which is focused on developing and commercializing rapid diagnostic product This new business builds on 3M Health Care's leading infection prevention product portfolio by offering hospitals new rapid diagnostic tests to detect the presence of potentially destructive microbes before they spread and possibly infect patients. solutions for the detection of key infectious pathogens. In February 2007, 3M acquired Acolyte Biomedica, a British clinical diagnostics firm.

Technologies/services/ products relevant to molecular diagnostics. 3M Medical Diagnostics will focus on developing and commercializing rapid diagnostic product solutions for the detection of key infectious pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and other treatment-resistant microbes. It will provide hospitals with rapid, easy-to-use microbial diagnostic tests that may help improve patient outcomes, reduce costs, reduce the impact of resistant microbes and improve laboratory profitability. 3M plans to introduce new rapid diagnostic products that will simplify the diagnostic testing process and provide more rapid results than traditional microbiology tests for the detection of key microbes such as MRSA and influenza A as well as B.

One of the assets with Biomedica acquisition is a rapid MRSA test, BacLite Rapid, a test that can detect the presence of MRSA from clinical samples in less than 5 h. Other rapid culture-based screening tests include vancomycin-resistant enterococcus, which simplify the diagnostic process by automating traditional culture process, resulting in reliable confirmed ‘negatives’ in hours rather than days.

3M™ Diagnostic Tape is a specially designed tapes for applications such as: blood glucose, drug discovery, immuno assays, molecular diagnostics, clinical

- 88 -

Page 91: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

chemistry and microbiology. It is available in a variety of materials: breathable, aluminum, optically clear polyester tape, non-fluorescing transparent polyolefin tape, transparent diagnostic tape and white polyester tape.

- 89 -

Page 92: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

454 Life Sciences

A Roche company15 Commercial StreetBranford, CT 06405, USAWeb site: http://www.454.com/Tel: (203) 871-2300Fax: (203) 481-2075E-mail: [email protected] and CEO: Christopher McLeod

Overview. 454 Life Sciences, a subsidiary of Roche Diagnostics, is commercializing novel instrumentation and services for rapidly and comprehensively conducting high-throughput nucleotide sequencing, with specific application to sequencing of whole genomes and ultra deep sequencing of target genes. The Company's instrument systems, based on proprietary nanoscale technologies, patented light emitting sequencing chemistry, and state of the art image processing and informatics, have 100 times the throughput of existing sequencing machines. 454 is marketing its services and instruments to pharmaceutical, biotechnology, biodefense, and agriculture companies as well as to universities and government agencies. In 2007, Roche acquired 454 for $155 million in cash and stock but 167 employees of 454 remained in Branford, CT.

Technology/applications. 454 Life Sciences’ nanotechnology-based approach to sequencing enables a single instrument to produce over 20 million nucleotide bases per four hour run, totaling more than 100 times the capacity of instruments using the current macroscale technology. This technology is based on integrating proprietary picoliter-technologies (a picoliter is a billionth of a liter), patented light emitting sequencing chemistries, and state-of-the-art informatics. The patented Genome Sequencing System utilizes this technology and is a scalable, ultrafast and cost-effective system with applications for whole genome sequencing and deep sequencing of genes of interest. 454 Life Sciences began commercialization of instrument systems and proprietary reagents in 2005 and to date, it has created a massively parallel sequencing system which can routinely sequence 10 Mbp genomes. Planned applications include de novo sequencing of microorganisms, model organisms and human genomes, as well as expression profiling and karyotyping. This technology will enable the generation of genomic data and applications necessary to expand the market and allow for the Cancer Genome project and personalized medicine to become a reality. The new genome sequencing technique is 100 times faster than previous technologies. This is the first new technology for genome sequencing to be developed and commercialized since Sanger-based DNA sequencing.

In 2007, 454 Life Sciences, in collaboration with scientists at the Human Genome Sequencing Center, Baylor College of Medicine, completed a project to sequence the genome of James D. Watson, co-discoverer of the double-helix structure of DNA by using the Genome Sequencer FLX™ system and marks the first individual genome to be sequenced for less than $1 million. The aim for further development is to reduce the cost of human genome sequencing to $10,000.

Collaborations. In 2003, 454 Life Sciences obtained a license from Biotage AB for sole use of sequencing by synthesis (Pyrosequencing) for whole genome applications.

- 90 -

Page 93: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AbaStar MDx™ Inc

190 Margate, Ste BLake Bluff, IL 60044, USAWeb site: http://www.abastarmdx.com/Tel: 847-778-0522Email: [email protected] and CEO Terry Osborn PhD, MBA ([email protected])

Overview. AbaStar MDx™ Inc develops blood-based gene expression, molecular diagnostic tests for the accurate diagnosis of mental disorders and neurodegenerative diseases. From a simple blood sample, the Company's gene expression products detect and measure the unique disease-specific gene profile or molecular signature. Determining the molecular signature of a disease from a sample of blood revolutionizes diagnostic technology. For brain disorders, this breakthrough technology enables accurate diagnosis with a laboratory test for the first time. The resultant early detection, patient monitoring, disease progression and effective treatment of these diseases will eliminate years of suffering through misdiagnoses and expensive trial and error medication treatments.

Products and services. The initial market entry is planned to be diagnostic tests which accurately diagnose and differentiate patients with schizophrenia and bipolar disorder from a simple blood sample. A patient's blood will be drawn, sent to AbaStar approved CLIA laboratory, tested, then the results returned to the physician the next day. Once FDA approval of the 510k is achieved, diagnostic kits will be commercialized for use in hospitals and clinical reference laboratories.

Collaborations. On 6 October 2008, AbaStar licensed Gene Express’ SEM Center and StaRT-PCR technology for the development of biomarker tests for neurological and psychological disorders. It will combine the PCR technology with its own RNA biomarker signatures to develop diagnostic tests that run from a blood sample and provide results in a day. The firms expect to collaborate over the next several years on developing and commercializing the tests. They will create several hundred gene standards, screen gene expression profiles, and create validated standardized mixtures of internal standards for clinical trial use. The overall value of the pact could potentially exceed $100 million.

- 91 -

Page 94: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Abaxis North America

3240 Whipple RoadUnion City, CA 94587, USAWeb site: http://www.abaxis.com/Tel: 510/675-6500Fax: 510/441-6150Email: [email protected] Europe: Otto-Hesse-Strasse 19, T9, 3 OG Ost, D-64293 Darmstadt, GermanyChairman, President & CEO: Clint Severson ([email protected])

Overview. Abaxis is a diagnostic company that supplies point-of-care (POC) blood analyzers for the medical and veterinary markets. Abaxis provides leading edge technology, tools and services that support best medical practices, enabling physicians and veterinarians to respond to the health needs of their clients at the POC. Abaxis is headquartered in the US, and conducts operations around the world.

Technology/products. Abaxis Laboratory System consists of a compact, chemistry analyzer capable of electrolytes, blood gas and immunoassays, a complete easy to use hematology analyzer and a series of 8-cm diameter single-use plastic discs, called reagent rotors, which contain all the necessary reagents to perform a fixed menu of tests. The System can be operated with minimal training and perform multiple tests on whole blood, serum or plasma, and provides test results in minutes with the precision and accuracy equivalent to that of a clinical laboratory.

Piccolo technology was first developed for NASA, routinely used by the US military, physician offices, hospitals, urgent care clinics and oncology clinics. The next generation compact Piccolo xpress analyzer provides multichemistry panels in virtually any treatment setting with the precision and accuracy of larger laboratory analyzers. Piccolo xpress is an innovative, state-of-the-art analyzer that expand diagnostic services and reduce costs while providing better care. The patented self-contained reagent discs are bar coded, contain liquid diluent and dry reagents and use centrifugal and capillary technology to provide the most commonly requested chemistry panel results in approximately 12 minutes.

- 92 -

Page 95: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Abbott Diagnostics

100 Abbott Park RoadAbbott Park, IL 60064-3500, USAWeb site: http://www.abbottdiagnostics.com/ Tel: (847) 937-6100Abbott Molecular 1300 E.Touhy AveDes Plaines, Illinois 60018, USAWeb site: http://www.abbottmolecular.com/Tel: (224) 361-7800Contact: Stafford O'Kelly, Head, Molecular Diagnostic Business

Overview. Abbott Laboratories' diagnostics business is the world's second largest after Roche Diagnostics. However, Abbott is a global leader in in vitro immunodiagnostics and offers a broad range of innovative instrument systems and tests across key segments of the global diagnostics market, including hospitals, reference labs, blood banks, physician offices, clinics and consumers. Abbott Molecular provides physicians with critical information based on the early detection of pathogens and subtle changes in patients' genes and chromosomes, enabling earlier diagnosis, selection of appropriate treatment and monitoring of disease progression. The business includes instruments and reagents used to conduct analysis of patient DNA and RNA. Abbott’s diagnostics business earned approximately $3.1 billion in 2007, with approximately $250 million coming from the molecular diagnostics unit. Abbott’s long-standing commitment to the development of diagnostics has led to products that set the standard in several key segments of the diagnostics market. Abbott’s systems and more than 200 diagnostic tests provide early, accurate detection and management of medical conditions. Its research focuses on immunodiagnostics, hematology, blood glucose monitoring and molecular diagnostics. The company is also actively developing DNA-based testing methods, as well as the next generation of "non-invasive" diagnostic technologies. In 2001, Abbott acquired Vysis Inc (now Abbott Molecular). In 2003, Abbott acquired i-STAT Corporation, a leading manufacturer of point-of-care diagnostic systems (POC) for blood analysis, for $392 million. In 2007, GE Healthcare acquired Abbott's POC and IVD businesses but not cytogenetic technologies. In 2008, Abbott exercised an option to acquire the remaining 81.4% Ibis Biosciences that it didn’t already own for $175 million; 18.6% was acquired earlier for $40 million.

Technologies/products relevant to molecular diagnostics. Abbott m2000™ system is an automated instrument for DNA and RNA testing in molecular laboratories. It is based on real-time PCR technology and consists of the m2000sp for automated sample preparation and the m2000rt for real-time PCR detection and analysis, offering an efficient workflow for the lab. It is available in most major markets throughout the world. Outside the US, an extensive menu for infectious disease testing is available.

CE-marked KIF6 genotyping assay for use on m2000 is now available in Europe to detect a genetic biomarker that may be used in conjunction with clinical evaluation and patient assessment to identify individuals at risk for coronary heart disease and to treat patients with elevated cholesterol, for whom statin treatment is being considered.

LCR. Abbott introduced ligase chain reaction (LCR) and developed automation in this area. It is developing a battery of tests for the LCx system using LCR and PCR technologies. The Abbott LCx Analyzer brings DNA testing to the routine clinical laboratory, combining LCR with the accuracy and reliability of MEIA detection. Assays on the LCx Analyzer are: C.

- 93 -

Page 96: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

trachomatis and N. gonorrhea (in the US, chlamydia and gonorrhea tests are marketed together as Uriprobe).

Immunodiagnostic systems. This is the cornerstone of Abbott's diagnostics for analyzing antibody/antigen reactions for many diseases. Abbott is continually adding more tests to its systems: ARCHITECT, AxSYM and IMx, etc.

Abbott's HIV antigen assay for use in blood screening centers was approved by the FDA for the detection of the HIV-1 p24 antigen. It offers two major benefits over previous assays: (1) reduces the "window" period during which new HIV infection may be present but not detected with earlier assays; and (2) cuts testing time to 4h from 24h previously required. Other assays include biomarkers for heart attack (Troponin-1), arthritis, bone and joint diseases and prostate specific antigen.

Chemiluminescence technology. This is used in the blood transfusion safety testing market with Abbott PRISM, which offers improved assay performance as well as speed and automation in one system. Various tests include those for HIV, HTLV, HCV and HBsAB (hepatitis B serum antibodies). PRISM® HCV test can be used by laboratory technicians to screen individual donations of blood and plasma for antibodies to HCV. Used in more than 30 countries, the PRISM system was approved for use in the US with its first three HBV tests: a core test (PRISM® HBcore), introduced in 2005; and two HBV surface antigen tests (PRISM® HBsAg and HBsAg Confirmatory), introduced in 2006. Additional retrovirus screening tests are currently under FDA review.

Tests for infectious diseases. Abbott co-markets a rapid test for use by public health agencies to detect the West Nile virus in mosquitos and birds, the reservoirs for the virus. Antibodies to the virus can be detected in recently infected individuals. It is also co-markeing a diagnostic test for the virus that causes SARS.

The fully automated hepatitis A test, HAVAB 2.0, used with AxSYM automated immunoassay instrument system, detects total antibody to hepatitis A in serum/plasma.

Abbott RealTime™ HCV assay for monitoring HCV viral load in patients has CE Mark certification, allowing it to be marketed in the European Union. The Abbott m2000 system purifies the RNA from the specimen and automatically combines this with the assay reagents. Data are automatically calculated by the system's software to provide highly reliable patient results for HCV viral load testing. In real-time PCR, the amplified DNA sequences are detected throughout the PCR process, instead of at the end of the amplification process. The instrument and reagents allow laboratories to provide highly accurate as well as reproducible results test results more quickly, increase productivity and help reduce human error. It is capable of detecting HCV RNA in plasma down to as few as 12 IU of HCV RNA/ml. With a broad dynamic range that quantitates (precisely measures HCV levels) specimens as high as 100 million IU of RNA/ml, the need for sample dilutions and additional testing is virtually eliminated.

On 31 March 2011, Abbott received the CE Mark for the Abbott HBV Sequencing test, its first DNA sequencing assay, to identify genomic sequences of HBV to guide and monitor antiviral therapy. It is not intended for screening blood, plasma, or tissue donors for HBV or as a diagnostic test to confirm HBV infection.

In 2006, Abbott’s highly sensitive new test for the simultaneous detection of the sexually transmitted pathogens Chlamydia trachomatis and Neissera

- 94 -

Page 97: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

gonorrhoeae received CE Mark certification, allowing it to be marketed in the European Union. In 2008, Abbott received the CE Mark for a PCR-based test that can detect a new variant strain of C. trachomatis found in one in five chlamydia cases in Sweden. The assay, which is sold for clinical diagnostic in the EU, is run on Abbott’s automated m2000 real-time PCR system and is offered in Europe as part of its alliance with Celera.

In 2006, Abbott received approval from the FDA for Abbott PRISM® hepatitis B surface antigen (HBsAg) and PRISM® HBsAg confirmatory tests.

Abbott markets an IVD made by Celera that detects the A/H5 influenza virus. The test runs on Abbott's m2000 system for detecting and monitoring infectious diseases and uses automated real-time PCR technology from Life Technologies.

ARCHITECT HIV Ag/Ab Combo assay is a chemiluminescent microparticle immunoassay for the simultaneous qualitative detection of HIV p24 antigen and antibodies to HIV type 1 (HIV-1 group M and group O) and/or type 2 (HIV-2) in human serum and plasma (EDTA and heparin). The Combo assay is intended to be used as an aid in the diagnosis of HIV-1/HIV-2 infection, including acute or primary HIV-1 infection.

Abbott' HIV-1 viral load prognostic test, developed in collaboration with Celera, is used on its m2000 RT-PCR platform. The assay measures the levels of HIV circulating in a patient's bloodstream, including the three common HIV-1 groups and non-B subtypes. It is used for disease prognosis and to assess response to antiretroviral treatment. The assay can measure HIV-1 in plasma down to as few as 40 RNA molecules per milliliter, and up to as many as 10 million molecules per milliliter.

Cytogenetics. GeneTrait™ CGH Microarray System DX is used to test blood samples for chromosomal changes in multiple genetic conditions. Abbott has launched several FISH tests in Europe that identify chromosomal abnormalities associated with leukemia. The following were acquired with takeover of Vysis:

AneuVysion assay is used in conjunction with fetal karyotype analysis that provides a rapid method for detection of trisomy 13, 18, 21 (Down syndrome) and sex chromosome aneusomies (such as Klinefelter and Turner syndromes). It provides simultaneous results on all five chromosomes within 6 hours.

Breast Aneusomy Probe Set, based on FISH, enables detection of gains or losses of chromosome 1, 8, 11, and 17. This could be an early event in breast carcinoma.

UroVysion™, a FISH-based DNA probe assay, is used as an aid in the initial diagnosis of bladder cancer in patients with blood in urine suspected of having bladder cancer as well as for monitoring of bladder cancer recurrence.

PathVysion HER-2 DNA Probe Kit is designed to detect amplification of the HER-2/neu gene (also known as c-erbB2) via FISH in human breast cancer tissue specimens. Results from the PathVysion HER-2 DNA Probe Kit are intended for use as an adjunct to existing clinical and pathologic information currently used as prognostic factors in stage II, node-positive breast cancer patients. The PathVysion HER-2 DNA Probe Kit is indicated as an aid to predict disease-free and overall survival patients with stage II node-positive breast cancer treated with adjuvant cyclophosphamide, doxorubicin and 5-fluorouracil chemotherapy. HER-2 test is approved for identification of breast cancer patients who could benefit from treatment with the drug Herceptin.

- 95 -

Page 98: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneTrait™ CGH Microarray System DX is a test in blood samples for detection of chromosomal changes in multiple genetic conditions.

Cancer diagnosis. In 2005, the FDA approved UroVysion™, a FISH-based DNA probe assay, for use as an aid in the initial diagnosis of bladder cancer in patients with blood in urine suspected of having bladder cancer. This is the first gene-based test available for both diagnosis and monitoring of bladder cancer recurrence.

Abbott/Vysis HER-2 test is used to identify breast cancer patients who could benefit from treatment with Herceptin. Abbott's Vysis® AutoVysion™ System is used with the Vysis® PathVysion® HER-2 DNA Probe Kit as an aid in determining HER-2 gene status in women who have been diagnosed with breast cancer. AutoVysion, developed in collaboration with MetaSystems, is designed to be used with Abbott's FISH technology and utilizes an automated scanning microscope and computer-assisted imaging system to aid in the detection and counting of FISH signals from breast cancer tissue sections.

Point of Care. i-STAT® handheld analyzer provides results for some of the most commonly ordered medical tests at the patient's side in just minutes. With the acquisition of Ibis, Abbott gained access to the Ibis T5000 Biosensor System, which is used for rapid identification and characterization of infectious agents. The system interrogates common sequences among common classes or organisms and can identify virtually all bacteria, viruses and fungi, and can provide information about drug resistance, virulence, and strain type of these pathogens within a few hours.

Collaborations relevant to molecular diagnostics. Abbott is collaborating with Roche/Genentech, the developers and marketers of Herceptin to extend the use of PathVysion as an aid in the assessment of its use in breast cancer patients.

In 2002, Abbott Laboratories and Celera Diagnostics announced a long-term strategic alliance to develop, manufacture and market a broad range of in vitro molecular diagnostic products for disease detection, disease progression monitoring and therapy selection. Celera Diagnostics will focus primarily on genetic marker discovery, new marker validation and assay development. Abbott will focus on product development, sales and marketing serving as the worldwide distributor for most products developed by the alliance. Abbott and Celera will share both expenditures and profits related to R & D, manufacture and commercialization of new molecular diagnostic products.

In 2003, Luminex Corporation executed two agreements that grant Abbott license, supply and distribution rights to its proprietary biological testing technologies including bead-based xMAP technology, for the development of assays and proprietary instruments. The companies also signed a supply and distribution agreement granting Abbott rights to purchase and distribute Luminex products.

In 2003, Abbott entered an agreement with Artus GmbH to market a commercial PCR-based test that directly detects Severe Acute Respiratory Syndrome (SARS) in patient samples and produces results in 2 hours. In 2004, the agreement was amended to expand Abbott's distribution rights to all of Artus' nucleic acid-based diagnostics tests for use on instruments that use real-time PCR technology.

In 2003, Abbott and Promega Corporation signed an agreement to provide nucleic acid extraction products that will give molecular diagnostics laboratories the ability to further automate testing for infectious diseases. The Abbott/Promega collaboration will provide a highly sensitive, efficient

- 96 -

Page 99: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

system to purify and extract viral RNA from patient samples using Abbott's novel magnetic particle technology.

In 2004, Abbott and BioGenex Laboratories signed an agreement to distribute and market Abbott's Vysis® AutoVysion™ System for use with the Vysis® PathVysion® HER-2 DNA Probe Kit. The system was approved by the FDA in 2004.

In 2005, Abbott licenced RECAF™ (receptor for alpha-fetoprotein technology) from BioCurex for use in the development of cancer diagnostics tests. RECAF is found on malignant cells but is absent in most normal cells.

In 2006, Abbott licensed a number of patents from Affymetrix, which allows it to manufacture and sell comparative genomic hybridization microarrays, readers, and software for research and diagnostics.

In 2007, Abbott licensed Epigenomics' DNA methylation biomarker Septin 9. The companies plan to develop it into a CE-marked IVD blood test for early detection of colorectal cancer for launch in Europe in 2009 and file for approval with the FDA in 2010.

In 2009, Abbott signed an agreement with Pfizer Inc to develop a companion molecular diagnostic test that will determine a patient's genetic status and will be used in patient selection for future clinical trials of PF-02341066 for NSCLC.

In March 2010, Abbott signed an agreement with GlaxoSmithKline (GSK) to develop a and commercialize a PCR test for use on m2000™ as an aid in selecting patients who may benefit from GSK's Antigen-Specific Cancer Immunotherapeutic (MAGE-A3 ASCI) candidate, which is currently being evaluated as an adjuvant treatment in melanoma biopsy specimens in the phase III clinical study DERMA. To be eligible to receive MAGE-A3 ASCI, patients must have MAGE-A3 expressing melanoma tumors.

In July 2010, Abbott made a deal with Leica Microsystems to supply its FISH probes targeting the HER2 gene locus, which will be used to develop the automated HER2 FISH test on Leica's BOND automated advanced staining platform.

- 97 -

Page 100: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Abviva Inc

10940 Wilshire Blvd, Suite 600Los Angeles, CA 90024, USAWeb site: http://www.abviva.com/Tel: 310-443-4102 Fax: 310-443-4103Email: [email protected]: Doug LaneContact: Ms. Adina Shaheri ([email protected])

Overview. Abviva Inc is a publicly traded biomedical company established to develop and commercialize diagnostic and therapeutic products from a protein discovered by cancer research scientists at the University of Michigan Cancer Center, which is produced in breast epithelial cells that inhibits the growth of breast cancer. Abviva has licensed the mammastatin patent granted to University of Michigan in February 2008.

R&D. Abviva’s research interests are directed toward innovating and developing breast cancer diagnostic and breast cancer therapeutic products that can benefit individuals throughout the world. Abviva intends to conduct basic, translational and clinical research with biotechnology, pharmaceutical and leading university and government institutions world wide through internal and external collaborative research. Aviva hopes that research conducted on mammastatin will advance the knowledge and understanding of the biological mechanisms underlying the mammastatin technology as well as advance the scientific, medical, diagnostic and therapeutic understanding of mammastatin and breast cancer.

Product. Mammastatin is a protein that has been found to be present in the breast tissue of healthy women. That concentration of mammastatin not only drops significantly in women with breast cancer but also in women at high risk for breast cancer. This discovery was developed into a diagnostic blood test, the Mammastatin Serum Assay (MSA), as a broad population based screening test for the early detection of women who are at high risk of developing breast cancer.

In clinical studies, 98% of women in the studies who had no history of breast cancer had elevated or moderate levels of mammastatin in the blood serum as measured by the Mammastatin Serum Assay. Conversely, 74% of women who had breast cancer or who had a family history of breast cancer had no detectable levels of mammastatin or very low levels.

- 98 -

Page 101: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Accelr8 Technology Corporation

7000 North BroadwayBuilding 3-307Denver, CO 80221, USA Web site: http://www.accelr8.com/Tel: (303) 863-8088 Fax: (303) 863-1218 E-mail: [email protected] & Chairman: Tom Geimer ([email protected])

Overview. Accelr8 Technology Corporation entered the biosciences industry early in 2001 with the acquisition of advanced materials and instrumentation platforms for ultra-sensitive bio-analytic assays. The related technologies in this portfolio are referred to as the Accelr8 Modular Assay System (AMAS).

Technology/products relevant to molecular diagnostics. Accerl8 developed OptiChem intelligent surface chemistry, the OTER hand-held instrumentation, and QuanDx digital instrumentation for application in several life science markets. The inherently modular nature of the product platform family AMAS is highly adaptable. Modularity from the molecular level to the instrumentation level offers unprecedented power and precision to the explorers who will discover new advances in genomic and proteomic microarrays, immunodiagnostics, and microfluidic “lab-on-a-chip” technologies.

QuanDx nano-particle counting offers ultra-sensitive signal detection with exceptionally low noise because of its digital quantation strategy. Rather than averaging the signal over a large area that consists mostly of zero-signal background, the QuanDx digital counter ignores blank background in its computations. This gives the QuanDx digital method the ability to measure extraordinarily low levels of analyte –down to a single binding event.

OTER is a hand-held ellipsometric detection instrument for biochemical, immunologic, and molecular diagnostics. OTER offers simplicity and point-of-need capability to easily detect and measure low levels of biological affinity binding reactions.

The most powerful method to exploit OptiChem’s exceptional signal-to-noise, sensitivity, and specificity in a bio-analytic application is to design the measurement with OTER or QuanDx as the quantitative readout method. Accelr8 developed OptiChem specifically to enhance the instrumentation it had already started developing.

Microarray slides based on OptiChem technology covalent amine reactive and covalent thiol reactive slides offer the DNA array and protein array designer a choice of chemical reaction conditions for creating gene arrays used in drug discovery, gene expression profiling and gene-based diagnostics. These new slides also have broad application in protein-based assays used in proteomics for drug discovery and antibody arrays for immunoassays such as micro-ELISA for future medical diagnostics.

BACcelr8r™ rapid bacterial analyzer, in development, will be an integrated bacterial analysis system intended for research and clinical applications. It is intended to identify, count, and provide complete antibiotic susceptibility data by bacterial species within a few hours of sample injection without prior culturing

- 99 -

Page 102: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2001, Xtrana and Accelr8 Technology Corp signed an agreement to jointly develop an advanced quantitative nucleic acid-based analytic platform for point of care applications. The phased agreement begins with the development of a demonstration system using Xtrana's proprietary sample preparation and amplification technologies, combined with Accelr8's surface coatings and digital measurement instrumentation.

In November 2007 NanoString Technologies Inc acquired a license for using Accerl8’s OptiChem® coatings on its innovative molecular identification platform in preparation for commercial launch of its nCounter™ Analysis System.

In December 2007 Becton Dickinson & Company purchased an exclusive right to to develop Accelr8's BACcel® rapid diagnostic platform.

On 3 January 2008, Accelr8 has begun joint research programs with Washington University in St. Louis School of Medicine and with the Denver Health and Hospital Authority. The two institutions will conduct preclinical studies to identify antibiotic resistance mechanisms using Accelr8's patented analytical methods. The company intends to use its BACcel® system, which is in development to speed the diagnosis of life-threatening infections in critically ill patients, and particularly for healthcare-associated infections.

- 100 -

Page 103: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AcroMetrix

6058 Egret CourtBenicia, CA 94510, USAWeb site: http://www.acrometrix.com/Tel: (707) 746-8888Fax: (707) 746-8881 E-mail: [email protected]: Michael J. Eck

Overview. AcroMetrix, a privately held biotechnology company, specializes in products and services for accuracy and reliable testing of infectious disease. It is a market leader in the emerging field of quality systems for molecular and genomic diagnostics. Its LabQC.net offers a proprietary, Internet-based quality assurance system that allows major diagnostic manufacturers, blood centers, government laboratories, and reference laboratories to develop and track ongoing proficiency for training and validation

Products/services. Current products relevant to molecular diagnostics include:

The NAP HCV RNA Quantification Panel provides a consistent standard across all test methods, enabling clinical laboratories and diagnostic manufacturers to assess the performance of their quantitative and qualitative HCV RNA molecular diagnostic tests.

The NAP HBV DNA Quantification Panel supports diagnostic manufacturers and testing laboratories by providing a standardized tool for ensuring consistency, accuracy and quality in HBV nucleic acid testing. Panel members mimic true patient specimens and contain the entire HBV genome, enabling laboratories to monitor all testing steps using any nucleic acid test method for the detection or quantification of HBV DNA.

NAC HIV-1 RNA controls provide blood banks and clinical laboratories with an independent set of external controls, allowing testing laboratories and other users to compare results obtained by different methodologies, evaluate or compare new nucleic acid test procedures for HIV-1 RNA, and demonstrate assay proficiency and reproducibility within the laboratory. AcroMetrix NAC HIV Drug Resistance Genotype controls include a wild type specimen and two controls with multiple mutations in both the reverse transcriptase and protease genes of the virus. These controls ensure that laboratories are conducting the test procedures correctly and identifying the correct mutations in their HIV genotype testing. In October 2007, AcroMetrix released OptiQuant HIV-1 Quantification Panel, which is the first to utilize an EDTA-based normal human plasma matrix. This product is for research use only.

Launches in 2007. OptiChallenge Inhibition Panel is used for evaluating the performance of an assay in the presence of interfering substances such as heparin or bilirubin in the sample. OptiQual® Enterovirus Low Positive Control, which is the first ready-to-use control for assessing the performance of nucleic acid test procedures for the qualitative determination of enterovirus RNA. It is for research use only.

Collaborations. In 2003. AccuTest Inc and AcroMetrix teamed up to offer clinical laboratories a set of proficiency testing programs for HIV resistance testing and HCV genotyping. AcroMetrix signed an exclusive agreement with

- 101 -

Page 104: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Nabi Biopharmaceuticals to offer ViroSure quality control products for infectious disease testing to clinical laboratories that screen blood.

In 2005, AcroMetrix completed negotiations with America’s Blood Centers to provide quality control products for both nucleic acid and EIA testing to the 76 members of America’s Blood Centers. On 22 January 2009, this contract was extended up to 31 December 2009.

- 102 -

Page 105: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AdvanDx Inc

10A Roessler Road Woburn, MA 01801, USA Web site: http://www.advandx.comTel: (781) 376-0009Fax: (781) 376-0111 President & CEO: Thais T. Johansen Contact: Henrik Stender, VP Research & Development ([email protected])

Overview. AdvanDx Inc, founded in 2002, is a leader in the development of IVD products based on PNA probe technology. The founders were involved in the early development of PNA based assays and its potential use in diagnostics. In 2007, AdvanDx closed a $15 million Series C financing round from bioMérieux and existing investors LD Pensions and SLS Venture, which was used to accelerate commercialization of its product pipeline through its global sales and marketing operations as well as to expand its R & D.

Technology/products. The PNA FISH technology gives AdvanDx a significant advantage in providing its customers with a broad range of unique and highly differentiated in vitro diagnostic products. This novel technique combines the simplicity of current staining methods such as Gram staining, with the specificity of molecular techniques. In this way, presumptive detection of the causative agent routinely performed by microscopic examination can be improved to provide final identification.

The Company's first product line is intended for rapid and definitive identification of positive blood cultures by PNA FISH for selecting appropriate antibiotic therapy.

EVIGENE™ kits can be used for epidemiological purposes and help guide infection control measures to prevent serious infections with antibiotic resistant bacteria such as MRSA (Methicillin-resistant S. aureus), VRE (Vancomycin-resistant enterococci) and VRSA (Vancomycin-resistant S. aureus). The tools will also help US researchers develop the means by which to combat the high-profile, community-acquired MRSA.

In 2009, AdvanDx received FDA clearance for a 90-min version of its PNA FISH test for the bloodstream pathogen Enterococcus faecalis. The test is faster than the existing 2½ hour E. faecalis PNA FISH test but appears to have similar sensitivity and specificity, based on clinical validation studies in the US and Europe.

In May 2010, AdvanDx started to offer Inverness Medical Innovations' BinaxNow PBP2a test in the US. It is an antibody-based rapid immunochromatographic membrane assay, which received 510(k) clearance from the FDA in for rapid detection of penicillin-binding protein 2a present in MRSA directly from S. aureas-positive blood cultures.

In July 2010, AdvanDx received 510(k) clearance from the FDA for a rapid version of its Yeast Traffic Light PNA FISH test for detecting as many as five Candida species, which can cause hospital-acquired infections, from blood culture. But by cutting the PNA probe hybridization time by two-thirds, AdvanDx is now providing a 90-minute protocol test.

On 17 Jan 2011, GNR Traffic Light PNA FISH test received 510(k) clearance from FDA. The test is the first capable of simultaneously identifying E. coli, K.

- 103 -

Page 106: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

pneumoniae and P. aeruginosa directly from blood cultures containing Gram-negative rods in <90 minutes.

Collaborations. In 2007, bioMérieux signed an exclusive distribution agreement for the US for AdvanDx's PNA FISH™ rapid diagnostic tests. The combination with bioMérieux’s BacT/ALERT® range will provide clinicians with quicker and more accurate results, for an earlier treatment of septic patients.

In 2007, AdvanDx agreed to buy PNA probes from Panagene, which target specific RNA in the bacteria for use in its PNA FISH for diagnosis of bacterial infections.

- 104 -

Page 107: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AdnaGen AG

Ostpassage 7 D-30853 Langenhagen, GermanyWeb site: http://www.adnagen.com/Tel: +49 (0) 511 72595050 Fax: +49 (0) 511 72595040E-mail: [email protected]: Winfried Albert PhD, Managing Director ([email protected])

Overview. AdnaGen AG, founded in 1999, is a R&D company that focuses on the development of innovative cancer diagnostics by utilizing its proprietary technology for the detection and analysis of rare cells. Through the sensitive and accurate detection of disseminated tumor cells in body fluids and biological samples, AdnaGen has developed superior cancer diagnostics. Proof-of-concept has been achieved and clinical studies have been concluded or are in progress for breast, colon and prostate cancer. All tests are CE-marked. AdnaGen has 14 employees, and since 2001 is certified according to ISO 9001 and EN 13485. In 2005, OncoVista acquired majority share in AdnaGen.

Technology. AdnaGen's technology based on its proprietary "Combination-of-Combinations-Principle" (COCP) overcomes the problems of high molecular and biochemical variability of tumor cells and a lack of specificity if high sensitivity is required. The technology is based on reverse transcription PCR for the detection of circulating tumor cells in blood. The advantage of this diagnostic approach over the currently established methods is the direct detection of disseminated tumor cells in patient's blood by means of the analysis of the tumor associated gene expression. Within the framework of therapy monitoring, a conclusion concerning successful cancer therapy (surgery, chemotherapy, radiation) may be reached early on. Moreover, the detection of tumor cells in the circulation may indicate residual cells and recurrence of the disease in the course of cancer follow-up care.

Prenatal diagnostics. AdnaGen had its antibodies externally assessed and has received a confirmation that they are specific for fetal erythroid cells. These antibodies can be used to distinguish fetal and maternal cells in blood of pregnant women and thus are the key component for a new dimension in prenatal diagnosis.

Products. AdnaGen develops test systems for the medical laboratories and clinical research laboratories. The AdnaTest products for the tumor diagnostics (patent pending) are complete diagnostic kits consisting of reagents for immunomagnetic selection, mRNA isolation and multiplex RT-PCR, running on standard technology platforms.

Collaborations. In 2005, Gen-Probe licensed technology from AdnaGen for molecular diagnostic tests for prostate and bladder cancers that also help determine the aggressiveness of these malignancies, and monitor responses to therapy.

In 2007, following successful conclusion of a feasibility study to convert the current gel-based AdnaDetect products into a routine IVD multiplex platform, Innogenetics and AdnaGen signed an exclusive worldwide license agreement to develop and commercialize new multiplex tests in oncology, which rely on circulating tumor cells in patients’ blood. The license covers fields such as breast and colon cancer.

- 105 -

Page 108: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

According to an agreement signed on 26 January 2010, scientists at the Institute of Biotechnology of the Czech Academy of Science will use the Adnatest BreastCancer assay to evaluate the relationship between HER2 status of metastatic tumors and of circulating tumor cells in the 3-year COHERTA study, which is funded in part through a grant from Hoffman-La Roche's Czech and Slovak subsidiaries.

- 106 -

Page 109: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Affymetrix

3380 Central Expressway,Santa Clara, California 95051, USAWeb site: http://www.affymetrix.com/Tel: (408) 522 6000Fax: (408) 481-0422Chairman and Chief Executive Officer: Stephen Fodor PhD

Overview. Affymetrix is a leader in developing and commercializing systems to acquire, analyze and manage complex genetic information. Affymetrix develops DNA microchips and has three distinct business areas: (1) gene expression analysis; (2) genotyping; and (3) health management. Affymetrix's disease management assays are designed to determine the role of genetic variability in cancer, HIV infection and drug metabolism. In 2005, Affymetrix acquired ParAllele BioScience Inc, which provides assay technology for comprehensive genetic studies, for $120 million in stock. In summer 2008, Affymetrix purchased True Materials, which is developing a digitally encoded microparticle technology that will enable the array manufacturer to enter low to mid-multiplex markets and compete with bead-based platforms. In December 2009, Affymetrix acquired Panomics, a maker of assays for low- to mid-plex genetic, protein, and cellular analysis applications, for $73 million in cash. This will strengthen Affymetrix’s position in the high-growth validation and routine testing markets, and it will enable it to offer a more complete customer workflow that will combine its whole-genome microarray products with Panomics’ products focused on genes and proteins of interest.

Technology/products relevant to molecular diagnostics. The GeneChip system is described in Chapter 3. In 2004, it gained FDA approval as the world's first microarray instrument system for clinical diagnostics. The GeneChip System 3000Dx (GCS 3000Dx) is CE marked (Conformite Europeene) for in-vitro diagnostic use, enabling clinical laboratories in Europe to analyze microarray diagnostics, such as the Roche AmpliChip CYP450 Test. Other products based on GeneChip technology that are available include GeneChip p53 assay to analyze the coding region of p53, CustomSeq™ SARS pathogen detection and resequencing array and GeneChip Smallpox Resequencing Array Set for the entire smallpox genome. Affymetrix is developing a biodefense microarray that can detect hundreds of bacterial and viral biological threats (Chapter 9).

GeneChip CustomExpress arrays can measure up to 61,000 on a single array. It is used along with Affymetrix GeneChip® Scanner 3000. HG-U133 Plus 2 Array has the protein-coding content of the human genome on a chip. GeneChip® Mapping 10K 2.0 Array (10,000 SNPs) and the GeneChip® Mapping 100K Array Set (100,000 SNPs) are commercially available. In 2007, the US list price of its current two-chip 500K SNP genotyping set was reduced to $250. Additionally, the 500K set is now offered as a single array, increasing throughput and enabling scientists to devote their resources toward performing larger experiments.

Collaborations. Availability of the new GCS 3000Dx system offers Roche Diagnostics and other partners an IVD platform to develop genotyping and gene expression array-based assays that will help improve patient care. Affymetrix and Roche combine PCR with GeneChip system for analyzing 56 important mutations in cystic fibrosis. Genzyme Oncology has licensed to Affymetrix rights to p53 gene for high-density DNA array diagnostics. TGen offers genotyping services to its collaborators using GeneChip®.

- 107 -

Page 110: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations in 2002: (1) nucleic acid purification products from QIAGEN were used with Affymetrix' GeneChip arrays for target labeling in expression analysis; (2) Schering-Plough Research Institute gained access rights to Affymetrix' standard and custom GeneChip arrays for use in monitoring gene expression.

In 2003, Affymetrix and bioMerieux expanded their alliance to develop tests in infectious disease and breast cancer using Affymetrix GeneChip probe arrays; this was extended to other cancers in 2005.

Collaborations in 2004: (1) Invitrogen's (now Life Technologies) reagents were optimized for use with Affymetrix GeneChip technology, offering a complete, standardized sample preparation system; (2) Aventis gained early access to GeneChip Human Genome U133A Arrays; (3) Ipsogen became an authorized Service Provider for Affymetrix GeneChip system; (4) Veridex licensed GeneChip technology to manufacture and market in vitro cancer diagnostic tools.

Collaborations in 2005: (1) Affymetrix granted PathWork Informatics long-term non-exclusive access to its microarray technology to develop and market IVDs for cancer as well as the right to use Affymetrix's technology to develop tests for tumors of unknown origin and other cancer tests; (2) Agencourt Bioscience Corporation, a wholly owned subsidiary of Beckman Coulter, signed a distribution and supply agreement to provide a nucleic acid purification product, Agencourt RNAClean, to be included in the reagent kit for Affymetrix' GeneChip® Array Station; (3) Applied Biosystems (now Life Technologies) licensed several Affymetrix patents related to the manufacture, sale, and use of microarrays to expand its Expression Array system and to enable customers to use that system for gene expression, research and development; (4) Affymetrix granted Shanghai GeneCore BioTechnologies, a fully owned subsidiary of Vita Genomics non-exclusive access to its microarray technology to develop and market IVD to detect interferon- treatment response in patients with HBV and HCV as well as for early onset and allergic asthma in children.

Collaborations in 2006. (1) Affymetrix started 5-year collaboration with Duke University to analyze genomic information across large patient samples. Duke researchers will use Affymetrix GeneChip® microarray technology to develop applications for translational research projects. The initial projects will focus on cancer and cardiovascular disease. The Affymetrix technology will enable them to discover RNA and DNA patterns that can better classify, manage and treat complex diseases. As part of the agreement, Affymetrix will fund creative research and clinical projects that could lead to new genomic applications on the GeneChip platform, as well as diagnostics and screening tests. (2) Signature Genomic Laboratories obtained a non-exclusive, worldwide license for a number of Affymetrix patents related to the use of microarrays for comparative genomic hybridization analysis to be applied to Signature Genomics' SignatureChip® microarray-based diagnostics for cytogenetic abnormalities. (3) Abbott licensed a number of patents of Affymetrix, which allows it to manufacture and sell comparative genomic hybridization microarrays, readers, and software for research and diagnostics. (4) NimbleGen Systems Inc licensed a number of Affymetrix patents on nucleic acid microarrays. (5) Affymetrix granted Epigenomics nonexclusive access to its microarray technology to develop microarray-based IVD tests for oncology based on DNA methylation methods. Epigenomics will first develop pathology tests in prostate and breast cancer and plans to transfer its molecular classification test for prostate cancer onto the Affymetrix platform to use it in clinical trials for FDA approval of the assay, which started in 2007. (6) Affymetrix and Partners HealthCare entered into a 3-year translational research collaboration to develop microarray-

- 108 -

Page 111: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

based diagnostics for complex diseases such as newborn hearing loss, autism and hypertrophic cardiomyopathy. Partners researchers at Harvard Medical School, Partners HealthCare and Harvard Medical School-Partners HealthCare Center for Genetics and Genomics will create and validate microarray tests in CLIA laboratories. In 2007, Affymetrix expanded the alliance to include a contract array-manufacturing agreement, which will enable the companies to use custom chips made by Affymetrix for lab-developed diagnostics. The team at Partners will begin focusing on array-based tests for hypertrophic cardiomyopathy, and other indications.

In 2007, Affymetrix started partnership with Navigenics to offer personal genetics service online (See chapter 5).

In 2008, Affymetrix agreed to allow use of its microarray technology by Avesthagen Ltd (Bangalore, India for the AVESTAGENOME Project™ to explore the genetic basis of longevity and create a genetic, genealogic and medical database of the Parsi-Zoroastrian population. It will lead to discovery of novel biomarkers and drug targets for predictive, preventive and personalized healthcare. Affymetrix agreed to market Asuragen’s in vitro transcription reagent kits for use with its GeneChip System 3000Dx.

In 2008, Medical Prognosis Institute agreed to use Affy microarray platform to develop drug sensitivity prediction/prognostic tools for cancer.

In August 2009, Affymetrix and Beckman started to co-develop products that will expand the list of Affymetrix-validated automated target preparation methods based on an Affymetrix-specific configuration of Beckman's Biomek FX Dual Arm Multichannel-Span 8 Liquid Handler.

- 109 -

Page 112: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Agendia BV

Slotervaart Hospital, Floor 9DLouwesweg 6NL-1066 EC Amsterdam, The NetherlandsWeb site: http://www.agendia.com/Tel: +31 20 512 9161Fax: +31 20 512 9162E-mail: [email protected]: Dr Bernhard Sixt

Overview. Agendia BV originated in the Netherlands Cancer Institute, Amsterdam and focuses on the development of new prognostic tools, based on gene expression profiling, to be used in oncology. Agendia’s first product is MammaPrint®, a gene expression profiling service to assess the risk of recurrence in breast cancer patients. Through MammaPrint® and future products, Agendia wants to enable cancer patients to benefit immediately from the latest scientific findings in cancer research. This approach will facilitate the development of personalized treatment of breast cancer.

Technology/services. Agendia uses microarrays for gene expression profiling to analyze tumor samples and map the tumor’s specific properties. The result is a reliable prediction whether a patient runs a high or low risk of recurrence of the cancer. In addition, Agendia also offers CupPrint™ service aimed at identifying the primary tumor in patients diagnosed with distant metastasis. DiscoverPrint is an all-inclusive DNA microarray for genome-wide coverage.

Agendia’s highly innovative methods offer physicians and patients crucial information for determining the most adequate treatment plan and significantly enhance the chances for success, while at the same minimizing overtreatment or invasive diagnostic procedures.

Products. MammaPrint®, a 70-gene expression array, accurately predicts the clinical outcome of breast cancer. It is approved in the EU and was cleared by the FDA in 2007. It is the first multigene expression test for breast cancer to be approved in the US. Its key features include the following: (1) gene expression profiling offers valuable assistance in making the right treatment decisions; (2) it looks at multiple genes, which ensures more accurate results for breast cancer recurrence than currently available genetic tests; and (3) its gene set has been validated in hundreds of patients.

TargetPrint®, approved by the FDA on 4 September 2008, enables quantitative determination of gene expression levels of the estrogen receptor, progesterone receptor and HER2 in breast cancer biopsies. This is of paramount importance in planning treatment of breast cancer patients after surgery and assists physicians and patients in making informed treatment decisions. TargetPrint runs on Agendia's High Density Chip, which received market clearance from the FDA in August 2008.

Collaborations. In 2004, Agendia signed an agreement with the Molecular Profiling Institute (Phoenix, AZ) for distribution of MammaPrint® in the US.

In February 2007, Agendia and Medvet Science, one of Australia’s leading medical research organisations and a major provider of medical testing services to hospitals and the communities, signed an agreement for distribution of the MammaPrint breast cancer gene prognosis test in Australia.

- 110 -

Page 113: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 15 July 2008, Ferrer inCode, a subsidiary of Spanish firm Grupo Ferrer involved in personalized medicine, gained exclusive rights to sell Agendia’s MammaPrint and CupPrint services in Germany, France, Italy, and Portugal. Ferrer already sells the tests in Spain under an agreement signed in 2007.

- 111 -

Page 114: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Agilent Technologies

5301 Stevens Creek BlvdSanta Clara, CA 95051, USAWeb site: http://www.agilent.com/ Tel: (408) 345-8886President & CEO: William P. Sullivan

Overview. Agilent Technologies is a recognized leading supplier of high-quality instrument and software solutions, such as liquid chromatographs and mass spectrometers, to the pharmaceutical industry's drug development and quality control value chain. Agilent is specifically targeting gene expression, genotyping, screening and proteomics research with nanoscale technologies, such as microarrays and microfluidic lab-on-a-chip tools, coupled with sophisticated informatics software. The Life Sciences Business Unit within its Chemical Analysis Group (CAG) provides more rapid and comprehensive solutions in genomics, chemical and biochemical measurements, microfluidics, informatics, and other analytical areas to its growing customer base in the pharmaceutical, agricultural, genomics and academic markets. Agilent's CAG has two business units: life sciences and chemical solutions. Agilent Laboratories is Agilent Technologies' central research organization. In 2004, Agilent acquired Silicon Genetics and added genomics data analysis and management tools to its portfolio. In 2005, Agilent acquired Computational Biology Corp, a biotech pioneer in ChIP-on-chip, a microarray-based technique for understanding gene regulation in disease. Agilent Technologies Inc is a global technology leader in electronics, life sciences and chemical analysis and serves customers in more than 110 countries. In 2007, Agilent paid $246 million to acquire Stratagene a developer, manufacturer and marketer of specialized life science research and diagnostic products. Stratagene will operate as a division of Agilent (http://www.stratagene.com/). Dr. Joseph A. Sorge, Chairman, CEO and founder of Stratagene and its largest stockholder has formed a new company to pursue molecular diagnostic applications. The new company will purchase for $6.6 million certain assets of Stratagene from Agilent immediately following the close of the transaction and will license from Agilent certain of their molecular diagnostic technologies. In 2009, Agilent acquired Varian for approximately $1.5 billion, which expands its presence in the life sciences research and applied markets, such as the environment and energy. Agilent will expand its product portfolio into atomic and molecular spectroscopy and in other fields including NMR, imaging, and vacuum technologies.

Technology/products. Agilent 2100 Bioanalyzer is a fully automated, integrated hardware and software system that speeds the collection, analysis, confirmation, and purification of nucleic acids. It is used with Caliper's LabChip kits. Caliper and Agilent provide RNA 6000 Nano LabChip kit for the automated quality control of total and mRNA. It is designed for use with the Agilent 2100 bioanalyzer. Agilent's Total RNA Isolation Mini Kit uses a prefiltration column to remove up to 1,000 times more genomic DNA than competing products. The kit does not require the use of DNase enzyme, which is commonly used to remove genomic DNA but can compromise the quality of RNA.

The whole genome microarray is based on Agilent's new double-density format, which can accommodate 44,000 features on a single microarray. The new platform enables drug-discovery and disease researchers to perform whole-genome screening at a lower cost and with higher reproducibility. A state-of-the-art dual-laser automated Microarray Scanner provides rapid and accurate reading of fluorescently labeled microarrays.

- 112 -

Page 115: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Agilent’s Human Genome CGH Microarray and CGH Analytics software are designed for the study of genomic alterations in cancer.

Nanopore technology is used for analysis of nucleic acids that converts strings of nucleotides directly into electronic signatures. It can be used for sequencing individual, chromosome-length molecules of DNA quickly, easily and cost-effectively.

With a DARPA grant, Agilent developed a two-step process for the chemical synthesis of nucleic acids; this reduces the time, and cost of manufacture of DNA microarrays.

Agilent's ability to quickly design and fabricate custom microarrays with high sensitivity and specificity for measuring CNVs in genomic DNA proved to be an asset for validation and further study of new sequences. Agilent maintains a database of 20 million CNV probes that facilitate experimental design.

Collaborations relevant to molecular diagnostics. In 2003, Agilent and Paradigm Genetics introduced a 60-mer Mouse Oligo Microarray Kit to conduct genome-wide profiling research for understanding adverse drug reactions, effects of toxic substances, and to study genetic diseases such as cancer.

In 2005, Invitrogen (now Life Technologies) and Agilent signed an agreement to co-market the PathAlert Detection System, a cost-effective screening and confirmatory detection system for infectious agents by the US Department of Defense and the US Environmental Protection Agency.

In 2005, Agilent obtained a non-exclusive license to use a majority of Caliper's microfluidics patent estate for the development of clinical diagnostic applications on Agilent's 2100 Bioanalyzer, its 5100 Automated Lab-on-a-Chip platform and future instrument platforms.

In 2006, Agilent entered into a marketing alliance with ExonHit Therapeutics to market and sell nine different ExonHit human and mouse SpliceArrays as commercial products. These SpliceArrays include GPCR, Ion Channel, nuclear receptors and apoptosis pathways. SpliceArrays are a new generation of microarrays that resolve the expression of genes at the level of their alternatively spliced transcripts.

In 2006, Agilent obtained worldwide, nonexclusive patent licenses from Abbott Molecular Inc for the manufacture, marketing and sale of oligonucleotide microarrays using a two-or-more color technology for gene expression and CGH applications. This broad license covers microarray applications, including research, commercial laboratories and IVD. Expressly built into the grant of rights are related products, instruments, components and services.

In 2009, Agilent signed an agreement with Life Technologies to co-market its SureSelect Target Enrichment System with Life Technologies SOLiD sequencing system.

On 1 Feb 2011, Agilent Technologies and Sage Science signed a co-marketing deal covering their respective technologies for next-generation sequencing applications: 2100 Bioanalyzer for detecting and quantifying nucleic acids and Pippin Prep DNA size selection system to advance and streamline sample preparation. The partners will also develop application studies that leverage the combined capabilities of the two systems.

- 113 -

Page 116: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Akonni Biosystems

400 Sagner Ave, Suite 300Frederick, MD 21701, USAWeb site: http://www.akonni.com/Tel: (301) 698-0101Fax: (301) 698-0202Email: [email protected]: Charles Daitch PhD

Overview. Akonni Biosystems, founded in 2003, is based on technology developed at Argonne National Laboratory and the Engelhardt Institute of Molecular Biology and has over 20 patents issued with 13 others pending. It uses gel-drop array technologies optimized for medical applications. As a molecular diagnostics company, it develops, manufactures, and markets integrated molecular diagnostic systems on a microarray platform. In September 2010, Akonni received a $3 million Challenge Grant from the NIH to enable it to advance the development of its multi-drug resistant/extensively drug-resistant genotyping test for bacteria. In December 2010, it was awarded a $150,000 National Science Foundation grant to evaluate a method of manufacturing microarrays that could dramatically lower the cost of doing molecular diagnostic testing. Akonni will use the phase I grant to assess lab-on-a-film microarray manufacturing and assembly methods. It is seeking to raise $8 million. The benefit of this manufacturing approach is that lab-on-a-film microarray production and assembly can be automated at very high speeds, resulting in 10- to 100-fold savings in costs.

Technology/products. Akonni TruDiagnosis® Systems enable rapid and highly affordable testing for a variety of molecular biomarkers associated with human diseases on a gel-drop microarray platform. This is accomplished by combining in an end-to-end workflow several highly complex laboratory processes, including steps for sample preparation, analysis, and reporting. Multiplexed analyses of clinical samples such as culture, blood, saliva, nasal swab and urine can be performed in 15 m for immunoassays to 3 h for nucleic acid tests depending on intended use. Akonni has solutions for decentralized bench-top testing for near-POC settings and centralized high-throughput testing for reference laboratories. TruDiagnosis Systems comprising TruDx™ Readers, TruCycler™ Thermal Cyclers, TruArray® Tests and TruTip™ Kits, and are capable of testing for both genetic and antibody-based disease indicators.

Akonni TruTip Kits provide life science research and molecular laboratories with an affordable, rapid and robust means of extracting nucleic acids. TruTip Kits deliver inhibitor‐free, PCR‐ready DNA and/or RNA in as few as four minutes, starting from a wide range of sample matrices (e.g. blood, buccal swab, tissue, culture, sputum, urine), sample viscosities, and sample sources, (e.g. bacteria, viruses, parasites, fungi, humans, animals). TruTip Kits do not require any expensive capital equipment or hazardous organic extractions, and can be extended to high throughput robotic platforms.

Collaborations. In April 2010, Eppendorf and Akonni signed an agreement to promote Akonni TruTip nucleic acid extraction kits configured for use with Eppendorf epMotion automated pipetting systems. Eppendorf will promote the extraction kits to clinical, clinical research and forensic laboratories in North America, providing users with access to the most rapid and reliable means for automatically extracting PCR-ready DNA and/or RNA from larger volume samples.

- 114 -

Page 117: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Akubio Ltd

181 Cambridge Science ParkCambridge CB4 0GJ, United KingdomWeb site: http://www.akubio.com/ (does not open)Tel: +44(0)1223 225 335 (no answer)Fax: +44(0)1223 225 336E-mail: [email protected] (returned undelivered)CEO: Andrew Mackintosh Please note: efforts are being made to determine the current status of the company.

Overview. Akubio, formed in 2001, is a spin-off company from the University of Cambridge Department of Chemistry, which has raised seed funding from the University of Cambridge Challenge Fund, the University of Cambridge and the life sciences venture capital company, Abingworth Management. Akubio has developed highly sensitive acoustic detection technology which is quantitative, rapid and label-free with great potential for applications in drug discovery and diagnostics.

Technology. Akubio is developing proprietary acoustic detection technologies for commercialization in the life science research markets, including drug discovery and development and the in vitro diagnostic market. These technologies offer the increases in speed, throughput, sensitivity and flexibility that will revolutionize the way that many existing tests are carried out. Technology platforms are:

Rupture Event Scanning™ (REVS™). It can be used to size, separate and detect ligands. The technique works by effectively shaking the ligand, such as a virus particle, off a vibrating surface, at present a quartz resonator. The acoustic energy, or sound, generated when interactions between the ligand and its receptor are broken is then sensitively detected by using the resonator as a very sensitive microphone.

Resonance Acoustic Profiling™ (RAP™). By monitoring the change in resonant frequency of a resonating quartz crystal, these resonators can be used together with appropriate surface chemistry and fluid delivery systems to detect the adsorption of proteins, oligonucleotides such as DNA and RNA, cells, low molecular weight molecules (including drugs), and other ligands to surface-bound receptors. This allows the label-free determination of interaction affinities and kinetics in real time.

In addition, Akubio’s technologies will enable new tests to be carried out both in the laboratory and at point of use, be it in a patient’s home or at a hospital bedside. Akubio will exploit these markets in partnership with major players in specific segments and, where appropriate, by creating its own sales distribution channels.

The company’s proprietary acoustic detection system can detect a single virus particle in less than one hour without the need for labeling or extensive sample preparation, for example it can be applied to whole blood samples. The technique is quantitative, can measure the affinity of a ligand for its receptor and can be used to separate the ligand from a complex mixture. Advantages of Akubio's technology are:

Label free detection with high specificity and sensitivity

Wide range of applications: small molecules, proteins, DNA, viruses, bacteria and cells

- 115 -

Page 118: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Minimal sample preparation, which makes it faster than techniques using amplification technology making it suitable for point-of-care applications.

Collaborations. In February 2007, Akubio installed a RAP∙id 4 system at UCB Pharma, which has assisted in the development of the new analytical instrument that measure molecular interactions.

- 116 -

Page 119: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Allegro Diagnostics Inc

650 Albany StreetBoston, MA 02118, USAWeb site: http://www.allegrodiagnostics.com/Tel: 617-414-6990Email: [email protected]: Dan Rippy ([email protected])

Overview. Allegro Diagnostics Inc. is a molecular diagnostics company using proprietary technology and bioinformatics to diagnose diseases of epithelial origin, such as lung cancer. Founded in 2006, the company received a seed Launch Award of $175,000 from the Boston University Office of Technology Development in 2007. In February 2008, Allegro Diagnostics raised a $4 million A round of financing from Kodiak Venture Partners and Catalyst Health Ventures. Allegro Diagnostics plans to develop and commercialize its gene biomarker technology. The company's work is based on the research of its founders, Jerome Brody, MD and Avrum Spira, MD, MSc, at the Pulmonary Center at the Boston University School of Medicine.

Technology/products. Allegro Diagnostics was founded on three basic principles that have been developed and refined by the research of its founders:

1. The molecular "field of injury" extends beyond cells that manifest the disease of interest.

2. Pure populations of epithelial cells from the field of injury need to be easily accessible.

3. Global gene expression in these epithelial cells provides clinically important diagnostic, prognostic, and pathogenic information about the disease of interest.

Allegro Diagnostics has developed a significant patent portfolio in the areas of gene expression, bioinformatics, and diagnostics. The company's initial products will be a biomarker for confirmation of presence or absence of lung cancer, disease characterization, and screening of high risk populations.

- 117 -

Page 120: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Almac Diagnostics

19 Seagoe Industrial Estate Craigavon, BT63 5QD, United KingdomWeb site: http://www.almacgroup.com/diagnostics/Tel: +44 (0) 28 3833 7575Fax: +44 (0) 28 3839 8676Email: [email protected]: Alan Armstrong

Overview. Almac Diagnostics (formerly ArraDx) is a part of the Almac Group that develops and delivers genomics solutions for the advancement of science and the improvement of patient care. Almac’s Genomic Services division provides a range of genomics services to customers in pharmaceutical and biotech companies as well as leading academic institutions.

Technology/products/services. Almac is the first Affymetrix service provider to gain ISO 17025 accreditation for its gene expression and bioinformatics services. The Genomic Services division provides all inclusive gene expression, SNP and bioinformatics services to academia, biotech and pharmaceutical companies. These services include analysis on its unique Disease Specific Array™ research tools, which provide the ability to detect the maximum information in a given cancer type.

Almac's unique range of Disease Specific Array™ research tools (patent pending) are the first microarrays based on the transcriptome of an individual disease. As a result, these research tools deliver reliable and relevant information not available on other arrays. All DSA™ research tools have been developed to work with both fresh frozen and paraffin embedded tissue, thereby enabling retrospective analysis.

In May 2007, Almac Diagnostics was planning to meet with the FDA about starting clinical trials of an array-based IVD test for colorectal recurrence it hopes to launch in 2008 if the FDA clears its 510(k) application. Almac developed the colorectal cancer gene signature from formalin-fixed, paraffin-embedded samples. It is designed to help clinicians determine the risk of cancer recurrence in patients diagnosed with stage II colorectal cancer. As it moves forward with clinical trials, the company will probably count on its alliance with the Massachusetts General Hospital (Boston, MA) and other partners to provide useful data for the 510(k) submission.

Collaborations. In 2006, Almac signed an agreement with EiRx Therapeutics plc, whereby it will measure and correlate gene expression changes associated with the transformation using gene microarray technology. The molecular function of candidate genes in colorectal cancer cells will then be validated using EiRx's proprietary siRNA delivery system and in vitro apoptosis assays. These targets will form the basis for the design of new drugs designed to selectively and specifically induce apoptosis in colorectal cancer cells.

In 2006, Almac licensed the flagship MetaCore data mining suite from GeneGo Inc in a multiple-year agreement to use it in the development of novel microarray-based products for the diagnosis and treatment of cancer.

On 21 February 2008, Almac extended its ‘Powered by Affymetrix™’ agreement with Affymetrix Inc for an additional 15 years. The new agreement enables Almac to develop diagnostic products utilizing Affymetrix’ microarray technology for all cancer areas.

- 118 -

Page 121: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AltheaDx

3550 Dunhill StreetSan Diego, California 92121, USAWeb site: http://www.altheadx.com/Tel: (858) 882-0123Fax: (858) 882-0133Email: [email protected]: David Macdonald

Overview. AltheaDx, a spinout from Althea Technologies, is focused on providing comprehensive oncology testing services. It operates laboratory service operations for biopharma customers in compliance with GLP requirements. CLIA certification is in process. It launched a biomarker discovery and development program to facilitate incorporation and adoption of targeted therapeutics.

Technologies/services. AltheaDx provides a complete gene expression service. It has a novel technology for gene quantification. Quantitative method are based on reverse transcription PCR, patented universal primer strategy for high throughput multiplexing, and homogenous single tube assays. Other services include:

Microarray service is provided for tissue types including formalin-fixed, paraffin-embedded tissue blocks or slides. Data analysis is provided.

Genotyping service includes single mutation detection, SNP analysis, targeted PCR sequencing, and gene mutation panels.

Cancer assays include Breast Cancer Plex and Metastasis Plex.

Inflammation assays Immunotoxicity Plex, Inflammatory Plex and Sepsis Plex.

Collaborations. AltheaDx has several key patents and technology affiliations with academic institutions, including: NIH, NCI, UCSD, Sidney Kimmel Cancer Center, MD Anderson, and Memorial Sloan Kettering. Industrial collaborations are:

In October 2007, AltheaDx expansion a collaboration with BiPar Sciences Inc to provide pharmacogenomic support for drug development programs in oncology.

On 14 April 2008, Poniard Pharmaceuticals selected AltheaDx's Express Pathway program to identify molecular signatures that may be correlated to platinum resistance.

On 15 April 2008, AltheaDx started to offer Affymetrix Technology as part of a complete biomarker discovery and development platform.

On 4 November 2008, AltheaDx agreed to distribute DxS’ genetic assay for K-RAS mutations for use in clinical studies in the US.

- 119 -

Page 122: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AmberGen Inc

313 Pleasant StreetWatertown, MA, 02472, USAWeb site: http://www.ambergen.com/ (undergoing updating on 22 Aug 2008)Tel: 617-923-9990Fax: 617-923-9980Director of Molecular Therapeutics Div: Richard Del Mastro PhD ([email protected]) Contact: Shella Batelman, Director of Administration ([email protected])

Overview. AmberGen Inc (AMB) is an innovator of molecular diagnostics. It is developing clinical assays based on novel molecular profiling technology which can accurately diagnose and predict the course of a variety of diseases. These are based on in vitro protein expression, photo cleavable linkers and novel labeling techniques. Several products are under development from this platform technology. The Molecular Therapeutics Division enables the technology to be applied to rapidly validate genes in disease associated pathways using a focused systems biology approach. This will enable novel drug targets to emerge whose biological functions are known, leading to the development of cell based assays for the screening of lead compounds. As part of this discovery, the mechanistic role of disease associated SNPs within these genes are being resolved in an effort to determine their effect on diversity and drug interactions. The Division is focused on asthma, osteoporosis and Alzheimer's disease.

Funding has been provided by the National Institutes of Health through their Small Business Innovation Research grant program. AmberGen has fourteen issued patents, some of which are licensed from Boston University.

Technology/products. The ELISA-based protein truncation test, the first such assay that allows rapid automated mutation detection, is doing well in validation trials. Applications are in screening for colorectal cancer, breast cancer, and other diseases where the mutation results in a truncated protein.

A sensitive, cost-effective and high throughput system for detecting drug-resistant strains of HIV-1 virus is based on the company’s proprietary cell-free protein expression inventions and mass spectrometry.

AmberGen's protein-protein micro-array combines cell-free methods for rapid expression of specially engineered protein libraries with advanced technology for micro-array fabrication and readout. The first such array is based on kinase proteins and has applications in detecting interactions to map critical cell signaling pathways in the areas of autoimmune and infectious diseases.

Photo Cleavable Mass Tags facilitates mutation/SNP detection at the DNA level with multiplex mass spectrometry readout. Applications are in biomarkers for disease detection and treatment monitoring. Photo Cleavable Isotope Coded Affinity Tags when used in conjunction with mass spectrometry allows changes in the abundance of specific proteins in a complex mixture to be identified and monitored.

AmberGen has invented reagents useful for rapid isolation and labeling of proteins and DNA (PC-biotins, PC-amidites and FluoroTect tRNAs). Certain kits are sold through Promega and Glen Research.

TRAMPE™ (Transfer RNA-Mediated Protein Engineering) is the world's first integrated cell-free protein expression and screening system. Through the

- 120 -

Page 123: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

use of AmberGen's "ProScreen™" system, the individual proteins coded by individual genes can be expressed, detected, purified, and analyzed with exponential reductions in both time and cost. While it now typically takes days or even weeks to express, detect and purify a single protein using traditional cellular-expression systems, AmberGen's cell-free protein expression technology can produce the same protein in less than an hour.

- 121 -

Page 124: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ambry Genetics Corporation

100 Columbia #200Aliso Viejo, CA 92656, USAWeb site: http://www.ambrygen.com/Tel: (949) 642-7202E-mail: [email protected]: Charles L. M. Dunlop

Overview. Ambry Genetics is a state-of-the-art laboratory engaged in testing of human DNA to detect the presence of genetic anomalies known to be the cause or to be associated with disease. The Ambry Test uses the latest in sequence analysis technology in conjunction with results of the Human Genome Project. Ambry Genetics provides fast, sensitive and cost-effective diagnostic genetic tests. On 28 January 2008, Ambry created a new division to support pharmaceutical research, CROs and clinical trials.

Technology. Using patent pending innovations Ambry scientists have developed a sensitive genetic testing service available for use in the clinical setting. By scanning the entire length of a gene, virtually every genetic anomaly leading to disease will be detected. This is especially important when patients are medium or high risk. SNP technologies determine if a patient carries a common mutation, but if there is a heightened risk of disease, or other situation where increased sensitivity is needed, then the Ambry Test is the only realistic alternative.

Services. Currently Ambry Genetics is offering the following testing services:

Ambry CF test: full CFTR sequence analysis. The most comprehensive genetic test available for the detection of over 900 mutations leading to cystic fibrosis.

Fragile X Southern blot analysis: analysis for Fragile X expanded repeat region.

Ambry Test: Prenatal Panel

Research. Current research projects involve cystic fibrosis patients where other DNA testing methods have not detected the presence of one or two disease causing alleles. This includes only affected individuals with positive sweat chloride test results.

- 122 -

Page 125: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AmeriPath Inc

7111 Fairway Drive, Suite 400Palm Beach Gardens, FL 33418, USAWeb site: http://www.ameripath.com/E-mail: [email protected]: David L. Redmond Overview. AmeriPath Inc is a leading national provider of cancer diagnostics, genomics, and related information services. The company's extensive diagnostics infrastructure includes over 400 pathologists and doctorate-level scientists providing services in over 40 independent pathology laboratories, more than 200 hospitals, the Center for Advanced Diagnostics (CAD) and Dermpath Diagnostics, a division of AmeriPath®. CAD provides specialized diagnostic testing and information services including Fluorescence In-Situ Hybridization (FISH), Flow Cytometry, DNA Analysis, Polymerase Chain Reaction (PCR), Molecular Genetics, Cytogenetics and HPV Typing. AmeriPath® has over 60 board-certified dermatopathologists supporting Dermpath Diagnostics, one of the country's leading providers of dermatopathology services. Additionally, AmeriPath® provides clinical trial and research development support to firms involved in developing new cancer and genomic diagnostics and therapeutics.

Services. CAD provides specialized diagnostic testing and information services including fluorescence in-situ hybridization (FISH), flow cytometry, DNA analysis, polymerase chain reaction (PCR), molecular genetics, cytogenetics, and HPV typing. AmeriPath provides pharmacogenomics testing for personalized management of various diseases, particularly cancer.

Collaborations relevant to molecular diagnostics. In 2002, AmeriPath started collaboration with TriPath Oncology Inc, a wholly owned subsidiary of TriPath Imaging Inc on the validation and clinical use of a novel gene expression assay for malignant melanoma.

In 2003, AmeriPath Inc signed a 5-year strategic alliance agreement with Roche Diagnostics to establish a series of Molecular Centers of Excellence to perform esoteric genomic diagnostic testing using Roche PCR and other advanced genomic technologies.

- 123 -

Page 126: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AMODIA Bioservice GmbH

Rebenring 31D-38106 Braunschweig, GermanyWeb site: http://www.amodia.com/Managing Director: Ulrich Krause

Overview. AMODIA (Applied MOlecular DIAgnostics) Bioservice GmbH, established in 2000, is located at the campus of the German Federal Institution for Biotechnological Research in Braunschweig, the Helmholtz Center for Infection Research. It is a specialist for microbial identification. Its products range from CE-certified IVD and test-kits for the detection of GMOs to customer-specific test-kits for the monitoring of industrial production processes.

Services. These are:

Universal detection and identification of microorganisms in customer samples

Identification of microbiological isolates

Development of test-kits for the detection of pathogens, microorganisms, industrial contaminations etc.

Consulting in molecular biology and diagnostics

Technology. The universal molecular identification is a proprietary core technology developed by AMODIA and one of its focal points. It establishes molecular tests on a proprietary detection platform, Lateral Flow Dipsticks (LFD), which are an established and commonly used detection platform in immuno-assays. AMODIA has extended this fast and reliable tool in such a way that now amplification products from DNA or RNA could be detected. The specificity of the detection is increased by probe hybridization during the analysis. This internal sequence verification of the amplification product guarantees a reliable molecular detection. This makes the AMODIA-LFD an ideal replacement for the time consuming agarose gels. AMODIA uses this detection platform to develop customer specific molecular tests.

Products. CE-certified medical products according to the IVD guidelines:

GenFlow Borrelia for detection of Borrelia burgdorferi

GenFlow Neisseria for detection of Neisseria gonorrhoeae

Test-kits for the surveillance of food:

- AMODIA DetectLine 35S screen 123 for detection of GMO

- Detection of the "White Spot Syndrome Virus" in shrimp

Monitoring of industrial production processes.

Collaborations. AMODIA products are distributed by DEMEDITEC Diagnostics GmbH, Kiel (Germany).

- 124 -

Page 127: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Amoy Diagnostics Co Ltd

5F, Kechuang Building, 289Haicang wengjiao RoadXiamen 361026, China Web site: http://www.amoydx.com/en/Tel: +86 592 6806831 Fax: +86 592 6806839CEO: Li-mou Zheng PhD

Overview. Amoy Diagnostics Co Ltd (AmoyDx), founded in 2007, is a leader in translating molecular diagnostics research and development into pre-clinical and medical practice. AmoyDx aims to improve the quality of diagnostics and efficacy of treatment for cancer patients, and to move discoveries from the bench to the bedside. The company possesses key patents and technology affiliations with a variety of hospitals, biopharmaceutical companies and academic institutions. AmoyDx has been awarded the Medical Device Manufacturing License by the State Food and Drug Administration of China (SFDA) and has been issued certifications of Quality Management System and ISO13485 by China and the European Union respectively

Products. Product portfolio includes validated tests in the following areas:

Gene Expression Analysis Kits RRM1, TYMS, and ERCC1

Six Mutations Detection Kit for TP53

Five Mutations Detection Kit for PIK3CA

Mutation Detection Kits for PDGFRA D842V, JAK2 V617F and ABL1 T315I

Tumor mutation analysis: KRAS, EGFR, BRAF, KIT, PIK3CA, PDGFRA, ABL1, TP53, JAK2.

Chemotherapy-related gene expression analysis: TYMS, ERCC1, RRM1

KRAS mutation detection kit was approved by the Chinese State Food and Drug Administration in November 2010 for use in personalized clinical testing in oncology. The assay is based on ADx-ARMS technology, which uses a 2-step process to detect mutations in the KRAS gene. The method has been validated on several PCR platforms including the Roche Light Cycler 480 I and Light Cycler 480 II; Stratagene MX 3000P and 3005P; Applied Biosystems StepOne Plus 7300 and 7500; and Bio-Rad IQ5 and CFX96.

AmoyDx has also developed and validated test kits for EGFR and BRAF mutations based on the ADx-ARMS technology and anticipates SFDA approval. It has applied for the CE Mark for its KRAS, EGFR, and BRAF assays. Amoy has received marketing approval from China's State Food and Drug Administration for its EGFR and BRAF tests for clinical use. The AmoyDx EGFR assay tests for mutations in the tyrosine kinase domain associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). The test also detects the T790M mutation that is associated with resistance to treatment. The AmoyDx BRAF test detects the mutation that causes the V600E amino acid substitution in the BRAF protein, which is found primarily in malignant melanoma. Several drug firms are developing therapies targeting the BRAF mutation.

Services. In addition to pre-packaged kits for point-of-service use, AmoyDx provides diagnostic testing services in support of cancer research and

- 125 -

Page 128: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

treatment for biopharmaceutical companies, academic institutions and governmental agencies.

Collaborations. AmoyDx has partnered with AstraZeneca, which sells Iressa, to introduce the EGFR kits to clinicians in mainland China.

- 126 -

Page 129: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Anagnostics Bioanalysis GmbH

Westbahnstrasse 55A-4300 St. Valentin, AustriaWeb site: http://www.anagnostics.com/Tel: +43-7435 58193 0Email: [email protected]: Christoph Reschreiter ([email protected])

Overview. Anagnostics has developed a diagnostic device which combines the strengths of the most important molecular diagnostic techniques. It tests over 1,000 variables simultaneously with a fully automated system providing high precision quantitative results at high speed and low cost. The features of its technology supersede realtime PCR technology and devices, which are limited to test only a single variable at a time. Its patented technology has established new standards enabling the use of high performance molecular diagnostics in hospitals, in physicians’ offices, in the food industry and for purposes of defense against bioterrorism.

Technology. High performance molecular diagnostics technology is based on the use of two cylinders. Detector molecules are immobilized on the superficies surface of the inner cylinder, which is placed into a cylindrical container. Both parts fit together and form a small hybridization chamber − HybCell. The liquid sample is filled into the cylindrical container and the interactions between the molecules take place during continuous rotation. This assures reliable liquid handling, optimal temperature distribution and quantitative realtime measurements.

Products/applications. Anagnostics’ HybOrg provides multiplex diagnosis, which is an advantage for smaller laboratories. The same device may be used for a series of different analysis. DNA analysis is processed on the same device as protein analysis.

Infectious diseases testing. Fast integrated DNA and protein tests focusing on the pathogen, its sensitivity/resistance and inflammation status of patients enable targeted therapy. Genomic DNA from body fluids or smear is used as sample material. DNA tests are based on multiplex PCR with subsequent hybridization on the HybCell. Species-specific fluorescence-labeled primers are used to amplify target regions in each pathogen and in human DNA. Specific and unique DNA sequences allow distinction between PCR amplicons and therefore simultaneous hybridization and identification of up to 8 patient samples in 1 HybCell. “DNA-barcoding" technology increases throughput significantly.

Cancer mutation analysis. Anagnostics’ KRAS test for personalized oncology is easy to use and delivers fast and comprehensive results. Using compact sequencing© technology, a high number of clinically relevant mutations is targeted. The sequence enclosing codons (e.g. KRAS 12/13) are amplified in an upstream PCR reaction. Concurrently the amplificate is labeled with a fluorescence marker. Qualitative analysis is done within the HybCell, where PCR amplificates bind to immobilized probes. The KRAS test is extended to test further mutations such as BRAF and EGFR.

Drugs of abuse testing. Anagnostics' multiplexed, competitive immunochemical tests are used for drugs of abuse monitoring in a therapeutical setting. Urine and saliva are semi-quantitatively tested for drugs of abuse and psychotropic substances.

- 127 -

Page 130: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. On 15 April 2011, Anagnostics and blood bank Linz started to work together on a new method based on HybCell for targeted enrichment of defined DNA sequences from human samples to be used for increasing specificity and sensitivity as well as increasing throughput of NGS. Several steps are integrated into one step and result in simplification of the process. The joint project is partly funded by Österreichische Forschungsfördergesellschaft, and the proof of concept is expected in the middle of 2011. On 15 April 2011, Anagnostics and Invicon Diagnostic Concepts GmbH started collaboration to offer products for clinical chemistry, protein diagnostics, quality control and molecular biology in Germany. Invicon distributes Anagnostics' screening products for drugs of abuse (hybcell DoA tests, hyborg system).

- 128 -

Page 131: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Antara Biosciences Inc

2375 Garcia AvenueMountain View, CA 94043, USAWeb site: http://www.antara-bio.com/Tel: (650) 564-9850Fax: (650) 564-9971E-mail: [email protected] Chief Executive Officer: Marc R. Labgold, PhD

Overview. Antara BioSciences Inc was established in 2005 by Tokyo-based K.K. Eurus Genomics in order to enter the in vitro diagnostic (IVD) business in the US. Antara plans to develop DNA chips and diagnostic systems based on the licensed patents and guide the products through the approval procedures of the FDA.

Technology/products/services. Antara’s proprietary electrochemical detection method consists of three basic elements:

The Quantum IQ (Q-IQ)™ Electrochemical Analyzer

Universal Q-IQ™ Electrochemical Chips

Customizable NA-BP reagents

The system is rapid and does not require sample labeling or amplification. It provides equivalent or higher sensitivity than currently available methods in less time, and range from 30 to 90 min depending on the application, but can be as short as 15 minutes. Antara has several research programs including IVD, and applications in drug discovery and pharmacogenomics. The company provides:

Platform instruments and reagents (chips, chemistry, etc.)

Custom content reagents

Integrated RFID-based chip/sample tracking

Collaborations. Antara’s affiliates include Eurus Genomics, Genesys Technologies Inc and Toshiba Corporation.

In 2006, Toshiba licensed key patents on DNA chips, DNA detection and analysis to Antara. The license covers the application of Toshiba-developed and patented DNA chips and electrochemical DNA analysis system to IVD of disease in humans within the US.

- 129 -

Page 132: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AION Diagnostics Limited

Box 7, Level 2, The Mirimar40 - 48 Subiaco Square RoadSubiaco 6008 Australia Web site: http://www.aiondiagnostics.com/Tel: + 61 8 6461 9400Fax: + 61 8 6461 9499E-mail: [email protected] Managing Director: Dr Anna Kluczewska

Overview. AION Diagnostics was created as a wholly owned spin off from pSivida Ltd in 2004. pSivida has seed funded AION Diagnostics through an investment of AU$1.2 million and has licensed diagnostic and sensor applications of the BioSilicon platform technology to AION Diagnostics. Development of diagnostics within pSivida has demonstrated significant potential for diagnostic products utilizing the biodegradable, optical, semi conductor and micromachining properties of BioSilicon. By adopting the biocompatible and biodegradable properties of BioSilicon, AION Diagnostics will be commercializing diagnostic products that will provide real time continuous measurement of important diagnostic markers. AION is starting with a valuable intellectual property portfolio and the ability to leverage off pSivida's technical knowledge in BioSilicon together with that of its partners including QinetiQ Ltd, and Forschungszentrum, Neuss, in Germany.At an early stage, AION Diagnostics will develop products through strategic collaborations with Universities and research institutions in Australia and with overseas industry partners. AION Diagnostics will seek grant funding in Australia and the US as part of this collaborative research structure. It is expected that second round funding for AION Diagnostics will be provided by industry partners and or venture capitalists prior to an initial public offering (IPO) in Australia.

Technology. AION’s BioSilicon™ is an example of how the element silicon is nanostructured to create nanopores measuring 10 atoms across within the material. These pores, forming a honeycomb structure, can be loaded with drugs, including small molecules, peptides, proteins and vaccines. BioSilicon’s unique and versatile properties have vast applications in diagnostic and sensor markets. Diagnostic applications will exploit the biodegradable, optical, semi conductor and micro machining properties of BioSilicon. In 2006, AION announced that it has discovered a novel new property to its nanotechnology platform, BioSilicon. The biomaterial has been shown to be effectively visualized on four key imaging modalities; x-ray, ultrasound, CT and MRI. A modified form of nano-structured porous silicon (mpSi) retains key properties of silicon and is specifically engineered for in-vivo hybrid imaging.

Products. AION's tissue marker portfolio of potential products is expected to be used for marking of biopsy sites and monitoring and guiding cancer therapeutic regimes. Advantages of this BioSilicon-based technology are that the markers can be visualized by any key imaging modality and that biodegradation time can be engineered to optimize clinical requirements for visualization and spatial enhancement of pathology. The first of these products are expected to be approved in 2008. The FDA has indicated a 510(K) device registration path to approval for the first tissue marker products, with subsequent indications to be filed shortly after.

In 2007, AION expanded into new applications based on the modified porous silicon platform to target the preclinical small animal imaging sector and

- 130 -

Page 133: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

have been developed as a result of advancements in the Company’s core human healthcare division. AION is developing hybrid molecular imaging probes designed for the early detection and monitoring of a range of significant diseases, with visualization on several key modalities. Modified pSi can be loaded with a wide variety of selective agents, including "smart" probes and ligands, which will facilitate targeted imaging of specific sites within the body. This combines porous silicon's unique capabilities to act as both the signaling component and probe carrier, significantly reducing the complexity of the molecular imaging agent.

Applied BioCode Inc

10020 Pioneer Blvd, Suite 102Santa Fe Springs, CA 90670, USAWeb site: http://www.apbiocode.com/Tel: 562-801-0050Fax: 562-801-0060Email: [email protected]

Overview. Applied BioCode Inc (ABC) is a privately held biotechnology company with company headquarters located in Santa Fe Springs, Southern California. The company was formed to research, develop, and commercialize its Barcoded Magnetic Bead (BMB) technology within the medical diagnostic and life sciences markets. BMB is a spin-out technology from Maxwell Sensors Inc (see separate profile). On 7 July 2010, ABC and Maxwell Sensors received a $2.8 million, 3-year grant from the Recovery Act Limited Competition of NIH for developing a high-throughput multiplex diagnostic testing platform using their technology.

Technology/products. ABC has combined photolithographic digital barcodes with immuno- and molecular chemistry to create a new, patented BMB technology designed to significantly improve the isolation and identification capacity of IVD. The BMBs' barcode patterns give a high-contrast transmitted signal and no fluorescence background, allowing the barcode to be identified easily and accurately, with near 100% decoding accuracy. Furthermore, because the fluorescence is detected at steady state, the variation of the fluorescence signal is minimal, which is very important for quantitative assays, such as protein analysis. It is a breakthrough bioassay platform that can significantly improve the throughput and reduce the cost of diagnostic testing. The beads use 128 different barcodes that allow up to 128 separate assays to be completed on one sample simultaneously. A barcode can be assigned to each probe, allowing analysis of multiple targets in one test tube or one microwell for most clinical diagnostic applications.

BioCode-1000 analyzer is a rapid BMB imaging system for a 96-well microplate format. The system rapidly displays the barcode and fluorescence intensity for each BMB.

BioCode-1000 software is a powerful, but easy to use control program and user interface for operating the BioCode-1000 analyzer.

Applications. These include the following:

Infectious disease testing

Biomarker validation & pharmacogenomics

Cancer diagnostics

- 131 -

Page 134: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Companion diagnostics

Gene expression & genetic testing

Collaborations. On 21 April 2011, EraGen received access to Applied BioCode's barcoded magnetic bead technology and CE-Marked BioCode-1000 system, which EraGen will couple with its MultiCode-PLx assays for analyzing nucleic acid targets in infectious disease and genetic testing.

- 132 -

Page 135: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Applied Spectral Imaging Inc

1497 Poinsettia Avenue, #158Vista, CA 92081, USAWeb site: http://www.spectral-imaging.com/Tel: (760) 929-2840Fax: (760) 929-2842Address in Israel: P.O. Box 101Migdal Ha’Emek 10551, IsraelTel: +972-4-6547567Fax: +972-4-6547507Chief Executive Officer: Limor Shiposh ([email protected])

Overview. Applied Spectral Imaging (ASI) is a privately held imaging company based in Israel, with wholly owned subsidiaries in US and Germany. ASI has developed and commercialized products in cytogenetics. It has brought to market SpectraView, a general analytical imaging system that may be used in a wide range of applications and industries.

Products relevant to molecular diagnostics. SkyVision is a complete cytogenetics workstation for SKY (spectral karyotyping), G-banding and FISH. SKY is a molecular cytogenetic technique, which identifies and displays all chromosomes in unique colors. After a single SkyPaint hybridization, SkyVision can detect subtle translocations, complex and small marker chromosomes, HSRs and double minutes. Advantages of SkyVision are:

Complete solution that includes reagents, instruments, analysis and training

No need to identify chromosomes before analysis

Accurate analysis of abnormal karyotypes unresolved by classical cytogenetics.

Able to identify cryptic translocations in apparently normal karyotypes.

Used as a screening tool for cancer progression and for monitoring residual disease.

To identify previously unknown breakpoints, the starting point for gene discovery.

Multi-use for standard G-banded karyotyping and traditional FISH.

Able to combine SKY information with banding information and ideograms.

BandView is approved by the FDA for in vitro diagnostic use as an aid to cytogeneticists in diagnosing birth defects, genetic diseases, cancer and the effect of cancer treatments. This system can be expanded to include ASI's SKY system as well as FISH.

ASI's fluorescent detection technology circumvents inherent fluorescent detection limitations caused by spectral overlap. ASI's breakthrough technology enables superior multiplexing due to the ability to use multiple distinct fluorophores for clean, delineated signals. By integrating ASI's detection technology into existing fluorescent-based instrument platforms, ASI hopes to develop new products for multiplexing applications, as well as for improving the capacity of the existing products.

- 133 -

Page 136: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2003, ASI introduced CytoLabView, the most complete cytogenetics workstation for banding, FISH, CGH and multicolor karyotyping. It applies the most advanced technologies in image processing to the specific tasks cytogeneticists face in their labs.

In 2004 ASI introduced multi-species automated karyotyping as an add-on to BandView™. It enables research cytogeneticist to customize karyotypes to support any number of chromosome and classes, including hundreds of chromosomes in a karyotype.

Collaborations. In 2002, ASI and Chemical Diversity Labs Inc (CDL) signed an agreement by which CDL will test its proprietary drug candidate library against multiple receptor targets utilizing ASI's automated multiplex assay detection platform.

Arcxis Biotechnologies Inc

6920 Koll Center Parkway, Suite 215Pleasanton, CA 94566, USAWeb site: http://www.arcxis.com/Tel: (925) 461-1300 Fax: (925) 265-9000 Email: [email protected]: Christine Meda

Overview. Arcxis Biotechnologies is a private, venture-funded company that designs, develops and markets instrument systems and reagents for the isolation and purification of RNA and DNA. Its innovative products deliver to the arena of life sciences (research/clinical and diagnostic) easier, faster and more reliable solutions, providing cost effective analysis.

Technologies/products. Arcxis' current focus is the manufacture of instruments and reagents to improve sample preparation of nucleic acids and proteins, capable of achieving high throughput in a flexible format. Its first product is an automated instrument to co-process multiple samples for the extraction and purification of nucleic acids. It is shortening the workflows (extraction, isolation, purification, concentration and elution) into a simple, effective, reliable and inexpensive single step. The instrument workstation leverages propriety technology that is co-developed from its partnership with Sandia National Laboratories.

Arcxis is developing linear microarrays for ultra-rapid identification of genetic material. These arrays are fabricated on a specialized material that allows for rapid hybridization of nucleic acids and proteins in a low volume/high surface environment. Co-development of a detection platform will allow the user to perform one-step hybridization and analysis in an extremely short time-frame. This technology is currently under development for POC assays for respiratory viruses.

In 2007, Arcxis and United States Army Medical Research Institute of Infectious Diseases (USAMRIID) successfully concluded their collaboration using Arcxis’s patented Tentacle Probe technology for the detection of bacterial pathogens. Investigators demonstrated that the resulting assay was targeted to a chromosomal sequence in the gyrA gene of B. anthracis (anthrax), an organism which is a common focus of bioterrorist interest. The Tentacle Probe assay eliminated false positives, previously observed with closely related and naturally occurring bacterial species, such as B. cereus. The improved performance is due to the incorporation of multiple binding sites into the probe that combine to have a very strong overall cooperative

- 134 -

Page 137: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

effect. It succeeded in identifying virulent from non-virulent Bacillus strains without sacrificing specificity or sensitivity.

In 2007, Arcxis received a $1 million phase II award from the US Department of Homeland Security to continue developing its BioPhalanx instrument, a portable, rapid-detection bio-threat analyzer. Arcxis' assays will combine its micro-preparation cards for rapid sample preparation, micro channel-based microarrays for detecting nucleic acids, and its so-called "tentacle probes" for designing specific assays targeted at bio-threats.

Collaborations. In September 2008, Roche agreed to apply Arcxis’ proprietary technology for isolation and concentration of total RNA and genomic DNA to PCR™ and RT-PCR™ based diagnostic tests.

- 135 -

Page 138: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Arrayit Corporation

524 East Weddell DriveSunnyvale, CA 94089, USAWeb site: http://www.arrayit.comTel: (408) 744-1331Fax: (408) 744-1711Chief Executive Officer: Ms. Rene Schena ([email protected])President: Dr. Mark Schena ([email protected])

Overview. Arrayit Corporation, a subsidiary of Integrated Media Holdings Inc, is a leading life sciences company providing innovative products and services to empower scientists and clinicians to explore the human genome as well as the genomes of plants and animals. Arrayit is the leading provider of most comprehensive microarray platform including protein and DNA microarrays as well as microarray printers and readers.

Technology/products relevant to molecular diagnostics. Arrayit's Variation Identification Platform (VIP™) technology is used for human disease screening, blood typing, and diagnosis of infectious disease. VIP™ tests are currently are being developed for cystic fibrosis, sickle cell anemia, and several serious diseases that are treatable by early detection. Arrayit is developing a microarray-based diagnostic test to detect the H1N1 flu virus. VIP™ can also be used to identify disease carriers, for forensics, food safety testing, parentage testing, HLA screening, blood typing and anti-terrorism analysis. Amplified DNA samples from several patients can be printed into a VIP™ microarray, and screened for genetic variations of interest. This can enable clinicians to test up to 100,000 patients against a single disease by printing that bio-information on a single slide and then drawing a diagnosis for each individual patient. VIP™ greatly reduces cost by amortizing the procedure over many patients, and improves testing accuracy by utilizing a single synthetic testing mixture on all of the patient samples.

ArrayIt® microarray platforms have fluorescent and colorimetric DNA microarrays genotyping. It offers industry leading preprinted microarrays including H25K, the first microarray designed and built using the entire human genome sequence as a blueprint. On 21 April 2009, Arrayit announced a scientific discovery, which combines advances in surface chemistry, bioinformatics, instrumentation and microarray technology to reduce the time required for analysis of the human genome from several days to less than 6 h. Arrayit will offer it as an improvement to its H25K whole human genome product line.

Arrayit has created the market's only antibody microarray containing monoclonal antibodies generated against native human plasma proteins, PlasmaScan antibodies, which are provided by BioSystems International. They react with native human proteins with proper folding and post-translation modification to exhibit high antibody binding.

Arrayit's H25K microarray and PlasmaScan 80 have enabled rapid and efficient plasma sample preparation of specimens from PD patients for discovery of biomarkers.

In September 2009, ArrayIt launched a biomarker discovery service capable of identifying multiple new major genetic links for human diseases. It will run analysis of DNA or RNA samples on a custom microarray for a contract fee ranging from $100,000 to $1 million and will retain a small percentage of each discovery as a downstream royalty.

- 136 -

Page 139: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Arrayit's flagship microarray platform, is a "turn-key" solution for colorimetric protein microarray analysis including an entire line of microarray platforms for low-, medium- and high-throughput microarray analysis of nucleic acids and proteins with fluorescent, colorimetric, chemilluminescent and SPR detection.

Collaborations. On 16 July 2009, ArrayIt started collaboration with The Parkinson's Institute of Sunnyvale, California to discover biomarkers for Parkinson's disease from a prospective collection of samples from well-characterized PD patients.

- 137 -

Page 140: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Artemis Health Inc

1430 O’Brien Drive, Suite HMenlo Park, CA 94025, USAWeb site: http://www.artemishealthinc.com/Tel: (650) 323-4300Fax: (650) 323-4308Email: [email protected] and CEO: Lissa Goldenstein

Overview. Artemis Health is an early-stage company dedicated to the development of non-invasive prenatal diagnostic tests. It develops and commercializes genome-based prenatal diagnostic tests for use in early pregnancy. With a single maternal blood draw, these tests will provide valuable genetic information without risk to the mother or baby.

Technologies/applications. Artemis’ primary emphasis is on the isolation of intact fetal cells, including the entire fetal genome, from maternal blood for advanced genetic testing by applying its patented technologies and processes to address this challenge. Once isolated, the fetal cells provide enough fetal DNA to test for various genetic disorders, which are currently diagnosed using invasive and sometimes risky procedures such as amniocentesis or chorionic villus sampling. It uses the most advanced and proven methods of genetic analysis, enabling it to provide the best possible information to women who use its tests. Although karyotype is still considered the gold standard for prenatal testing, other methods such as aCGH and DNA sequencing are also used. Cell-free DNA from maternal blood can be analyzed by shotgun sequencing to accurately detect the presence of fetal aneuploidy.

Artemis has developed a proprietary microfluidic technology that successfully and reliably recovers intact fetal cells from maternal blood samples. In the laboratory, a device gently separates these rare cells of interest from the billions of maternal background cells. The result is an unparalleled recovery of intact fetal cells that can provide critical clinical information.

In January 2009, Artemis obtained a coexclusive, worldwide license from Stanford University to develop cell-free fetal DNA prenatal tests that predict chromosomal and genetic disorders. The IP license includes the use of digital PCR technology and shotgun sequencing to analyze cell-free fetal DNA from maternal blood, particularly for the diagnosis of fetal genetic disorders such as Down's syndrome, Edwards syndrome (trisomy 18), and Patau syndrome (trisomy 13). This will complement Artemis’ prenatal diagnostic platform focused on intact fetal cells. Its first product will be based on a simple, non-invasive approach for early prenatal detection of fetal chromosomal abnormalities.

- 138 -

Page 141: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Asuragen Inc

2150 WoodwardAustin, TX 78744-1832, USAWeb site: http://www.asuragendx.com/Tel: (512) 681-5200Fax: (512) 651-0601Email: [email protected]: Matt Winkler General Manager: Scott Hunicke-Smith PhD, ([email protected])

Overview. Asuragen Inc was formed as a spin-off of Ambion Inc following the sale of its Research Products Division in 2005. In 2007, Assuragen spun out Mirna Therapeutics (see separate profile), for developing miRNA therapeutics. Asuragen is a fully integrated RNA-based therapeutic and diagnostics company with a core focus on miRNA. It is leveraging its broad miRNA/mRNA IP portfolio to build a significant business focused on four product segments: (1) companion diagnostics; (2) diagnostic products; (3) pharmacogenomic services; and (4) clinical laboratory. It has a focus on oncology.

Technology/products. Asuragen’s current diagnostic product portfolio consists of Signature® Genetic Testing and Oncology Testing products as well as industry leading controls and standards engineered using its patented Armored® RNA technology including custom Armored RNA constructs for licensees of its Armored RNA technology. miRNAs are being developed as diagnostics. Asuragen offers the next generation of microarray content through its miRNA Expression Profiling Service.

In 2008, Asuragen launched RNARetain™ Pre-Analytical RNA Stabilization Solution in Europe. It is clinically validated and cGMP manufactured sample collection and RNA stabilization solution with CE-mark. Based upon patented technology, RNARetain is labeled for the collection, storage, and transport of clinical human cellular and solid tissue specimens and stabilization of intracellular RNA within these specimens for subsequent extraction and molecular analysis.

Inform™ KRAS and BRAF are molecular assays for colorectal cancer run on formalin-fixed paraffin embedded (FFPE) tissue. These Laboratory Developed Tests interrogate mutations within the KRAS and BRAF genes, respectively.

miRInform Pancreas is a state of the art miRNA-based laboratory developed test, run on formalin-fixed paraffin-embeddedspecimens, which aids in the differential diagnosis and disease management of pancreatic ductal adenocarcinoma patients.

Optimum® FFPE RNA Isolation Kit . This is a phenol-free isolation of total RNA from formalin or paraformaldehyde fixed paraffin-embedded tissues, which is optimized for qRT-PCR analysis.

Collaborations. Asuragen has maintained the agreement signed by Ambion in 2005 to gain access to proprietary miRNA sequences discovered and owned by Rosetta Genomics, which enables it to adapt its miRNA platforms to detect, quantify, and functionally characterize Rosetta's proprietary miRNA sequences. The resulting products will facilitate basic and applied miRNA research by academic and industrial scientists.

- 139 -

Page 142: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2006, Digene agreed to market and distribute cystic fibrosis screening products made by Asuragen. Terms of the exclusive, worldwide deal call for Digene to make an up-front payment to Asuragen, and to make additional payments based on regulatory milestones. Asuragen will also develop its next-generation CF test, Signature CF Expand, which will broaden the mutation panel to include ethnic-specific mutations that can be adapted for use in carrier screening and may find additional utility for neonatal and newborn testing. Digene will also distribute this product exclusively and worldwide. In addition, Digene will have the first right of refusal on future genetic test products developed by Asuragen. The Signature products use the Luminex xMAP technology.

In 2006, Asuragen licensed miRNA sequences from Rockefeller University to develop early cancer detection tools.

In 2007 Asuragen started research collaboration with Merck & Co to develop a biomarker and pharmacogenomic test for cancer clinical trials.

In 2007, Xenomics Inc granted Asuragen co-exclusive worldwide rights to incorporate NPM1 technology into Asuragen’s molecular diagnostic products. Asuragen will have the right to develop, manufacture and market products for the diagnosis, stratification and monitoring of patients with acute myeloid leukemia.

In 2009, Asuragen signed an agreement with Biogen Idec to use its RNA technologies to develop a companion diagnostic test to help select which patients will benefit from a cancer drug candidate that Biogen Idec now has in clinical development.

In 2009, Asuragen signed an agreement with Life Technologies to develop and commercialize its BCR/ABL1 assay, which will simultaneously detect and quantify BCR/ABL1 fusion transcripts (b2a2, b3a2, and e1a2) in a single reaction. Monitoring the level of these transcripts may prove helpful in prognosing and managing treatment of leukemia with the drugs imatinib (Gleevec), sunitinib (Sutent), and dasatinib (Sprycell). Asuragen will pursue CE marked-IVD registration in Europe and regulatory clearance in the US. The test will be distributed by Life Technologies and run exclusively on Applied Biosystems/ 7500 Fast Dx Real-Time PCR Instrument.

In March 2010, Biomedical Diagnostics (BMD) agreed to distribute Asuragen's cancer assays in France including Signature Oncology Portfolio. BMD will support Asuragen's efforts to establish clinical validation sites for the Signature KRAS/BRAF assay in France.

- 140 -

Page 143: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Athena Diagnostics Inc

Four Biotech Park377 Plantation StreetWorcester, MA 01605, USAWeb site: http://www.athenadiagnostics.com/Tel: 508-756-2886Fax: 508-753-5601President and Chief Executive Officer: Robert E. Flaherty

Overview. Athena Diagnostics is a reference laboratory dedicated to the development and commercialization of diagnostic testing for neurological disorders. Using innovative technologies, Athena provides neurologists and other physicians with diagnostic answers that can improve the quality of health care for patients in a cost effective manner. The technologies are licensed predominantly from the academic research environment and represent the Company's commitment to cutting-edge technology and its close relationships with world-renowned experts in neurology and genetics. The ownership of Athena Diagnostics has changed from Elan Pharmaceuticals Inc to Behrman Capital, a private equity investment firm based in New York and San Francisco. In 2006, Fisher Scientific International Inc acquired Athena for $283 million cash.

Technologies. Technologies that are relevant to molecular diagnostics are:

Mass spectrometry

Isotope substitution

Spectrophotometry

Enzyme-linked immunosorbent assay (ELISA)

Radioimmune assay (RIA)

Western blot

Southern blot

Polymerase chain reaction (PCR)

Pulsed field gel electrophoresis (PFGE)

Automated DNA sequencing

Tests and services. Athena Diagnostics focuses its business on four principal areas of highly sophisticated assays: neurogenetic diagnostics that assist in the detection of mutations in the genetic code responsible for certain disorders; peripheral neuropathy and paraneoplastic diagnostics that detect the presence of autoantibodies that may attack the nervous system; Alzheimer's disease diagnostics; and neutralizing antibody detection assays used to detect the presence of antibodies to one of the most common therapies for relapsing-remitting multiple sclerosis. The detailed list can be viewed on the Company's Web site. The latest test offered is to detect parkin gene for Parkinson's disease in patients with movement disorders. The Company also provides two educational programs.

NeuroCAST is an innovative, internet-based educational program designed to bring the physicians current information about important issues in the early and accurate diagnosis of neurological disease. LabCAST is an internet-based

- 141 -

Page 144: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

educational program that brings information about current issues in laboratory methodology, technologies for the diagnosis to the physician's desktop.

- 142 -

Page 145: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Atom Sciences

114 Ridgeway CenterOak Ridge, TN 37830, USAWeb site: http://www.atom-sci.com/ Tel: (865) 483-1113Fax: (865) 483-3316E-mail: [email protected] & CEO: Tom J. Whitaker, PhD

Overview. Atom Sciences Inc (ASI) is a privately held, high-tech corporation. The Company was incorporated in 1981 to commercialize Resonance Ionization (RI), a laser-based technology initially developed at Oak Ridge National Laboratory by Dr. G. S. Hurst and coworkers. The initial work in characterization of materials has expanded to include biotechnology applications of RI and this has further led to non-RI biotechnology projects.

Technology relevant to molecular diagnostics. Atom Sciences is currently conducting several research projects to develop improved DNA diagnostics. The common thread throughout these projects is the use of DNA arrays. These projects are:

Electrical Detection of DNA Hybridization. A very inexpensive electrical method has been shown to determine which probe sites have undergone hybridization. This technique is based on the fact that a probe attached to a gold surface will form an electrically insulating layer between the gold surface and a conducting buffer solution.

Negative Ion SIMS Detection of DNA/PNA Hybrids. In this unique detection method, evidence of hybridization of DNA to PNA is provided by the presence of PO2- and PO3- in the negative secondary ion mass spectrum of the probe site. This provides a sensitive method for detection of hybridization and requires no labeling.

Quantitative Detection of DNA Hybrids. This method uses a laser-based ionization technique coupled with mass spectrometry to detect hybridized target DNA, which is labeled with a stable isotope.

Recent research grants. On 5 September 2001, Atom Sciences was awarded three new grants from the National Institutes of Health totaling $298,000 for the following projects:

1. The National Institute of Allergy and Infectious Diseases issued the grants for the project, titled “Inexpensive Genetic Detection of Infectious Organisms,” which is aimed at developing an inexpensive and rapid diagnostic test that can be used to identify bacteria and viruses.

2. The project “Screening Digestive Diseases with Microcantilever Arrays” will be performed under the auspices of the National Institute of Diabetes and Digestive and Kidney Diseases. The research will test the feasibility of an improvement in current microcantilever technology to detect genetic traits. The technique may offer a sensitive diagnostic test for gene mutations linked to hereditary diseases or the susceptibility to those diseases.

3. The National Human Genome Research Institute funds the project "SNP Detection with Unlabeled, Unamplified Target DNA". This project addresses the problem of identifying minor DNA sequence differences, such as gene mutations that cause disease, and how frequently they occur in the human

- 143 -

Page 146: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

population. The research is aimed toward simultaneous detection of multiple sequences from a single DNA sample.

- 144 -

Page 147: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Aushon BioSystems Inc

43 Manning RdBillerica, MA 01821, USAWeb site: http://www.aushon.com/Tel: 978-436-6400Fax: 978-667-3970CEO: Pete Honkanen ([email protected])

Overview. Aushon BioSystems Inc (Aushon) is a privately-owned corporation developing products and services at the confluence of life science and advanced engineering. Targeting the genomic and proteomic research and diagnostics markets, Aushon's goal is to enable breakthroughs in biological research, diagnostics, drug discovery and the treatment of disease. Aushon's tools and technology will facilitate the realization of personalized medicine using genomic and proteomic signatures.

Technology/products. A Reverse Phase Array (RPA) is a type of protein array where lysates generated from cell lines, tissue samples, blood samples, or any other source of proteomic material are arrayed in a micro dot-blot format. The technique provides a new platform for measuring protein expression levels in a large number of biological samples simultaneously. One common detection methodology for RPAs involves colorimetric detection via amplification step involving tagged secondary antibodies. The RPA data, viewed as series of dilution curves, provides a sensitive, quantitative, and much higher throughput alternative to Western blotting.

Aushon BioSystems’ 2470 arrayer is a proven technology for building exceptionally high quality Reverse Phase Protein Lysate microarrays. The 2470 can produce arrays of the often viscous lysate material with the linearity and consistency to permit data extraction from dilution series curves. Antibody microarrays provide a high-throughput platform for protein expression profiling. The high quality printing provided by the Aushon 2470 arrayer is ideal for the unique challenges of antibody array fabrication.

In addition to standard microscope slides, the Aushon 2470 can print arrays into the wells of 96- and 384-well plates. The number of features per well depends on the well size and the desired spot size and spacing. Well-plate based arrays can be either DNA or protein based. This image also highlights the flexibility of its printing software which allows the user to completely control their array layout.

- 145 -

Page 148: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AutoGenomics Inc

2251 Rutherford RoadCarlsbad, CA 92008, USA Web site: http://www.autogenomics.com/Tel: (760) 804-7378Fax: (760) 804-7382Chairman, President & CEO: Fareed KureshyContact: Dr. Richard Hamill ([email protected]) Overview. AutoGenomics Inc, a privately owned company, integrates discrete processes of genomic and proteomic analyses into a continuous-flow, automated system that represents a fundamental shift from the way these analyses are performed today. The Infiniti System will provide clinical laboratories unparalleled workflow improvements, significant cost efficiencies through labor savings and reduction in the cost of reportable results. For predisposition screening, personalized medicine, genetic disorders, DNA fingerprinting and agriculture, these features are essential. The primary goal of AutoGenomics is to position the Infiniti System as the platform of choice for the molecular diagnostics market. The strategy includes aggressively increasing the test application menu through both internal development and strategic alliances. This initial market introduction will be followed by entry in the proteomics and forensic market segments. The Company's initial clinical focus is serving the needs of diagnostic laboratories with specific test applications addressing women's health, newborn screening, cardiovascular disease and cancer screening. AutoGenomics had an installed base of 58 Infiniti analyzers in reference laboratories, hospital laboratories, and specialty clinics throughout North America. Its customers include ARUP Laboratories, Cleveland Clinic, Johns Hopkins Hospital, and the Montreal Heart Institute. On 25 July 2008, AutoGenomics filed a preliminary prospectus with the US Securities and Exchange Commission to float an unspecified number of common shares in an IPO on the Nasdaq.

Technology/products. AutoGenomics' Infiniti System seamlessly integrates genomic and proteomic samples into automated molecular testing, which delivers sample to results in a totally "hands off" manner offering random access with continuous flow operation. It integrates sample handling, reagent management, hybridization and detection for the analyses of DNA and proteins in a totally self-contained system. The "open architecture" design enables adaptation of multiple technologies such as hybridization assay, primer extension assay, competitive and sandwich format immunoassays to perform SNPs genotyping, STRs, micro-satellite analysis, gene expression analysis and protein determinations. Key components of the System are:

Infiniti Analyzer. This was cleared as a stand-alone instrument for multiplexed assays by the FDA in May 2007.

BioFilmChip microarray

Intellipac reagent management module

Qmatic operating software with applications interface

Infiniti Factor II and Factor V assays for diagnosing thrombophilia were cleared in February 2007. AutoGenomics currently offers 26 test applications on the system, including research-use-only tests for HPV, respiratory illness, breast and bladder cancer risk, and cystic fibrosis. It also has FDA clearance for 2C9/VKORC1 multiplexed assay (used to assess sensitivity to

- 146 -

Page 149: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

anticoagulation with warfarin), and for Factor II, Factor V, and Factor II-V panel tests. AutoGenomics is discussing the design of a clinical trial for its HPV screening test with FDA, and the PMA process for such a test could take 2-3 years or longer. It also intends to submit a 510(k) with the FDA for its HPV genotyping test.

- 147 -

Page 150: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Avacta Ltd

103 Clarendon RoadLeeds, LS2 9DF, UKWeb site: http://www.avacta.com/Tel: +44 (0) 870 835 4367Fax: +44 (0) 870 835 4368E-mail: [email protected]: Prof. Alastair Smith Contact: Russell Hodgetts, Business Development Manager ([email protected])

Overview. Avacta Ltd, an innovative chemical and biological detection technology company, and Avacta Analytical Ltd, an analytical service, technical problem solving and contract R&D provider, are part of the Avacta Group founded in 2004. Avacta is developing a market driven technology portfolio with applications in defence, clinical diagnostics and personalized medicine, high throughput screening and process measurement particularly in the biomanufacturing sector. The company is involved in a number of co-development projects with commercial partners and collaborations with the UK academic sector to develop technology for remote sensing of chemical and biological agents, high throughput screening of membrane and soluble protein drug targets and clinical diagnostics using advanced optical spectroscopy.

Avacta Analytical Ltd harnesses unrivalled expertise and infrastructure in spectroscopy, imaging and analysis to provide high end analytical support and technical problem solving to clients in a very broad range of industries. The company specializes in advanced optical spectroscopy including Raman, fluorescence and infra-red, and in surface analysis using electron microscopy, atomic force microscopy, XPS, Auger spectroscopy, SPR and ellipsometry. These techniques are offered for technical problem solving, routine characterization and contract R&D projects of short or long duration.

In December 2007 Avacta acquired Oxford Medical Diagnostics Ltd, a specialist in high sensitivity laser based gas detection technology which spun out from Oxford University in 2004. The applications are synergistic with Avacta’s existing products and customers and the technology is complimentary, providing gas phase detection capabilities to work alongside Avacta’s core strengths in liquids and solids analysis.

Technology. Avacta has extensive expertise in spectroscopy, optical design, imaging technologies and molecular biophysics and together these skills are being focused on innovative solutions to problems in biotech, healthcare and homeland security. Avacta's key platform technologies lie in the following areas:

Remote sensing of chemical and biological hazards

High throughput screening technology for a range of targets and analytes including membrane proteins

Clinical diagnosis including rapid bedside diagnostic tools and tissue imaging

On-line or near-line analysis for bioprocess monitoring

- 148 -

Page 151: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AVIVA Biosciences

11180 Roselle Street, Suite 200San Diego, CA 92121, USAWeb site: http://www.avivabio.com/Tel: (858) 259-0888 Fax: (858) 259-9040 Email: [email protected] & CEO: Julian Yuan

Overview. AVIVA Biosciences is focused on developing enabling technologies in the areas of drug discovery and the processing of cells for the research, therapeutic and diagnostic markets. Initially founded on an intellectual property portfolio of micro fabricated structures for biological sample preparation, the company has developed breakthrough technological solutions for ion channel drug discovery and rare cell isolation. Drugs targeting ion channels represent a major opportunity for new pharmaceuticals, while rare cell isolation is used for prenatal genetic testing, and cancer therapies. AVIVA's core competencies are in the areas of electrophysiology, drug discovery, cell biology and the processing and measurement of cells.

In 2001, AVIVA Biosciences established AVIVA Antibody Corporation in order to allow each company to focus its development efforts on its respective core business - developing multiple-force active biochips for non-invasive prenatal screening, micrometastasis cancer cell detection, and ion channel drug screening and will utilize AVIVA Antibodys monoclonal antibodies in various applications.

Technology relevant to molecular diagnostics. AVIVA holds fundamental inventions in the fabrication and application of planar micro fabricated devices for cell based processing and manipulation, electrophysiology measurements, and cell isolation. In addition, the company has developed proprietary surface chemistries, microbeads, antibodies and reagent compositions that are used in combination with the planar devices to offer complete solutions to critical bioassay applications.

AVIVA has developed methods for isolating a small number of rare cells from blood samples. Applications include prenatal testing for fetal genetic defects as an alternative to highly invasive procedures such as amniocentesis. AVIVA is also pursuing a noninvasive alternative to amniocentesis, a diagnostic test used in high-risk pregnancies that has a low but real risk of miscarriage. Normally, fetal cells are isolated for genetic analysis by collecting amniotic fluid from the womb with a large needle. AVIVA's microfluidic system, currently in testing at Baylor School of Medicine in Houston, can instead isolate the rare fetal cells that make their way into the mother's bloodstream. Other potential applications include isolation of cancer cell metastasis detection and stem cell isolation.

Exploiting its core competencies in micro fabrication and biochemistry, AVIVA is developing a biochip-based system to enrich and isolate fetal cells from maternal blood for prenatal screening and diagnosis. The three components of this system are a complexity reduction device to remove the majority of erythrocytes, a specific isolation chemistry (reagent composition and protocol) to enrich fetal cells based on antibody binding, and a high-resolution filtration and re-suspension device. AVIVA is developing a fetal cell isolation chip and the related instrumentation, reagents, and protocols to create a non-invasive alternative to amniocentesis for prenatal genetic testing. AVIVA's fetal cell isolation technology processes 20-40 mL of blood

- 149 -

Page 152: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

sample, avoids the need for centrifugation, removes majority of unwanted cells, and recovers reliably up to 90% of target cells.

In 2003, AVIVA started the commercial shipment of SealChip16™, a single-use disposable product that performs automated high-throughput and high quality patch clamp screenings for ion channel drug targets. SealChip16™ will greatly accelerate high quality ion channel lead discovery for researchers in the pharmaceutical, biotech, as well as academic research communities.

Axis-Shield ASA

Luna PlaceTechnology Park, DD2 1XA, ScotlandWeb site: http://www.axis-shield.com/Tel: +44 (0) 1382 422000Fax: + 44 (0) 1382 561201CEO: Ian D Gilham BSc, PhD

Overview. Axis-Shield, formed in 1999 through the merger of Shield Diagnostics plc (Scotland) and Axis Biochemicals ASA (Norway) has around 400 employees divided between operations in the UK and Norway. Axis-Shield has strong capabilities and resources in the development and commercialization of innovative laboratory diagnostics and point-of-care (POC) diagnostics. Axis-Shield products are based on patent protected technologies from in-house research, development and production activities. The company specializes in developing diagnostic tests combining traditional antibody approaches with state of the art advances in technology. Core competence lies in using proprietary chemistries to develop new and novel markers serving unmet clinical needs.

Technologies/products. Key clinical areas for laboratory diagnostics are:

Cardiovascular disease

Rheumatoid arthritis

Alcohol-related disease

Diabetes

Infectious diseases

Vitamin B12 deficiency. Automated direct quantification of holoTC biomarker.

POC diagnostics . Formerly as the Diagnostic Division of Nycomed Pharma, Axis-Shield has more than 40 years' experience in the development, manufacture, marketing and sales of in vitro diagnostic products. In collaboration with scientific institutions and companies throughout the world, it has brought several unique products to the market: Thrombotest™, Lymphoprep™ and the NycoCard® product portfolio for use in the POC market. AxSYM BNP detects a low concentration of BNP, a marker of congestive heart failure. It is used to identify patients at an early stage of disease as well as to monitor the pumping function of the heart. The Afinion™ system for decentralized IVD testing, introduced in November 2004, is expected to make an important contribution to diagnosis at the POC, allowing doctors to test for various biochemical parameters during patient consultation.

Combination of diagnostics with therapeutics. Axis-Shield DIASTAT Anti-cyclic citrullinated peptides (CCP) detects antibodies against CPP that are

- 150 -

Page 153: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

derived from filaggrin, a protein associated with epidermal intermediate filaments. Antibodies to these CCPs correlate positively with the severity and incidence of RA and its symptoms.

Collaborations. Axis-Shield’s major outlet for Homocysteine (an important biomarker for cardiovascular risk) and other novel laboratory based tests is via OEM agreements with global platform suppliers such as Abbott, Roche, Dade Behring, DPC and BioRad. Axis-Shield recently agreed with Abbott to develop 12 new marker tests for their AxSYM® platform. These development and commercial agreements between Axis-Shield and the industry majors are a reflection of Axis-Shield’s proven capabilities in laboratory diagnostics. In POC diagnostics, Axis-Shield is enjoying a leading market position targeting small hospital and primary care laboratories.

- 151 -

Page 154: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ayanda Biosystems SA

PSE-C Parc Scientifique, EPFLCH-1015 Lausanne, SwitzerlandWeb site: http://www.ayanda-biosys.com/Tel/Fax: +41 21 693 8631Email: [email protected]: Solomzi Makohliso PhD ([email protected])

Overview. Ayanda Biosystems is a technology development company of innovative tools for medical diagnostics and drug discovery applications. Founded in 2001, Ayanda (a South African name signifying growth and prosperity) is a spin-off of the Swiss Federal Institute of Technology in Lausanne (EPFL). The goal of Ayanda is to identify promising IP/Technologies that satisfy an identified market need and then bring together the necessary expertise and resources on a project-by-project basis to develop products with significant market potential. Ayanda benefits from its close collaboration with the EPFL, an experienced management team that combine bioengineering innovation with business development skills and a strong IP portfolio.

Technology. The Ayanda™ multi-electrode array (MEA) biochips are fabricated on transparent microchips and are adapted to the commercially available MEA60 signal amplification and data acquisition system from Multi Channel Systems MCS (Reutlingen, Germany). Ayanda offers various micro-electrode geometries on the Ayanda™ MEA biochips ranging from planar to 3D tip-shaped electrodes. In the drug discovery process, the use of MEA technology in secondary screening provides more in depth information on the systems biology response.

Ayanda has secured exclusive intellectual property rights for a novel nanotechnology, which was developed at the Institute of Biomolecular Chemistry of the EPFL. The central component of this platform is the Synthetic Ligand-gated Ion Channel (SLIC™) construct which is immobilized in a lipid-based matrix. The SLIC™ system exploits the high efficiency of ligand-receptor interactions for the purpose of capturing a selected biomolecule from the analyte and is detected via an electrochemical scheme. This nanotechnology overcomes various key problems and provides the following benefits:

No sample labeling required, which eliminatesthe potential for artefacts arising from alteration of native protein function.

Well-defined, biofriendly surface chemistry, which avoids non-specific adsorption of protein on non-capture sites.

Ultrasensitive detection that has the potential to detect a few to even single biomolecules without any amplification steps.

Products relevant to molecular diagnostics. Ayanda is developing novel assays for infectious diseases such as HIV and respiratory diseases (pneumonia, tuberculosis and influenza), based on the proprietary Ayanda™ SLIC Platform. The Ayanda™ SLIC Platform under development consists of a bioelectronics reader instrument for device control/data processing and disposable microplates that incorporate the SLIC detection nanotechnology. Key features are:

Rapid and easy to use for point-of-care.

- 152 -

Page 155: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Low-cost that should be affordable for developing countries.

Adaptable to both low and high volume testing applications.

For HIV, Ayanda is developing an ultra sensitive test for viral load and neonatal testing. For respiratory diseases, it is developing novel molecular tests for pneumonia, tuberculosis and influenza through an EU-FP6 grant.

- 153 -

Page 156: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Bar Harbor BioTechnology Inc

18 River Field RoadTrenton, ME 04605, USAWeb site: http://www.bhbio.com/ Tel: (207) 667-7900Fax: (207) 667-7733Email: [email protected]: Robert Phelps ([email protected])

Overview. Bar Harbor BioTechnology Inc (BHB) is developing innovative molecular biology products and services that advance life science research and clinical medicine. BHB began operations in 2006 as the first commercial spin-off of the Jackson Laboratory, a leading independent research institution specializing in mammalian genetics. BHB's team are experienced life scientists who formulated the technology for their own unmet research needs and now continue this theme with offerings customized by them to meet other scientists' needs. The technology utilizes the real-time quantitative PCR (qPCR). BHB offers the highest performance qPCR-based laboratory products and computational tools for molecular profiling at the levels of both RNA-based gene expression (transcriptomics) and DNA-based gene quantification (genomics). In October 2007, the company recently announced the completion of a Series A round of financing as well as receiving a $334,632 Development Award from the Maine Technology Institute to develop human genetic profiling products.

Technology. BHB uses qPCR for accurate measurements of gene expression having a wider dynamic range and better resolution when compared to microarray approaches. Depending on the biological system to be studied different subsets of genes therefore provide the greatest information value. BHB's overall approach is termed PerfectCircle BioAnalysis. It provides intelligently pre-selected gene primer sets in 96- and 384-well formats and qPCR data handling combined with bioinformatics integration tools. Overall, it is a complete system for gene expression research.

Products: These includes StellARray™ Gene Expression / CNV System, the Global Pattern Recognition™ data analysis tool and GeneSieve™ bioinformatics tool. By streamlining gene-based molecular profiling and information technologies, BHB's integrated bioanalysis suite will make molecular profiling more convenient, reliable and informative than ever before. The resulting information will either be satisfactory and does not need further gene profiling analysis or it will assist the customer to refine their questions and to select additional StellARrays™ for further experimentation. The integrated and easy-to-use BHB GeneSieve™ Bioinformatics modules will help customers with experimental design, analysis, improve their analysis and ultimately accelerate research. BHB has the exclusive license to the GPR software program which utilizes a unique statistical algorithm to overcome a major limitation in qPCR data analysis, referred to as "normalization" - by using a larger number of data reference points when compared to other available software tools. GPR can be easily accessed online.

PerfectCircle™. The combination of GeneSieve™ bioinformatics, StellARray™ Real-Time PCR arrays, and Global Pattern Recognition™ bioanalysis software will change the way gene expression experiments are done.

On 6 March 2008 , BHB launched its new line of human StellARray™ products for gene expression research. This initial offering of 43 different biological pathways for scientists to select from includes many major human

- 154 -

Page 157: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

diseases. Configured to perform gene expression or gene copy number experiments these new Real-Time PCR arrays are the first of their kind in the field of gene expression research.

- 155 -

Page 158: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BCR Diagnostics Inc

184 John Clarke RoadMiddletown, RI 02842,, USAWeb site: http://www.bcrbiotech.com/Tel: (401) 849-9957E-mail: [email protected]: Boris Rotman, PhD

Overview. BCR is a privately held Rhode Island corporation dedicated to developing novel biosensor platforms for detecting extremely low levels of bacteria in real time (i.e., under 5 minutes). Currently, bacteriologic testing requires between 24 and 48 hours for completion. Life-saving applications for BCR's products include clinical diagnostics, biological warfare defense, testing blood products intended for transfusion, screening food and beverages, environmental monitoring, and sterility testing.

Technology/products. The LEXSAS™ (Label-free Exponential Signal-Amplification System) technology employs ultra sensitive nanodevices (prepared from dormant microbial spores) capable of sending fluorescent light signals when encountering individual bacterial cells. The key features of the LEXSAS™ biosensor derive from using dormant spores as detectors capable of sensing, transducing, and amplifying environmental signals in real-time. Dormant spores of various Bacillus species are ideal detectors because they have no detectable oxidative metabolism or macromolecular synthesis, but acquire within minutes normal cell functions in response to discrete external signals. Within the biosensor chip, spores encountering individual bacterial cells respond by sending green fluorescent light signals. By coupling the biosensor with state-of-the-art optics and imaging systems, the fluorescence is converted to time-dependent data profiles containing biochemical information for detecting and identifying the bacteria in the test sample. BCR is currently using a laboratory biosensor prototype for real-time (under 5 min) testing of six different pathogenic bacteria. Other features of this technology include: ability to test samples with little or no preparation, low cost, linear dynamic range extending from one to one million bacterial cells per sample, portability (point-of-care testing), and applicability to automated high-throughput testing.

Current work at BCR is largely devoted to developing a real-time biosensor for screening bacterially-contaminated platelets immediately before transfusion. The project is funded by the NIH because transfusion-related bacterial infections remain a serious public health problem.

BCR has developed a novel microfluidic biosensor applicable to detecting airborne weaponized biological particles such as aerosolized microorganisms (e.g., anthrax spores, bacteria, and fungi) and particles coated with toxic agents (e.g., ricin toxin and viruses). Biosensing is performed on a disposable chip containing 80,000 micro-colanders® filled with nanodetectors capable of emitting fluorescent light in the presence of specific biological particles. The biosensor is designed to provide an optimal combination of speed, sensitivity, specificity, and cost effectiveness.

The US Patent Office has recently issued a new patent extending coverage of BCR’s spore-based biosensor technology. This is the fourth US patent awarded to BCR for protecting the biosensor intellectual property. Other BCR products include diagnostic tests for enumerating tumor cells in blood and bone marrow (US Patents No. 5,472,846 and 5,792,617).

- 156 -

Page 159: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 157 -

Page 160: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BD Diagnostic Systems

1 Becton DriveFranklin Lakes, New Jersey, 07417-1885, USA Web site: http://www.bd.com/Tel: (800) 631-0174President: Philippe Jacon Overview. BD Diagnostics, a part of BD (Becton, Dickinson and Company) offers system solutions for collecting, identifying and transporting specimens; advanced instrumentation for quickly and accurately analyzing specimens; and services focused on customers' process flow, supply chain management, and training and education. It is composed of two operating units: Preanalytical Systems for blood collection devices, and Diagnostic Systems for microbiology products. In 2006, BD acquired GeneOhm Sciences for $230 million plus incentives. In 2006, BD acquired 93.5% of the outstanding shares of TriPath Imaging Inc, which it does not already own for $350 million. TriPath develops, manufactures, and markets innovative solutions to improve the clinical management of cancer, including detection, diagnosis, staging and treatment. In November 2009, BD acquired HandyLab Inc, which develops molecular diagnostic assays and automation platforms, for $275 million. BD will place its infectious disease-related tests on HandyLab’s platform. It will also leverage the firm’s instrumentation for further expansion into the molecular diagnostic arena.

Technologies & Services. TITANIUM Taq DNA polymerase is engineered to generate the highest yields from all targets, including rare ones. This polymerase is ideal for amplifying fragments from any DNA template, including bacterial and plasmid DNA, cDNA, and complex genomic DNA. BD provides Gentest specialty reagents for P450 drug metabolism and toxicology that enable in-vitro screening of drug candidates, for adverse drug-drug interactions and toxicity, including liver toxicity.

Atlas SMART Probe Amplification kit uses Clontech's PCR-based SMART technology to amplify RNA from as little as 1,000 cells or 100 µg of tissue.

BDProbeTec ET system's simple workflow and reagent design permit any lab to perform advanced high throughput clinical molecular diagnostics such as Mycobacterial Assays. The system uses Strand Displacement Amplification (SDA) BD's proprietary isothermal amplification technology based on restriction enzyme and a polymerase. The approved BDProbeTec ET system provides real-time amplification with simultaneous detection. ProbeTec™ ET Legionella DNA Amplified Assay designed for the detection of L. pneumophila. Another assay detects Mycoplasma pneumoniae in atypical pneumonia.

BACTEC (Blood Culture Procedural Trays) are used for safer blood culture. A one-stop testing service detects C. trachomatis and N. gonorrhoeae using BDProbeTec ET CT/GC Amplified DNA Assays and HIV-1 antibody using Calypte's HIV-1 antibody tests from a single urine sample. The tests are approved by the FDA and BD plans to launch the DNA assays in January 2010. It will market these to large hospitals and reference labs.

BD Directigen Flu A+B assay differentiates influenza A and B.

BD FACSCanto™ has been cleared in the US for IVD. The self-contained design facilitates automated cleaning, startup, and shutdown routines.

- 158 -

Page 161: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2007, the FDA granted 510(k) clearance to BD’s GeneOhm StaphSR assay, which identifies methicillin-resistant S. aureus from patients with positive blood cultures in 2 hours. BD has also filed for vancomycin-resistant Enterococci (VRE) and a toxin gene associated with Clostridium difficile.

BD has acquired HandyLab's Jaguar system, which is an integrated benchtop molecular diagnostic system to provide hands-off operation. The system incorporates clinical sample preparation, nucleic acid extraction, as well as microfluidic real-time PCR amplification and detection. The self workstation is designed to accommodate on-demand and batch workflows. It generates up to 24 real-time PCR results in under 2 h. BD plans to place its GeneOhm™ molecular assays for MRSA, Clostridium difficile, and Vancomycin-resistant enterococcus onto the Jaguar platform and market them on the new BD MAX™ system for molecular diagnostics based on real-time PCR.

Collaborations relevant to molecular diagnostics. In 2001, BD and QIAGEN formed a joint venture, PreAnalytiX GmbH to launch PAXgene Blood RNA System for integrating the key steps of sample collection, stabilization and purification. This was optimized in 2003 for use with Affymetrix GeneChip. BD has agreements with TriPath Imaging to facilitate detection of biomarkers for various cancer diagnostics and provides BD antibody library for Zyomyx Inc's high-density protein biochips.

In 2003, Genaissance (now part of Clinical Data Inc) acquired a license to BD's ProbeTec ET platform and SDA Technology for use in its CLIA compliant diagnostic test.

In 2006, BD signed an agreement with BioReference Labs to supply SCARA robotic automation platform of the BD Viper System for testing and diagnosis of sexually transmitted infections (C. trachomatis and N. gonorrhoeae).

In 2008, Accelr8 Technology reached an agreement in principle with BD for funding of an 18-month milestone project for Accelr8’s rapid bacterial diagnostic system. Under terms of the preliminary pact, BD will receive an option to license the resulting technology to develop and sell a clinical diagnostic system for infectious diseases.

On 21 June 2010, Exiqon licensed its LNA technology to BD for the development of infectious disease diagnostics. BD will market a number of defined LNA-enhanced products to run on its BD Max system for molecular diagnostics.

On 29 September 2010, Bruker Daltonics signed a co-development and co-marketing agreement with BD to combine its MALDI Biotyper microbial identification system with BD's Phoenix Microbiology System for microbial identification.

- 159 -

Page 162: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BD Diagnostics - GeneOhm6146 Nancy Ridge Drive, Suite 101San Diego, CA 92121, USAWeb site: http://www.bd.com/geneohm/Tel: (858) 334-6300 Fax: (858) 334-6301E-mail: [email protected]

Overview. BD GeneOhm™, formed by acquisition of GeneOhm Sciences Inc by Becton Dickenson in 2006, is at the forefront of rapid, nucleic acid-based system development for the detection and identification of infectious agents and genetic variations. Leveraging the advantages of rapid, molecular-based diagnostics, the BD GeneOhm™ line of products assists in transforming health-care by enabling earlier and more definitive clinical decisions that improve both the quality and the cost of patient care. Through these products, it is dedicated to offering laboratories and clinicians state-of-the-art, molecular based tests that can provide results in less than two hours.

Technology/Products. BD GeneOhm's IDI-MRSA™ and IDI-Strep B™ Assays are FDA cleared to run on the Cepheid SmartCycler®. The assays use BD GeneOhm’s proprietary and highly efficient sample preparation technology combined with real-time PCR to identify target nucleic acid sequences directly from specimens in one to two hours of total test procedure time. This will play a role in stopping the spread of methicillin-resistant Staphylococcus aureus. In December 2007, GeneOhm announced the European launch of the BD GeneOhm™ StaphSR assay for nasal and wound specimens as a CE marked product under the European In Vitro Diagnostics Directive.

BD GeneOhm has developed the ePlex™ Platform for multiplexed molecular diagnostics. It leverages the unique electrical properties of nucleic acids to identify human genetic mutations that confer increased risk for disease and to detect the RNA or DNA of infectious microorganisms. The platform provides a robust, cost-effective solution for rapidly detecting multiple analytes in a single molecular diagnostic assay. GeneOhm is expanding its menu for the ePlex Platform in the areas of inherited disease, infectious disease and oncology.

IDI-Lysis Kit addresses the need of labs to efficiently extract DNA from a variety of sample types in a timely manner. BD GeneOhm is developing future molecular-based products using both its real-time PCR and ePlex™ platforms, including:

Vancomycin resistance

MSSA/MRSA

Bacterial detection and identification

Fungal detection and identification

- 160 -

Page 163: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Beckman Coulter Inc

4300 N. Harbor BlvdFullerton, CA 9284-3100, USAWeb site: http://www.beckman-coulter.com/Tel: (714) 871-4848Fax: (714) 743-8283

Overview. Beckman Coulter Inc is a leading provider of instrument systems from integrated laboratory automation solutions to diagnostic rapid-test kits. The company’s ProteomeLab, GenomeLab, and CellLab products advance the diagnosis of disease. Acquisitions. In 2002, Beckman acquired certain assets of Orchid's including SNP genotyping instruments, bioinformatic software and related consumables business. In 2003, Beckman took over the technologies of Peoples Genetics Inc, which are applied to large pools of DNA to enable rapid identification and validation of low frequency mutations that contribute to common complex diseases. In 2006, Beckman acquired Lumigen Inc, a developer and manufacturer of novel detection chemistries, for $185 million. In 2007, Beckman acquired remaining 80% of NexGen Diagnostics, a spin-out of Lumigen along with IP to enable development of NA-based molecular diagnostics. Other acquisitions in 2009 include: (1) Cogenics division of Clinical Data for $17 million, which provides genomics services, such as DNA sequencing, gene expression, clinical and nonclinical genotyping, biomanufacturing support, nucleic acid extraction, and biobanking, complementing those of Beckman's Agencourt Biosciences business, which also offers genomics services and nucleic acid purification products; and (2) Olympus' lab-based diagnostics for $780 million. On 9 Feb 2011, Danaher Corporation acquired Beckman for $6.8 billion to include it in its Life Sciences & Diagnostics segment.

Products. GenomeLab employs Beckman's strengths in laboratory automation, CE, HPLC, centrifugation, flow cytometry and microarrays to provide solutions all along the genetic analysis pathway. GenomeLab™ GeXP Genetic Analysis System uses a patented, highly multiplexed PCR approach to quickly and efficiently look at the expression of multiplexed gene sets with greater sensitivity and speed. VidieraNsD Nucleic Sample Detection Platform is a fully automated platform for molecular diagnostic laboratories that separates DNA molecules by CE. VidieraNsP Nucleic Sample Preparation System is a fully automated platform that performs nucleic acid isolation, quantitation, normalization and reaction set up. These two platforms help laboratories in developing assays for hematopathology, cancer, cardiology and inherited disorders. These platforms will enable Beckman to launch the next generation molecular diagnostics.

Cancer tests. Access® BR Monitor, a test designed for the quantitative determination of cancer antigen 15-3 levels in human serum and plasma, aids in the management of breast cancer. Hemoccult® ICT, an immunochemical fecal occult blood, test used for detecting fecal occult blood in colorectal cancer screening.

Collaborations relevant to molecular diagnostics. In 2004. GTx Inc started a collaboration with Hybritech Inc (subsidiary of Beckman) to provide clinical samples from its phase IIb clinical trial program evaluating Acapodene for the treatment of high grade prostatic intraepithelial neoplasia that has the potential to progress to prostate cancer. Beckman signed an agreement with PointCare Technologies Inc to obtain exclusive global sales and marketing responsibilities for the new PointCARE™ system for for monitoring drug therapy in AIDS patients.

- 161 -

Page 164: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2006, Beckman acquired an IVD product license to all real time PCR patents from Roche Diagnostics by paying a one time license fee of $27.5 million and will also pay royalties on sales of all licensed products. In 2007, Beckman extended by 8 years an alliance with Bio-Rad Laboratories to develop and manufacture new blood-based immunoassays for HIV and HBV for its UniCel and Access systems. In 2008, Beckman launched a 4-year collaborative research program in molecular diagnostics with researchers at the National University of Ireland, Galway.

BG Medicine Inc

610 Lincoln Street North Waltham, MA 02451, USAWeb site: http://www.bg-medicine.com/Tel: (781) 890-1199Fax: (781) 895-1119President: Pieter Muntendam MD

Overview. BG Medicine (formerly Beyond Genomics Inc), is pioneering the commercial application of systems pharmacology, which is based on scientific advances in the systems biology field. Its advanced proprietary platform enables novel paths to new medicines through molecular fingerprinting of genes, proteins, and metabolites combined with powerful bioinformatics integration to produce Systems Response Profiles™. BG has received investments from institutional (Flagship Ventures and Gilde Investment Management) and strategic partners in excess of $26 million.

Technologies. Examples of the Company's technologies include:

Peptide Signature Scans to identify disease-specific proteins from complex mixtures

Global Internal Standard Technology for targeted quantitative proteomics

2D-MS, a new generation of multidimensional mass spectrometry

Proteometer to analyze proteins and protein-protein interactions

Metabolite fingerprint technologies to measure and track metabolic changes

mRNA expression profiles that link gene response to protein and metabolite activity and cell signaling mechanisms.

Systems biology informatics that includes advanced algorithms, data mining tools, and databases to integrate information from the gene, protein and metabolite level.

Biosystem Markers. Technology is used to discover novel diagnostic or prognostic markers for patient stratification by analysis of protein/metabolite/mRNA or protein/metabolite/genetic patterns in large numbers of clinical samples.

Collaborations relevant to molecular diagnostics. In 2002, BG signed an agreement with diaDexus to apply its Systems Pharmacology approach to diaDexus' cancer diagnostics and drug discovery. In the same year, BG started collaboration with GlaxoSmithKline to use its sytems biology approach for elucidating disease pathways and for identifying protein and metabolite markers of disease states and drug response.

- 162 -

Page 165: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2003, BG started collaboration with Novartis AG to use its Systems Pharmacology approach to analyze samples of patients with cardiovascular disease. It will identify and characterize differences between normal and abnormal samples, leading to discovery of molecular markers to predict, diagnose and monitor the progression of disease.

In 2004, BG entered into collaboration with AstraZeneca to apply its Systems Pharmacology platform and BioSystemics tools for integration and analysis of transcript, protein and metabolite data to discover biomarkers of drug-induced toxicity.

In 2005, BG signed an agreement with Boehringer Ingelheim to apply its Systems Pharmacology platform to elucidate tissue drug effects and discover circulating biomarkers for clinical application. In 2006, Philips and BG formed an alliance to develop next-generation molecular healthcare products for use in areas including molecular imaging and POC diagnostics incorporating BG’s technologies that identify disease biomarkers. In January 2007, BG started collaboration with Life Technologies for research in molecular medicine.

- 163 -

Page 166: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Bioarray Solutions LLC

35 Technology Drive,Warren, NJ 07059, USAWeb site: http://www.bioarrays.com/Tel: 908-226-8200E-mail: [email protected] President & CEO: Dr. Michael Seul ([email protected])

Overview. BioArray Solutions, is an early-stage company, which has developed a proprietary, uniquely flexible and versatile optically programmable array technology as a platform for hosting thousands of simultaneous biochemical tests (assays) on the surface of a semiconductor chip. The company's novel array manufacturing process enables the rapid and flexible assembly of arrays composed of any desired set of beads displaying oligonucleotides, cDNA fragments or proteins.

Technology. BioArray's core technology, Light-controlled Electrokinetic Assembly of P articles near Surfaces (LEAPS), enables computer controlled assembly of beads and cells into planar arrays within a miniaturized, enclosed fluid compartment on the surface of a semiconductor wafer. Combining three functional components, LEAPS provides a set of fundamental operations for the interactive control of fluid flow and bead transport such as bead array assembly in designated areas of the substrate, "dragging" and "dropping" of arrays, and sorting of mixed bead and cell populations. Fluorescence or other optical signals from individual beads within the array can be collected by a parallel imaging detector such as a CCD camera. Extensive image analysis is applied to extract quantitative assay data.

Optically Programmable Bead Arrays. BioArray has developed proprietary technology to array and probe thousands of beads simultaneously. This assay format is applicable to any homogeneous assay designed to monitor the binding of one molecule (ligand) to another (receptor) including antigen-antibody binding and nucleic acid hybridization. Beaded polymers (beads) are used in hundreds of different biological assays ranging from in vitro immunodiagnostics to high-throughput drug screening. Many of these assays will be ported to the company's highly parallel on-chip format.

Array Cytometry. Cells (bacterial, yeast, human) also have been arrayed, enabling a highly parallel format facilitating the analysis of large numbers of cells by quantitative, multi-color image analysis to determine cell surface markers. In addition, array cytometry enables sorting of heterogeneous cell populations into subpopulations.

Applications. Applications include chip-based DNA and protein analysis as well as array cytometry, a novel format of quantitative, multi-parameter cellular analysis. The Company’s technology ideal for the profiling of genes and proteins in large groups of patients to monitor molecular markers and evaluate potential therapeutic agents. Examples includeHLA immunogenetic typing, protein biomarker profiling, cystic fibrosis and Ashkenazi Genetic Disease Carrier Panel.

- 164 -

Page 167: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Biocartis SA

Scientific Parc EPFL, PSE-CCH-1015 Lausanne, SwitzerlandWeb site: http://www.biocartis.com/Tel: +41 21 693 90 51Fax: +41 21 560 42 9CEO: Rudi Pauwels PhD ([email protected])General Manager of Biocartis BV: Chris van Eekelen PhD

Overview. Biocartis is a molecular diagnostics company developing a new, broadly applicable, bioanalytical platform that is particularly suited for the emerging needs of personalized medicine, in particular the need to detect and quantify a growing number of biomarkers. Biocartis aims to address the global demand for a more cost-effective healthcare. The primary fields of applications targeted by the company and its partners are the analysis of bio-molecules associated with risks factors, early detection, staging, treatment selection, and monitoring of a disease. On 10 February 2010, Biocartis acquired Philips' technology platform for rapid fully-automated DNA/RNA molecular diagnostic testing. The platform has been designed for applications in a wide range of patient sample testing, including oncology and infectious diseases. Biocartis will develop and commercialize the platform, together with a menu of tests, through strategic partnerships and will finalize validation of the platform at its newly-established and wholly-owned Dutch subsidiary Biocartis BV (Eindhoven, the Netherlands), where it will benefit from close access to the multi-disciplinary R&D facilities and services of Philips Corporate Technologies. On 8 April 2010, Biocartis successfully closed a Series B equity financing round and raised €30 million (~$41.3 million) from its current shareholder base of leading life science investors and 2 new strategic investors: Debiopharm and Johnson & Johnson Development Corporation, each obtaining a minority stake in Biocartis.

Technology/applications/products. Starting from a single, low-volume clinical sample, the Biocartis platform has the potential to perform a simultaneous determination (i.e. multiplexed analysis) of the presence and quantity of a large variety of different biological molecules, such as DNA, RNA, proteins, and small molecules. Biocartis is developing and integrating various proprietary technologies that include:

Digitally encoded and bio-functionalized microcarriers that selectively capture specific target biomolecules in the sample. Biocartis has developed a highly reproducible, industrial-scale manufacturing process for encoded microcarriers whereby more than a million different codes can be generated.

Single use, disposable microfluidic cartridges that serve as fully integrated units for sample input, processing, and analysis. The cartridge features were designed for dynamic incubation, real-time analysis, and accelerated assay times.

A compact, electronic instrument that operates the single-use cartridges. The functions include fluid actuation, temperature control, and an optical read-out system for microcarrier decoding and target detection.

A highly-specific nucleic acid detection and isothermal amplification technology.

Biocartis' open and versatile platform is designed to pave the way to develop and commercialize a wide range of low- to highly-multiplexed test applications with superior sensitivity and specificity, at lower cost per

- 165 -

Page 168: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

targeted bio-analyte and with faster turnaround times. The Biocartis solution will therefore significantly expand the range of diagnostic applications in both research/clinical laboratory and near patient/point-of-care (POC) settings.

Collaborations. On 4 Nov 2010, BioMérieux took a €9 million ($12.7 million) stake in Biocartis to co-develop assays on Biocartis' molecular diagnostics platform, which was acquired from Philips in February 2010. The firms plan to co-distribute the assays in 2012.

- 166 -

Page 169: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BioCurex

7080 River Road, Suite 215Richmond, BC, V6X 1X5, CanadaWeb site: http://www.biocurex.com/Tel: (604) 207 9150Fax: (604) 207 9165Email: [email protected] CEO and President: Ricardo Moro-Vidal MD

Overview. BioCurex Inc is a biotechnology company that is developing products based on patented/proprietary technology for cancer diagnosis and therapy. The core technology identifies a cancer biomarker known as RECAF™, a receptor for alpha-fetoprotein (AFP). RECAF found only on malignant cells in a variety of cancers, but absent in normal and most benign cells. BioCurex is also working on further methods for cancer detection and cancer treatment. RECAF applications for diagnosis of cancer in companion animals is carried out by its subsidiary, OncoPet Diagnostics Inc (http://oncopetdiagnostics.com/).

Technology. RECAF™ technology is able to effectively locate biomarkers that are present on cancer cells, but not on healthy cells. Unlike other cancer biomarkers, such as CEA and PSA, which only detect the presence of a specific cancer type, RECAF is found on most types of cancer and is applicable to a much larger patient population. It is useful for follow-up of treated patients because their type of cancer is already known; what is needed is a simple and inexpensive way to detect if it has recurred. Furthermore, RECAF ™ makes it possible to specifically target and treat the cancer with antibodies and drugs to stop cancer growth without damaging healthy cells. This is possible for most types of cancers studied so far including those involving breast, lung, stomach, prostate, and leukemia.

Products/applications. BioCurex’s Histo-RECAF™ is a special cancer detection kit for tissues that stains cancer cells brown, clearly distinguishing them from normal healthy cells. Pathologists are able to easily identify cancer cells under a conventional microscope.

Using RECAF technology, leukemia cells can be “lit up” so that only infected blood cancer cells are isolated for targeted treatment. Also the physicians can detect any recurrence of the blood cancer at a very early stage using equipment that is available today. Cancer cells shed RECAF™ into the blood stream where they can be detected by a blood test. Because of its powerful detection capability and simple procedure, serum RECAF™, if approved, could become a blood test widely available in any clinical laboratory so that physicians can use it as frequently as required for both the initial screening of patients with symptoms, and monitoring of those patients who have been previously treated for cancer.

Collaborations. In 2005, BioCurex signed a licensing agreement with Abbott Laboratories for RECAF cancer technology. Abbott will handle FDA approvals, manufacturing, marketing and distributing for clinical laboratory testing.

In 2008, BioCurex signed a licensing agreement for’s RECAF material and technology with Inverness Medical Innovations Inc, which will have semi-exclusive global rights to commercialize products using the RECAF blood tests for cancer detection. BioCurex will be paid up-front fees, milestones plus royalties on product sales.

- 167 -

Page 170: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 168 -

Page 171: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Biodesix

P.O. Box 7748721370 Bob Adams DrSteamboat Springs, CO 80477, USAWeb site: http://www.biodesix.com/Tel: (970) 870-9041Fax: (970) 870-9045Email: [email protected]: Frank Ronchetti, Chief Financial Office

Overview. Biodesix is pioneering personalized medicine by focusing on the unique characteristics of the patient using mass spectrometry (MS)-based molecular diagnostics. By rapidly and cost-effectively analyzing the concurrent presence of many proteins in patient samples, its products will help physicians to provide treatment tailored specifically to a patient. Biodesix has focused on applying signal processing, statistical analysis, and an in-depth understanding of the physics of MS to build a bio-analysis platform that can be used to develop diagnostic classifiers for use by researchers, drug developers and clinicians. These classifiers can reproducibly, reliably, and with clinically significant accuracy, predict and evaluate normal biologic or pathogenic states or the probable pharmacological responses to a therapeutic intervention. In February 2009, Biodesix purchased Sapio Sciences Exemplar laboratory information management system that could track samples, support biobanking, and integrate with its MS instruments.

Technology/products. The MS platform discovers and evaluates diagnostic signatures.

VeriStrat™. Biodesix is developing diagnostic products for the noninvasive early detection of disease, for stratifying patient populations to improve therapeutic treatment (distinguishing between potential patients who will benefit from a particular treatment from those who will not), and to provide technically simple means for continuous disease monitoring. VeriStrat™, is a simple blood test, which enables separation of patients into groups with statistically different prognoses when receiving second-line treatment using inhibitors to the EGFR such as gefitinib (Iressa, AstraZeneca) and erlotinib (Tarceva, OSI/Genentech/Roche). It is the first MS diagnostic that uses multiple biomarkers and which has been shown to be clinically reproducible.

ProTS Platform. Biodesix has developed ProTS Platform- for the analysis and creation of classifiers using specific features from MS spectra. Its unique benefits compared to other diagnostic discovery and development techniques lie in the speed with which viable classifiers can be discovered and clinically validated. Further, it works with a variety of clinical specimens, requires little (or no) sample pretreatment, and is consistently reproducible (with Biodesix's tools). Finally, the cost and time to perform the tests in a clinical setting is relatively lower than other diagnostics. As a result, from discovery through to the clinical use of the test, the ProTS Platform and diagnostic products developed with it have very attractive cost and time advantages over competing techniques in the area of molecular diagnostics, and provides the first validated platform translating bench science to bedside use.

R & D. Biodesix has numerous projects underway and its areas of focus are in oncology and degenerative diseases. It continues its research into cancer biomarkers, early diagnostic tools for verifying lung cancer in high-risk populations, diagnosis of cancer in males with elevated PSA, alternatives to existing techniques for identifying HER2 positive breast cancer patients,

- 169 -

Page 172: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

stratifying aggressive cancers from more benign forms, stratifying patients for reactions to targeted therapies in lung and other cancers, and similar efforts. Although most of the work has been on serum or tissue samples, Biodesix has experience analyzing other types of biological specimens: urine, CSF, tissue, etc.

Collaborations. Biodesix multiple collaborations with clinical and research partners: University of Colorado Health Sciences Center; Vanderbilt University Medical Center; M. D. Anderson Cancer center; Hospital San Raffaele, Italy; University Clinics, Innsbruck, Austria; University Clinic of Nijmegen, Netherlands; and the NCI.

- 170 -

Page 173: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BioGenex Laboratories Inc

4600 Norris Canyon Road, San Ramon, CA 94583, USAWeb site: http://www.biogenex.com/ Tel: (925) 275 0550 E-mail: [email protected] Chairman: Krishan Kalra, PhD

Overview. A privately held company, BioGenex has rich history of innovation in the field of Immunohistochemistry and ISH. For over two decades BioGenex has been serving the worldwide clinical diagnostics market. In 2002, BioGenex acquired InnoGenex, a well known supplier of IHC and ISH reagents. BioGenex offers a broad range of reagents, detection kits, antibodies, probes, special stains, tissue microarrays, automated staining and imaging systems to streamline and standardize cellular and molecular analysis. Biogenex customers include reference labs, hospitals, cancer treatment centers, academic medical institutions, and, pharmaceutical and biotechnology companies. The BioGenex R&D team consists of over 25 PhDs, MDs and engineers with strong multidisciplinary backgrounds.

Technologies/products. Selected products are described here briefly; details of all are provided on the BioGenix web site.

BioGenex offers fluorescein-labeled oligonucleotide probes for the detection of RNA or DNA by ISH. These probes, available as Analyte Specific Reagents (ASRs), allow the localization of specific nucleic acid sequences within cells from formalin-fixed, paraffin-embedded tissue sections. When used with the BioGenex Super Sensitive detection systems and the BioGenex proprietary Antigen Retrieval solutions, our probes (available in both automated and manual formats) offer reliable, highly sensitive and easy-to-perform DNA and RNA assays.

BioGenex provides a wide selection of Tissue Microarrays from normal and diseased cases for high-throughput screening of in situ gene expression analysis in target validation studies. Tissue Microarrays are available from human, mouse and rat tissues.

BioGenex offers two types of ISH Detection Systems: The Super Sensitive™ Link-Label ISH Detection System and the Super Sensitive™ Polymer-HRP ISH Detection System. The BioGenex ISH Detection Systems enable the detection of biotinylated, digoxigenated or fluoresceinated probes, which bind to target sequences in routine paraffin-embedded tissue sections. BioGenex offers a variety of nucleic acid probes. These ready-to-use ISH detection systems provide rapid and convenient gene function analysis as well as drug target validation.

In 2005, the FDA approved BioGenex InSite™ Her-2/neu Kit - total solution for breast cancer therapy selection.

In 2005, BioGenix launched Xmatrx™ Automated Staining System for the complete automation of slide-based cell and tissue testing assays for molecular pathology applications, such as FISH, ISH and IHC.

Collaborations. In 2004, Abbott and BioGenex Laboratories signed an agreement to distribute and market a new system that will fully automate molecular diagnostic tests that employ Abbott's proprietary FISH technology. The system is designed to automate all the assay steps required to perform Abbott's FISH-based tests, including the application, removal and re-

- 171 -

Page 174: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

application of the coverslip resulting in a completely finished slide that is ready to go directly on the microscope for review. It is expected to be introduced to the market in the near future, pending regulatory clearance.

- 172 -

Page 175: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BioHelix Corporation

32 Tozer RoadBeverly, MA 01915-5599, USAWeb site: http://www.biohelix.com/Tel: 978-927-5056Fax: 978-927-3382Email: [email protected] Contact: Tamara Ranali PhD, Manager Business Development

Overview. BioHelix, founded in 2004, as a spin-off from New England Biolabs Inc, BioHelix develops and commercializes simple, "instrument-free", nucleic acid amplification tests for the clinical market. By combining its proprietary isothermal nucleic acid amplification technology with an instrument-free DNA detection device, the company's IsoAmp® assays enable more clinical laboratories to perform molecular diagnostic tests with maximum flexibility and minimum capital expenditure. Through its strong R&D capability and partnerships with IVD industry leaders, the company aims to provide simple and cost-effective solutions for enabling molecular diagnostics to be practiced in middle-tier hospital labs, at the point-of-care, and in the future, for personalized medicine.

Technology/applications. BioHelix is developing a rich portfolio of proprietary technologies for nucleic acid analysis and molecular diagnostics through internal research and in-licensing of novel technology. Currently, it has two unique isothermal amplification platforms: the target based-Helicase Dependant Amplification platform (HDA); and the primase-based Whole Genome Amplification platform (pWGA). In addition, it has also developed a series of amplification enhancer reagents targeted to improve all types of nucleic acid amplification reactions. BioHelix's proprietary nucleic acid technology platforms have several advantages; including high sensitivity & specificity, ease-of-use, and low-cost. The company initially aims to commercialize assays that target the infectious disease market. With the discovery of novel biomarkers fueling the growth of the personalized medicine field, BioHelix's technology platforms are well positioned to capture these emerging markets with our simple, rapid screening tests capable of being performed at the point-of-care (POC) and; potentially even in the home.

Products. Diagnostic products are:

IsoAmp® On Demand Assays

BESt™ Cassette - BioHelix Express Strip Amplicon Detection Cassettes

General Purpose Reagents

Isothermal nucleic acid amplification products are:

Rapisome™pWGA kit - whole genome amplification

IsoAmpII tHDA kit - target sequence amplification

IsoAmp tHDA kit - available at New England Biolabs, Inc.

Other products are:

Primer Navigator™DNA amplification enhancers

Helicases: thermostable DNA helicase and mesophilic DNA helicase

- 173 -

Page 176: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. On 6 October 2009, Quidel agreed to fund and jointly develop with BioHelix assays to rapidly detect infectious pathogens in a handheld format using BioHelix's isothermal amplification technology. Quidel will market the tests.

- 174 -

Page 177: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

bioMerieux SA

69280 Marcy l'étoile, FranceWeb site: http://www.biomerieux.com/Tel: +33 (4) 78 87 20 00Fax: +33 (4) 78 87 20 90CEO: Stephane Bancel

Overview. As a major IVD player, bioMérieux develops, manufactures and markets reagents and automated systems designed for medical analysis and product quality control in the agri-food, cosmetics and pharmaceutical industries. bioMérieux ranks as the eighth largest molecular diagnostics company worldwide. Over 82 % of its activity takes place on an international level. In 2001, Organon Teknika’s diagnostic products were acquired by bioMérieux-Pierre Fabre Group to which biomerieux belonged at that time. In 2002, biomerieux parted ways with Pierre-Fabre and the Mérieux family, Wendel Investissement and the Dassault group - bioMérieux's traditional three shareholders - have rejoined the new holding company New bioMérieux Alliance which also controls Transgene SA. In 2006, Biomerieux acquired Bacterial BarCodes that has developed and markets Diversilab®, a patented automated microbial genotyping system to track hospital-acquired infections and for environmental control for product safety.

In 2006, bioMérieux was awarded up to €54.5 million ($70 million) over the next ten years by France’s Agence de l’Innovation Industrielle to help fund the “Advanced Diagnostics and New therapeutic Approaches” (ADNA) program, led by Mérieux Alliance. This will contribute to the development of new diagnostic products, especially for infectious diseases and cancer. The ADNA program aims to develop personalized medical solutions for cancer, infectious diseases and rare genetic diseases. In September 2008, BioMerieux acquired privately held molecular diagnostics firm AviaraDx (renamed bioTheranostics) for $60 million. bioMérieux is present in over 150 countries, with more than 100 distributors and 35 subsidiaries. The company has more than 5,500 employees.

Products. The following products of bioMerieux are relevant to molecular diagnostics:

Identifying pathogenic agents and studying bacterial resistance to antibiotics: ATB, mini API, VITEK. ACCUPROBE tests enable the identification of the most common mycobacteria, bacteria and fungi from a single colony. They combine the specificity of DNA probes with the high sensitivity of Hybridization Protection Assay (HPA) technology

NucliSens technology (http://www.nuclisens.com/) based on NASBA was acquired by takeover of Organon Teknika (see Chapter 6). In 2002, bioMerieux launched its new HIV-1 viral load test, NucliSens EasyQ HIV-1, for therapeutic monitoring of HIV, which identifies the level of HIV-1 viral RNA in plasma and can be used to monitor the effects of anti-retroviral therapy by measuring changes in HIV-1 RNA levels.

FoodExpert-ID. In 2004, bioMérieux launched, the first high-density DNA chip for food and animal feed testing. The FoodExpert-ID test, powered by Affymetrix® GeneChip® technology, will make it possible to verify the animal species composition and the authenticity of raw or processed food and animal feed.

In 2005, bioMérieux launched CE-approved Hepanostika HBsAg Ultra assay in Europe and the Middle-East for the detection of HBV surface antigen in

- 175 -

Page 178: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

human plasma or serum. HBsAg is the most important marker for the diagnosis of acute or chronic hepatitis HBV infection.

In 2006, bioMérieux confirmed its commitment to the fight against emerging diseases and launched its avian flu detection test. Developed to respond to the needs of reference laboratories involved in the identification of the disease and in the fight against avian flu, the test, called NucliSens EasyQ® Influenza H5 and N1 is a kit of reagents exclusively for research purposes. It can detect the presence of both the H5 and N1 genetic targets in 90 minutes and will be used with the bioMérieux's NucliSens® range of molecular biology systems.

In 2006, bioMérieux launched TEMPO® EB, the first automated test for Enterobacteriaceae enumeration in food products in 24 hours including confirmation.

Collaborations. In 2003, bioMerieux started to develop tests for infectious diseases and breast cancer using Affymetrix GeneChip probe arrays. In 2005, the alliance was extended to cover other cancers.

In 2004, a licensing agreement provided Gen-Probe access to bioMerieux's Nuclisens EASYQ platform for tests for mutations that predispose to blood clotting disorders. bioMérieux gained access to Novel Diagnostics' PlasmAcute antibody detection technology for rapid diagnosis of tuberculosis.

In 2005, DiagnoSwiss granted bioMérieux license to the development, manufacturing and marketing of electrochemical microchips for in vitro diagnostics. bioMérieux and ExonHit extended their collaboration for six years for the discovery and development of new blood diagnostics for early detection of cancer.

In 2006, bioMerieux exercised an option to develop diagnostic products for certain undisclosed disease targets using Gen-Probe's patented ribosomal RNA technologies, pursuant to terms of a 2004 agreement.

In 2006, EiRx Therapeutics and bioMérieux agreed to validate the diagnostic and therapeutic potential of their candidate tumor biomarkers. bioMérieux will see if proteins in EiRx's biomarker panel can become components in new diagnostics for colorectal cancer. EiRx will use its siRNA-driven platform to test bioMérieux's colorectal biomarker panel as targets for new drug therapies. During the evaluation phase of the collaboration, which will last up to 18 months, the companies have an exclusive option to license and "exploit" IP relevant to biomarker. bioMérieux will develop companion diagnostics for any drug candidates developed by EiRx against targets proposed by it.

In 2006, four strategically aligned partners, bioMérieux, Généthon, GenoSafe® and Transgene, teamed up for ADNA program to develop molecular diagnostics and personalized medicine. An initial partnership between bioMérieux and Ipsen in oncology research has given the project an additional boost.

In 2007, Cepheid and bioMerieux started a strategic relationship to use the best of their respective technologies and commercial strengths towards the development and commercialization of an innovative line of sepsis test products on the GeneXpert platform. Both companies will jointly develop the products, Cepheid will be in charge of manufacturing, and bioMerieux will distribute the sepsis assays on an exclusive worldwide basis. The product menu comprises both bacterial and fungal identification assays as well a series of genetic markers for antibiotic resistance. Cepheid will continue to complete development, manufacture and market the MRSA products.

- 176 -

Page 179: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2007. BioMérieux and NuGen Technologies signed a cross-license and supply agreement. BioMérieux gains rights to NuGen’s WT-Ovation RNA amplification system to develop microarray-based cancer assays, and grants NuGen access to its linear amplification technology for the research market. bioMérieux also signed an exclusive distribution agreement for the US for AdvanDx's PNA FISH™ rapid diagnostic tests to provide faster identification of bloodstream pathogens.

In 2008, bioMérieux signed a license and development agreement with ProteoSys, for Annexin 3, which will be used to develop a urine-based, confirmatory diagnostic test for prostate cancer. The new test should be developed on the VIDAS® platform.

In November 2009, GlaxoSmithKline and BioMerieux started collaboration to develop and globally launch a predictive test, based on emerging biomarkers, to help clinicians select the most appropriate treatment for different segments of breast cancer patients.

On 4 Nov 2010, BioMérieux took a €9 million ($12.7 million) stake in Biocartis to co-develop assays on Biocartis' molecular diagnostics platform, which was acquired from Philips in February 2010. The firms plan to co-distribute the assays in 2012.

- 177 -

Page 180: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

BioNanomatrix LLC

3624 Market St, 5EPhiladelphia, PA 19104, USAWeb site: http://www.bionanomatrix.com/Tel: (609) 818-0054Founder & CSO: Dr. Han Cao ([email protected])President & CEO: Dr. Michael Boyce-JacinoContact: Gary Zweiger, PhD, VP Business Development

Overview. BioNanomatrix is an emerging company applying its breakthrough nanoscale whole genome imaging and analytic platform to cancer diagnostics, clinical genetics and other applications. It designs and manufactures nanochips, nanodevices and nanosystems for biomedical applications, using its patented NANOANALYZER™ technology platform. This platform provides fast, comprehensive, and low-cost analysis of genomic, epigenomic and proteomic information with sensitivity at the single cell/single molecule level. BioNanomatrix' patented technologies are exclusively licensed from Princeton University. Founded in 2003, the company is headquartered in Philadelphia, PA, with its research and design laboratories co-located at Princeton University. In March 2008, BioNanomatrix secured $5.1 million in series A venture financing. The funding round included an investment from Battelle’s affiliate Innovation Valley Partners, and from KT Venture Group. Ben Franklin Technology Partners and 21 Ventures also participated in the round through debt conversion agreements.

Technology. BioNanomatrix is developing pioneering integrated systems that enable nanoscale single molecule identification and analysis of the entire genome, delivering single molecule sensitivity with haplotyping capability in a highly parallel format. The company's patented analytic platform based on this breakthrough technology provides ultrahigh resolution analyses of DNA, RNA and other proteins more rapidly, comprehensively and cost effectively than currently available approaches. Since 2006, BioNanomatrix has received research grants from the NCI and SBIR grant from National Human Genome Research Institute of the NIH for the development of nanotechnologies critical for enabling essential breakthroughs that may have tremendous potential for affecting biomedicine. In 2007, BioNanomatrix received a $200,000 grant from the NCI to develop a nanofluidics technology for cell fractionation in partnership with Princeton University. A SBIR grant of $2.1 million awarded in March 2009 will support further development of BioNanomatrix's single-molecule nanoscale whole-genome analyzer. It plans to use $830,000 in new supplemental grant funding from the National Human Genome Research Institute to prepare for beta-testing of its NanoAnalyzer (Single-Molecule DNA Analyzer) in 2Q 2010.

Applications/products. Applications of this technology include:

Ultra-fast sizing/typing of mega-base genomic DNA

Genomic mapping, haplotyping and proteome sorting

Ultra-sensitive detections of biopathogens

High resolution cancer diagnostics

The company is developing two near-term products under the NanoAnalyzer trademark, focusing on cancer diagnostics and genomic streaming analysis; two to three long term products targeting the ultrafast genomic analysis

- 178 -

Page 181: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

nanodevices and systems. There are some collaborative effort in proteomics and biopathogen detection area. The company is interested in developing applications of its technology in cytogenetics.

Collaborations. BioNanomatrix also collaborates with other biotechnology and pharmaceutical companies who do not have nanochip design and fabrication know-how or capability. They can improve their current technology and assay performance by applying micro/nanochip techniques through subcontracting or co-development deals.

In 2007, BioNanomatrix signed a multi-year Cooperative Research and Development Agreement (CRADA) with the Radiation Biology Branch at the NCI Institutes of Health to develop methods to detect, identify and quantify DNA damage caused by ionizing radiation using whole genome analyzer, the NANOANALYZER. The aim is to develop tools expected to dramatically improve monitoring and assessment of cancer therapies and therapeutic regimens, by allowing physicians to quantify easily and accurately the extent of DNA damage during treatment.

In 2007, BioNanomatrix and Complete Genomics formed a joint venture that will share an $8.8 million grant from the US National Institute of Standards and Technology (NIST) to develop technology that will be able to sequence a human genome in eight hours for less than $100. The current aim has been to reduce this cost significantly in the coming years, down to as little as $1000 per individual, but this is the first effort to target a price point that would make it possible to sequence everyone's genome. The five-year matching grant was awarded under NIST's Advanced Technology Program. The companies estimate the total project cost to be around $17.8 million, and they plan to provide the additional funds to complete the project. The proposed technology platform will use Complete Genomics’ sequencing chemistry and BioNanomatrix’ nanofluidic technology. The companies plan to adapt DNA sequencing chemistry with linearized nanoscale DNA imaging to create a system that can read DNA sequences longer than 100,000 bases quickly and with accuracy “exceeding the current industry standard.

- 179 -

Page 182: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Bio-ID Diagnostic Inc

Bio-ID Diagnostic Inc 531, Blackthorn Crescent Saskatoon, SK, Canada S7V1A8Web site: http://www.bio-id-diagnostic.com/ Tel: (306) 975-9161Fax: (306) 938-0751E-mail: [email protected]

Overview. Bio-ID Diagnostic Inc is a private biotechnology company incorporated in 1997. Bio-ID's core technologies are cost-effective, DNA and RNA based platform technologies that have widespread applications in clinical medicine, veterinary medicine, the pharmaceutical industry, as well as in the environmental and food industries. The company has two subsidiaries: MultiGEN Diagnostics Inc (www.multigen-diagnostics.com), a clinical testing laboratory and PharmacoGENIX (www.pharmacogenix.com), a CRO serving pharmaceutical industry.

Technologies/products. Bio-ID has developed three nucleic acid-based platform technologies that meet the expectations of both the routine diagnostic and drug development markets.

Multiplex Sequencing - MultiGEN. This is a novel modification of the conventional 'Gold Standard' DNA sequencing method. This technology enables simultaneous sequencing of short stretches of DNA from more than one genome (such as multiple human pathogens), multiple segments from same genome (such as human genetic markers and SNPs), or a combination of both, using novel primer modifications. Applications of MultiGEN include the testing of any sample carrying nucleic acid material from a wide range of sources including: human clinical samples (e.g. screening for high risk subtypes of the human papilloma virus, screening blood donations for infectious organisms, identifying human genetic variations and SNPs, and selecting participants for clinical trials), environmental samples, the food industry, and agribusiness.

Point-Of-Care (POC) Target Amplification - POCgen. This is a DNA based technology that is designed for use at POC in locations and consists of a small portable and robust instrument for use with disposable plastic cassettes that contain pre-dispensed chemicals. Each cassette will test for a pre-set menu of up to 8 organisms that reflect likely pathogens in typical unknown clinical or industrial samples. The instrument will be able to process up to 8 cassettes simultaneously. Total DNA is prepared from the sample, and a portion of this DNA is injected into the cassette, which is then placed in the equipment. Results are obtained within one hour as to the presence or absence of each of the pathogens in the test menu for that cassette. Detection of ‘Super Bugs’ on admission the hospital.

Intra-cellular Gene Expression Profile (IGEP). Determination of the intracellular expression of genes is becoming very important in areas such as the determination of drug resistance in cancer chemotherapy, tissue differentiation in stem cell development, the efficacy of xenotransplants, and in toxicity and efficacy testing in drug development. Current technologies are mostly based on the averaging of gene expression in a particular tissue. Bio-ID technology lends itself to the determination of the expression of multiple genes in individual cells without disrupting the cells or preprocessing the sample.

- 180 -

Page 183: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

West Nile Virus. Bio-ID has developed a test based on MultiGE technology that can be used to diagnose the condition in symptomatic patients and animals, and also to detect the virus in blood donations from otherwise well individuals.

SARS. Bio-ID has developed a test for SARS based on its MultiGEN technology. It identifies the unique DNA sequence that is specific for the Coronavirus causing SARS and offers the capability of reliably processing large numbers of samples, and will thereby allow the creation of a globally effective early warning system for the disease.

- 181 -

Page 184: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Bio-Rad Laboratories

Clinical Diagnostics Group4000 Alfred Nobel DriveHercules, CA 94547, USAWeb site: http://www.bio-rad.com/Tel: (510) 724-7000Fax: (510) 741-5817 President: David Schwartz

Overview. Bio-Rad is manufacturer and distributor of life science research products and clinical diagnostics. It serves more than 70,000 research and industry customers worldwide through a network of more than 30 wholly owned subsidiaries. It is a major supplier of tests for the surveillance of food safety such as assays and instrumentation for listeria, salmonella, E. Coli etc. In 2002, Bio-Rad acquired the microarray and robotics technologies business of Virtek Biotech Canada and integrated them in its molecular diagnostics. In 2004, Bio-Rad purchased MJ GeneWorks (thermal cycling instrumentation) for $32 million. In 2005, Bio-Rad purchased Vermillion’s proteomics instrument business including SELDI ProteinChip arrays for $20 million and made a $3 million equity investment. In 2006, Bio-Rad purchased the medical diagnostics business of Provalis plc for $3 million. Provalis develops, manufactures, and sells POC diagnostic products for chronic disease management of diabetes and osteoporosis. In 2006, Bio-Rad acquired Blackhawk BioSystems Inc, a manufacturer of quality control products for use in laboratories that perform infectious disease testing procedures.

Technology/products relevant to molecular diagnostics: InstaGene family of products enables fast, reliable and affordable preparation of genomic DNA samples.

Linked Linear Amplification (LLA). LLA is a robust target amplification method that is comparable to PCR in yield with the advantage that LLA is more resistant to false results caused by carryover amplicon contamination (see Chapter 2).

Platelia test. This is a sandwich immunoassay on CNS tissue that was developed in collaboration with CEA (French Atomic Energy Commission) and is approved in Europe for detecting BSE (see Chapter 8). Japan's Ministry of Health, Labor and Welfare uses this test on a large scale program to detect the disease in cows.

TeSeE® test kit. Bio-Rad's second generation ELISA-based test kit used for the detection of Chronic Wasting Disease in deer and elk is approved by the USDA. It runs on an automated robotics platform to speed up sample preparation and provide faster results.

BioPlex 2200 system, an immunoassay, can analyze multiple disease states from single samples. Multispot HIV-1/HIV-2 Rapid Test will be used for diagnosis of AIDS.

SELDI, acquired from Vermillion in 2006, is undergoing further improvement to make the electronics more stable, the software more user-friendly, and the chip more robust.

iQ-Check Listeria spp. This real-time PCR test kit received Health Canada approval for detection of Listeria spp in environmental samples on 2 March 2011.

- 182 -

Page 185: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. Bio-Rad signed the following agreements in 2005: (1) with Sysmex America Inc to jointly market their complementary products, the Bio-Rad VARIANT II TURBO HST Testing System and the Sysmex HST-N™; (2) with Caliper Life Sciences to study the feasibility of developing a new microfluidics system platform.

In 2007. Innogenetics got a license from Bio-Rad in the field of HIV-2. Bio-Rad got an option to a nonexclusive license of Innogenetics patents in HCV genotyping. Quest agreed to use Bio-Rad BioPlex 2200 system plus HIV-1/HIV-2 PLUS O EIA assay.

In December 2010, Idaho Technologies and Bio-Rad signed a licensing agreement covering SYBR Green in PCR reactions and high-resolution melting.

BioServe

9000 Virginia Manor Road, Suite 207Beltsville, MD 20705, USAWeb site: http://www.bioserve.com/Tel: 301-470-3362 Fax: 301-470-2333Email: [email protected]: Kevin Krenitsky MD Overview. BioServe provides a comprehensive 'biomaterial to validated data' genomics services platform, helping researchers gain the preclinical data for breakthroughs in drug discovery, molecular diagnostics and pharmacogenomics. Utilizing BioServe's genomics services platform, researchers can identify genetic markers, validate drug targets that cause disease and correlate clinical data with molecular data to accelerate the development of new and safer drugs. In May 2007, BioServe acquired Genomics Collaborative Inc (GCI) from SeraCare Life Sciences Inc. GCI is a leader in facilitating biomarker discovery and validation.

Products/services relevant to molecular diagnostics. DNAQuik™ genomic DNA extraction kits provide an efficient, simple, safe means for high molecular weight genomic DNA purification from a wide variety of biomaterial. They are suitable for use in downstream applications such as genotyping, array-based comparative genomic hybridization, and methylation analysis. DNAQuik™ DNA Purification reagents have been used in BioServe's Genomic DNA Extraction Lab for over five years, consistently providing reliable results.

Through its acquisition of GCI, BioServe significantly expands its preclinical product and service capabilities to provide organizations engaged in drug discovery and diagnostic development with a comprehensive "biomaterial to validated data" services platform. This service platform extends from molecular research products and services such as DNA and RNA purification reagents, DNA sequencing, oligonucleotide synthesis and genotyping to ready-made large epidemiologically sound case-control studies of inflammatory disorders, endocrine disorders, cardiovascular disease, diabetes, hypertension, obesity and cancers including breast, prostate, lung and colorectal. GCI will operate as a fully integrated division of BioServe, which will continue to offer the GCI Access program™, which allows researchers around the world to access human DNA, RNA, serum and tissue samples with comprehensive informed consent and detailed clinical data, on a fee for service basis. GCI’s Global Repository®, a comprehensive library of 600,000 human DNA, tissue and serum samples, is linked to detailed clinical and demographic data from 140,000 consented and anonymized patients

- 183 -

Page 186: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

collected on four continents. Bioserve provides biomarker discovery and cost-effective genomic analysis services.

- 184 -

Page 187: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Biosite Inc

9975 Summers Ridge RoadSan Diego, CA 92121, USAWeb site: http://www.biosite.com/Tel: (858) 805-8378Fax: (858) 455-4815Email: [email protected]

Overview. Biosite Inc is a research-based company dedicated to the discovery and development of novel protein-based diagnostics that improve a physician's ability to diagnose debilitating and life-threatening diseases. Through combined expertise in diagnostic discovery and commercialization, Biosite is able to access potential markers of disease, identify proteins with high diagnostic utility, develop and commercialize products and educate the medical community on new diagnostic approaches, thereby benefiting patients. Biosite's Triage® rapid diagnostics are used in approximately 50% of US hospitals and in more than 50 international markets for toxicology screening and diagnosis of infectious and cardiovascular disease. In 2007, Biosite was acquired by Inverness Medical Innovations.

Technology/applications relevant to molecular diagnostics. Based on the Company's microcapillary technology, the high-throughput protein microarray is capable of identifying and quantifying up to 100 proteins from as little as 0.05 ml plasma or urine or 0.1 ml whole blood within 15 min. The analytical sensitivity is in the picomolar range. It could be applicable to the quantification and profiling of thousands of proteins.

Triage Stroke Panel. This is a rapid immunoassay intended for use in conjunction with brain imaging as an aid in the assessment and diagnosis of stroke.

Triage Cardio ProfilER identifies three cardiac protein markers that are released in the blood during an acute myocardial infarction: myoglobin, troponin I, and creatinine kinase

Triage BNP Test. This is a quantitative test for measurement of B-type natriuretic peptide (BNP), a protein marker for congestive heart failure. BNP correlates well with left ventricle hypertrophy and increases with the severity of disease. FDA has cleared its marketing for Beckman Coulter Immunoassay Systems.

Triage D-Dimer Test aids in the assessment of patients suspected of having thromboembolic events, including pulmonary embolism and deep vein thrombosis.

Triage TOX Drug Screen. This is a microfluidic protein chip used for the detection of specific drugs of abuse in urine specimens and is cleared by the FDA for marketing.

Triage Profiler Shortness of Breath Panel is a symptom panel, designed to help physicians distinguish among the three most common causes of shortness of breath by testing for multiple biomarkers using a single test device. It is approved by the FDA.

In 2006, Biosite filed a 510(k) Premarket Notification with the FDA for diagnostic tests for myeloperoxidase, a biomarker of inflammation in the walls of coronary arteries.

- 185 -

Page 188: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2003, Vermillion and Biosite started collaboration for discovery of novel antibody and protein target components for diagnostic assays. Also in 2003, Agenix Inc granted Biosite a license to D-dimer for test for excluding pulmonary embolism in Triage Profiler.

In 2005, under an agreement with Incyte, Biosite received an exclusive option to license 50 additional diagnostic targets as well as proteins, and antibodies that bind to these. Incyte may receive additional milestones and royalties should Biosite develop and commercialize diagnostic products.

In 2005, Biosite gained access to selected biomarkers for sepsis discovered by SIRS-Lab GmbH for the evaluation and development of these as diagnostics. Biosite will make antibodies to those selected targets using its proprietary antibody development process, which combines immunization of mice and phage display to generate highly diverse libraries of Omniclonal® antibodies with high affinity and low cross-reactivity. The antibodies will be used to generate assays for the measurement of the selected biomarker targets in blood samples. Validated biomarkers will then be assessed for commercialization potential, with high-value markers added to Biosite's product development process. This agreement combines the strengths of both companies: Biosite's proven antibody development and commercialization process for diagnostic products with SIRS’ expertise in molecular medicine concerning inflammatory diseases. The Biosite Discovery program is focused on diseases for which rapid and accurate diagnostic tests are needed.

In 2007, Biosite renewed and expanded a partnership and licensing agreement of 2005 to gain more access to Compugen’s diagnostic and immunoassay biomarkers for developing and commercialize immunoassay-based diagnostics for cardiovascular and oncology indications based on several of Compugen’s gene targets. Under the new agreement, Compugen will receive milestone payments and royalties from product sales that resulted from its contribution. Compugen will hold the rights to therapeutic applications of targets and antibodies associated with them. In 2008, Compugen granted an option to Biosite to CGEN-144, a variant of troponin I biomarker, which it had discovered and verified to be differentially expressed as serum protein in myocardial infarction patients compared to healthy individuals. Biosite will develop and select antibodies that bind to the molecule to determine assay sensitivity and specificity in various disease states and as an addition to the currently commercialized troponin I test.

- 186 -

Page 189: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Biotage AB

Kungsgatan 76SE-753 18 Uppsala, Sweden Web site: http://www.biotage.com/Tel: +46 18 516000 Fax: +46 18 591922E-mail: [email protected] and CEO: Torben Jörgensen

Overview. Pyrosequencing AB acquired Biotage in 2003 and has been renamed Biotage AB. The company’s Pyrosequencing technology is a real-time DNA sequencing technique. It is a standard platform for clinical genetic analysis. accelerates the drug discovery and development process and increases the knowledge of the importance of the genetic make-up by providing complete solutions for medicinal chemistry research and applied genetic analysis. Biotage, listed on the Stockholm exchange, has approximately 340 employees. In October 2008, QIAGEN acquired all assets related to the Pyrosequencing from Biotage for $53 million in cash plus $7 as milestones in next 4 years.

Technologies relevant to molecular diagnostics. Biotage's PSQ 96 System is the first commercially available dedicated sequencing system for applied genetic analysis. Based on the Company's patented Pyrosequencing technology, the product performs rapid and accurate, reproducible SNP analysis, and offers a high capacity, cost-effective solution for SNP analysis and Tag sequencing - the analysis of short DNA sequences used for genetic identification. Primer Design software enables researchers to rapidly and efficiently design primers that are optimized for use with Pyrosequencing technology for DNA analysis. PSQ HS 96 is capable of genotyping virtually any mutation or SNP with high sensitivity, using a robotic mechanism to transfer up to 10 96-well plates for unattended operation and a high sensitivity light detection system.

Applications relevant to human molecular diagnostics. These include SNP analysis of ACE gene, SNP genotyping in codon 72 of the p53 gene, association studies at an obesity locus and diagnosis of Down's syndrome. Other applications are in bacterial and viral typing where speed and ease of use for identification of gene-specific DNA sequences are essential. Biotage PSQ 96 System can be used for the rapid typing and validation of bacteria and viruses used to produce biological weapons. PyroMark Oncology Series genetic tests provide researchers with reliable DNA sequence information on specific cancer mutations and epigenetic phenomena. PyroMark™Q96 and Q24 detect KRAS mutations in codons 12, 13 and 61. Pyrosequencing technology offers rapid and accurate quantification of CpG methylation sites.

Collaborations relevant to human molecular diagnostics. Academic collaborations include the following: (1) Uppsala University, Sweden to investigate several applications of Pyrosequencing within the field of bacterial identification and resistance; (2) University of Geneva, Switzerland to analyze genes and develop rapid genetic tests for the diagnosis of Down syndrome and other syndromes screened during routine prenatal testing; (3) Cleveland Clinic Foundation (Celeveland, Ohio) to develop methods for the rapid identification of mycobacteria using Pyrosequencing technology; (4) Scottish Meningococcus and Pneumococcus Reference Laboratory (Glasgow, Scotland) to develop tests for rapid, accurate typing of the meningitis-causing bacterium Neisseria meningitidis; (5) University of California (San Francisco, CA) to analyze genes involved in the development and potential progression

- 187 -

Page 190: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

of multiple sclerosis using PSQ96 System; (6) Harvard University (Cambridge, MA) that provides broad access to fluorescent nucleotide technology. The license agreement will enable the Company to develop new fluorescence-based DNA analysis products for applied genomics and clinical applications; and (7) Molecular Imaging collaboration with McMaster University in Canada.

Corporate collaborations include (1) a cross-license agreement with Mosaic Technologies provides access to complementary DNA sequencing technologies; and (2) an agreement with Dynal Biotech to evaluate and develop methods for HLA typing in transplantation.

- 188 -

Page 191: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

bioTheranostics

11025 Roselle Street, Suite 200San Diego, CA 92121, USAWeb site: http://www.aviaradx.com/Tel: (858) 587 5870 Fax: (858) 587 5871Chief Executive Officer: Richard Ding

Overview. On 11 September 2008, BioMerieux acquired AviaraDx for $60 million. The firm will operate as an independent legal entity and be renamed bioTheranostics a molecular cancer profiling company that is focused on developing and commercializing molecular diagnostic technologies with proven clinical utility. The Company leverages its technological leadership position in the analysis of cancer biopsies and proprietary bioinformatic methodologies to discover and validate novel diagnostic, prognostic and predictive biomarkers for better cancer treatment. Diagnostic laboratories in the US and Europe have licensed the Company’s molecular cancer identification (MCID) and breast cancer profiling (BCP) technologies to develop and commercialize certain laboratory tests. bioTheranostics’ business plan is to work with collaborators to develop the drug response signatures, perform clinical validation studies, and then publish the results of the study for each drug response marker/signature.

Technologies. bioTheranostics has discovered, developed, validated and licensed to clinical laboratories in the US and Europe genomic markers for the generation of MCID and breast cancer recurrence (BCR) assays. The clinical laboratories are utilizing bioTheranostics’ technology to develop their diagnostic service offerings internally. bioTheranostics has invested significantly in the development of a highly effective process to identify novel biomarkers suitable for cancer diagnostics versus generating assays targeting established biomarkers.

Additionally, bioTheranostics intends to develop a platform to discover such drug response signatures. For a given drug, such tests are likely to be one of the following: a gene expression assay or gene amplification measurement or detection of a set of gene mutations. It addition, it may turn out that a combination of these measurements may yield the greatest predictive value for a given drug response.

R & D. bioTheranostics has established pioneering methods to integrate gene expression technologies (microarrays, real-time PCR) with archived clinical cancer biopsies (formalin fixed, paraffin embedded samples, “FFPE samples”). This ability has been crucial for the discovery of diagnostic biomarkers since >99% of all clinical tissue specimens are FFPE samples; these clinical samples are essential for discovery and validation of diagnostic, prognostic and predictive markers. In many cases patients have been followed for more then ten years after a tissue sample has been collected and archived, thus providing most valuable long term clinical information that can now be correlated to the bio-molecular status of this very tissue sample.

Furthermore, the overwhelming focus of discovery studies using microarray technologies is and has been for the discovery of new drug targets. The study of differential expression of genes in diseased versus healthy tissue – as a rule this means the analysis of fresh frozen samples - is used as the entry point into investigating the biology underlying the disease in question. Contrary to this, the company’s primary interest is not per se in the differences related to tumor biology, but rather in biomarkers associated to different clinical outcomes over time. This is why the ability to process FFPE

- 189 -

Page 192: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

samples is essential for biomarker discovery, yet not always of strategic importance for drug target discovery. bioTheranostics has invested significantly in the development of a highly effective process to identify novel biomarkers suitable for cancer diagnostics versus generating assays targeting established biomarkers.

For example, in breast cancer, bioTheranostics has identified a new biomarker for predicting the risk of disease recurrence that brings additive benefit to established biomarkers.

For molecular cancer identification, bioTheranostics surveyed an extensive number of previously identified retrospective tumor samples; this has enabled it to develop a technology for classifying 39 different cancer types - by far the largest and most powerful available or developed to date.

Collaborations. bioTheranostics licensed the MCID technology to Agendia BV for the development of a molecular test to identify the origin of a metastatic cancer from patients with CUP. Agendia launched its CupPrint® test for the European market in 2005. In the same year, the Company entered into similar licensing agreements for the North American market with Quest Diagnostics and Laboratory Corp of America (LabCorp). Quest began marketing its CUP test in 2006. In collaboration with MD Anderson for MCID, bioTheranostics is sponsoring the first-ever prospective clinical trial for the molecular diagnosis of biopsies from CUP patients.

In 2006, bioTheranostics and Massachusetts General Hospital (MGH) Cancer Center planned to identify molecular profiles for multiple types of cancer, and hope to develop diagnostics that could help predict the way a patient may respond to certain targeted cancer drugs. Over the next two years, researchers at MGH and bioTheranostics will perform gene sequencing and gene expression analysis on a "large number" of cancers to determine genes, gene signatures, and polymorphisms that correlate with response to specific drugs used for a "wide range" of cancers.

- 190 -

Page 193: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Bode Technology Group Inc

10430 Furnace Road, Suite 107Lorton, VA 22079, USAWeb site: http://www.bodetech.com/ Tel: (703) 646-9740Fax: (703) 646-9741CEO: Howard Safir

Overview. The Bode Technology Group Inc, a ChoicePoint company (http://www.choicepoint.net/), is a research, development, and analysis firm specializing in DNA identification. Since its inception, Bode Technology has been involved in studies that allow it to perform state-of-the-art research on DNA identification techniques. Its staff, for example, has been investigating the application of short tandem repeats (STR) technology to human identification issues since 1993. Bode Technology serves clients in the United States and worldwide.

Technologies. Identification utilizes STR with the analysis of a minimum of thirteen loci on all DNA evidence, providing a greater power of identity over any other PCR technology available. The Company uses validated protocols for DNA extractions from many types of materials including blood stained fabrics (cotton, denim, rayon, felt, etc.), hair, tissue, hard surface substrates (wood, concrete, plastic, metal), saliva, semen, and swabs.

Bode Technology is one of the few commercial companies in the country that performs mitochondrial DNA analysis. Mitochondrial DNA exists in 1000 to 10000 copies per cell, making the mitochondrial genome a more viable source than nuclear DNA for identification after exposure to harsh conditions. Mitochondrial DNA can also be extracted from substrates such as hair shafts and bone fragments.

Services. The main service is DNA identification. Parentage DNA analysis service tests a minimum of thirteen STR loci bringing the power of exclusion to over 99.9% for the entire US population.

Bode Technology performs criminal DNA casework and advanced research on DNA identification techniques. The Company currently supports nine state-mandated convicted offender DNA databases and multiple efforts to reduce the backlog of sexual offense evidence kits.

In 2001, Bode Technology entered into agreements with both the State of New York and New York City to perform DNA testing in an effort to identify the victims of the attack on the World Trade Center. In addition, Bode will provide quality assurance testing of work performed by third-party laboratories. Bode's agreement with the state includes the analysis of 30,000 DNA samples from victims or provided by families using STR technology and 1,000 of the more sensitive mitochondrial mtDNA tests. The mtDNA process can be more successful in obtaining results from samples exposed to intense heat and decomposition. Bode is the only private lab involved in the World Trade Center DNA identification effort with forensic mass disaster experience that routinely performs both STR and mtDNA testing in a forensic setting.

- 191 -

Page 194: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Boston Biomedica Inc

A SeraCare Life Sciences Company37 Birch StreetMilford, MA 01757, USAWeb site: http://www.seracare.com/bbidx/bbi_diagnostics.htmTel: 244-6400 Fax: (508) 634-3394

Overview. Boston Biomedica Inc (BBI) is an infectious diseases management company providing products and services for the detection and treatment of infectious diseases such as AIDS, Lyme disease, and viral hepatitis. The Company has four business units: (1) BBI Diagnostics for in-vitro diagnostic tests; (2) BBI Clinical Laboratories, a leading specialty infectious diseases testing laboratory which is integrated into Specialty Laboratories; (3) BBI Biotech Research Laboratories (Gaithersburg, MD), providing R&D support for the other BBI business units as well as contract research services for third parties; and (4) BBI Source Scientific, an ISO 9001 certified manufacturer of laboratory and diagnostic instrumentation. In 2004, BBI was acquired by SeraCare Life Sciences Inc for $30 million in cash and has become a business unit of SeraCare.

Services relevant to molecular diagnostics. BBI's specialty clinical laboratory combines traditional microbiology, advanced immunology, and current molecular diagnostic techniques, such as PCR, to detect and identify microorganisms, their antigens and related antibodies, and their nucleic acids (i.e., DNA and RNA. BBI conducts clinical trials for domestic and foreign test kit manufacturers for submission to the FDA and other regulatory agencies and provides the following programs:

Accurun External Run Controls are unbiased, external controls that are recognized universally to satisfy the requirements of good laboratory practice. BBI Accurun Controls can help laboratories to eliminate errors, identify trends, and reduce overall testing costs.

AccuChart Software is a flexible, easy to use program that analyzes testing data to help ensure quality test results. AccuChart stores and retrieves data for analysis and regulatory inspections, automatically performs statistical calculations, monitors data trends and automatically flags control violations.

Research & Development. BBI is also developing new and improved infectious disease tests, which offer potential for above average profit for use in its specialty laboratory business. This includes emphasis on additional applications of PCR and other amplification technologies to infectious disease diagnostics, beyond its current assays for the pathogens of AIDS, viral hepatitis, Lyme disease and herpes simplex, and for the direct detection of other infectious agents in blood, tissues and other body fluids.

The Pressure Cycling Technology (PCT) sample separation system utilizes the Company's patented PCT technology, its proprietary Barocycler instrument, and its newly designed and patent-pending disposable devices called PULSE (for Pressure Used to Lyse Samples and Extract) tubes. This process represents a new and exciting approach to solving a difficult laboratory problem in biological sample preparation from hard-to-lyse materials such as those encountered in molecular diagnosis of cancer and infectious diseases.

In 2001, BBI Biotech was awarded a five-year, $10.3 million contract from the US National Cancer Institute for the processing and storage of biological specimens to support cancer studies.

- 192 -

Page 195: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 193 -

Page 196: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Caliper Life Sciences

68 Elm StreetHopkinton, MA 01748, USAWeb site: http://www.caliperls.com/Tel: 508-435-9500 Fax: 508-435-3439CEO: Kevin Hrusovsky ([email protected])

Overview. Caliper Life Sciences, a leader in lab-on-a-chip technology, designs, manufactures and commercializes LabChip microfluidic devices and systems that enable experiments to be conducted on a small chip that contains a network of microscopic channels through which fluids and chemicals are moved. The LabChip system is designed to streamline and accelerate laboratory experimentation and has potential applicability in a broad range of industries including pharmaceuticals, chemicals and diagnostics. Caliper has established multiple strategic and commercial alliances and has built a leading intellectual property estate in microfluidic technology. In 2003, Caliper purchased Zymark Corporation for approximately $57 million. In 2005, Caliper acquired NovaScreen Biosciences for $22 million. NovaScreen provides screening, profiling and assay development services for pharmaceutical and biotechnology companies worldwide, and for government agencies such as the NIH. By acquiring NovaScreen, Caliper will become a central resource for drug discovery solutions, offering scientists a comprehensive suite of in-house and outsourced drug discovery technologies, products and services. Caliper will now become a "one-stop shop" for in vitro drug discovery, with state-of-the-art technologies and products as well as leading screening assays and profiling services. In 2006, Caliper acquired in vivo imaging company Xenogen Corporation for $80 million and sold its subsidiary, Xenogen Biosciences (XB) to Taconic Farms for approximately $11 million in 2009. Approximately 90% of XB’s business relates to animal production and phenotyping services, which are not essential to growing core in vivo imaging instrumentation business of Caliper. In December 2010, Caliper acquired optical imaging firm Cambridge Research & Instrumentation for $20 million, which expands its life sciences tools portfolio in clinical research, pathology, and clinical market applications by offering tissue imaging and digital pathology.

Technology relevant to molecular diagnostics. LabChip or lab-on-a-chip technology miniaturizes and automates experiments such as DNA analysis on microchips. Caliper uses electrokinetic forces to create an automated system of microscopic pumps and valves that control movements of tiny fluids across a chip.

Products/applications. Those relevant to molecular diagnostics are:

Agilent 2100 Bioanalyzer. It brings Caliper's LabChip technology to the individual researcher's desktop by integrating time-consuming and costly laboratory experiments onto a miniature chip. The applications menu for the Agilent 2100 Bioanalyzer includes nucleic acid analyses and protein assays - separation, sizing, quantifying and identifying what is in a sample of DNA, RNA, or proteins extracted from cells.

SNP genotyping. Caliper's multi-sipper system is designed to achieve throughput of up to 100,000 experiments per chip per day on a single benchtop-size instrument. The system is designed to integrate each stage of the complete experiment in a volume of one nanoliter, a scale 10,000 to 100,000-fold smaller than currently used technology.

- 194 -

Page 197: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Sciclone ALH 3000 Liquid Handling Workstation enables fast and efficient processing of 96-, 384-, and 1536-well microplates for life science research and diagnostic testing.

LabChip 90 Automated Electrophoresis System is an alternative to the conventional method for highthroughput sizing and quantification of proteins (SDS-PAGE).

In vivo optical imaging. IVIS® Imaging technology acquired from Xenogen provides the most sensitive imaging systems for both fluorescence and bioluminescence. They are designed to enable researchers to identify disease pathways, determine mechanisms of action, evaluate efficacy of drugs, and monitor lead candidates' effects on disease progression in living animals - making in vitro to in vivo translational research a reality.

Zephyr Genomics Workstation. Launched in 2009, this workstation it is an easy-to-use, yet powerful automation solution that includes pre-installed methods for reagent kits from numerous suppliers for widely used nucleic acid purification chemistries, as well as standard Caliper methods for routine applications such as PCR setup and sample normalization. It complements Caliper's LabChip GX system, which performs fast, automated 1D electrophoretic separation of nucleic acid samples. Caliper also offers Sciclone, Twister, and Staccato liquid handling and integrated system solutions for higher throughput and more advanced genomics applications for next generation sequencing, miRNA analysis, genotyping, and gene expression studies.

Collaborations relevant to molecular diagnostics. The US space agency and Caliper are collaborating via the ADP on developing macromolecular crystals using LabChip technology.

In 2004. Caliper and Affymetrix agreed to develop and provide automated target preparation instruments for the GeneChip Probe Array system, the new HTA system. A collaboration with Promega integrated all of the Promega SV 96 Sample Preparation methods into Caliper Sciclone ALH 3000 Workstation, including kits for genomic DNA purification, PCR clean-up, plasmid purification and RNA isolation.

In 2005, Agilent licensed Caliper's microfluidics technology to develop diagnostic applications on 2100 Bioanalyzer and 5100 Automated Lab-on-a-Chip platform.

In 2005, Bio-Rad Laboratories and Caliper started a new collaboration, under which the companies will study the feasibility of developing a new microfluidics system platform. A previous collaboration, initiated in mid-2003, resulted in the successful launch of a new microfluidics-based electrophoresis product, Experion™ Automated Electrophoresis System, in 2004.

In 2006, Canon USA Inc started to use Caliper’s LabChip microfluidics technology and industry techniques in an effort to help develop future genetic diagnostic and screening solutions.

In 2006, Invitrogen (now Life Technologies) subsidiary Molecular Probes and Caliper agreed to develop and distribute fluorescence labeling kits to work with Caliper’s in vivo imaging systems. The kits are produced by Molecular Probes and will be marketed by Caliper. They use Invitrogen dyes to leverage the in vivo system to identify and tag particular antibodies, proteins, and peptides. Each kit allows for three conjugations and will work on 60-90 small animals. They also enable in vivo assessment of the spread of disease in real-time.

- 195 -

Page 198: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2008, Caliper started collaboration with DiscoveRx Corporation to enable functional cell-based G protein-coupled receptor (GPCR) assays to be performed on its LabChip® platforms. The combined offering bundles the DiscoveRx’s cellular assays (such as PathHunter™ Arrestin and cAMP Hunter™) with LabChip systems to help pharmaceutical and biotechnology researchers more efficiently discover GPCR drugs.

In 2009, Caliper sold Xenogen Biosciences to Taconic, which will create new mouse models for in vivo imaging applications for use by its IVIS instrument customers.

On 3 Feb 2011, Caliper started collaborating with the John P. Hussman Institute for Human Genomics (HIHG) at the University of Miami to develop automated protocols for exome capture and library preparation workflows. HIHG is an early-access partner for the recently released high-sensitivity assay for Caliper's LabChip GX platform.

- 196 -

Page 199: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cancer Genetics Inc

228 River Vale RoadRiver Vale, NJ 07675, USAWeb site: http://www.cancergenetics.com/Tel: (201) 263-1323Fax: (201) 263-1328CEO: Louis J. MaioneContact: Peter Hartmayer, VP Marketing & Sales ([email protected])

Overview. Cancer Genetics Inc (CGI), a private company founded in 1998, has a mission to serve as a national resource for genetic evaluation of cancer patients and families, develop new genetically derived probes for diagnostic and prognostic evaluation of cancer, and perform advanced research in genetic causes of cancer. CGI has established three complementary groups: (1) Probe Diagnostics; (2) Genomic Research; and (3) Clinical Cytogenetics.

Technologies/services relevant to cytogenetics. The Probe Diagnostics group has developed new reagents based on novel FISH technology for detecting non-random chromosomal abnormalities commonly encountered in multiple myeloma, leukemia, lymphomas, and solid tumors. The Genomic Research Group provides leading edge cytogenetic analyses for the research community. The Cytogenetic Services Group processes a variety of specimens using conventional G-banding and advanced molecular cytogenetic methods. The company's products and services provide more timely and accurate diagnostic and monitoring information to researchers and clinicians thereby allowing more effective patient treatment and improved outcomes.

The Cytogenetic Services Group specializes in cancer cytogenetics and provides comprehensive services to fit both the client and patient’s needs. It has a 95% success rate as a participant in the companion protocol for AML and ALL studies conducted by the CALGB. The CGI laboratory also has the highest sample success rate of any commercial cancer cytogenetic laboratory in the US.

Products. In 2001, CGI introduced a highly sensitive FISH assay for simultaneously detecting translocations t(9;22)(q34;q11) and associated deletions in the der(9) and der(22) chromosomes involved in chronic myeloid leukemia (CML). This novel FISH assay is aimed at reliable detection of the translocation, associated deletions, and amplification of the BCR/ABL fusions.

In 2003, CGI launched a new, highly sensitive, DNA FISH assay to help diagnose and monitor therapy of CML and a subset of acute lymphoblastic leukemia (ALL). This assay is the first “repeat-free” BCR/ABL 4-color FISH probe and is CGI’s first product to be introduced into the US.

- 197 -

Page 200: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cangen Biotechnologies Inc

300 East Lombard Street, Suite 1600Baltimore, Maryland 21202, USA Web site: http://cangenbio.com/Tel: (443) 703 2800Email: [email protected]: Chulso Moon MD, PhD

Overview. Cangen Biotechnologies was founded in 2000 to develop and market key platform technologies for early cancer detection and technologies to enhance the selection of cancer chemosensitivity therapeutic regimes. Cangen's business model is to develop and secure the rights to superior, next-generation cancer detection, chemosensitivity and complementary technologies and to rapidly commercialize these technologies. Cangen is currently focusing its business in two key areas:

1. Molecular diagnosis of cancer to enhance early detection

2. Determination of sensitivity to chemotherapy

Technologies. One of the key areas of focus is the development of a commercial microsatellite analysis-based assay for use in the early detection of bladder cancer. This is the first diagnostic test for bladder cancer detection to reach a phase III study funded by the NCI.

Cangen is developing early diagnosis and more effective therapeutic methods for detecting and treating lung cancer. Its early research focused on developing a series of novel targeted MAbs that have significant potential as cancer diagnostic and therapeutic agents. This research led to the development of a novel lung cancer detection methodology using mass spectrum pattern analysis (MSA). Cangen plans to extend this diagnostic procedure to ultimately develop a method for establishing the chemosensitivity of various cancer treatments to the type of lung cancer under treatment.

Collaborations relevant to molecular diagnostics. Cangen has a long-standing collaboration with the Johns Hopkins University. The relationship provides Cangen with a first right to license discoveries related to early cancer detection. The Johns Hopkins University has been selected to lead the NCI study for Cangen’s bladder cancer detection technology.

In 2006, Olympus signed an expanded pact with Cangen to develop a hybrid DNA-based and protein-based diagnostic test for use in the early detection of lung cancer. The expanded collaboration includes funding for a prospective clinical study. Several key DNA biomarkers with 70-80% accuracy have been identified from surgically resected samples obtained by Cangen from Hyundai Hospital in Korea during 2005. The identified markers can be used as a hybrid with protein-based biomarkers to improve sensitivity and specificity. Olympus and Cangen are aiming for FDA approval after approximately two years.

In August 2008, Cangen and Dai Nippon Printing Co of Japan agreed to move forward with a clinical trial phase of an early stage lung cancer diagnostic.

- 198 -

Page 201: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Castle Biosciences Inc

2014 San Miguel Drive Friendswood, TX 77546, USAWeb site: http://www.castlebiosciences.com/Tel: (281) 796-9032CEO: Derek Maetzold PhD ([email protected])

Overview. Castle Biosciences Inc is developing biomarker-based cancer tests for accurate diagnosis and risk stratification. Castle's mission it is to bring personalized medicine to individuals afflicted with orphan cancers (occurrence rate of <40,000 per year). It focuses on proprietary molecular diagnostic assays that assist oncologists in individual risk-stratification. The tests are branded 'DecisionDx-...' because the results, as part of a comprehensive baseline evaluation, will enable more personalized treatment plan decisions to be made by physicians. Castle’s laboratory has obtained its California CLIA acceptance. Its tests can now be ordered by physicians in all states except New York.

Products. DecisionDx assays are multi-gene expression tests and are available for:

DecisionDx-UM (uveal melanoma) assay enables prospective identification of patients who have a low risk (Class 1 molecular signature) or high risk (Class 2 molecular signature) of developing metastatic disease. Development and validation of the assay in the CLIA-certified laboratory has been completed.

DecisionDx-GBM (glioblastoma multiforme) enables differentiation between progression-free survival and overall survival in the long-term responder group and the short-term refractory group by determining a tumor’s specific molecular signature.

DecisionDx-LEA (localized esophageal adenocarcinoma) is a multi-protein expression assay assay for prospective pathologic stratification of complete responders and non-responders to preoperative chemoradiation. The final validation study is ongoing.

Collaborations. In 2008, Castle licensed DecisionDx-GBM from the University of Texas M. D. Anderson Cancer Center, which had developed and validated the test.

- 199 -

Page 202: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Caris Dx

8400 Esters Blvd, Suite 190Irving, TX 75063, USAWeb site: http://www.carisdx.com/Tel: 214-277-8700 Chairman and CEO: David D. HalbertVice Chairman: George Poste, DVM, PhD, DSc, FRS, Chief Scientist, Complex Adaptive Systems Initiative, Arizona State University

Overview. Caris Dx, formed in 1996, is a biosciences company specializing in the development and commercialization of clinically-validated molecular diagnostics and anatomic pathology services primarily in the fields of oncology, dermatopathology, hematopathology and gastrointestinal pathology. The company provides academic-caliber medical consults through its industry-leading team of subspecialty fellowships and expert-trained pathologists in gastrointestinal and liver pathology, dermatopathology and hematopathology. Caris Dx also offers advanced molecular analyses of patient samples through prognostic testing services and genomic and proteomic profiling to assist physicians in their treatment of cancer and other complex diseases. Biopsies for more than 2,700 patients are received daily for analysis by Caris from physicians nationally. The company is headquartered in Irving, Texas and operates four laboratories: Irving, Texas; Phoenix, Arizona (2 sites) and Newton, Massachusetts.

Services relevant to molecular diagnostics. Caris Dx is at the forefront of responding to the need for information to help tailor therapies and improve patient outcomes by identifying biomarkers that oncologist’s can“target now”with associated chemotherapeutic agents when standard therapies fail.

Target Now®. This identifies biomarkers in an individual’s cancer that are associated with targets for certain drugs. These biomarkers may also help predict the likelihood of response to therapy, thereby assisting the clinician in selecting treatment for cancer patients with advanced or refractory disease. Target Now may provide additional options for patients who have exhausted standard guideline-based treatments.

Target GI ColonSM provides molecular profiling information to assist clinicians in determining potential colorectal cancer patient responses to cetuximab, panitumumab and other colorectal cancer therapeutics. arget GI Colon includes RAS and BRAF mutational analysis – cetuximab and panitumumab. Caris Dx KRAS mutational analysis:

Provides vital prognostic information identifying those patients whose tumors are resistant to Erbitux and Vectibix

Detects the 14 most frequent KRAS mutations covering over 99% of known KRAS mutations

Detects codons 12, 13 and 61

Testing can be performed on archived specimens (paraffin blocks of tumor)

Turn around time is 8 - 10 days

- 200 -

Page 203: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Celera

1401 Harbor Bay ParkwayAlameda, CA 94502, USAWeb site: http://www.celera.com/Tel: (510) 749-4200Fax: (510) 749-6200President: Kathy OrdonezContact: Stacey Sias PhD, CBO ([email protected])

Overview. Celera, formerly a business of Applera Corporation, is primarily a molecular diagnostics company using proprietary genomics and proteomics discovery platforms to identify and validate novel diagnostic markers, and is developing diagnostic products based on these markers as well as other known markers. Through its genomics and proteomics research efforts, Celera is also discovering and validating therapeutic targets, and it is seeking strategic partnerships to develop therapeutic products based on these. In 2007, Celera completed acquisition of Atria Genetics for $33 million. Atria has a line of HLA testing products to identify donors for bone marrow transplantations. In 2008, following merger of Applied Biosystems and Invitrogen, Celera separated from Applera Corp, as an independent publicly traded company at its current location. Celera acquired Berkeley HeartLab unit and offers cardiovascular tests through it. It plans to license oncology biomarkers to broaden its test menu. Celera intends to pursue direct-to-consumer diagnostics and to launch a cheek-swab version of the StatinCheck through a direct-to-physician campaign. Celera was acquired by Quest Diagnostics in March 2011.

Technology/products relevant to molecular diagnostics. Celera has 3 diagnostic platforms: (1) Low Density for infectious disease testing and simple genetic tests; (2) Medium Density – Luminex bead array platform with proprietary zip-code format for rapid genetic test development and cost-effective manufacturing; and (3) High Density – Current and future AB sequencing platforms for complex genetic tests. The ViroSeq HIV Genotyping System is cleared by the FDA for detection of mutations in the HIV-1 viral genome that confer drug resistance and assist clinicians in assessing HIV drug resistance. Other products are analyte-specific reagents used to detect genetic mutations associated with cystic fibrosis, and ASRs used for HCV load monitoring and genotyping. These products are sold through an ongoing alliance with Abbott Laboratories. In Jan 2011, Celera submitted premarket approval application to FDA for KIF6 genotyping assay, which is CE-marked and marketed in Europe. Celera received an unapprovable letter on 7 April 2011, asking to submit more supporting evidence.

Collaborations relevant to molecular diagnostics. The SNP Consortium contracted with Celera to provide data for a genome-wide SNP-based linkage map.

Collaborations that started in 2002 include: (1) Celera obtained rights to develop and distribute IVD products based on Luminex's xMAP technology, for use on the Luminex 100 System; (2) agreement with Quest Diagnostics to establish the clinical utility of laboratory tests based on novel diagnostic markers for cardiovascular disease and diabetes; (3) agreement with LabCorp of America to establish the clinical utility of tests based on diagnostic markers for Alzheimer's disease, and cancers of breast as well as prostate; and agreement with Bristol-Myers Squibb to study genes that could be used to diagnose and treat cardiovascular disease and diabetes. In 2003, Celera started collaboration with Merck & Co to identify and validate genetic

- 201 -

Page 204: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

biomarkers useful in the development of prognostic tests and therapeutics for cancer. In 2004, Epoch licensed its MGB and Eclipse Dark Quencher Technologies for incorporation into Celera's products for selected infectious diseases. In the same year, Cepheid and Celera entered into a patent license agreement relating to real-time thermal cycler instruments for research, diagnostics and other applications.

In 2008, Celera and Abbott revised their strategic alliance. Abbott will exclusively distribute certain molecular diagnostic products manufactured by Celera and Celera will receive royalties on the sale of m2000™ reagents, instruments, and services.

- 202 -

Page 205: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CeMines

PO Box 17780Golden, CO 80401, USAWeb site: http://www.cemines.com/Tel: 317-3489Fax: (303) 325-5438Email: [email protected] and Chairman: Richard Cavalli

Overview. CeMines has developed and is commercializing its breakthrough molecular fingerprinting blood test for the early-detection and optimum treatment for a variety of cancers. Utilizing its proprietary and novel platform, CeMines believes that its minimally invasive diagnostic tests will provide accurate, early detection of most widespread cancers - including lung, breast, prostate and gastrointestinal - and should also predict the most effective treatment. CeMines' facility at Cedar-Sinai Medical Center (Los Angeles) enables it to incorporate all of its R&D activities under one roof. CeMines is building a large database of cancer patients that includes the patients’ specific molecular profile, the treatment administered and the results. By comparing the molecular profile to CeMines’ database, doctors will know how that specific cancer has responded to a given treatment in the past, and will have better information to make treatment recommendations.

Technology/products. CeMines' cancer detection, diagnosis and treatment technologies are based on the identification, analyses and manipulation of molecular regulatory networks of cancer cells - molecular fingerprinting (see Chapter 7). Main focus of CeMines is on transcriptional regulators. Transcriptional regulation determines which proteins are present in particular cell types. If the gene is not active then there is no mRNA and no protein. Clearly there are other mechanisms that regulate the level and activity of proteins but transcriptional control is the primary step in the regulatory cascade. The diagnostic tests are as follows:

Blood Tumor-Antibody Diagnostics (blood test). Presence of antibodies against certain regulatory factors in the patient's blood reflects the molecular fingerprint of that specific tumor and enables the diagnosis and determination of the most efficient way of treatment. CeMines is developing this blood test for various cancers as a proprietary mass sprectroscopy or peptide microarray.

In 2005, the EU's regulatory body cleared the CellCorrect Lab Detection Kit for diagnosis of lung cancer. CeMines Estonia will market and distribute the test under the brand name CellCorrect KvA-40 LAb Kit. CeMines filed a 501(k) application for CellCorrect Lab with the FDA in 2005. In 2006 CeMines was granted European Union regulatory clearance and CE Mark registration of its Cell Correct LAb®.

Splice Variants Test. This diagnostic test is based on the isolation and analysis of tumor cells from body fluids such as blood, sputum and urine (RT-PCR splice variants-based diagnostics). Since cancer cells express highly specific splice variants of mRNAs of regulatory factors and since this method has extremely high sensitivity, it enables the detection of tumors even if a single tumor cell is available from the body fluids.

Biopsy Diagnostics Technology (BDT). CeMines proprietary Biopsy Diagnostics Technology (BDT) is based on the expression of regulatory factors in tumor cells and applies knowledge of how tumor cells coordinate these proteins to execute a certain function. BDT utilizes both genomics

- 203 -

Page 206: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

(mRNA micro array, PCR) and proteomics (specific antibodies) tools developed by the CeMines Research molecular tools division. This test is designed for use after the physician determines that a biopsy of an existing tumor should be examined. The BDT test precisely identifies the molecular specificity of the tumor and suggests the most effective treatment.

Collaborations. CeMines and Colorado Heart & Body Imaging have a strategic alliance to use the CellCorrect™ LAb test in a novel imaging program for the detection of lung cancer.

- 204 -

Page 207: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cenetron Diagnostics

2111 W Braker Lane, Suite 300Austin, Texas 78758, USAWeb site: http://www.cenetron.com/Fax: (512) 321-1689Email: [email protected]: Dwight DuBois MD ([email protected])

Overview. Cenetron Diagnostics is a clinical reference laboratory and a central laboratory for clinical trials. Established in 1995, the company specializes in the molecular diagnosis of infectious diseases and genotyping assays. Cenetron has an active basic research effort in the development of amplification-based molecular tests, laboratory systems software, and supports pharmaceutical industry-sponsored clinical trial. Cenetron Diagnostics continually develops novel assays to meet the demands of the pharmaceutical industry and the medical community. ViraLink, a proprietary Laboratory Information System, and Armored RNA, a patented technology for the production of diagnostic testing standards, are part of the history of innovation at Cenetron.

Technologies. The following are developed by Cenetron:

Armored RNA. Cenetron Diagnostics is a co-inventor of Armored RNA, a technology for the large-scale production of degradation-resistant quality controls and standards for molecular diagnostic testing. Asuragen and Cenetron Diagnostics hold the basic patent rights that cover RNA-containing, ribonuclease-resistant particles for use in various applications, including diagnostic tests. Armored RNA technology has been licensed to Roche Diagnostics and related products are sold by Asuragen.

ViraLink. The innovative in-house development at Cenetron Diagnostics also includes the secure software package called ViraLink, a proprietary Laboratory Information System that enables Cenetron to generate unique viral load reports that greatly facilitate patient monitoring and education: Results for a single patient can be built into a sequential viral-load graph that plots multiple previous test results.

Cenetron uses technology platforms of other companies: TRUGENE™ System (Visible Genetics), COBAS AMPLICOR (Roche Diagnostics), Mx4000 Multiplex Quantitative PCR System (Stratagene), ABI Prism 7700 Sequence Detection System (Life Technologies), and Smart Cycler System (Cepheid).

Collaborations relevant to molecular diagnostics. In 2003, Cenetron signed a five-year strategic alliance agreement with Roche Diagnostics to establish itself as a Molecular Center of Excellence to perform routine molecular diagnostic testing, esoteric genomic testing, and other related diagnostics services using Roche's patented PCR and other advanced genomic technologies.

- 205 -

Page 208: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cepheid Inc

904 Caribbean DriveSunnyvale, CA 94089-1302, USA Web site: http://www.cepheid.com/Tel: (408) 541-4191Fax: (408) 541-4192 Chief Executive Officer: John Bishop ([email protected])

Overview. Cepheid is a molecular diagnostics company that developes, manufactures, and markets fully-integrated systems for genetic analysis in the clinical, industrial and biothreat markets. The company's systems enable rapid, sophisticated genetic testing for organisms and genetic diseases by automating complex laboratory procedures. Cepheid is focusing on those applications where rapid molecular testing is particularly important, such as identifying infectious disease and cancer in the clinical market; food, agricultural, and environmental testing in the industrial market; and identifying bioterrorism agents in the biothreat market. In 2006, Cepheid acquired Actigenics SA, a biotechnology company specialized in the discovery of miRNAs. In 2007, Cepheid acquired Sangtec Molecular Diagnostics AB from the Nycomed-owned ALTANA Pharma AG for $27 million. Sangtec develops and manufactures PCR based molecular diagnostics products. In 2008, Cepheid acquired Stretton Scientific, a privately held UK-based distributor of diagnostic and monitoring equipment including Cepheid’s SmartCycler, for $1.9 million.

Products. The GeneXpert system, a closed, self-contained, fully-integrated and automated system, producing accurate results in a timely manner with minimal risk of contamination. It can provide rapid results with superior test specificity and sensitivity over comparable systems. It was released in the Biothreat market in 2004 and has subsequently been proven to be an extremely robust and accurate platform technology with generating over 2.3 million anthrax test results.

The SmartCycler® System is a leading real-time PCR testing platform for research hospitals, university labs and government agencies. By automating the entire amplification and detection process, the SmartCycler™ System can deliver highly accurate and consistent test results from prepared biological samples in 30-40 min. With up to 96 independently programmable reaction sites, the SmartCycler can simultaneously run multiple experiments with different protocols and at different times. This eliminates complex advanced scheduling on larger, more costly systems as well as the need to transport samples to central facilities for analysis. The Cepheid Analyte Specific Reagent (ASR) program is comprised of a series of easy-to-use primer and probe sets in a convenient lyophilized bead format. Every ASR product is manufactured under cGMP for quality and is designed for rapid results on SmartCycler® System.

Cepheid’s GeneXpert® MRSA assay delivers rapid, fully automated real-time PCR results for infectious disease research laboratories 24 h a day. Xpert GBS™ Test for Group B Streptococcus, which runs on the GeneXpert® System, is approved by the FDA in the US.

In January 2011, Cepheid introduced Xpert Flu as CE IVD marked test in Europe. Xpert EV test, which runs on the GeneXpert System, is approved for the presumptive qualitative detection of enterovirus RNA in CSF for diagnosis of enterovirus infection in patients with a clinical suspicion of meningitis.

- 206 -

Page 209: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cepheid's molecular diagnostic test for Clostridium difficile is a European CE IVD Mark product under the European Directive on In Vitro Diagnostic Medical Devices. The PCR-based test runs on the company’s GeneXpert System, and it detects and identifies common strains of the C. difficile infection, including the virulent Type 027 strain.

Xpert MTB/RIF test for rapid detection of M. tuberculosis and rifampin resistance is CE-IVD marked and is expected to become available in the US in 2012-2013.

In November 2010, Cepheid was developing broad-range blood culture bacterial ID test for GeneXpert System. The assay, which is based on melt curve analysis, can currently detect and discriminate between nearly 40 important clinical bacterial species, and may eventually be able to test for more than 100 such species.

Biothreat products. The Cepheid® GeneXpert 3-Agent Biothreat Assay is designed for the surveillance of the etiologic agents of anthrax, plague and rabbit fever (tularemia) in environmental samples. Northrop Grumman incorporated GeneXpert® technology into its high volume Biohazard Detection System for screening mail at US Postal Service (USPS) facilities. The Cepheid GeneXpert module identifies the presence of anthrax from air samples.

miRNA research program. Cepheid has combined its expertise in ncRNA and bioinformatics, creating the first annotated database of the non-coding part of the human genome. Its R&D pipeline is focused on the systematic high-throughput identification and validation of miRNA sequences present in the human genome, the identification of their potential targets and their regulatory mechanism in pathological cells compared to normal ones. The miRNA identified in this way will become potential biomarkers for prognosis or diagnosis and/or a new class of therapeutic targets.

Collaborations/agreements. Cepheid has distribution rights to diagnostic assays of GenOhm’s for Group B Streptococcus, methicillin-resistant S. aureus, and vancomycin-resistant enterococcus, that have been configured for use with its Smart Cycler System.

In 2004. Cepheid and Life Technologies signed a license agreement for real-time thermal cycler instruments for research, diagnostics and other applications.

In 2005, Cepheid licensed DxS' real-time PCR for use in the human IVD with applications in SmartCycler and GeneXpert systems.

In 2006, Cepheid started collaboration with the Foundation for Innovative Diagnostics to develop a rapid test to detect M. tuberculosis in sputum and determine drug resistance.

In 2007, Cepheid and Idaho Technology Inc entered into a settlement and cross-license agreement to resolve a dispute related to IP of both companies in rapid PCR methods and instrumentation, the use of SYBR® Green I in PCR reactions, and certain methods of analysis of real-time PCR data. Each party paid up licenses under certain of the other's patents to continue to make and sell their respective lines of products. Cepheid paid $3.35 million to Idaho under the agreement. Other agreements in 2007 include the following:

Cepheid signed an agreement with bioMerieux for the development and commercialization of an innovative line of assays for sepsis on the GeneXpert platform. The products include both bacterial and fungal identification assays as well a series of genetic markers for antibiotic resistance. Cepheid will

- 207 -

Page 210: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

manufacture, and bioMerieux will distribute the assays worldwide. Cepheid will continue to complete development, manufacture and market the MRSA products.

An agreement with Instrumentation Laboratory (IL) to develop diagnostics for hemostasis applications based on its GeneXpert technology. IL will market them as part of its panel of hemostasis diagnostic assays. The first Xpert HemosIL tests will be for detection of Factor II and Factor V mutations.

Cepheid licensed a family of HPV patents from Quantovir to develop a rapid and accurate PCR-based diagnostic test on its GeneXpert system for measuring HPV viral load that will predict a woman’s risk for developing cervical cancer.

On 8 October 2010, Cepheid started partnership with Novartis to commercialize its Xpert BCR-ABL test for chronic myelogenous leukemia based on GeneXpert system. It is CE marked and has been available for sale outside the US since 2006. The deal would accelerate efforts to get clearance from the FDA. Novartis will fund clinical studies and other development costs. Cepheid will receive an upfront payment of $5 million and milestone payments of $3 million over the next 12 months. Upon commercial release of the test in the US, Novartis would have exclusive rights to distribute the test worldwide.

- 208 -

Page 211: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cezanne

280, allée Graham BellParc Scientifique Georges Besse30035 Nimes cedex 1, FranceWeb site: http://www.cezanne.fr/Tel: + 33-4-66 36 52 00Fax: + 33-4-66 36 52 75Email: [email protected]: Emmanuel Bois ([email protected])

Overview. Cezanne, a diagnostic company, has all the necessary skills for an integrated medical system management including a unique panel of technical skills in the fields of biology, biochemistry, proteomics, electronics, robotics and computer science. The company has been spending a consideration portion of its financial turnover on R & D.

Technology/products. Cezanne focuses on diagnosis of cancer and sepsis as well as prenatal diagnostics. The company is developing innovative markers that complete its specialized product ranges. Cezanne has a long background of instrument innovation, which was proved on the KRYPTOR® instrument. The features of this system are:

First true-homogeneous immuno-assay system.

First modem-serviceable instrument.

First system integrating a proof of quality for sampling operation (patented).

Only system to propose an instant automated dilution process, which guarantees the appropriate dilution factor.

- 209 -

Page 212: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

China Medical Technologies Inc

24 Yong Chang North RoadBeijing Economic-Technological Development AreaBeijing 100176, People's Republic of ChinaWeb site: http://www.chinameditech.com/Tel: +86 10 6530 8833Fax: +86 10 6530 9733Email: [email protected] and CEO: Xiaodong Wu

Overview. China Medical Technologies Inc (CMT) is a medical device company that develops, manufactures and markets advanced IVD products using Enhanced Chemiluminescence (ECLIA), FISH and SPR technologies to detect diseases. ECLIA is operated through its wholly-owned subsidiary Beijing Yuande BioMedical Engineering Co Ltd in China. CMT was awarded ISO 9001 certification and ISO 13485:2003 certification in 2006. It manufactures both the equipment and reagents that detect and monitor various diseases by analyzing blood in the laboratory. FISH and SPR are operated through its other wholly-owned subsidiary, Beijing GP Medical Technologies Ltd and FISH-related products were launched in 2007. FISH products will complement ECLIA diagnostic products by providing proprietary tests for the diagnosis of prenatal and postnatal disorders as well as various cancers that arise from genetic mutations. CMT's dedicated research and development team is committed to the continuous development of innovative products, both internally and through collaboration with leading research institutions such as the China Academy of Science and Peking University. With an established nationwide sales and customer service network, it is well-positioned to take advantage of opportunities in both domestic and overseas markets.

Technologies/products. IVD is based on ECLIA, FISH and SPR. HPV-DNA biosensor chip were acquired in 2008. The launch of the HPV Chip is expected to address the clinical needs for HPV testing in relation to the diagnosis of cervical cancer and sexually transmitted disorder. HPV Chip will complement FISH probes for diagnosis as well as monitoring treatment of cervical cancer.

On 10 Nov 2010, CMT received regulatory approval from Chinese authorities to market its real-time PCR-based EGFR assay as an aid to making decisions for treatment of lung cancer. The assay can detect the 28 most common somatic mutations in the EGFR gene of patients with NSCLC and provides a qualitative assessment of mutation status. It is CMT's first PCR-based assay for companion diagnostic applications and is the first PCR-based EGFR assay approved by the State Food and Drug Administration of China.

- 210 -

Page 213: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Chronix Biomedical

5941 Optical Court, Suite 203ESan Jose, CA 95138, USAWeb site: http://www.chronixbiomedical.com/Tel: 408-960-2306CEO: Howard B. Urnovitz PhD

Overview. Chronix Biomedical utilizes its unique capabilities to determine the DNA signatures associated with specific cancers that can be used to identify persons with undiagnosed cancer, and to track changes in the cancer status during the course of treatment. This technology will enable Chronix to develop dozens of new cancer tests based on the company’s pioneering breakthrough approach to serum DNA analysis. Tests currently available on the market have weak sensitivity and specificity and therefore have limited clinical utility. Chronix is initially focusing on cancer, but its platform can be easily adapted for any disease. It is expected the platform will have very broad applications.

Technology. Chronix technology detects trace amounts of unique DNA sequences in the blood that are associated not only with specific cancers but are also patient specific. Chronix is now creating blood tests that can be used routinely to detect and identify cancer at early stage and the dynamic changes within the disease process that impact treatment, such as disease recurrence or response to medication. Blood tests for breast and prostate cancers are in development that will have high sensitivity and specificity.

In June 2010, Chronix launched an investigational-use-only” laboratory-based Apoptotic DNA Blood Test, which analyzes apoptotic DNA from dead cells to identify and track ongoing changes associated with specific cancers and other chronic diseases. It can accurately detect disease much sooner than other tests and also provides information that may enable selection of the best treatment for each patient. The new service will be initially offered to cancer and pharmaceutical researchers. On 18 August 2010, Chronix acquired a SOLiD4 sequencer, which will enable it to screen and analyze 25 times more genomes each month far more cost-effectively than was possible with older methods,

Chronix has filed a patent application for a serum-based test to detect bovine spongiform encephalopathy (BSE). The application describes unique genetic material found in cows affected with BSE but not in healthy ones examined. A major advantage of this discovery is that animals need not be sacrificed to be tested as is the case with current methods for BSE detection. The post-mortem tests look for prion an abnormal protein that is associated with the disease. The BSE blood test is considered a surrogate biomarker test since it detects blood RNA, not prion proteins. The Chronix BSE blood test is anticipated to be the first licensed test that can be performed on living animals.

Collaborations. As of April 2010, Chronix and the University of Calgary in Canada have partnered to develop a commercial version of a serum DNA-based test for early detection of BSE. Other collaborators include US Department of Agriculture, University of Göttingen, International Myeloma Foundation, and, South Dakota State University.

- 211 -

Page 214: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 212 -

Page 215: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Clinical Data Inc

One Gateway Center, Suite 551Newton, MA 02458 USA Web site: http://www.clda.com/Tel: (617) 527-9933E-mail: [email protected] & CEO: Drew Fromkin

Overview. Clinical Data Inc (CDI), provides a complete range of products and management services for the physician’s office laboratory market and offers blood analysis instrumentation and diagnostic assays to clinics/ hospitals throughout the world.

In 2005, CDI acquired Genaissance Pharmaceuticals, a personalized medicine company, for approximately $56 million. The combined company will be profit driven, operate domestically and internationally, and will offer a wide range of reagents, instruments and molecular testing services directed at the physician office and hospital markets. The Company’s DNA and pharmacogenomics services will continue to be marketed to the pharmaceutical, biotechnology and agricultural marketplaces. In 2005, CDI acquired Icoria, a biomarker discovers company. In 2006, CDI consolidated its North Carolina based genomic labs and offices it acquired as part of the Genaissance and Icoria acquisitions. The PGX Health division includes assets from Genaissance and is developing CNS, cardiovascular, and oncology tests. Vital Diagnostics, derived from the operations of CDI, Vital, and Electa Labs, is geared toward IVD services for customers in 100 countries. In 2007, CDI acquired Epidauros Biotechnologies AG for €8.75 million ($11.84 million). In April 2009, CCI sold its Cogenics division to Beckman Coulter for $17 million.

Products and services. CDI provides various technical products and consulting services. It offers blood analysis instrumentation and diagnostic reagents for use in clinics and hospitals. The product lines of the company include clinical chemistry and hematology. The clinical chemistry products quantify substances of diagnostic interest in patient blood, urine, and other body fluids. The company’s products are primarily sold through a network of distributors, as well as through dealers and also directly to the end customer. CDI has now become a worldwide leader in commercializing pharmacogenomics services and products to guide drug utilization.

In 2006, CDI’s Vital Diagnostics division launched the Lumy® Microplate Luminometer and Turbi-Quick POC immunoanalyzer to the international market via OEM and distribution. The Lumy is highly flexible and powerful instrument for all bioluminescense and chemiluminescense applications. It is controlled by an easy to use and innovative Windows-based software package. Lumy provides an economical solution for glow-only luminescence testing and the small footprint makes it the ideal solution for small laboratories. The Turbi-Quick™ is the company's new benchtop analyzer for the rapid quantification of immunoproteins in physicians’ offices and small laboratories. It is fast, easy to use and provides low cost per test with no calibration necessary. The calibration curve is stored on a smart card provided with the kit. A wide range of tests are available including specific proteins, HbA1c, ferritin, and a coagulation panel.

On 13 March 2008, CDI initiated the second of its two pivotal trials of Vilazodone for the treatment of depression, which will also further evaluate genetic biomarkers of response to Vilazodone. This may lead to the

- 213 -

Page 216: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

development of a pharmacogenetic test that would help determine the likelihood of a patient’s positive response to the drug.

Collaborations. In October 2007, PGxHealth™ division of CDI signed an agreement with the Victorian Clinical Genetics Services at Murdoch Childrens Research Institute, for the provision of genetic testing for familial long QT syndrome in Australia.

- 214 -

Page 217: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CombiMatrix Molecular Diagnostics

310 Goddard, Suite 150Irvine, CA 92618, USAWeb site: http://www.cmdiagnostics.com/Tel: 949 753 0624Fax: 949 753 1504CEO: Mansoor Mohammed PhD

Overview. CombiMatrix Molecular Diagnostics (CMDX is a subsidiary of Combimatrix Corporation, which became an independent public company in 2007. CMDX is dedicated to the realization of personalized medicine. It develops novel, high value gene-based clinical laboratory tests, with the goal of improving patient outcomes and enhancing the quality of life. It works in collaboration with leading universities and research centers, combining their strong scientific skills with its unique technical expertise in a variety of clinical methods. Its laboratory has received CLIA certification.

Technology/ services. CMDX is focused on the development and commercialization of DNA-based diagnostic products and services using gene expression profiling, comparative genomic hybridization (CGH), and SNP technologies. Business units are:

1. Diagnostic Testing Services . The molecular diagnostics clinical laboratory offers genomic testing services in the area of cancer diagnostics.

2. Clinical Trials . To help realize the potential of the personalized medicine, CMDX is partnering with pharmaceutical companies to identify patients who would receive optimal benefit from currently available drugs, as well as those under development.

3. Manufacturing. CMDX sells custom CGH microarrays and reagents to researchers.

CMDX’ Constitutional Genetic Array Test can identify over 50 common genetic disorders.

HemeScan BAC-aCGH-based tests for tumor genomic content, is a strong predictor of outcome in acute lymphoblastic leukemia. It is available through CMDX' Innovative Technical Only Program for reference laboratories.

HerScan™ is an array based test that is designed to provide an accurate and objective enumeration of the Her2 gene locus against the template of the whole genome and facilitates subtyping of breast cancers into the five different subtypes that are cytogenetically characteristic: Luminal A, Luminal B, Her2, Basal-Like and Complex unclassified. Thus a single test can provide insights into the genomic architecture, and hence etiology and prognosis of the breast cancer, which may be combined with anatomic pathology to select the most appropriate therapeutic regimes for an individual patient.

Collaborations relevant to molecular diagnostics. In 2005. CMDX and VWR International signed worldwide distribution agreement for DNA microarrays. CMDX started collaboration with Novavax to develop a technique for in-process monitoring of production of avian flu vaccine. The technique will improve the process of synthetic vaccine production by tracking the genetic fidelity of the genes encoding the vaccine. Cell Sciences agreed to market and sell CMDX's CustomArrays and CatalogArrays, including the Influenza Research Microarray in Singapore, Malaysia, Thailand, Philippines, Hong Kong, and Indonesia. CMDX and Univesity of

- 215 -

Page 218: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

California (Los Angeles) started to use CMDX’s microarray technology to create a diagnostic for malignant melanoma. In 2006, Alpha Innotech agreed to integrate its AlphaScan laser scanner with CMD’s CGH arrays for neonatal screening and biomarker discovery. In 2007, CMDX started to create an array-based test using biomarkers linked to autism that were developed by The Center for Applied Genomics (TCAG). It used the biomarkers through a partnership with TCAG in a constitutional genetic array test can be used to screen for autism and other genetic disorders. In 2008, CombiMatrix and Clarient Inc established a strategic partnership to market and sell a novel genomics-based cancer test called HemeScan™, a comprehensive test related to the treatment and care of chronic lymphatic leukemia.

- 216 -

Page 219: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Commonwealth Biotechnologies Inc

601 Biotech Drive Richmond, VA 23235, USA Web site: http://www.cbi-biotech.com/Tel: (804) 648-3820 Fax: (804) 648-2641 E-mail: [email protected] and CEO: Robert B. Harris, PhDConact: Charles Waldridge, Senior Vice President, Strategic Business Initiatives

Overview. Commonwealth Biotechnologies Inc. (CBI) is a comprehensive Contract Research Organization offering cutting-edge expertise and a complete array of the most current analytical and synthetic chemistries and biophysical technologies. A broad technology base coupled with the assignment of an experienced senior scientist to oversee every project allows CBI to offer true customized project design and management to support the customer's specific needs. CBI's fully automated instrumentation offers rapid turnaround time and accurate results. CBI has an experienced staff of highly skilled molecular biologists, geneticists, biochemists, and chemists. CBI provides comprehensive research and development services to more than 2,800 private, government, and academic customers in the global biotechnology industry.

Services. The company has a DNA reference laboratory that specializes in forensic genetic identity, molecular diagnostics and paternity testing, laboratory accreditations by the American Association for Blood Banking, CLIA and the National Forensic Science Technology Council. The following services are relevant to molecular diagnostics:

Human herpes virus (HHV) analysis. Through a unique bioinformatics approach, CBI scientists have developed PCR primers and fluorogenic hybridization probes (patent pending), which allow specific assay for HHV 4, 5, 6, 6a, 6b, and 7 and 8. The HHV 6 assay will screen for both HHV 6a and 6b and the individual assays can be used to identify which strain variant is present in a test sample. Sensitivity of the TaqMan assay platform has been established down to as few as 10 copies of viral DNA, and in some instances, down to single copies of viral DNA. In a high throughput format, using our TaqMan assay platform, CBI is able to assay serum samples rapidly and quantitate for viral DNA concentrations present in each sample

Genetic testing services. STR-based DNA identity/paternity testing

Identification services for criminology. STR-based criminal identification and analyses of samples for entry into CODIS (Combined DNA Index System) database in the US.

Anthrax testing service. CBI provides a full service capability to provide microbial pathogen testing at its laboratory or on site. Following the protocols developed by the CDC, APHL, and the Laboratory Response Network, it offers testing services for suspect samples or environmental monitoring. All samples which test positive at CBI are forwarded to the appropriate public health laboratories, appropriate government agencies or law enforcement laboratories for confirmation.

Proteomics. CBI provides protein purification, industry leading proteomics services solutions, and mass spectrometry proteomics.

- 217 -

Page 220: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2004, CBI and Fisher Scientific LLC signed an agreement under which CBI will offer its premier platform technology services through Fisher. In addition, Fisher will distribute CBI products including AccuTrac®, its patented reagent used in DNA sequencing. The relationship will focus primarily on providing project-based research services to Fisher customers.

- 218 -

Page 221: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Complete Genomics Inc

2071 Stierlin CourtMountain View, CA 94043, USAWeb site: http://www.completegenomicsinc.com/Tel: (650) 943-2800Email: [email protected]: Clifford ReidContact: Jennifer Turcotte, VP Marketing ([email protected])

Overview. Complete Genomics Inc (CGI) was established in 2006 to provide high-throughput, affordable, complete genome sequencing of human populations. It has raised $46 million in venture capital so far, including an investment from Genentech. CGI has already sequenced its first genome, and is planning on sequencing 1,000 in 2009, and 20,000 in 2010. CGI is currently building the world’s largest human genome sequencing center in California and plans to open sequencing centers worldwide.

Technology. CGI has developed a third-generation sequencing platform capable of generating genomic data at an unprecedented level of throughput and low cost. It will enable its customers to characterize the full spectrum of genetic variants in large numbers of human subjects. At the heart of CGI’s sequencing platform is technological advances in libraries, arrays, sequencing assay, instruments and software, integrated into a comprehensive sequencing system specifically designed for large-scale studies of complete human genomes. CGI is also developing innovative analysis tools to help its customers interpret their data, thus empowering them to make discoveries that would not have been possible before. CGI’s technology, provided as a service, opens the door to complete human genome resequencing and genome subsetting, such as candidate regions or exon sequencing. It will also allow structural variation and CNV analysis.

By enabling cost-effective comparisons of genomes from thousands of individuals, CGI will herald a new era in genomic medicine leading to more accurate molecular diagnostics for cancer and other diseases, as well as improved drugs and personalized therapies.

Collaborations. In 2007, BioNanomatrix and CGI formed a joint venture that shared a 5-year $8.8 million grant from the US National Institute of Standards and Technology (NIST) to develop technology that will be able to sequence a human genome in 8 h for less than $100 that would make it possible to sequence everyone's genome. The proposed sequencing platform will use CGI’s sequencing chemistry and BioNanomatrix’ nanofluidic technology. The companies plan to adapt DNA sequencing chemistry with linearized nanoscale DNA imaging to create a system that can read DNA sequences longer than 100,000 bases quickly and with accuracy exceeding the current industry standard.

In October 2008, CGI and the Institute for Systems Biology (ISB) started collaboration to conduct population-wide human genome studies. In phase I of the project, CGI will sequence five genomes from samples provided by ISB. Once proof-of-concept has been demonstrated, CGI will proceed to sequence the genomes of 100 individuals in 2009 and 2,000 individuals in 2010.

- 219 -

Page 222: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CompuCyte Corporation

12 Emily StreetCambridge, MA 02139, USAWeb site: http://www.compucyte.com/Tel: (617) 492-1300Fax: (617) 492-1301CEO: Elena Holden, MD ([email protected])Director, Communications & Administration, Kate Hilburn ([email protected])

Overview. CompuCyte Corporation, founded in 1992, develops, manufactures, and markets advanced cytology analyzers for biomedical research and near-patient point-of-care diagnostics. CompuCyte's first product, the LSC (Laser Scanning Cytometer), performs biochemical analyses of cells in virtually every type of cellular sample. The proprietary core technology is a fundamental advance in cellular analysis. Until now, the direct analysis of tissue specimens, simultaneous viewing of actual cells under analysis, and novel kinetic measurements were not possible. They are routine and practical with the LSC.

Technologies/products. CompuCyte's patented LSC (Laser Scanning Cytometry) measures 4-color fluorescence and light scatter and records the position and time of measurement of each cell. It is significantly faster than an image analyzer, shows better detail than a flow cytometer, and excels at applications like cell cycle analysis, cell surface markers and fluorescence in situ hybridization (FISH). A new class of cell-based assays, combine LSC technology, solid-phase cell separation techniques, and liquid handling robotics. The OnCyte system uses disposable sample cartridges containing all of the reagents and reaction wells necessary for processing whole blood specimens through a variety of fluorescent, antibody-based assays. In addition, the cartridges contain all of the waste generated in the process, including pipette tips. Various applications of LSC technology include:

Automatic counting of FISH probe spots with the simultaneous measurement of cellular DNA.

To detect live and dead bacteria, estimate cell numbers, and calculate live/dead ratios. The methods are easier and more accurate than traditional, manual counts.

For the assessment of adenoviral infection and p53 protein expression during analysis of adenoviral vectors containing and expressing the wild-type protein encoded by the p53 gene.

For single-cell gel electrophoresis (SCGE) or comet assay, a very sensitive method for measuring DNA strand breaks in individual cells. The comet assay is widely used in environmental toxicology, cancer research, and radiation biology to assess DNA damage.

The Monocyte-Platelet Complex (MPC) test, which measures the readiness of platelets to participate in clotting, which is a contributing factor to heart attack. This is the basis of a test for early detection of acute myocardial infarction.

In 2003, CompuCyte introduced the iCys™ Research Imaging Cytometer, the latest advance in its line of imaging cytometers based on the Company’s patented LSC laser scanning cytometry technology.

- 220 -

Page 223: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations relevant to molecular diagnostics. An agreement in 2005 allows Asterand (Detroit, MI), a supplier of human tissue analysis services, to include CompuCyte’s quantitative cytometric analysis of tissues and tissue microarrays as a part of its current research molecular pathology services.

- 221 -

Page 224: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Compugen Ltd

72 Pinchas Rosen St.Tel Aviv, Israel 69512Web site: http://www.cgen.com/Tel.: +972-3-765-8585Fax: +972-3-765-8555 E-mail: [email protected] & Chief Executive Officer: Alex Kotzer

Overview. Compugen, a genomics-based drug and diagnostic discovery company, increases the probability of successful development of novel drug and diagnostic products by incorporating bioinformatics. This unique capability results in powerful predictive models and discovery engines, which are both advancing the understanding of important biological phenomena and enabling the discovery of numerous potential therapeutic products and diagnostic markers. Compugen has been publicly traded on Nasdaq and the Tel Aviv Stock Exchange since 2002. It has corporate offices in Israel, with a wholly owned subsidiary headquartered in the US.

Technology. The following products are relevant to molecular diagnostics:

LEADS. Compugen's discovery engines incorporate its LEADS technology, which provide it with a better understandings of key biological phenomena, enabling the identification of novel mRNAs and proteins with desired characteristics, including novel splice variants of known genes with documented diagnostic applications.

Z3. This is an automated system for analyzing proteins as they appear on 2D gels (http://www.2dgels.com). This marks a major advance in protein analysis, which until now has been tedious and time consuming, relying on manual comparisons. Specifically Z3 makes analysis possible on a large-scale and accelerates 2-D analysis projects from months to days. The new version's upgraded features include the capability to create one image from several gels of the same sample, enabling a more accurate and robust analysis. Compugen has developed capabilities in signature analysis and connection to mass spectrometry systems.

DNA chips for gene expression analysis. Compugen’s structured chip design methodology uses expressed sequence tag (EST) data as the sources of information for the process of chip design. Redundancy is avoided since each gene is represented by as few chip probes as possible.

Products. Prostate-specific antigen (PSA) and a closely related kallikrein 2 protein, which are encoded by kallikrein genes KLK3 and KLK2 respectively, are the premier markers for screening, diagnosis, monitoring, and prognosis of prostate cancer.

Collaborations relevant to molecular diagnostics. Among Compugen’s customers and partners are leading pharmaceutical and diagnostic companies, such as Abbott Laboratories, Novartis, and Pfizer. In 2002, Compugen and DiagnoCure Inc announced an agreement for the co-development and commercialization of molecular diagnostic tests for the detection of certain epithelial cancers including lung cancer. In the same year, Compugen and diaDexus signed an agreement designed to expand and accelerate diaDexus' ability to identify and validate diagnostic markers and therapeutic targets based on Compugen's advanced computational biology analysis of genomic and proteomic databases.

- 222 -

Page 225: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Correlogic Systems Inc

1405 Research Boulevard, Suite 220Rockville, MD 20850, USA Web site: http://www.correlogic.comTel: 301 795-1700Fax: 301 610-5200President and CEO: Peter J. Levine ([email protected])

Overview. Correlogic Systems Inc is a bioinformatics company that has developed patent-pending pattern recognition and pattern discovery software with a wide variety of applications for biomarker discovery, disease detection, and new drug discovery processes. Its software’s first application has been in the field of proteomics with a focus on the early detection of prostate, ovarian, and other cancers (see Chapter 4). On 23 July 2010, Correlogic filed for Chapter 11 reorganization in the hopes of securing funding for its troubled OvaCheck test and eventually obtaining clearance from the FDA. Correlogic has asked the court to allow it to "reject" licensing agreements with Quest Diagnostics and the Lab Corporation of America.

Technology relevant to molecular diagnostics. Correlogic’s core technology is its proprietary pattern recognition and pattern discovery software, the Knowledge Discovery Engine™ (KDE™). The KDE™ functions under multiple operating systems, and can easily be installed in existing database management systems, or operate as a stand-alone program. For analysis of complex biological data, KDE™ first generates a set of candidate biomarkers. Each set of biomarkers is tested for its ability to distinguish diseased samples from healthy ones. The algorithm iteratively processes a large number (15,000 – 20,000+) of the candidate biomarkers until it finds a set that optimally segments diseased from healthy samples. The KDE™ is fundamentally probabilistic – it works by randomly selecting candidate biomarkers and then repeatedly refining the population of selections. Proteome Quest™ is research application software derived from the KDE™. It is designed specifically for the creation of computational biological state models.

In 2008, the USPTO awarded the company two new patents, relating to quality assurance methods for analysis of blood samples in diagnostic assays. Patent No. 7,333,895 covers various methods to assure that the results of a biological assay are reliable. Patent No. 7,333,896 covers other quality control methods including a determination as to whether blood serum samples have been handled in a manner acceptable for analysis by mass spectrometry; this patent also covers methods to certify that biochips used for analytical purposes meet appropriate quality control standards. A third QA/QC patent has been allowed by the PTO.

Product/services. The KDE™ and related products can be licensed by manufacturers of protein separation and sequencing equipment, manufacturers of diagnostic tools that generate large volumes of data, other bioinformatic service companies and pharmaceutical companies. The potential for even more significant licensing opportunities exists with its patent-pending methodology for identifying specific disease protein patterns.

OvaCheck is a blood test for the early detection of epithelial ovarian cancer. It uses cutting edge pattern recognition technology to detect ovarian cancer at all stages. On 26 June 2008, Correlogic was planning to file for FDA approval of OvaCheck, which will be offered to physicians initially to use in assessing women at high risk of ovarian cancer. It is not a definitive diagnostic, but rather an additional tool, in conjunction with existing tests.

- 223 -

Page 226: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2004, Correlogic entered into an agreement with Advion BioSciences, a leading provider of mass spectrometry services and products, to explore the use of Advion's NanoMate System as a component of Correlogic's upcoming ovarian cancer clinical trials.

The OvaCheck test will be available to physicians in the US through Laboratory Corporation of America and Quest Diagnostics.

- 224 -

Page 227: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cybergenetics Co

160 North Craig Street, Suite 210Pittsburgh, PA 15213, USAWeb site: http://www.cybgen.com/Tel: (412) 683-3004Fax: (412) 683-3005 E-mail: [email protected]: Dr. Mark W. Perlin, CEO ([email protected])

Overview. Cybergenetics is a bioinformatics company that develops unique computational approaches for genomics research. The Pittsburgh-based company was founded in 1994 to provide effective software systems that accelerate and simplify genetic discovery.

Technology. TrueAllele is a software technology that fully automates the scoring of microsatellite genetic data. TrueAllele performs automated allele calling on DNA fragment data from automated fluorescent sequencers. The software automatically tracks lanes, and assesses the quality of every genotype it calls. TrueAllele uses stutter deconvolution to mathematically remove PCR stutter ("shadow bands") from the data.

Applications. In 2000, Cybergenetics was awarded a research contract for validating its automated forensic DNA analysis technology by the research arm of the U.S. Department of Justice. This new DNA analysis project will help reduce crime in America. Collaborating on this project are two leading DNA database laboratories: Florida and Virginia. These state labs use different sequencer technologies (gel, capillary), DNA panels, and computer platforms to process their DNA samples. Cybergenetics will assess TrueAllele's cross-platform success on their diverse data sets by automatically reanalyzing 30,000 samples. The Florida Department of Law Enforcement's Convicted Offender DNA Database has been introducing automation and state-of-the-art equipment to the rapid analysis of offender samples since 1996. As the demands for more timely and comprehensive testing of crime scene evidence and databank samples increase, the forensic science community will need to increase capacities and throughput correspondingly without sacrificing quality. Novel approaches, such as TrueAllele, to expediting the time-consuming post-analysis interpretation phase inherent in forensic work, especially with mixtures, offer significant potential to assist in increasing case throughput.

The British Forensic Science Service (FSS) has built the UK national DNA database, which currently includes over 800,000 convicted offender profiles. TrueAllele was selected by the FSS to increase the UK DNA databasing capacity.

- 225 -

Page 228: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cytocell Technologies Ltd

6-7 TechnoparkNewmarket RoadCambridge CB5 8PB, UKWeb site: http://www.cytocell.co.uk/Tel: +44(0) 1223 467064Fax: +44(0) 1223 360732E-mail: [email protected]: Dr Brian PageManaging Director: Dr Martin Lawrie ([email protected])

Overview. Cytocell is a molecular genetics company that was established near Oxford in 1991. Later, Cytocell has become part of Cytomyx Holdings Plc. The company currently sells a wide range of kits using FISH, for the detection of chromosome abnormalities to clinical and research laboratories worldwide through its network of distributors. Cytocell aims to be the choice provider of innovative screening solutions for human genetic analysis. In 2003, the FISH related business of Cytocell Limited was acquired by a new company which is part of Cytomyx Holdings Plc. The new company will retain the Cytocell brand name and will continue to provide all of the FISH related products that where previously available. In 2005, Cytocell underwent a management buy-out from Cytomyx Holdings. The acquisition includes all intellectual property covering Cytocell's technology and registered designs including the future product pipeline.

Products relevant to molecular diagnostics. Cytocells' products are focused on the use of innovative DNA technology in the areas of molecular cytogenetics and molecular genetics. DNA FISH probes are the main product range currently available from Cytocell. These probes can be divided up into Chromoprobe DNA probes utilizing the Company's unique patented glass system and Aquarius DNA probes, the latest range of liquid DNA FISH probes. The newest version of the Multiprobe System incorporates a range of exon-specific probes from the dystrophin gene. The FISH approach may be used to identify carrier females of Duchenne Muscular Dystrophy.

In 2005, Cytocell launched a comprehensive range of Whole Chromosome Painting probes available in Aquarius® liquid format. These probes consist of libraries of DNA sequences derived from flow-sorted chromosomes with sequences stretching over the entire length of the chromosome and provide superior coverage of each human chromosome. Applications include analysis of chromosome partners involved in translocations; identification of the chromosome of origin of marker chromosomes; confirmation of results obtained from M-FISH and SKY testing and may be of particular interest to those studying mutagenesis of human chromosomes as a result of exposure to genotoxic agents. The probes are designed for use in FISH analysis of human metaphase chromosomes from cultured peripheral blood cells.

In 2006, Cytocell introduced a unique screening system for ALL and CLL using its proprietary Chromoprobe slide technology - 8 probes on a single FISH slide.

Research and Development. Cytocell's R&D effort is now concentrated on developing its FISH Probes business. The Company has an active development program to ensure a steady stream of new DNA FISH probes are launched every year. Again the focus of this group is to develop new FISH probes that offer innovative solutions for cytogeneticists world wide. The company also has a number of development programs underway in conjunction with the regional genetics laboratory in Manchester to develop a

- 226 -

Page 229: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

technology called ExonLinker which will assist in the detection of mutations in cancer genes.

Collaborations. In April 2007, Cytocell entered into a partnership with Labtech International Ltd for promotion of Cytocell’s DNA diagnostic FISH kits throughout the UK.

- 227 -

Page 230: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CytoCore Inc

414 N. Orleans St, Suite 510Chicago, IL 60610, USAWeb site: http://www.cytocoreinc.com/ Tel: (312) 222-9550E-mail: [email protected] and CFO: Robert McCullough, Jr

Overview. CytoCore Inc (formerly Molecular Diagnostics Inc) develops cost-effective cancer screening systems which can be utilized at the point of care or in a laboratory, to assist in the early detection of cervical, gastrointestinal and other cancers. The InPath System is being developed to provide medical practitioners with a highly accurate, low-cost, point-of-care cervical cancer screening system. Other products include SAMBA Telemedicine software used for medical image processing, database and multimedia case management, telepathology and teleradiology.

Technology/products relevant to molecular diagnostics. In-Cell HPV assay is currently available from CytoCore as an Analyte Specific Reagent for use in research and inclusion in a laboratory's 'home brew' self- developed testing panels.

InPath System is a revolutionary biomolecular-based technology that provides cost effectiveness, increased accuracy, better efficacy and more patient comfort in screening for cervical dysplasia and cervical cancer. The InPath System uses a specific combination of protein-based markers that illuminate and map abnormal cells.

The AcCell microscopy platform is a fully integrated automated microscopy system for capturing high resolution digital microscopic tissue images suitable for quantitative histology feature analysis. CytoCore is basing its InPath Slide Based Test system on the AcCell platform, albeit for a separate application. Clinical trials of the InPath Slide Based Test system with the company's proprietary Cocktail-CVX and In-Cell HPV assays have demonstrated clear clinical benefits for the detection of E6 & E7 oncogenes as a "next generation" test for cervical cancer precursors.

In 2005, CytoCore and STMicroelectronics introduced a new lab-on-chip application for DNA-based detection of sepsis-causing bacteria, using a diagnostic panel from CytoCore that runs on ST’s In-Check platform. Providing faster and more reliable results at a fraction of cost and complexity of conventional laboratory systems, the miniaturized compact solution enables early detection of disease, resulting in better treatment choices for patients and lower overall costs to the healthcare systems.

On 5 February 2008, CytoCore’s 510(k) submission to sell SOftPAP™ cervical cell collector, which collects more comprehensive and complete cervical cell specimens for Pap testing, was approved.

Collaborations. The following collaborations started in 2002:

Ventana signed a letter of intent to acquire a license for CytoCore' In-Cell HPV assay, a bio-molecular assay for the detection of E6 and E7 proteins, to be performed and fully automated on the InPath Slide Based Test platform. In addition, Ventana will receive a license for the In-Cell HPV assay for use on Ventana's BenchMark Staining Platforms.

- 228 -

Page 231: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

CytoCore expanded its licensing agreement with Invirion Inc. Previously it was for Invirion's novel intra-cellular E6 & E7 detection of HPV based on the use of fluorescence. It will now also include additional non-fluorescence based applications.

- 229 -

Page 232: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Daiichi Pure Chemicals

530 Chokeiji, Takaoka Toyama 933-8511, JapanWeb site: http://www.daiichi-fcj.co.jp/Tel: +81 (766) 21-3456Fax: +81 (766) 21-3792E-mail: [email protected]: Syunya Tamai

Overview. Daiichi Pure Chemicals, an affiliate of Daiichi Pharmaceutical Co Ltd, was established in 1947. The Company develops, manufactures and markets various diagnostics products not only in Japan, but also all over the world through oversea partner companies. Daiichi has been in the business of genome diagnostics centered in infectious diseases. As pharmacogenomics related researches advance, Daiichi expects to enter into the business of genome diagnostics for personalized medicine and to expand its diagnostic business. Under such plan, Daiichi would like to launch the first genome diagnostic reagent in the cancer area in which side effects of anti-cancer drugs are always the problem and to find a new business opportunity in the future market of personalized medicine.

Products. Daiichi has several in vitro diagnostic products including monoclonal antibodies to matrix metalloproteinases for immunoblotting and immunohistochemistry and their EIA kits for determination of levels in blood, urine and body fluids. Daiichi is participating in joint studies with Japanese and foreign universities, institutes, some of which have already led us to success in the development of diagnostic kits. Kits are available for detection of disease markers in tumor metastases, rheumatoid arthritis, and vascular disorders

- 230 -

Page 233: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Dako A/S

Produktionsvej 42DK-2600 Glostrup, DenmarkWeb site: http://www.dako.com/Tel +45 44 85 95 00Fax +45 44 85 95 95E-mail: [email protected]: Patrik Dahlén

Overview. Dako A/S (formerly DakoCytomation) is a medical diagnostics company, which is focused on the understanding of pathomechanism, diagnosis, and monitoring of treatment of cancer in line with the concept of personalized medicine. The development of automated and integrated systems to enhance workflow in hospital laboratories is part of Dako’s strategy to improve today’s cancer diagnostics.

Technology/products. Those relevant to molecular diagnostics include the following:

HercepTest . This approved immunohistochemical test identifies patients with breast cancer whose tumor tissue overexpresses the HER2 protein. It aids in the assessment of breast cancer patients for whom treatment with Genentech's HERCEPTIN (trastuzumab) is being considered. Dako developed the HER2 FISH pharmDx™ Kit (not for sale in the US), a complete FISH assay that is designed to quantitatively determine interphase HER2/neu gene amplification. As complimentary assays, the HercepTest™ and the HER2 FISH pharmDx™ Kit represent a complete systems solution for HER2 evaluation. Together, they enable laboratories to test for HER2 more effectively. Front-line screening of breast carcinomas can be conducted using HercepTest™; with equivocal cases being directly reflexed to FISH for assessment of HER2/neu gene amplification.

TOP2A FISH pharmDx™ Kit. The dual probe FISH assay targets the TOP2A gene and provides a valuable tool for research surrounding the predictive value of TOP2A gene amplification or deletion. TOP2A gene may prove to be an indicator of susceptibility or resistance to anthracycline therapies for cancer. It was approved by the FDA on 15 Jan 08.

DAKO Telomere PNA Kit/FITC. This kit for flow cytometry provides a convenient method for measuring telomeric sequences in vertebrate interphase hematopoietic cells. Main application areas are in age-related diseases, cancer research and cytogenetics.

ImmunoCyt. This is approved for detection of bladder cancer recurrence. It is based on a patented combination of three antibodies labeled with fluorescent markers that bind to two antigens: a mucin glycoprotein and a CEA expressed by tumor cells in the bladder.

EGFR pharmDx™. This was approved in 2004 by the FDA as an aid in identifying colorectal cancer patients eligible for treatment with Erbitux™ (cetuximab).

CINtec™ p16INK4a Cytology Kit. The 2nd generation of the kit is launched for the detection of overexpression of the p16INK4a protein in cervical cytological specimens.

Eridan™. In 2006, Dako launched this innovative system to advance cancer diagnostics. Eridan replaces manual processing in hospital laboratories,

- 231 -

Page 234: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

freeing up personnel for other duties and raising the quality of the tests performed by offering continuous processing of patient specimens and flexible data management capabilities.

Collaborations relevant to molecular diagnostics. In 2001, Dako signed a strategic licensing and product development agreement with MTM Laboratories to gain worldwide rights to MTM's CINtec technology for cervical cancer screening. In 2001, Dako also made a significant equity investment in Aperio Technologies Inc and secured the exclusive rights to market Aperio’s ultra-fast digital ScanScope™ slide scanner for the analytical imaging of DAKO’s slide-based assay systems.

In 2003, BioStratum and Dako signed an agreement to develop an antibody-based diagnostic test aimed at invasive cancers. In the same year, Dako was granted exclusive worldwide rights from Corixa Corporation to two markers, P504S and P501S, in order to develop diagnostics and monitoring products for prostate cancer.

In 2004, Dako signed a license and a development agreement with Epitomics Inc commercial rights to rabbit MAbs currently developed by Epitomics for diagnostic use.

In 2005, Dako and ViroNovative BV entered into a licensing agreement for the development and sales of diagnostic products for the detection of human metapneumovirus (HMPV) that have been discovered in young children with respiratory tract infections who tested negative for known viruses. Dako will have a non-exclusive, non-transferable, royalty-bearing license to develop, manufacture and sell products worldwide relating to HMPV but the scope is limited to either direct immunofluorescence assay or a PNA technology-based assay.

In 2005, LightUp Technologies AB and Dako A/S announced the availability of further improved versions of LightUp Technologies’ already established ReSSQ® CMV and EBV Assays for the monitoring of CMV and EBV in clinical specimens.

In 2008, Dako signed a Supply and Distribution Agreement with General Data Company Inc, becoming a global provider of unique patient tissue sample identification and tracking system for anatomic pathology laboratories.

In 2008, Dako signed an agreement with Bristol-Myers Squibb to develop clinical diagnostics as companions to cancer therapeutics.

- 232 -

Page 235: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Danaher Corporation

2099 Pennsylvania Avenue, NWWashington, DC 20006, USAWeb site: http://www.danaher.com/Tel: (202) 828-0850Fax: (202) 828-0860President & CEO: H. Lawrence Culp Jr

Overview. Danaher Corporation’s business activities encompass four reporting segments and are comprised of seven strategic platforms: medical technologies (life sciences & diagnostics and dental), professional instrumentation (environmental, test & measurement), industrial technologies (motion, product identification, focused niche businesses) and tools & components (mechanic’s hand tools). Key brands relevant to molecular diagnostic business are: AB SCIEX, Leica Microsystems, Molecular Devices, and Beckman Coulter.

Acquisitions relevant to molecular diagnostics. These are as follows:

Leica Microsystems (http://www.leica-microsystems.com) improves workflows and diagnostic confidence for histologists, pathologists and patients.

Molecular Devices (http://www.moleculardevices.com) offers a wide-ranging portfolio of bioanalytical products and systems for life science research including bioassays and biotest design. It provides one of the widest ranges of detection technologies for life sciences research, from dedicated, single-readout instruments to automated, multi-detection systems.

In January 2010, Danaher paid $1.1 billion to acquire AB SCIEX (http://www.absciex.com), the Analytical Technologies division of MDS Inc. AB SCIEX is a global leader in the development of life science analytical technologies, particularly mass spectrometers and detection of biomarkers.

In March 2010, Danaher completed acquisition of Genetix (see separate profile) for $102 million. Genetix will operate as part of Danaher subsidiary Leica Microsystems.

On 9 Feb 2011, Danaher Corporation acquired Beckman Coulter (see separate profile) for approximately $6.8 billion. The transaction is expected to be completed in the 1H of 2011. Beckman Coulter would become part of Danaher’s Life Sciences & Diagnostics segment.

- 233 -

Page 236: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

deCODE Genetics Inc

Sturlugata 8 IS-101 Reykjavik, Iceland Web site: http://www.decode.com/Tel: (354) 570-1900 Fax: (354) 570-1901 Email: [email protected]: Kari Stefansson MD ([email protected])

Overview. deCODE genetics, founded in 1996, is a population-based genomics company that uses human genetics to develop novel methods to identify, treat and prevent diseases. deCODE's principal technologies include: positional cloning and characterization of genes that contribute to the pathogenesis of common diseases, and the GGPR database, which will contain the Genotypes, Genealogy, health history/Phenotype of a large proportion of the Icelandic nation. This database was marketed as a tool for in silico mapping of disease genes/fragments, pharmacogenomics and for use in disease management. In 2000, deCODE launched two subsidiaries: Encode and deCode Cancer. Encode specializes in pharmacogenomic studies and in conducting clinical trials for new therapeutics. deCODE Cancer will incorporate and greatly expand the company's cancer research and its capacity to bring diagnostic and therapeutic products to the marketplace.

On 16 Nov 2009, deCODE voluntarily filed for Chapter 11 bankruptcy protection and signed an agreement to sell its Iceland-based Islensk Erfdagreining (IE) subsidiary and its drug development programs to Saga Investments. deCODE also sold its deCODE Biostructures and Emerald BioSystems subsidiaries in the US to Beryllium. These companies are now completely independent from the deCODE organization. Chapter 11 does not cover IE, which carries out human genetics research and provides personal genome scans, genetic tests, and genomic services for contract customers.

Technologies relevant to molecular diagnostics. Founded on the principle that only a homogeneous population can yield the genetics of common diseases, deCODE's unique asset is access to the Icelandic population. With its genetic homogeneity, extensive genealogical records and high quality healthcare, Iceland provides the resources to identify genes associated with multiple diseases and provide unique insights into the pathogenesis of the disease. deCODE compares the DNA of healthy and diseased groups to identify the differences between them and elucidate the gene or set of genes responsible for specific disease. Once a marker has been found with a form (allele) that has more than a chance association with a disease, the DNA located near that marker is analyzed to identify neighboring genes. Eventually, the gene causing the disease is identified from this group. Unlike other gene function processes, the deCODE approach rapidly identifies genes known to be involved in specific diseases, allowing the company and its partners to quickly move to target validation, screening and drug development. deCODE also is working with the Icelandic government to develop a comprehensive anonymous database comprised of GGPR information. This database will allow deCODE to identify families in which specific diseases occur, trace the inheritance of the disease over generations and rapidly identify the genetic basis of the disease. By providing information on the progression and outcome of diseases caused by genetic mutations, deCODE's GGPR database also will provide data enabling health care providers to tailor disease treatments to fit individual patient needs, enabling optimized, cost effective care.

- 234 -

Page 237: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gene discoveries. deCODE has successfully mapped genes in over 25 common complex diseases and isolated genes in eight of these. deCODE/Roche collaboration has made considerable progress in mapping of genes linked to osteoarthritis, stroke, Alzheimer's disease and schizophrenia. deCODE mapped the first gene linked to the main form of Parkinson's disease to a small region on Chromosome 1. DeCODE plans to use the information to develop DNA-based diagnostic tests and new drugs to treat the degenerative brain disorder. The discovery confounded the commonly held belief that there was no identifiable genetic component behind the disease. In 2003, deCODE reported the discovery of the first gene (on chromosome 5q12) encoding phosphodiesterase 4D (PDE4D) that underlies common forms of stroke. Persons with a particular polymorphism of the gene have a 3-5 times greater risk of stroke. PDE4D is a good target for drugs and Roche is already testing several such drugs in laboratory rats.

In February 2008, deCODE launched deCODE PrCa™, a reference laboratory test for common, single-letter variations in SNPs that the company has associated with increased risk of prostate cancer. The test will be useful for better predicting risk of prostate cancer, helping to optimize both screening and treatment. deCODE PrCa™ detects a total of six previously discovered SNPs that have been confirmed in many populations, as well as two SNPs on chromosomes X and 2. Although most of the variants individually confer moderate risk, they are common and some are linked to more than less aggressive disease. Consequently, a substantial proportion of men have many risk variants that together confer clinically significant risk. Because of these variants, 10% of men are at twice the risk and 1% of men are at triple the risk of the disease in the general population

Services. DeCodeMe service uses a cheek-swab sample and online personal genomic information about genetic variants associated with risks for common diseases. In November 2007, deCODE launched deCODEme™, a continually updated service that enables individuals to get a detailed look at their own genome.

Collaborations relevant to molecular diagnostics. deCODE and Roche Diagnostics collaborate in the field of DNA-based diagnostics using deCODE's genomics and informatics resources to develop new diagnostic products and services for diagnosing common diseases and predicting individual predisposition for effective treatment.

In 2002, deCODE formed a pharmacogenomics alliance with Pfizer to identify the role of genetics in the development of advanced forms of heart disease by employing its population resources and Clinical Genome Miner discovery system to find genetic markers that can be used to identify patients who are highly predisposed to progressing from an early to an advanced form of heart disease.

In 2003, deCODE and IBM formed an alliance to deliver integrated applications, technologies, and services for storing/analyzing genetic, genealogical and clinical data.

In 2004, deCODE formed a 7-year alliance with Merck & Co to conduct information-rich clinical trials on Merck's developmental compounds. deCODE will employ population genetics capabilities and expertise in pharmacogenomic analysis to enhance and complement Merck's on-going clinical development process.

In 2006, deCODE and Illumina Inc formed an alliance to co-develop and commercialize DNA-based diagnostic tests in several major disease areas using Illumina’s platform for high-multiplex SNP genotyping to develop tests for gene variants deCODE has previously shown to have impact on the risk of

- 235 -

Page 238: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

common diseases. Illumina will gain access to disease-related biomarkers for joint validation as diagnostic panels to be marketed and sold by Illumina on its forthcoming BeadXpress platform. Focus will be on genes involved in disease-related pathways in heart disease, diabetes and breast cancer.

In August 2008, Lab21 agreed to offer five of DeCode Genetics’ tests in the UK and in Ireland. These include tests for type 2 diabetes, myocardial infarction, atrial fibrillation, prostate cancer, and glaucoma, as well as an upcoming test for the risk of estrogen-positive breast cancer and other tests DeCode has in development.

DiaGenic ASA

Grenseveien 92NO-0663 Oslo, NorwayWeb site: http://www.diagenic.com/Tel: +47-2324 7878Fax: +47-2324 8959E-mail: [email protected] Executive Officer: Erik Christensen ([email protected])

Overview. DiaGenic ASA is an innovative IVD company founded in 1998 and listed on the Oslo Stock Exchange. It develops patient-friendly tests for the early diagnosis of devastating diseases where early intervention is crucial for successful treatment. DiaGenic’s patented method is based on identifying disease-specific gene signatures from easily available sample material such as blood. DiaGenic's strategy is to work with research and technology partners to develop a pipeline of assays for commercialization. The diagnostic tests together with R&D cooperation with a major pharmaceutical company forms the basis of the company’s biomarker strategy enabling early disease detection for clinical trials. These technologies will be useful for the development of personalized medicine. On 7 October 2010, DiaGenic raised $12.1 million and refocused its business primarily on tests for neurological disorders rather than for cancer.

Technology. DiaGenic’s unique and patent-protected concept for the diagnosis of disease is based on the finding that even when a disease is localized at specific body site, secondary responses that are also specific for the disease can be measured in clinical samples obtained from the peripheral parts. One such response includes characteristic changes in the expression pattern of selected genes in peripheral blood samples. DiaGenic’s concept involves identifying these genes and using them to develop a disease-specific gene expression signature to form the basis of a diagnostic test.

Products. DiaGenic's two first products to be launched in Europe are the world's first blood based gene expression tests for the early detection of Alzheimer’s disease (AD) and breast cancer. The first test, BCtect, was launched through SRL Diagnostics in India in 2008. In Europe the ADtect®

- 236 -

Page 239: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

and BCtect® products are in the final stages of preparation for CE marking, while a distributor network is being set up for the imminent commercial launch.

Based on financing from Michael J Fox Foundation and the Norwegian Research Council the development of a Parkinson’s disease test is progressing rapidly.

Collaborations. In 2008, DiaGenic and SRL Laboratories Ltd signed an agreement to commence marketing DiaGenic’s breast cancer test in India.

In 2008, DiaGenic ASA signed a service provider agreement with DNAVision, to offer healthcare providers and patients in Europe its blood-based gene-expression test for early detection of breast cancer and for AD in a CLIA/ISO17025 certified environment.

On 20 January 2010, DiaGenic and Ferrer inCode signed a distribution agreement for ADtect® early AD test in Western Europe and Latin America.

- 237 -

Page 240: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DxTerity Diagnostics

2214 E. Gladwick StRancho Dominguez, CA 90220, USAWeb site: http://www.DxTerity.comTel: 310-537-7857Fax: 310-356-3154President and CEO: Bob Terbrueggen, PhD

Overview. DxTerity Diagnostics is developing innovative diagnostic technologies that will enable the development of personalized medicine. DxTerity has developed Non-Enzymatic Amplification Technology (NEAT), a proprietary nucleic acid amplification procedure that overcomes many of the limitations of older technologies and paves the way for the development of point-of-care (POC) diagnostic tests

Technology. NEAT enables gene-controlled ligation of oligonucleotide probes inside of cells (see Chapter 2). The technique is unique in that it enables the detection of DNA and RNA targets without the use of enzymes, minimizing the need for sample purification and lowering the complexity of the genomic testing process. The reach and ruggedness of this technology is fundamentally suited to clinical testing requirements, as such, NEAT is a critical enabler of POC genetic testing.

Applications. DxTerity is currently working with corporate and academic partners to develop and validate select applications for NEAT. The key areas of focus are:

One-step, POC low-cost identification of bacterial infections such as tuberculosis and MRSA.

Pharmacogenomic tests for cancer.

In-cell imaging of microRNA and mRNA.

Analysis of RNA extracted from formalin fixed paraffin embedded (FFPE) tissue samples.

Collaborations. In4 October 2008, the City of Hope started collaboration to use DxTerity's NEAT testing platform in a program to develop antisense therapeutics.

- 238 -

Page 241: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

diaDexus Inc

343 Oyster Point Blvd.South San Francisco, CA 94080-1913, USAWeb site: http://www.diadexus.com/Tel: (650) 246-6400Fax: (650) 246-6499CEO: Patrick PlewmanContact: Mohan Iyer, VP Business Development ([email protected])

Overview. diaDexus is a post-genomics company focused on translating genomic sequence data into novel diagnostic and therapeutic products. At its founding in 1997 by SmithKline Beecham and Incyte Corporation, the initial strategy was to discover disease-associated genes and proteins in order to develop novel diagnostic products for the improved detection, classification and prognosis of disease. The company has a diagnostic/therapeutic tandem approach to detect and treat disease. The initial focus is on the discovery of novel molecular targets related to cancer but it is expected to extend to other diseases. The Company has identified thousands of disease-associated molecular targets, evaluated over 300 potential molecular targets using its proprietary target validation process, and advanced over 40 candidates into development, including five diagnostic product candidates, which are currently being evaluated in preclinical studies.

Technology. diaDexus uses two approaches to discover novel molecular targets: (1) large-scale searches of Incyte's LifeSeq Gold human genomic sequence database; and (2) integration of various gene and protein technologies to supplement database search efforts. diaDexus plans to develop multi-analyte tests that can identify novel patterns of multiple gene and protein expression to detect and monitor disease more accurately than is possible by using single analyte tests.

Products. These include PLAC™ test for measuring the enzyme Lp-PLA2 (lipoprotein-associated phospholipase), which is a a novel risk factor for coronary heart (CHD) disease as well as stroke, and cathepsin-K, a diagnostic marker for osteoporosis. PLAC™ test is cleared by the FDA as an IVD to predict the risk for ischemic stroke and CHD. In May 2007, the USPTO issued Patent No. 7,217,535 covering methods of diagnosing an individual's susceptibility for developing atherosclerotic disease, including myocardial infarction and stroke, by analyzing a blood sample for Lp-PLA2 enzymatic activity. On 19 February 2008 FDA cleared for marketing a new automated version of PLAC® Test.

Collaborations relevant to molecular diagnostics: In 2000, diaDexus gained access to Agilent Technologies' customizable microarray gene expression technology for research into the molecular basis for cancer and other diseases. diaDexus started the following collaborations in 2001:

With Fujirebio Inc to develop and sell cancer diagnostic tests in Japan.

With GeneData for the micro-array data analysis system GeneData Expressionist

Licensed Cathepsin K genomics-based diagnostic blood test for osteoporosis and diagnostic test for the non-invasive detection of colorectal cancer to Quest.

diaDexus started the following collaborations in 2002:

- 239 -

Page 242: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

With Compugen to identify and validate diagnostic markers and therapeutic targets using Compugen's bioinformatic analysis of genomic and proteomic databases.

With Beyond Genomics Inc to apply the latter's Systems Biology approach to its cancer diagnostics and drug discovery.

With the University of Michigan for the use of proteomic technologies for the analysis of cell surface membrane proteins to identify new drug targets and biomarkers for cancer.

With Emory University to develop therapeutic and diagnostic products based on Nox-1, a novel cancer target.

In January 2007, diaDexus started a collaboration with Mayo Validation Support Services to investigate a test featuring a select panel of tumor-specific genes to aid in patient risk stratification and assist in chemotherapy treatment decisions for breast cancer patients. The test uses gene expression profiling to predict recurrence of malignancy in patients diagnosed with primary invasive early stage breast cancer.

- 240 -

Page 243: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DiaGenic ASA

Grenseveien 92NO-0663 Oslo, NorwayWeb site: http://www.diagenic.com/Tel: +47 23 24 89 50Fax: +47 23 24 89 59 CEO: Erik Christensen ([email protected])

Overview. DiaGenic ASA, an innovative biotechnology company listed on the Oslo Stock Exchange, aims to provide easy-to-use diagnostics for several major common diseases using samples that are easily accessible. Its gene expression technology can provide aunique fingerprint of the disease at the earliest possible stage and with very high accuracy. It has an accurate, simple and rapid method for early diagnosis of breast cancer and is developing a test for diagnosis of Alzheimer's disease (AD) using gene expression patterns in peripheral blood cells. To identify the best platform for DiaGenic's future product candidates, a product development project is supported with NOK 9.2 million ($ million) granted by the Norwegian government's FUnctional GEnomics (FUGE) program. Different technology platforms are compared to ensure optimal product properties.

Technology. DiaGenic's technology utilizes the biological principle that characteristic responses of a disease can be measured not only in the primary affected part but also in peripheral parts of the body. These peripheral responses also include the altered expression pattern of selected genes. DiaGenic utilizes the tools available in modern, array based gene expression technology to detect a gene expression pattern that is characteristic for a specific disease. With this technology DiaGenic is not bound to collect a sample from the primary affected part of the body. Instead the sample can be collected from a more accessible and more convenient part of the body, i.e. whole blood. Whole blood samples are both easily accessible and they are conveniently collected. In addition, every sample collected from a patient contains a similar composition of cell types.

Products. Results of studies by DiaGenic show that breast cancer can be detected early by analyzing the expression pattern of certain genes in peripheral blood cells. DiaGenic has identified and isolated informative genes and used them to develop a model for predicting breast cancer, which has high prediction accuracy, both as to specificity and sensitivity. This is basis of DiaGenic's breast cancer test. Studies done with this test in India show that it offers advantages over existing diagnostic methods. The use of venous blood as the test sample is both discreet and patient friendly. The DiaGenic test detects breast cancer in pre-menopausal women with good accuracy whereas mammography is problematic due to higher breast density in younger women, which obscures the mammographic image. This is especially important in India, where breast cancer is seen at a significantly lower age than in Western countries.

ADtect®, using gene expression patterns in peripheral blood cells for diagnosis of AD, has received CE approval in Europe and will market it through a network of distributors. DiaGenic is also developing a biomarker for detection of mild cognitive impairment.

In 2007, DiaGenic, with funding from Michael J. Fox Foundation for Parkinson’s Research and collaboration with Harvard Medical School, started to develop the first blood test for Parkinson’s disease based on a gene expression signature.

- 241 -

Page 244: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. These include: Norwegian Radium Hospital; Norwegian University for Life Sciences; Ullevål University Hospital, Oslo; NKS Olaviken Psychogeriatric Hospital; and Mercy Women’s Center, Oklahoma, USA.

In May 2008, DiaGenic signed up SRL Ranbaxy to market its genomic breast cancer test in India.

DiaGenic has a collaboration with DNA Vision in Belgium where ADtect® tests will be performed.

- 242 -

Page 245: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DiagnoCure Inc

2050, Boulevard René-Lévesque Ouest, 6th FloorSainte-Foy, Quebec G1V 2K8 CanadaWeb site: http://www.diagnocure.com/Tel: (418) 527-6100Fax: (418) 527-0240E-mail: [email protected] Executive Officer: John Schafer

Overview. DiagnoCure Inc is a leading developer of innovative technologies for the early diagnosis of various types of cancers. The Company specializes in the research, development, production and commercialization of products for diagnosis of cancer. In 2003 DiagnoCure acquired assets of Samba Technologies, a company specializing in digital imaging and information technology. In August 2007, DiagnoCure acquired Catalyst Oncology (Worcester, MA), maker of prognostic tests for breast and colon cancers, for $3 million in cash and potential future payments based on milestones.

Technologies. The DiagnoGene technology is a combination of nucleic acid (NA) processing methods and cancer-specific gene sequences. Products based on this technology platform contain three kits: (1) silica beads for the purification of cellular NAs; (2) cancer-specific nucleic acid primer sequences and reagents for the isothermal amplification of the cancer-specific sequences isolated with the first kit; (3) immunoenzymatic detection of the amplified material. This is the basis of detection kits for cancers for which a specific gene sequence is known to be expressed. DiagnoGene, a development platform of diagnostic tests, is based on the detection of NAs.

Products. DiagnoCure's first marketed product, ImmunoCyt, is an immunohistochemistry kit based on MAbs for detection of bladder cancer cells in urine. ImmunoCyt is currently distributed in Canada and Europe. In the US, it is distributed by akoCytomation, a leading world provider aimed at pathology laboratories.

DiagnoCure’s highly specific PCA3 test for detecting PCA3 RNA expression in prostate cancer cells that are present in the urine is now available through laboratories in the US using PCA3 analyte specific reagents from Gen-Probe, and in Europe as the CE-marked PROGENSA™ PCA3 in vitro assay. It is an ideal complement to the PSA blood test.

Catalyst's tests, which measure the level of activated tyrosine phosphorylated Shc protein and p66 Shc protein in tissue specimens of breast cancer, have successfully indicated the risk of recurrence of cancer and have predicted the response to cancer therapies.

In May 2007, DiagnoCure secured exclusive worldwide rights to two high-value molecular tests for colorectal cancer based on the detection of the products of GCC (guanylyl cyclase C). In early research, the marker has shown to be 95% to 100% accurate in detecting the spread or recurrence of colon cancer, in lymph nodes. DiagnoCure plans to launch the Previstage™ GCC Colorectal Staging Test in 2008.

Collaborations. In 2002. Compugen and DiagnoCure started co-development and commercialization of molecular diagnostic tests for the detection of certain epithelial cancers, including lung cancer. DiagnoCure Inc signed an agreement with MDI to integrate its ImmunoCyt/uCyt molecular

- 243 -

Page 246: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

assay for the detection and monitoring of bladder cancer with MDI's InPath Slide Based Test automated microscopy platform.

In 2006, Gen-Probe granted DiagnoCure rights to develop FISH products, using the PCA3 gene and to evaluate the diagnostic utility of other genetic markers for cancer.

- 244 -

Page 247: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Diagnoplex

Chemin des Croisettes 26CH-1066 Epalinges, SwitzerlandWeb site: http://www.diagnoplex.com/Tel: +41 21 653 66 92Fax: +41 21 653 66 93Email: [email protected]: Stavros Therianos PhD

Overview. Diagnoplex was founded in 2005 supported by seed financing from the Novartis Forschungsstiftung, Swiss Confederation CTI project, Canton de Vaud FIT and the Gebert Rüf Stiftung. Diagnoplex is leveraging its proprietary molecular platform capabilities to develop non-invasive cancer screening tests. Its lead program targets colorectal cancer (CRC) and the Colox test addresses important psychological, cost and scalability challenges to the effective screening of CRC. In 2008, Diagnoplex closed a Series A financing round, raising CHF10 million ($8.3 million) in funding. It would use proceeds from the financing to further develop its Colox test. The round of financing was led by Novartis Venture Fund and NeoMed, with additional investment from Initiative Capital Romandie. Novartis Venture Fund previously was a seed investor in Diagnoplex. On 18 January 2011, Diagnoplex closed a series A financing extension with Debiopharm Group™, which has committed to invest a substantial amount in the company.

Technology/products. The tests are based on the company’s single-channel quantitative multiplex reverse transcriptase-PCR (scqmRT-PCR) platform that can quantify up to 60 genes simultaneously. According to the firm, the technology pairs the high accuracy and reliability of PCR with the possibility to read out multi-gene signatures of different cancers. It noted that unlike microarray platforms, its platform is easily scalable and can be run in most standardized testing labs.

Diagnoplex’s non-invasive CRC test, Colox, is derived from peripheral blood samples that can be routinely and accurately analyzed using standard laboratory equipment. A 140 patient prospective pilot study demonstrated high sensitivity as well as specificity of Colox. The test will be made available as a ready-to-use clinical laboratory kit.

- 245 -

Page 248: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Diagnostic Hybrids Inc

1055 East State St., Suite 100 Athens, OH 45701, USAWeb site: http://www.dhiusa.com/Fax: (740) 592-9820E-mail: [email protected] & CEO: David R. Scholl PhD ([email protected])

Overview. Diagnostic Hybrids Inc (DHI), a privately held company founded in 1983, is engaged in the development, manufacture, and marketing of innovative cell culture products for various applications in diagnostic virology and endocrine disease. The company has particular technical and manufacturing strengths, including patents, licenses and proprietary methods, in the following areas:

Gene cloning and purification

Transgenic cell biology

DNA probe labeling

Cell culture production

Kit development

Multi-well plate packaging

Therapeutic DNA process development

In 2002, DHI acquired the in vitro diagnostic cell culture product line of BioWhittaker Inc. In the same year, DHI acquired the IVD cell culture business of NeoGenex Inc. These acquisitions have enhanced DHI's ability to provide genetically engineered and routine tissue cell culture lines and accessories for clinical diagnostics.

Technologies. Those relevant to molecular diagnostics are:

ReadyCells Frozen Monolayers: for IVD use.

ELVIS (Enzyme Linked Virus Inducible System): for in vitro diagnostic use in the detection of the herpes simplex virus (HSV) in patient specimens.

D3™ DFA Respiratory Virus Screening & ID Kit for the direct detection, identification, and culture confirmation of adenovirus, influenza A and B viruses, parainfluenza virus groups 1, 2 and 3 and respiratory syncytial virus, identify 7 major respiratory viruses in 15 min from direct patient specimen materials or in incubated tissue cultures eening.

FreshCells Singles for IVD use; 13 cell lines are available for viral diagnostics.

Mixed FreshCells for IVD use combine two compatible cell lines into a single container to optimize detection of a broader array of viruses in a single unit. Frozen Cell Cultures: these kits can be used to prepare customer's own cell cultures in 3 days for viral IVD.

FreshCells Virus Detection Kits are approved by the FDA for IVD use to detect respiratory viruses, HSV typing, and cytomegalovirus.

- 246 -

Page 249: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. Diagnostic Hybrids' strategic business partner since 2000, Medvet Diagnostics (Adelaide, Australia), extends the marketing reach of DHI nationally and internationally for ELVIS and other DHI products.

- 247 -

Page 250: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DiagnoSwiss SA

Rue Ile au bois1870 Monthey, SwitzerlandWeb site: http://www.diagnoswiss.com/Tel: +4124-4714900Fax: +4124-4714901Email: [email protected]: Yves de Chastonay, PhD, MBA ([email protected])

Overview. DiagnoSwiss is a spin-off company from the Laboratoire d'Electrochimie of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland). The company provides technical solutions for fast diagnosis and prognosis as well as for target proteins identification. To reach this aim, DiagnoSwiss currently develops two lines of products: disposable polymer microchips and gel electrophoresis equipment for protein purification. In a second step of development, DiagnoSwiss will also merge these two products to develop a global solution for large-scale protein screening in proteomics.

Technologies/products. DiagnoSwiss offers fast analytical tools for the separation and dosage of proteins and for the handling of fluids in small volumes. Plasma etched micro-chips are disposable "lab-on-a-chip" systems that are interconnected networks of microchannels produced in mass and at low cost. They integrate electrodes that allow precise fluid handling and quantitative detection. Large number of biochemical measurements can thus be achieved in a parallel inexpensive format that is free of cross-contamination and that is easily automated. These microchips are currently dedicated to the development of affinity analysis for protein-protein interaction studies and medical diagnostic assays. Biologically important molecules may also be captured in our biochips and analysed in parallel in very short time. High performance biosensors are thus under development in a portable or in a high-density format. The Company is also designing ELISA tests in a microchip format to provide a 5 minute-immunoassay with electrochemical detection. This fast detection is possible because of the rapid depletion of the antigen in the microchannel due to the very small distance between the antigen and the immobilized antibody.

The Company develops and will market novel electrophoresis equipment, called "off-gel" electrophoresis for drug target identification and basic research needs. In a second phase, DiagnoSwiss will develop an apparatus that couples both the "off-gel" technology and the microchips. The aim is to provide an alternative to 2D GE by marketing an automated protein sequencer. In its apparatus, the proteins will first be separated by "off-gel" electrophoresis according to their charge. The purified sample will then be directed towards a network of microchips in which specific proteins have previously been immobilized in order to provide affinity matrices. At the outlet of these affinity columns, electrochemical means will be incorporated in order to generate an electrospray that allows coupling the microchips on-line to a mass spectrometer in a highly parallel process. DiagnoSwiss is currently developing this electrospray interface with the Laboratoire d'Electrochimie of the EPFL. The commercialization of this protein sequencer is planned. Furthermore, thin film polyimide nanosprays have been developed for ESI-MS analysis. Efforts are now devoted to the fabrication of arrays of disposable tips, to the automation of sample dispensing and to the integration of separation unit.

- 248 -

Page 251: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2007, DiagnoSwiss launched its open platform products in the Gravi-line: Gravi-Cell, which is a miniature device (readily snapped-on to a robotic liquid handler), and Gravi-Chip, which is most convenient microfluidics device for running bead-based ELISA and affinity assays in record times (5-10 minutes).

Collaborations. In 2005, DiagnoSwiss granted bioMérieux an exclusive worldwide license under its patent rights to the development, manufacturing and marketing of electrochemical microchips in the field of human IVD. The agreement is restricted to the commercialization and use of DiagnoSwiss' technology in immunoassays and biochemical testing and is accompanied by a collaboration contract to jointly develop these microsystems into a new generation of analytical platform for clinical applications.

- 249 -

Page 252: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DIANON Systems Inc

200 Watson Boulevard Stratford, CT 06615, USAWeb site: http://www.dianon.com/Tel: (203) 381-4000Fax: (203) 381-4079E-mail: [email protected] and Chief Executive Officer: Kevin C. Johnson

Overview. DIANON Systems provides pathology services and genetic testing. DIANON uses genomic diagnostic technologies to identify genes or gene products that are measurable in the tissue (tumor) and that are closely associated with a patient's response or non-response to existing therapies. DIANON provides an accurate histologic/cytologic diagnosis at the cellular level, to enable further sub-classification of disease at the genomic or proteomic level, which may lead to a more rational therapy that is personalized based upon genetic profiling.

In 2001, DIANON completed its acquisition of UroCor Inc, which markets a comprehensive range of products and services to assist in detecting, diagnosing, treating and managing urologic disorders. The merger is a tax-free stock-for-stock exchange. In 2003, Laboratory Corporation of America completed acquisition of DIANON.

Services relevant to molecular diagnostics. Cytogenetic testing services include chorionic villus sampling with chromosome analysis, FISH microdeletion analysis and prenatal ploidy deletion (probes for chromosomes 13, 18, 21, X and Y).

Molecular genetic studies includes the following:

Ashkenazi Jewish Disease Screen (Canavan, Tay-Sachs, etc)

Cystic fibrosis

Fragile X syndrome

Huntington's disease

Myotonic dystrophy

Spinocerebellar ataxia

Spinocerebellar Ataxia type 1 Chromosome 6

Spinocerebellar Ataxia type 2 Chromosome 12

Spinocerebellar Ataxia type 3/Machado Joseph Disease Chromosome 14

Spinocerebellar Ataxia type 6 Chromosome 19

Epstein Barr virus

Quantitative analysis of HER2/neu protein expression

bcl-2 and bcr/abl gene rearrangements

Collaborations relevant to molecular diagnostics. Since 2000, DIANON Systems has an exclusive sales and distribution agreement with Response

- 250 -

Page 253: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genetics Inc for that company's proprietary tumor specific gene expression analysis system to predict response to chemotherapy. DIANON plans to introduce the first Response Genetics Danenberg Tumor Profile for cancers of the gastrointestinal tract, including colorectal cancer. In 2000, DIANON introduced ChromaVision's Automated Cellular Imaging System for HER2/neu as part of its new breast pathology services.

Digene Corporation

1201 Clopper Road Gaithersburg, MD 20878 USAWeb site: http://www.digene.com/Tel: (301) 944-7000 Fax: (301) 944-7121E-mail: [email protected]

Overview. Digene Corporation (a subsidiary of QIAGEN) developes, manufactures and markets proprietary DNA and RNA testing systems for the screening, monitoring and diagnosis of human diseases. The Company has developed and is commercializing its patented Hybrid Capture products in three areas: women's cancers and infectious diseases, blood viruses, and genomics and pharmaceutical research. Digene's primary focus is in women's cancers and infectious diseases where the Company's lead product is the only FDA approved test for human papillomavirus (HPV), which is the cause of cervical cancer. On 3 June 2007, QIAGEN acquired Digene for $1.6 billion.

Technology. Hybrid Capture (HC) technology detects nucleic acid targets directly and uses signal amplification to provide sensitivity that is comparable to target amplification methods (see Chapter 2). Reliable detection is achieved without the need for dedicated and isolated laboratory space, sophisticated laboratory expertise or concern regarding inhibition and contamination.

Products. The Digene HPV Test is used in the US as an adjunct to the inconclusive Pap smear for cervical cancer screening in women and is being marketed in selected countries as a primary cervical cancer screen either in conjunction with or separate from the Pap smear. On 19 Nov 2008, the Mexican Public Health Agency launched a program to test for HPV using this test.

Digene provides DNA tests for the detection of other sexually transmitted infections, including chlamydia and gonorrhea, and tests for blood viruses. It also markets a high-volume sample throughput instrument for Hybrid Capture 2 Chlamydia/Gonorrhea testing using its Rapid Capture System for the simultaneous detection of C. trachomatis and N. gonorrhoeae DNA in cervical specimens. This test is approved by the Japanese Ministry of Health, Labor and Welfare. The FDA-approved Rapid Capture™ System enables high-throughput testing with the company’s hc2 High-Risk HPV DNA Test™.

Human cytomegalovirus (CMV) DNA test, based on Digene’s HC technology, is the molecular diagnostic tool of choice for qualitative detection of human CMV. It is the first molecular diagnostic test to be cleared by the FDA for qualitative detection of CMV DNA in peripheral white blood cells isolated from whole blood. It is the first major advance in CMV detection with the highest degree of reproducibility plus optimal sensitivity for detection in individuals at high risk for the disease. The advantages of this test are:

Objective, standardized results, eliminating uncertainties and subjective interpretations associated with traditional CMV testing methods.

- 251 -

Page 254: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

More accurate detection of active CMV infection.

Effective targeting of preemptive therapies.

Elimination of contamination risks associated with target amplification methods.

Collaborations. Since 2001, Digene collaborates with Roche for marketing and further development of HC2 test for HSV. In 2002, Digene re-acquired from Abbott Laboratories the rights to distribute its chlamydia and gonorrhea (CT/GC) tests worldwide. In 2004, Quest Laboratories agreed to provide Digene's DNA test as a primary tool to detect cervical cancer along with Pap smears rather than as a secondary test. In 2005, Expression Pathology started collaboration with Digene to identify cancer protein biomarkers in archived tissue.

Digilab BioVisioN GmbH

Feodor-Lynen-Str. 5D-30625 Hannover, GermanyWeb site: http://www.peptidomics.com/Tel: +48 (511) 538896-0Fax: +48 (511) 538896-66CEO: Wolfram RodatzDirector of Business Development: Leif Honda ([email protected])

Overview. Digilab BioVisioN, formed by acquisition of BioVisioN by Digilab LLC in 2006, is a biotechnology company dedicated to finding and developing new ways to diagnose and treat serious diseases. It focuses on the discovery and development of new diagnostic and therapeutic products by identifying peptides and proteins that play an important role in the regulation of biological processes of the body.

Technologies relevant to molecular diagnostics. Differential peptide display technology® (DPD) is utilized to analyse peptide patterns in biological sources such as body fluids, tissues, cells or cell-culture supernatant. It enables the comparison of different patterns, e.g., of different groups of patients, in order to identify characteristic differences that correlate with the underlying metabolic or pathological events. Aided by the high resolution and reproducibility of the Peptidomics™ technology, BioVisioN is dedicated to the discovery, the characterization and the validation of endogenous peptides, particularly in metabolic syndrome, Alzheimer's disease and cancer.

Collaborations relevant to molecular diagnostics. Digilab BioVisioN's use of a peptide library is secured in a co-operation with its mother institute Lower Saxony Institute for Peptide Research, Hannover, Germany. It is co-operating with several departments in the Hannover Medical School, Hannover for use of Differential Peptide Display for research on different diseases. Corporate collaborations are:

Life Technologies combines Digilab BioVisioN's technology in protein and peptide analysis with its life science research tools in biochromatography, MALDI-TOF MS, and informatics to improve precision and throughput for discovering clinically relevant proteins and peptides for the development of drugs and diagnostic tests in the pharmaceutical industry. The companies have established a European reference laboratory for proteomics and peptidomics technologies.

- 252 -

Page 255: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

With Roche Diagnostics, Digilab BioVisioN has identified a number of proteins as biomarkers in blood and CSF that may enable early diagnosis of Alzheimer's disease.

Digilab BioVision has acquired majority ownership of BioPhage KG. Both companies are involved in researching peptides for their potential in the diagnosis and treatment of diseases such as cancer, asthma or Alzheimer's. Digilab BioVisioN uses a novel technology to discover such peptides directly in human blood, urine or CSF, whereas BioPhage determines such peptides by comparing the DNA of both sick and healthy individuals.

In 2003, Digilab BioVisioN and AstraZeneca signed an agreement for the discovery of peptidic biomarkers of inflammatory disease.

In 2004, Digilab BioVisioN signed an agreement for evaluation of clinical samples provided by Novartis using DPD technology to find clinically relevant peptides.

In 2005, Digilab BioVisioN signed an agreement with Abbott to discover novel biomarkers for lung cancer in biological samples provided by Abbott.

In 2006 Digilab BioVisioN signed a contract with Boehringer Ingelheim for analysis of quantitative peptide content of biological samples by using its Peptidomics® Technologies to identify new biomarkers by differences in peptide patterns.

- 253 -

Page 256: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DxS Ltd

(a subsidiary of QIAGEN)48 Grafton Street, Manchester, M13 9XX, UKWeb site: http://www.dxsgenotyping.com/Tel: +44-161-606 7201Fax: +44-161-606 7313

Overview. DxS is a personalized medicine company providing molecular diagnostics to aid physicians and pharmaceutical companies in selecting therapies for patients. DxS offers products, technology and services to the healthcare industry to enable the delivery of safe and effective medicines. Working predominantly in the field of cancer, DxS have a range of companion diagnostic and research kits that detect mutations in oncogenes associated with drug response. DxS is ISO 13485: 2003 and ISO 9001: 2000 certified for the manufacture of medical devices and the provision of genetic analysis services and technologies to the healthcare industry. On 23 Sep 2009, Qiagen acquired DxS in a deal worth $130 million; $95 million in cash plus extra payments if certain milestones are met. The acquisition provides Qiagen with a strong leadership position in the personalized healthcare arena and it intends to establish a Center of Excellence in Pharma Partnering at DxS' Manchester headquarters, which is expected to grow in size.

Technology/products. DxS genotyping process is based on Scorpions Technology - a homogeneous or closed tube method with a simple mix and glow operation. A DNA sample is added to a Scorpions test and an increase in fluorescence indicates the genotype. There is no post-PCR manipulation and the use of two fluorescent dyes gives single tube SNP analysis. Scorpions is a class leading PCR detection technology with significant benefits over comparable approaches (see Chapter 2 for description).

In 2003, DxS launched its SAFEspot™ Blood Collection Card that is set to greatly simplify sample collection for genotyping. ARMS™ is a simple, reliable and widely used method for the detection of gene mutations and SNPs. The DxS EGFR Mutation Test Kit is a molecular assay combining ARMS (allele specific PCR) and Scorpions, a rapid fluorescent signaling system.

Tumor mutation products are available for research use for EGFR, RAS, RAF, BCR-ABL and other genes that show a correlation between patient mutation status and drug response. TheraScreen: EGFR29 kit is a real time PCR Assay based on Scorpions® technology and mutation specific ARMS® primers. The test is highly selective and sensitive, detecting 29 of the most common somatic mutations in the EGFR gene. The kit maximises patient selection of likely responders by identifying mutation positive patients. The kit detects mutations not visible by sequencing. It is a companion diagnostic for treatment with tyrosine kinase inhibitor therapies for lung cancer.

DxS currently sells two EGFR products: the EGFR29 research kit and the CE-marked diagnostic test called TheraScreen, which will be distributed in Europe early in 2009 by Roche Diagnostics. TheraScreen K-RAS assay, which detects seven mutations found in many cancer types, determines patients’ K-RAS mutation status and and is suitable as companion diagnostic for Amgen's Vectibix (panitumumab) colorectal cancer therapy.

Services. DxS' services are valuable throughout drug development process and can: (1) assist in the identification and selection of new leads; (2) help identify unsuitable targets and candidates early in the process; (3) reduce the

- 254 -

Page 257: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

cost and increase the effectiveness of clinical trials; and (4) give competitive advantage to a therapy.

Collaborations. DxS has several collaborations in the area of molecular diagnostics. In 2002, DxS entered into a licensing agreement for Scorpions technology with the Advanced Diagnostic and Cellular Systems division of Ortho-Clinical Diagnostics, a Johnson & Johnson Company.

In 2004. Sangtec Molecular Diagnostics signed a licence agreement with DxS to gain access to Scorpions for the development of human in vitro clinical diagnostic kits. DxS and BTG signed an exclusive licence with AstraZeneca to commercialize the company’s proprietary ARMS™ DNA diagnostic technology. An extension of the agreement in 2006, allows BTG and DxS to grant licences under the technology rights to ARMS and related technologies from a combination of the licensable rights under both AstraZeneca and City of Hope patents (US patents: #5,595,890, #5,137,806, #5,639,611).

In 2005, Cepheid licensed DxS' real-time PCR technology for use in the human in vitro diagnostics market. It could be applicable to SmartCycler and GeneXpert systems.

In 2008, in a strategic cross-licensing agreement, Epigenomics AG obtained worldwide nonexclusive rights to DxS' proprietary Scorpions® technology for R&D use, as well as an option to expand the license to IVD, both in certain research kits as well as in its cancer specialty diagnostics products. DxS in return receives an option for a worldwide non-exclusive license and further options to certain Epigenomics IP covering the use of Scorpions® technology for DNA methylation applications.

In 2008, Amgen and Lab21 partner launched DxS’ bowel cancer companion Dx in Europe. The assay, which was used in the pivotal clinical trial for the drug, Vectibix, will be available in 22 EU countries. The launch of the companion diagnostic marks the first time that the European Commission has licensed a bowel cancer treatment with the stipulation that a predictive test should be carried out.

In 2008, Roche agreed to distribute two companion diagnostics for DxS: (1) TheraScreen K-RAS Mutation Test, which detects seven mutations found in many cancer types and is used in colorectal cancer cases, through a worldwide, exclusive agreement; and (2) TheraScreen EGFR 29 Mutation Test, which detects mutations that correlate with responsiveness to EGFR tyrosine kinase inhibitors, and help physicians choose lung cancer patients who are most likely to respond to treatment with EGFR tyrosine kinase inhibitors. Roche has agreed to distribute this test exclusively to all global markets except the US, Canada, Mexico, and Hong Kong. On 12 Feb 2010, Roche filed a lawsuit against DxS alleging that the firm is trying to terminate the distribution deal for invalid reasons.

In 2008, DxS signed a non-exclusive global licensing agreement with the Wellcome Trust to provide a research test for use in clinical trials for detection of the presence of the V600E B-RAF mutation, which is found in melanomas, lung and thyroid cancers. The V600E B-RAF mutation was identified by scientists at the Wellcome Trust and can be found in around 36% to 40% of skin and thyroid cancers and up to 13% of cancers in the large intestine. Researchers will use the test to determine a patient’s cancer mutation status, which may predict how they respond to cancer therapies. If clinical trials are successful, this could lead to a companion diagnostics to predict response for novel cancer therapies for skin, thyroid and large intestine cancers.

- 255 -

Page 258: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2008, AltheaDx agreed to distribute DxS’ genetic assay for K-RAS mutations for use in clinical studies in the US.

In January 2009, DxS expanded its licensing deal with Genzyme Genetics, which gives it rights to develop and sell diagnostic and research products that detect mutations in the EGFR gene for NSCLC in the US and Canada, extending them to worldwide coverage.

In July 2009, DxS signed an agreement with AstraZeneca to develop a companion diagnostic for Iressa.

In September 2009, DxS signed an agreement with ImClone Systems (subsidiary of Bristol-Myers Squibb and Eli Lilly) to develop a companion diagnostic for Erbitux.

On 4 February 2010, DxS and Pfizer Inc signed an agreement to develop a companion diagnostic test kit for PF-04948568 (CDX-110), an immunotherapy vaccine in development for the treatment of glioblastoma multiforme. On 8 Feb 2010, DxS acquired the global and exclusive licence for biomarker PI3K from Johns Hopkins University to develop real-time-PCR and endpoint PCR assays.

- 256 -

Page 259: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Dynal Biotech

Postal adress: P.O. Box 114, SmestadN-0309 Oslo, NorwayVisiting address: Ullernschausseen 52, 0379 OsloWeb site: http://www.lifetechnologies.com/Tel: + 47 22 06 10 00Fax: + 47 22 50 70 15

Overview. Dynal, now owned by Life Technologies, has pioneered biomagnetic separation technology since 1986. Dynabeads are uniquely monodisperse and superparamagnetic particles which are used in academic and industrial research as well as clinical research and diagnostics. The Dynal head office is situated in Oslo, Norway with subsidiaries in US, UK, France, Germany, Australia, China and Japan.

Technology. Dynal is established on the Dynabeads technology, the development of magnetic monosized particles. The proprietary technology of Dynal Biotech currently consists of 13 granted patents, 21 patent applications, 12 registered trademarks and 10 trademark applications. It also consists of in-licensed technology for processing and application of biological substances.

Applications Magnetic beads are now widely used as a solid phase for automating methods for isolation and detection of biomolecules in both research and routine laboratories as well as in IVD. The technology enables high sensitivity and high throughput of samples due to fast separation and the ability to scale down reaction volumes. Magnetic beads are used for separating proteins, nucleic acids, hormones and diseases markers as well as cells and bacteria. Examples are assays for cancer tumor markers, sequencing of nucleic acids, isolation of mRNA for cloning and expression profiling as well as isolation of proteins for proteome analysis.

HLA diagnostics. Dynal not only has a robust HLA typing platform, but also extensive competence in probe/primer design and proven capability to produce excellent software in-house. This, combined with an extensive understanding in the field of transplantation has also led Dynal to explore potential applications including the effects of genotype on immunosuppressive therapy, HLA antibody detection with recombinant proteins and even HLA antibody removal.

Immunomagnetic separation of bacteria and protozoa. This is exploited by Dynal in the areas of Food and Environmental Microbiology. In both applications, Dynabeads are coated with high affinity antibodies to target microorganisms. Food or concentrated water matrices are gently mixed with the Dynabeads and then the bead/microbe complex is separated by applying a magnet. The remaining supernatant, containing contaminants, is then discarded. The isolated bacteria (E. coliO157, other EPEC/VTECs, Salmonella, Listeria) or parasites (Cryptosporidium, Giardia) can then be cultured or subjected to other detection methods.

- 257 -

Page 260: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ELITech Group

12-12 bis rue Jean Jaurès 92800 Puteaux, FranceWeb site: http://www.elitechgroup.com/Tel: +33 (0)1 41 45 07 10Fax: +33 (0)1 41 45 07 19President: Pierre Debiais

Overview. ELITech Group, 2005, is a high-growth, profitable IVD company with global sales and distribution capabilities in over 100 countries. The group offers clinical chemistry, microbiology, immunology and electrophoresis products and operates globally, leveraging products from its own clinical chemistry and microbiology equipment and reagents facilities in Europe and North America, as well as complementary third-party products. In 2007, ELITech acquired Wescor Incto broaden its biomedical product platform and to provide a base for business expansion in North America. In 2007, the ELITech also acquired Vital Scientific BV in the Netherlands to allow the group to offer a complete clinical chemistry solution. In June 2009, ELITech acquired WESCOR Inc, a manufacturer of specialized clinical laboratory equipment. In September 2009, ELITech acquired SERFIB, a private French company specialized in the development and manufacture of well established microbiology and immunology kits. After divesting its microaaray business in January 2010, Elitech plans to focus on its core strengths and to enhance its molecular diagnostics and real-time PCR activities.

In June 2009, ELITech acquired Nanogen Inc (see separate profile), including its wholly-owned subsidiary Nanogen Advanced Diagnostics, Epoch Biosciences Inc, and Nanotronics Inc. The assets acquired by the ELITech constitute Nanogen's two primary businesses: the molecular diagnostic business and the Point-of-Care (POC) business. Under the terms of a separate agreement, Bay City Capital Fund V LP, which took part in the financing of the purchase, will acquire the POC business and certain license rights to the molecular diagnostic IP, while the ELITech will own and operate the molecular diagnostic business. In addition to the new ELITech clinical systems range, this acquisition will give the company a full microbiology range from specific culture media to multiplexing serology systems to infectious diseases diagnostics and will enable ELITech to reach critical mass within Europe and North America and leverage its channels of distribution throughout the rest of the world.

Products. A detailed list of ELITech products is given on the company’s web site.

Collaborations. In September 2009, ELITech signed an agreement with Arkray Inc, a Japanese multinational company specialized in diabetes testing and urinalysis, and integrated it into the French subsidiary ELITech France by acquiring 34% of its capital assets.

In September 2009, HandyLab signed a licensing agreement with ELITech for access to Epoch Biosciences' seasonal influenza assay. The assay was developed in a previous collaboration between CDC, Nanogen, The Medical College of Wisconsin, and HandyLab. In addition, HandyLab has also licensed Epoch's newly developed H1N1 influenza assay.

On 28 January 2010, Gamida acquired electronic microarray technologies from Elitech, which were originally acquired from Nanogen in July 2009, for $25.7 million. The deal covers the all of the assets associated with the NC400

- 258 -

Page 261: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

electronic microarray product line, which is a nucleic acid profiling platform used in SNP applications. The technologies will be developed and applied within the Gamida for Life Group, mainly by Gamidor Diagnostics and Savyon Diagnostics.

- 259 -

Page 262: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Enigma Diagnostics Limited

Building 224 Tetricus Science ParkDstl Porton DownSalisbury, Wiltshire SP4 0JQ, UKWeb site: http://www.enigmadiagnostics.com/Tel: +44 (0)1980 590131Fax: +44 (0)1980 590132Email: [email protected]: John McKinley

Overview. Enigma Diagnostics Ltd is a leader in developing rapid diagnostics for the detection and identification of infectious organisms in environmental, clinical and biological samples. Enigma develops portable and totally automated PCR-based diagnostic instruments that provide rapid and decisive results in real time allowing the user to take immediate action at the point-of-care (POC). The technology was originally developed for biosecurity applications, and the Company is now targeting the clinical, veterinary, defense and homeland security markets where sensitive and specific diagnostics information is required rapidly at the point of testing. Enigma's commercial objective is to maximize revenues from a continuous flow of rapid diagnostic POC and in-field products. Enigma will follow a dual commercialization strategy of building an in-house sales and marketing capability to direct distribution of its products and to partner with market leaders where global penetration of markets is required.

Technology. Enigma has a focus on real-time PCR technology, which has become the accepted gold-standard test for biological agents in clinical, veterinary and defense laboratories throughout the world. Enigma’s growing range of innovative products combine the speed and sensitivity of PCR with the simplicity needed for field-based and POC tests. These products are based on an extensive portfolio of proprietary real-time PCR technologies that include:

Automated sample preparation

Unique direct heating thermal cycling

Novel real-time PCR chemistries

Freeze-dried PCR reagents

Products. In 2006, the company launched Enigma FL, which was designed in collaboration with the UK Ministry of Defence and is a fully automated, all-in-one DNA detection system for the rapid identification of biothreat agents (bacteria or viruses) such as anthrax. It combines the speed and sensitivity of real-time PCR with the simplicity needed for field-based DNA tests. The entire process from collection of the raw sample (e.g. soil, water, powder, blood) to delivery of an unequivocal end result can take less than 30 m. The system operates with ambient stored reagents in a single disposable cartridge and meets the need for diagnostic systems that are portable and easy to use with minimal operator training and expertise. This eliminates the logistics and training burden associated with traditional PCR instruments that require refrigerated reagents and time consuming manual sample processing. Enigma FL is also being developed for veterinary applications, such as the detection of infectious diseases in livestock (e.g. pandemic avian flu and foot-and-mouth-disease) where sensitive and specific diagnostic information is required rapidly at point of sampling.

- 260 -

Page 263: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2007, Enigma successfully completed a project commissioned by the Defence Science and Technology Laboratory to develop a rapid, POC DNA test for diagnosis of C. trachomatis in the UK from multiple urine swab samples.

On 18 September 2008, Enigma received a £1.8 million ($3.3 million) grant from the UK government’s Technology Strategy Board to help it develop its portable molecular diagnostics system. Enigma is developing POC system that will run DNA-based tests for infectious diseases. The funding will support its program to develop tests for sexually transmitted diseases, such as Chlamydia trachomatis, and healthcare-associated infections, such as methicillin-resistant Steprococcus aureus. The portable, rapid, automated DNA analysis, (PRADA) system is based on proprietary technology, while real-time molecular assays for the instrument are being developed by researchers at the Centre for Healthcare Associated Infections at Nottingham University and Nottingham Trent University. Enigma holds an exclusive license to a portfolio of patents from the UK Ministry of Defence, as well as licenses from Life Technologies and Celera for the commercialization of real-time PCR instruments.

Collaborations. In 2007, Enigma signed a new exclusive licence agreement with the Defence Science and Technology Laboratory (DSTL) covering a broad range of technologies, including Pyrostart, ResonSense and Temperature Control, which are important elements of Enigma’s cutting-edge real-time PCR systems. These PCR systems are being developed for the rapid detection and identification of infectious organisms, such as bacteria and viruses, in clinical, environmental and biological samples. This new agreement follows the initial licence agreement that Enigma signed with DSTL in 2004.

In 2008, Enigma licensed two patents related to PCR technology from Roche Molecular Systems that will allow it to commercialize human and veterinary diagnostic tests worldwide. The licenses are for the HybProbe real-time PCR chemistry and to commercialize HybProbe molecular diagnostics. These will be combined to provide one step POC tests for C. trachomatis, MRSA and influenza.

On 8 February 2010, the Tecan Group signed a 5-year manufacturing and supply agreement to industrialize and deliver Enigma's ML instruments for the global market and to manage the supply chain as well. This represents the first of a number of potential additional agreements relating to Tecan's support of the Enigma ML system.

- 261 -

Page 264: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Enzo Life Sciences

60 Executive Blvd.Farmingdale NY, 11735, USAWeb site: https://www.enzolifesciences.com/lifesciences/index.aspTel: (631) 694-7070Fax: (631) 694-7501E-mail: [email protected]

Overview. Enzo Life Sciences, a subsidiary of Enzo Biochem, is the source for nonradioactive labeling and detection protocols and reagents for molecular biology research, including microarray methods for both gene expression and genomic analysis. In May 2007 Enzo acquired Axxora Life Sciences Inc, a privately owned global manufacturer and marketer of life sciences research products, for approximately $16.3 million. Axxora, as a wholly owned subsidiary of Enzo, will greatly expand Enzo’s life sciences product development, production and marketing capabilities.

Technologies/products. BioProbe® labeled DNA probes are similar in sensitivity to radioactive probes, yet have a longer shelf life and possess less health risk and disposal problems than do the radioactive ones. They are used to identify viruses and other microorganisms. Other technologies relevant to molecular diagnostics are:

Microarray analysis

Nucleic acid labeling systems

In situ hybridization and detection systems

Human papillomavirus identification systems

Signal Generating Systems

A DNA labeling system is aimed at array Comparative Genomic Hybridization

In 2006, Enzo entered into the cytogenetics market as a result of a licensing agreement with Children's Mercy Hospital & Clinics (Kansas City, MO). It will produce newly patented single copy DNA probes that can identify the minutest strands of DNA, enabling more effective treatment of genetic diseases and some cancers. Enzo plans to combine FISH with human genome sequence information, which will allow visualization at levels not achievable by other methods. Single copy DNA probes offer specificity in hybridizing genetic chromosomes, not heretofore available, for identifying elusive strains of inherited genetic diseases and cancers, enabling more precise clinical treatment. Other commercially produced DNA probes, while important and useful, are limited to primarily examining large sections of DNA in identifying relatively common genetic disorders.

Collaborations relevant to molecular diagnostics. Enzo supplies its reagent products to Gene Logic Inc, which uses them for labeling and detecting gene sequences with Flow-thru Chip probe arrays. Gene Logic has access to Enzo's technology for use in developing gene expression data, profiles and genetic databases for research purposes.

Enzo has a non-exclusive worldwide distribution agreement with NEN Life Science Products, which will distribute Enzo's reagents to the global research market.

- 262 -

Page 265: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2004, Enzo signed a supply/license agreement with GlaxoSmithKline (GSK) for its proprietary RNA/DNA labeling, detection and amplification technology/products to generate genomic information for supporting GSK’s research and development activities.

In 2010, Enzo gained exclusive distribution rights for New York and New Jersey to ColonSentry, a PCR-based colon cancer risk-stratification test from GeneNews.

- 263 -

Page 266: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Epidauros Biotechnologie AG

Am Neuland 1 82347 Bernried, Germany Web site: http://www.epidauros.com/Tel: +49(0)8158/9985 - 0 Fax: +49(0)8158/9985 - 48 E-Mail: [email protected] and CEO: Dr. Manfred ZoltobrockiContact: Dr. Hans Peter Arnold, Sr Dir Business Development & MarketingE-mail: [email protected]

Overview. Epidauros, founded in 1997, is named after the most important sanctuary of Asclepius, the Greek god of medicine and healing. The Company's mission is to optimally tailor drugs to the individual patients' genetic profiles by pharmacogenetic tests. In August 2007, Clinical Data Inc acquired privately held Epidauros for €8.75 million ($11.84 million).

Technologies/services relevant to molecular diagnostics. Epidauros investigates the influence of polymorphisms on drug response, with individual and ethnic differences playing a role in that reaction. Epidauros examines all three factors that impact drug concentration and thus drug effect: polymorphisms in drug transporter proteins, polymorphisms in metabolizing enzymes and polymorphisms in proteins - drug targets. If a causal link can be established between certain polymorphisms and a certain drug effects, Epidauros patents this correlation and develops pharmacogenetic tests based upon it. The results of the investigation of the MDR-1 gene, the enzymes of the CYP 3A family and the CYP 2D6 gene are just a few examples of the cutting-edge research coming out of the Company's laboratories.

Collaborations. In 2003, LGC, an analytical laboratory based in the UK, granted Epidauros a non-exclusive license to CYP2D6*4 variant of the cytochrome P450 2D6 gene, which encodes a liver enzyme for metabolism of analgesics and antidepressants. Epidauros further licensed it to Roche, which has incorporated the marker into its AmpliChip CYP2D6 test.

In 2006, Tm Bioscience gained a co-license to Epidauros's patents on a specific biomarker related to the P450-CYP2D6 gene. Tm Bioscience will provide an upfront signing fee and royalties on sales of P450 Tag-It tests that include this biomarker.

In 2006, Genmark Diagnostics signed an agreement for a non-exclusive license to Epidauros’ patent application on 2988G>A, a genetic variant related to the cytochrome P450 2D6. This could be used in combinatorial analysis with further genetic variants of CYP2D6 as a predictive biomarker for impaired enzymatic function putting patients at higher risk for nonresponsiveness or adverse drug reactions.

In March 2007, Epidauros signed a non-exclusive licensing agreements for its biomarker patents with Luminex Molecular Diagnostics, Nanogen, and Nanosphere to allow the companies to use its CYP2D6 IPas a predictive marker for responsiveness and adverse drug reactions.

- 264 -

Page 267: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Epigenomics AG

Kleine Präsidentenstrasse 1D-101785 Berlin, GermanyWeb site: http://www.epigenomics.com/Tel: +49-30-24 34 5-0Fax: +49-30-24 34 55 55E-mail: [email protected]: Geert Nygaard

Overview. Epigenomics is a biotechnology company pioneering personalized medicines. In 2000, Epigenomics merged with ORCA Biosciences Inc in Seattle, USA (now a subsidiary as Epigenomics Inc) - an early stage company developing screening tests for detecting cancer based on DNA methylation. By detecting DNA methylation patterns, the "on" and "off" signs for genes, Epigenomics can create a digitized readout (Digital Phenotype) for each tissue. The comparison of healthy and sick tissue enables an exact diagnosis of disease at a very early stage and reveals new therapeutic opportunities. The combination of diagnosis and therapy, based on this epigenetic information and its robust proprietary technology, is leading the way to improving patients' quality of life. Epigenomics is the world's first and only company focusing exclusively on DNA methylation and its importance in the post-genomic age.

Technologies relevant to molecular diagnostics. Epigenomics’ unique technology enables very efficient detection of DNA methylation patterns on an industrial scale (see Chapter 7). Epigenomics had successfully identified over 200 Methylated Sequence Tags or DNA based markers that could be used for early detection of colon cancer. The pattern of bound DNA, which is fluorescence labeled, is finally detected in a scanner. By combining modified DNA chemistries with sophisticated arraying methods and MALDI mass spectometry, Epigenomics also established a powerful proprietary technology platform for the screening of very high numbers of methylation sites per sample. Mass application of Epigenomics' biochemical methods and protocols are not possible without using fully automated high-throughput laboratory systems. Epigenomics has developed a powerful process for the fast, inexpensive and flexible production of any specified chip. Another increasingly important focus lies on the full integration of entire processes such as array design, array synthesis, amplification, hybridization, detection and data storage, and analysis. Epigenomics has developed a number of proprietary procedures for the use of MALDI-TOF for very high throughput analysis of DNA methylation.

In 2005, Epigenomics showed that its proprietary DNA methylation markers are closely correlated with disease recurrence and prediction of therapy response in early breast cancer. Specific DNA methylation markers, including PITX2, will be incorporated into a test that will provide physicians with clinically relevant information that may spare approximately half of estrogen-dependent, node-negative breast cancer patients from going through the discomfort and side effects of chemotherapy.

Collaborations. In 2003, Epigenomics gained access to two new technologies through a licensing agreement with Johns Hopkins University (Baltimore MD) and an option agreement with Australia's Commonwealth Scientific and Industrial Research Organisation Division of Molecular Science, for the early detection of solid tumors. In 2003, Roche started collaboration with Epigenomics, valued at $107.4 million, to develop tests

- 265 -

Page 268: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

based on methylation markers for detecting cancers in their earliest stages, predisposition to cancer and to which drugs the disease might respond.

In 2005, QIAGEN and Epigenomics agreed to develop a portfolio for DNA methylation analysis for preclinical research and to have full compatibility for use in IVD.

In 2006, Epigenomics agreed to continue collaboration with AstraZeneca to identify and analyse potential DNA methylation biomarker candidates for oncology.

In 2006, Epigenomics started collaboration with Molecular Imaging Program at Stanford University to determine the potential complementary benefits of molecular imaging technologies and DNA methylation biomarkers in early colon cancer diagnosis.

In January 2008, Epigenomics entered into a strategic cross-licensing agreement with DxS Ltd to obtain rights to proprietary Scorpions® technology for R&D as well as an option to expand the license to the IVD field. Epigenomics intends to use this technology both in certain research kits as well as potentially in its cancer specialty diagnostics products. DxS in return receives an option for license to certain Epigenomics IP covering the use of Scorpions® technology for DNA methylation applications.

In February 2008, Epigenomics licensed its DNA methylation biomarker Septin 9 to Quest Diagnostics, for developing a blood test to detect colorectal cancer as a supplement to conventional methods of screening, e.g. colonoscopy and fecal occult blood tests.

In December 2008, Epigenomics signed an agreement with Royal Philips Electronics to jointly perform feasibility studies aimed at developing a fully automated instrument platform for diagnosing certain cancers based on DNA methylation biomarkers.

On 28 April 2009, Epigenomics signed a non-exclusive licensing agreement for its proprietary DNA methylation biomarker mGSTP1 with Predictive Biosciences to commercialize a molecular diagnostic that can help urologists and pathologists better diagnose and manage prostate cancer.

- 266 -

Page 269: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Eppendorf AG

Barkhausenweg 122339 Hamburg, GermanyWeb site: http://www.eppendorf.com/Tel: +49 40 53 8010Fax: +49 40 53 801-556CEO: Klaus FinkContact: Jörn Peplow, Corporate Communications ([email protected])

Overview. Eppendorf, founded in 1945, is a biotechnology company, which develops, produces and distributes systems for use in life science research laboratories worldwide. Its product range includes pipettes, dispensers and centrifuges as well as consumables such as micro test tubes and pipette tips. In addition, Eppendorf provides instruments and systems for cell manipulation, automated devices for liquid handling, complete equipment for DNA amplification and biochips. Eppendorf has subsidiaries in 17 countries and is represented in all other markets by distributors. The company has more than 2,000 employees worldwide and subsidiaries in 20 countries. In 2008, the company’s sales revenues were €410 ($590) million with earnings of €72 ($103) million.

Product relevant to molecular diagnostics. DualChip microarray contains two identical microarrays that are enclosed in an easy-to-fill hybridization frame, thereby ensuring simple handling, which is a major product advantage. Pathway-focused DualChip® microarrays offer the quickest and easiest method for performing gene expression analyses of the highest quality. Even at first glance, these predefined low-density DNA microarrays stand apart from conventional microarrays, and their uniqueness and innovation extend far beyond what is visible on the surface. The unique Xmer® probe technology features 200-400 nucleotides long sense DNA to provide maximum signal with minimal background. Each Xmer® is in silico designed and tested in real hybridization experiments. It is a complete analysis system with a comprehensive set of controls ensures that all steps of the experiment are checked, all spots are normalized and all signals are statistically validated-automatically. DualChip® kits contain all of the components necessary to complete hybridization experiments.

RAF (real-time array PCR cycle) is a fully automated combination of multiplex PCR real-time detection on microarray to reduce testing time. It has multiple potential applications including combination of diagnostics with therapeutics in oncology, genotyping and diagnosis of infections. A 47-plus panel for detection of bacteria and their antibiotic resistance in ventilator-associated pneumonia is currently being tested.

The Eppendorf hybridization system containing Thermomixer comfort with Thermoblock for Slides DC form the perfect complement for DualChip® micro arrays. Controlled mixing and a homogenous temperature distribution lead to highly reproducible results that feature excellent signal-to-noise ratios. The DualChip system does not require expensive system components.

epMotion is used for fast and efficient processing of repetitive dispensing steps. It minimizes user fatigue and stress, and improves the throughput, performance and standardization of our respiratory virus real-time PCR assays.

The TF Chip Stem Cell kit enables profiling the status of a stem cell culture by 12 specific transcription factors in one assay. Two identical arrays are

- 267 -

Page 270: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

spotted on one slide and allow a direct comparison of two samples treated differently.

Collaborations. In 2005, PerkinElmer and Eppendorf signed a co-marketing agreement to jointly promote microarray technology involving Eppendorf's DualChip™ content arrays with PerkinElmer's ScanArray™ Microarray Analysis System. The combination of the novel DualChip technology and the user-friendly scanning protocols of ScanArray GX provides a complete solution from array processing to data analysis.

- 268 -

Page 271: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

EraGen Biosciences

918 Deming WayMadison, WI 53717, USAWeb site: http://www.eragen.com/ Tel: (608) 662-9000E-mail: [email protected]: Irene Hrusovsky MDContact: Samraat S. Raha, Chief Business Officer

Overview. EraGen Biosciences is a leader in the field of genomics-based solutions through its development and application of novel nucleic acid and interpretive proteomics technology. In 2002, EraGen received funding from the NIH to develop a series of rapid tests targeted at detecting single copies of category A bioweapon agents. EraGen was awarded federal funding to develop an automated screening system for cystic fibrosis in collaboration with the University of Wisconsin.

Technology relevant to molecular diagnostics. AEGIS (An Expanded Genetic Information System). At the core of this technology are novel base pairs that are readily processed by naturally occurring enzymes. The expansion of this alphabet to include up to 8 new bases forms the foundation of AEGIS platform. Two of these new bases, isoC and isoG, have been combined with the natural genetic alphabet in order to produce the Company’s novel nucleic acid testing and diagnostic technologies, GENE-CODE, MULTI-CODE and ERA-CODE. The technology is flexible across multiple formats: in solution, beads, microarrays, and microtiter plates. Key biochemical attributes have been used to develop novel approaches to high throughput genotyping, high throughput quantification /detection, cloning and nanotechnology.

GeneCode Genotyping. This is EraGen's premier endpoint based genotyping system that allows rapid genotyping of polymorphic sites in genomic DNA samples without the need for post-amplification processing such as gel electrophoresis. Additionally, the system allows the investigator the option of running samples in single-plex or multi-plex format.

GeneCode Quantitation. This is a real-time system that allows for rapid genotyping of samples without requiring the investigator to quantify samples prior to analysis. The system also allows the investigator to analyze sample in single-plex or multi-plex format.

MultiCode. This is EraGen's solid phase one reaction, one hybridization multiplexing platform that reduces the time and cost when compared to present technologies. This genotyping technology enables the analysis of multiple SNPs (up to 50) per reaction well, 96-wells at a time without washing or post-reaction manipulations. In 2006, EraGen developed a MultiCode diagnostic panel to address a range of clinical and research applications for respiratory diseases to include SARS and avian flu.

EraCode. This is EraGen's molecular recognition technology. Capture experiments using ERA-Codes can be performed at room temperature, virtually eliminating background noise and the necessity of washing the support.

Products. EraGen has a rapid and accurate test to detect Bacillus anthracis based on AEGIS technologies. The Company’s DNA scanning platforms can detect organisms used as biological weapons. In less than one hour, these tests are able to determine the level of exposure with sensitivity of detection

- 269 -

Page 272: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

down to one genome. In 2003, EraGen developed a new SARS specific assay test using its proprietary Gene-Code technology.

Collaborations relevant to molecular diagnostics. In 2009, EraGen licensed the use of Illumina's BeadXpress platform to develop and commercialize molecular-based, high-throughput, clinical assays using its MultiCode-PLx technology. On 21 April 2011, EraGen received access to Applied BioCode's barcoded magnetic bead technology and CE-Marked BioCode-1000 system, which EraGen will couple with its MultiCode-PLx assays for analyzing nucleic acid targets in infectious disease and genetic testing.

Esoterix Inc

4509 Freidrich Lane Building 1, Suite 100Austin, TX 78744, USAWeb site: http://www.esoterix.com/Tel: (512) 225-1100 Fax : (512) 225-1250 Contact: Gregory T. Stelzer, PhD, Senior VP and Chief Scientific Officer

Overview. Esoterix Inc provides technology-based laboratory services and information solutions to enhance healthcare providers' ability to manage and care for patients. At the core of the Esoterix approach is its family of specialized esoteric laboratories. In 2005, Laboratory Corporation of America acquired Esoterix.

Services. Services of the following Esoterix laboratories are relevant to molecular diagnostics:

Esoterix Molecular Genetics (Eden Prairie, MN) provides innovative, cost-effective testing in the areas of constitutional genetics, molecular oncology, SNP analysis, and complex gene testing including paraffin block analysis. In coordination with the family of Esoterix reference laboratories, Esoterix Molecular Genetics is positioned to provide the most responsive diagnostic testing, on-going patient monitoring and integrated laboratory reporting to provide the resources needed for quality patient care. The services are as follows:

Constitutional cytogenetics, analysis on peripheral blood, amniocytes products of conception and skin biopsies

Molecular cytogenetics, or FISH, used for the detection of aneuploidy, microdeletions and translocations in both cancer and constitutional analysis

Southern blot and PCR technologies to diagnose heritable diseases and detect genetic changes associated with cancer

Parentage testing from buccal swab, cord blood, prenatal and post-mortem specimens

Esoterix Oncology, well known as Cytometry Associates, uses advanced technology and medical expertise to offer fully integrated oncology testing including cancer cytogenetics, flow cytometry, immunohistochemistry, and molecular diagnostics. Services are available at various locations in the US.

Esoterix Infectious Disease Center (San Antonio, Texas), formerly Virus Reference Laboratory is a specialized provider of laboratory services focused exclusively on assisting clients in diagnosing, monitoring and treating patients with microbial diseases. As a multi-discipline facility, Esoterix

- 270 -

Page 273: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Infectious Disease Center offers services in molecular diagnostics, virology, bacteriology, parasitology, mycology, serology, immunology and flow cytometry. In 2000, Esoterix launched HIVComplete, the first comprehensive testing and information service focusing on the management of HIV.

In 2002, Esoterix Infectious Disease Center launched HCVComplete, which includes HCV Antibody (Anti-HCV), HCV confirmed by RIBA, HCV RNA by PCR in qualitative, quantitative and ultra sensitive quantitative platforms as well as ALT (Alanine Aminotransferase). It also features HCVMap, which employs bi-directional DNA sequencing developed by Visible Genetics to classify all major HCV genotypes and their most common subtypes.

- 271 -

Page 274: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Eurogentech

LIEGE Science ParkRue Bois Saint-Jean 54102 Ougrée, BelgiumWeb site: http://www.eurogentec.com/Tel : +32 4 372 74 00Fax: +32 4 264 07 88E-mail: [email protected] Executive Officer: Jean-Pierre Delwart

Overview. Eurogentec was founded in 1985 as a spin-off of the University of Liège (Belgium). Its mission is to design and deliver reliable and innovative services and products for the Life-Science community. As a leading supplier for genomic and proteomic research, Eurogentec is able to offer its customers integrated solutions, whether they use DNA, antibodies, peptides or proteins as research tools. Eurogentec also offers research and development services for the biopharmaceutical industry. In 2003, Epoch Biosciences Inc, a provider of proprietary products that accelerate genomic analysis, sold assets and customer base of its specialty oligonucleotide operations located in San Diego, California to Eurogentec.

Services relevant to molecular diagnostics. Tools for Genomics and Proteomics department offers oligonucleotide synthesis with a large range of modifications, oligonucleotides for IVD, real-time PCR products, DNA microarray services and a wide range of kits and consumables. It also gathers know-how in the design of peptides, either for antibody production or bioactive peptide purposes. Antibody production in a wide range of animal models as well as peptide-, antibody- and protein-arrays are also amongst its expertise.

The universal Reverse Transcriptase Core kit can be combined with each qPCR Core kit or qPCR MasterMix, available from Eurogentec. The qPCR can be performed using specific probes, like double-dye oligonucleotides, or non-specific intercalating dyes, like SYBR® green I.

Collaborations. Eurogentec participates in innovative research projects through strategic alliances with other companies and academic laboratories. It is a member in various types consortia of European research projects. It has collaborative agreement with the German Cancer Research Center DKFZ and the Molecular Biology Center EMBL (Heidelberg, Germany), the Pasteur Institute of Paris, the INRA, the CNRS, the INSERM, the IGBMC and various private companies such as GPC (Munich, Germany), Sanofi-Aventis and GlaxoSmithKline. Eurogentec is also involved in the spin-off Probiox, aiming to develop new biochips to detect oxidative stress.

In 2003, a long-term license agreement signed with Exiqon including co-development projects on LNA-based genomics products will allow Eurogentec to market products and custom oligos enhanced by LNA.

- 272 -

Page 275: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Exact Sciences Corporation

441 Charmany DriveMadison, WI 53719, USAWeb site: http://www.exactlabs.com/Tel: 608-284-5700Fax: 608-284-5701 E-mail: [email protected]: Kevin Conroy

Overview. Exact Sciences Corporation (EXACT) is an applied genomics company that to play a leading role in the eradication of common cancers by applying advances in the field of genomics to facilitate early detection of disease, e.g. colorectal cancer (CRC).

Technology. EXACT is developing powerful and patented technologies for specimen collection and preparation, and for cancer detection. These technologies can help to isolate human DNA from the sea of bacterial DNA in stool over 99% of the time and detect the mutated DNA. EXACT's technologies demonstrated high sensitivity and specificity for colorectal cancer and employed patient-friendly (i.e., non-invasive) sample collection methods. A new DNA purification method demonstrated an average 5.4-fold increase in the quantity of human DNA that can be retrieved, or captured, from fecal samples compared to the Company's older, bead-based capture technology.

According to a presentation on 28 October 2010, Cologuard™, a CRC screening test based on stool DNA changes, demonstrated a sensitivity of 64% for precancerous lesions and 85% for cancerous lesions and a specificity of 88% in a validation study. Quantitative Allele-specific Real-time Target and Signal (QUARTS) amplification assay technology was used to develop Cologuard, as well as the markers contained in the test. The study took three distinct pathways, using four DNA methylation markers, two DNA mutation markers, and a human blood protein marker. One potential shortcoming of the test is that it was not especially sensitive at detecting late-stage cancer, i.e. 69% sensitivity for Stage 4 colorectal cancer and Exact Sciences hopes to improve that. A prospective trial to be completed in 2012 is aimed at gaining FDA approval for this test.

EXACT is also developing a test for detection of H. pylori DNA in stools.

Collaborations. In 2002, EXACT and Laboratory Corporation of America (LabCorp) created an exclusive, long-term strategic partnership to commercialize PreGen-Plus for the early detection of CRC in the average-risk population. In addition to certain royalty fees, LabCorp could pay EXACT Sciences as much as $75 million in upfront, milestone and performance-based payments for a 5-year exclusive license, followed by a non-exclusive license for the life of the patents.

In 2007, EXACT extended a licensing agreement for its long-DNA biomarker technology, DIA, with NorDiag. which will use it to identify abnormal apoptosis at the molecular level, in its CRC-screening tests in Europe, Japan, and Australia.

In January 2009, EXACT sold to Genzyme IP assets related to the fields of prenatal and reproductive health in a deal that is expected to provide the firm with a cash infusion of $24.5 million. In addition, it has sold to Genzyme 3 million shares of its common stock. The companies also amended their licensing deal of 1999, giving EXACT additional rights necessary to distribute

- 273 -

Page 276: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

FDA-cleared kits for stool-based detection of disease and CRC screening based on the detection of APC and P53 mutations. The amended license and assumption by Genzyme of certain patent costs will reduce EXACT's cash outlays.

In October 2009, Exact licensed Invader platform from Hologiitc, which intends to couple with digital PCR technology it had licensed from Johns Hopkins University to develop a stool-based DNA test for colorectal cancer screening.

- 274 -

Page 277: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Exagen Diagnostics Inc

801 University Blvd. SE, Suite 209Albuquerque, NM 87106, USAWeb site: http://www.exagen.com/ Tel: 505/272-7966; Fax: 505/272-7965Email: [email protected]; [email protected]: Scott Glenn

Overview. Exagen, founded in 2002 as a spin-off of Quasar International, is a molecular diagnostics company that is focused on identifying and developing genomic biomarker sets for diagnostic, prognostic and predictive treatment response tests for a number of disease categories. These disease categories include cancer, digestive disorders, and infectious disease treatment response. Exagen is developing products for disease prognosis and therapy management that are expected to significantly improve clinical outcomes and facilitate the development of personalized medicine. In October 2010, Exagen purchased Cypress Bioscience Inc’s diagnostic business.

Technology. Exagen's proprietary computational engine, Coperna™, can identify gene biomarker sets in a matter of weeks as opposed to months or years. Coperna enables a significant number of computations to quickly identify small, precise sets of genomic biomarkers that are most meaningful for diagnosis, prognosis, or treatment response by patients with a given disease. The complexity and power of the Coperna technology enables Exagen to design and develop numerous molecular diagnostics for clinical applications including disease diagnosis, assessment of disease recurrence and determining a patient's response to treatment prior to start. Exagen is not limited to delivering tests within a particular disease category or test platform. Rather, its delivery system allows for its assays to be brought to market on the most convenient and effective testing platform appropriate for the assay. Exagen can assist pharmaceutical companies by identifying genomic biomarkers to select patients who are most likely to respond to the study drug. This will assist in the development of targeted and personalized therapeutics.

Products. eXaIBD: a genomic test for inflammatory bowel disease (IBD).

eXaIBS: a genomic test for irritable bowel syndrome (IBS).

eXaUCCD: genomic technology to differentiate ulcerative colitis from Crohn's disease.

AVISE-PG is a specialized test that measures how well the body metabolizes methotrexate

AVISE MCV for diagnosis and prognosis of rheumatoid arthritis.

Exagen is currently developing two breast cancer prognostic assays, eXagenBC™ for estrogen receptor/progesterone receptor positive (ER/PR+) patients and another test for ER/PR- patients. Both tests use FISH technology to assess the likelihood of breast cancer recurrence in women with newly diagnosed, early stage invasive ductal breast cancer. eXagenBC has been submitted for 510(k) clearance.

Exagen is developing 2 blood tests for prognosis of hepatitis C: (1) to identify patients most likely to respond to the standard treatment regimen with interferon and ribavirin; and (2) to identify patients that show evidence of liver damage.

- 275 -

Page 278: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. On 23 May 2011, Exagen and Medco Research Institute began a pilot program “Novel Interventions in Methotrexate Boosts Levels of Effectiveness (NIMBLE)” to specifically targets low-dose methotrexate (MTX) therapy for rheumatoid arthritis, which is difficult to optimize for individual patients because of the high variability in absorption, excretion, and metabolism rates for each patient. Exagen's Avise PG lab test will be used to measure MTX polyglutamate levels, the active metabolites of MTX, which can provide information about how MTX is being absorbed, retained, and metabolized by a patient, leading to better dosing and greater efficacy.

- 276 -

Page 279: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Exiqon A/S

Skelstedet 16 DK-2950 Vedbæk, Denmark Web site: http://www.exiqon.com/Tel: +45 (45) 66 08 88 Fax: +45 (45) 66 18 88 E-mail: [email protected] President & CEO: Lars Kongsbak ([email protected])

Overview. Exiqon is the global provider of locked nucleic acid (LNA™) and a leading supplier of high-value gene expression analysis products and web-based software tools to help scientists achieve rapid and reliable results. Its product portfolio includes miRCURY™ product line for miRNA research as well as custom LNA™ oligonucleotides. Its California-based subsidiary, Oncotech, is renamed as Exiqon Diagostics.

Technologies. LNA™ nucleosides give rise to an increased thermal stability and discriminative power of duplexes resulting in various unique features. Applications are:

miRNA analysis. The high-affinity LNA based miRCURY™ probes for detection of miRNAs in Northern blot and/or ISH assays are now available. miRCURY™ LNA Knockdown probes can determine miRNA function. Exiqon's first miRNA-based diagnostic to predict colon cancer recurrence is slated for introduction in 2009. Approval from the New York State Department of Health will be sought.

Allele-specific PCR priming and gene expression analysis by real-time PCR.

miRCURY LNA™ miRNA PCR system is a fast and easy way to accurately quantify mature miRNAs by real-time PCR.

Probes for cytogenetics (FISH) and comparative genomic hybridization

SNP detection

Fluorescence Polarization probes

Molecular Beacons

Capture probes for expression microarrays

Collaborations. In 2003, Exiqon signed a supply agreement allowing Link Technologies to market and sell LNA-phosphoramidites for the genomics research market in Europe. In 2005, Exiqon signed an agreement naming Roche Diagnostics as sole distributor of its ProbeLibrary Kits for real-time PCR. In 2006, Exiqon signed an agreement to co-develop and commercialize miRNA products based on its LNA™ and Luminex's xMAP® technology. FlexmiR, which can provide more than 6,300 data points in just 4 h, was launched.

In 2008, Exiqon started collaboration with the MD Anderson Cancer Center (Houston, TX) to seek miRNA biomarkers for breast cancer through using its miRCURY LNA nucleotide products. The focus is on identifying miRNA expression signatures associated with the relapse and progression of breast cancer, and Exiqon aims to develop and validate diagnostic tools that could be used to guide patient management.

- 277 -

Page 280: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 21 June 2010, Exiqon granted a non-exclusive license for its LNA technology to Becton Dickinson for the development of diagnostics for infectious diseases. BD will market a number of defined LNA-enhanced products to run on its BD Max next-generation system for molecular diagnostics based on real-time PCR.

On 20 July 2010, Roche joined marketing forces with Exiqon for its real-time assays and Exiqon's miRCURY LNA™ Universal RT microRNA qPCR system, which will compement each other.

ExonHit Therapeutics SA

65 Boulevard Masséna75013 Paris, FranceWeb site: http://www.exonhit.com/Tel: +33 (0) 1 53 94 77 00Fax: +33 (0) 1 53 94 77 07E-mail: [email protected] of Management Board: Loic Maurel MD

Overview. ExonHit is a clinical-stage drug discovery and development company. By applying its alternative RNA splicing technology to specific diseases, it has generated five active therapeutic programs. The lead programs are in the field of neurodegenerative disease, including Alzheimer’s disease (AD), Parkinson's disease, and dementia. It also has therapeutic programs in cancer and retinal disorders. It is also developing molecular diagnostics for cancer. On 26 April 2010, ExonHit signed an agreement for the acquisition of RedPath Integrated Pathology Inc, a privately held US molecular diagnostic company, focused on cancer (2009 turnover $5.4 million). If approved by shareholders, ExonHit will pay an upfront of $12.5 million in cash and $10 million in stock.

Technology. Exonhit's pipeline was built around insights gained through the application of its patented genomic profiling technology, DATAS™ (Differential Analysis of Transcripts with Alternative Splicing). The company has no in-licensed compounds. DATAS™ is utilized to identify genes whose splice variants produce abnormal proteins which may trigger or contribute to the development of disease. This technology is based on a process called alternative RNA splicing, and yields information not readily accessible through other means.

SpliceArray™ microarray: RNA splicing analysis platform covering the entire genome.

Patents. ExonHit has secured its expertise in the discovery and development of diagnostic tests through 3 groups of patents:

1. US 6,251,590 / EP 1,062,364 - DATAS™ technology for the identification of splicing events specific for particular pathological condition.

2. US 6,881,571 / EP 1,062,364 – microarrays designed specifically to analyse for pre-determined splice events. These microarrays comprise junction oligos and/or exon- or intron-specific oligos.

3. US 6,372,432 / EP 1,198,595 - new compositions and methods for the detection of pathological events from blood.

Molecular diagnostics. Blood-based AD test. ExonHit has several studies as part of the EHTDx21 project. In 2007, ExonHit developed a test, based on hybridizing RNA isolated from blood on an Affymetrix microarray, to identify

- 278 -

Page 281: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

patients suffering from AD. The test, based on a panel of 60 biomarkers, can differentiate AD patients from healthy individuals and other forms of dementias. ExonHit has provided the pharmaceutical industry with its first version of the EHTDx21 test and so becomes one of the first worldwide firms to offer a blood diagnostic test devoted to this pathology. A launch is anticipated in Europe by 1Q 2011. As of February 2010, the company is in discussing with the FDA about the correct path for possible 2012 launch of its IVD.

Atherosclerosis. ExonHit’s goal is to identify a panel of genes from different cells in the blood that characterize the stage of development of the plaques. These panels will then be used to design custom microarrays which can serve as a basis for the development of a blood based diagnostic for atherosclerosis.

Bovine Spongiform Encephalopathy (BSE). ExonHit has discovered five blood-based diagnostic biomarkers that enable discrimination of live cattle infected with BSE from uninfected cattle. The signatures function in a population containing both male and female animals, as well as naturally and experimentally infected animals. The signatures are ready to be transferred to a commercial blood-based diagnostic platform for validation on a larger number of animals.

Predictive blood-based diagnostic for breast cancer. ExonHit has applied its gene profiling technology DATAS™ to blood samples of both healthy women and women with breast cancer, which led to the identification and isolation of a set of spliced variants that were expressed differently in diseased and healthy women. These signatures have been applied to bioMérieux' diagnostics platform, which uses Affymetrix GeneChip® microarrays, to identify the most significant diagnostic markers in blood samples. This test is capable of correctly classifying 86.5% of the controls and 92.7% of the breast cancers.

EHT Dx14, a novel breast cancer diagnostic biomarker was developed using ExonHit’s SpliceArray™ platform and licensed from Institut Gustave Roussy in May 2009. Its launch as a ‘research use only’ product for oncology centers is planned in 2010. The test will be ExonHit’s first nonblood-based assay, and the signature can distinguish between malignant breast tumors and benign lesions ExonHit also has two therapeutic research programs in oncology, EHT 101 and EHT 107.

Collaborations. ExonHit elected to enter the diagnostics market through the partnership forged with bioMérieux focused on developing blood-based diagnostics for multiple cancer indications. This enables the company to leverage its expertise in identifying disease-specific biomarkers, its IP position and its exclusive access to disease information with bioMérieux's ability to develop and commercialize innovative blood and tissue diagnostics. Collaboration, aimed at identifying biomarkers and developing tests for colon cancer, was discontinued on 8 March 2010, but the companies plan to continue working together to find biomarkers and develop tests for early-stage prostate cancer.

In May 2009, ExonHit obtained an exclusive, worldwide license from IGR to develop a molecular diagnostic for breast cancer. The test will be designed to work on fine needle aspiration samples and is based on an RNA splice variant signature identified by IGR researchers. ExonHit will have access to samples from ICR’s biobank.

On 14 June 2010, ExonHit signed an agreement with Genmab A/S for a selection of novel splice variants, identified as part of a successful pilot study, which have the potential to be therapeutic targets for breast cancer. Genmab

- 279 -

Page 282: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

retains exclusive development and commercialization rights on 10 events out of a breast cancer database developed using ExonHit’s genome-wide SpliceArray™ technology.

- 280 -

Page 283: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Exosome Diagnostics Inc

c/o Sheldon HirshonProskauer Rose LLP1585 BroadwayNew York, NY, 10036, USAWeb site: http://www.exosomedx.com/Tel: (646) 792-6192Email: [email protected] & Chief Executive Officer: James R. McCullough

Overview. Exosome Diagnostics Inc (EDI) is focused on commercializing proprietary genetics-based diagnostics in oncology and endocrinology. Exosome-derived RNA testing has the potential to improve the diagnosis of new cancers, identify the occurrence of postoperative cancers and more precisely monitor the efficacy of drug therapies. Its lead commercial effort is the development of a series of oncology diagnostics based on its proprietary exosome/RNA genetic discovery platform.

Technology. Cells in the body normally shed small microvesicles or ‘exosomes’ into the blood and other body fluids as a way of cell-cell communication. These exosomes contain significant amounts of mRNA and miRNA as well as most of the transcriptome of their parent cell. Tumor cells are very active at shedding their exosomes into the blood supply. These tumor exosomes and their constituent RNAs are biomarkers that contain unique genetic information about the tumor, its type, extent of malignancy as well as susceptibility to therapy. EDI has shown that the isolation of RNA using exosomes can give pure RNA and developed an easy way to extract high quality RNA from large amounts of serum. Exosome RNA isolation and subsequent analysis provides an opportunity to increase the diagnostic sensitivity of circulating RNA in blood. EDI is currently expanding its technology to applications like metabolic and inflammatory disease including diabetes, irritable bowel syndrome and rheumatoid arthritis.

Scientists at the Harvard Medical School have shown that tumor-derived nanovesicles in the blood represent a biomarker for getting information about a glioblastoma of the brain without a biopsy, thereby offering a means of choosing the best therapy and monitoring patient response to treatment. EDI has licensed this technology for further development as a blood-based diagnostic test for the management of brain tumor patients.

Collaborations. In June 2009, EDI and DxS Ltd started collaboration to develop blood based companion diagnostics for key cancer gene mutations, such as KRAS, BRAF and EGFR using DxS’ Scorpions® real-time PCR Mutation Test Kits in conjunction with EDI’s xOS technology which harvests high-quality nucleic acids from blood exosomes.

- 281 -

Page 284: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Fluidigm Corporation

7000 Shoreline Court, Suite 100South San Francisco, CA 94080, USAWeb site: http://www.fluidigm.com/Tel: 650-266-6000Fax: 650-871-7152CEO: Gajus Worthington

Overview. Fluidigm develops and distributes systems based on integrated fluidic circuits (IFCs). Its systems can play a vital role in the advancement of life sciences and allied fields, including molecular diagnostics and personalized medicine. With IFCs, scientists are ableto conceive of and implement large, complex studies that further the knowledge of biology. Its systems, including IFCs, instrumentation, and software enable scientists to make incomparable leaps in productivity. The Company's patent portfolio consists of over 80 issued US patents and over 240 pending patents internationally, including those licensed from Caltech, Harvard, and University of Alabama.

Technology/products. The following are relevant to molecular diagnostics:

BioMark™ System line of life science products are meeting the challenges of high throughput (HTP) research through IFCs known as dynamic arrays and digital arrays. These innovative products enable scientists to practice tried-and-true techniques, such as TaqMan® assays, while realizing a previously unachievable throughput. Advantages include savings, more data compared to microwell chips, and throughput.

Fluidigm Dynamic Array™ chips enable 100s of individual cells to be tested for the expression of 100s of genes in a few hours.

FEP1 System for genetic analysis enables high-throughput SNP genotyping and end point digital PCR research through IFCs known as dynamic arrays and digital arrays. Characteristics of these innovative products are: (1) outstanding data quality; (2) fast and easy workflow; and (3) most effective system.

Access Array™ System enables sequencing of amplicon libraries using GS FLX Titanium Series reagents on the 454 GS FLX sequencing system.

FR 48, the first reusable low-cost integrated microfluidic biochip, is built upon Dynamic Array technology. It will be used initially for high throughput genetic testing of livestock, but potential applications are wide-ranging.

Applications. These include the following: (1) CNVs; (2) gene expression; (3) next generation sequencing; and (4) SNP genotyping.

Collaborations. In 2008. Fluidigm licensed Stanford University inventions that detect fetal genetic characteristics in maternal plasma, including a combination of dPCR and HTP sequencing. California’s Institute for Regenerative Medicine awarded Fluidigm and Stemgent Inc a grant to develop a cell culture chip and support system to accelerate stem cell research in California. It will help scientists identify stem cell culture and differentiation conditions, as well as genes and molecules impacting stem cell renewal.

In 2009, Fluidigm started to use its microfluidic tools such as BioMark™in combination with OncoMed Pharmaceuticals' Dynamic Array™ cancer stem

- 282 -

Page 285: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

cell sorting technology for analysis of tumor cell heterogeneity, including cancer stem cells. Detailed gene expression analysis of solid tumors will be performed at the whole tumor and single-cell levels. This technology can assess the safety and efficacy of therapeutic antibodies that have been generated to eradicate cancer stem cells.

On 5 April 2011, Fluidigm amended an agreement with Novartis Vaccines and Diagnostics for the development of non-invasive prenatal diagnostics test for fetal aneuploidies based on its dPCR system.

- 283 -

Page 286: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Focus Diagnostics Inc

11331 Valley View StreetCypress, California 90630-4717 USAWeb site: http://www.focusdx.com/Tel: (714) 220-1900 Fax: (714) 220-1683Contact John G. Hurrell PhD, Vice President and General Manager

Overview. Focus Diagnostics Inc, a wholly owned subsidiary of Quest Diagnostics, has served the healthcare community for nearly 3 decades as an innovative developer and provider of an array of specialized laboratory testing services and diagnostic products oriented to the diagnosis, treatment and management of infectious diseases. Focus also supports vaccine and pharmaceutical development companies through an active clinical trials program that is separate from the clinical diagnostics business. As part of Quest Diagnostics, Focus provides expanded infectious disease laboratory testing services and a portfolio of new diagnostic products recently launched or in development.

Products. The tests for various infectious diseases are listed on the Focus’ web site.

On 24 July 2009, the FDA issued an Emergency Use Authorization (EUA) for Focus Diagnostics Influenza H1N1 real-time reverse RT-PCR test, which amplifies the viral genetic material obtained from swabs of the nose or throat, or from nasal discharges. A positive result indicates that the patient is infected with the 2009 H1N1 influenza virus. However, the test does not indicate the stage of infection. A negative result does not preclude influenza virus infection.

- 284 -

Page 287: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Fujirebio Inc

2-62-5, Nihonbashi-Hamacho, Chuo-Ku, Tokyo 103-0007, JapanWeb site: http://www.fujirebio.co.jp/Tel: +81-3-5695-9217 Fax: +81-3-5695-9231 E-mail: [email protected] and CEO: Hiromasa Suzuki

Fujirebio Diagnostics Inc201 Great Valley ParkwayMalvern, PA 19355-1307, USAWeb site: http://www.fdi.com/Tel: (610) 240-3800Fax: (610) 240-3820President & COO: Dr. Paul Touhey

Overview. Established in 1950 as the Fujizoki Pharmaceutical Co Ltd to run a private blood bank, Fujirebio Inc has further developed and expanded into a wide variety of products ranging from ethical pharmaceuticals to medical diagnostics. In 2000, Fujirebio sold its pharmaceutical business to UCB Japan in order to devote all of its resources in the business of diagnostics. In 1998, Fujirebio acquired the production and marketing rights for the diagnostic oncology business of Centocor Inc and established its first US production base, Fujirebio Diagnostics Inc (FDI). Fujirebio completed the management integration with SRL Inc and became one of the subsidiaries under Miraca Holdings Inc in accordance with the corporate creation by separation conducted in 2005. In 2006, Fujirebio acquired CanAg Diagnostics AB (Gothenburg, Sweden).

Technologies. FDI's core technology is based on its proprietary gold standard MAbs originally developed to detect a variety of tumor markers. These antibodies have been utilized in the past to develop a menu of in vitro diagnostic tests. These assays include CA 125II™, CA 19-9™*, CA 15-3®, CA 72-4®*, CYFRA™ 21-1*, and Truquant® BR™. Furthermore, twenty years of proven manufacturing processes and facilities have established FDI as the premier global partner with leading diagnostic companies. Its extensive experience with antibody-based assays enables it to develop, validate, and manufacture assays and components in a variety of formats. All of these assays have been incorporated for use on a variety of automated immunoassay instruments.

Products. Fujirebio Diagnostics is a premier oncology diagnostics company and the industry leader in tumor marker assays. Examples are:

CA 15-3® RIA is an in vitro test for the quantitative determination of DF3 antibody-defined antigen encoded by the MUC1 gene, in serum and plasma of patients previously treated for Stage II or Stage III breast cancer.

CA 125 ll™ assay is an in vitro device for the quantitative measurement of OC 125 reactive determinants associated with a high molecular weight glycoprotein in serum of women with primary epithelial invasive ovarian cancer, excluding those with cancer of low malignant potential.

Truquant® BR™ radioimmunoassay (RIA) is an in vitro diagnostic device indicated for the quantitative determination of CA 27.29 antigen in serum or plasma of patients previously treated for stage II or stage III breast cancer.

- 285 -

Page 288: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2002. Ribozyme Pharmaceuticals Inc (now Sirna Pharmaceuticals) entered into an agreement with Fujirebio to develop and commercialize ribozyme-based clinical diagnostic products in the field of human viral diseases and cancer. Fujirebio completed an agreement with Randox Ltd to develop cancer diagnostics assays based on its proprietary antibodies and Randox's unique automated Biochip Array technology.

GATC Biotech AG

Jakob-Stadler-Platz 7 D-78467 Konstanz, GermanyWeb site: http://www.gatc-biotech.com/Tel: +49 (0)7531 81 60 0 Fax +49 (0)7531 81 60 81CEO: Peter Pohl

Overview. GATC Biotech is a leading provider of molecular biological services and innovative bioinformatics solutions for industry and academia worldwide since 1990.

Technology/products relevant to molecular diagnostics. GATC is developing DNA microarray-based diagnostic that will enable the immediate detection of organism-specific nucleic acid sequences, offering the advantage of reducing the time between sample collection and diagnosis, leading to a reduction in mortality rates from infectious diseases. Additional projects that GATC is contributing to include CONSERT (Concerted Safety and Efficiency Evaluation of Retroviral Transgenesis for Gene Therapy of Inherited Diseases), XENOME (detection of retroviral elements in the porcine genome), and EURESFUN (integrated post-genomic approaches for the understanding, detection and prevention of antifungal drug resistance in fungal pathogens).

Services. GATC provides the following services:

Sequencing services including whole genome sequencing.

Fragment length analysis / genotyping

Linear amplification-mediated PCR

Expression cloning

High throughput DNA preparation

cDNA full length cloning

Differential gene expression analysis

Collaborations relevant to molecular diagnostics. In September 2007, GATC started collaboration with the National University of Pusan and biotech company Gene In Corporation Ltd, both in South Korea. GATC is the Coordinating Partner of the collaboration, which aims to develop a comprehensive DNA microarray-based diagnostic test able to detect both bacterial and fungal infections. The project is partially funded by the Federal Ministry of Education, Science, Research and Technology in Germany. The Company collaborates with the Fraunhofer Institute in Germany, on EURESFUN, and also partnered with the Institute on the successfully completed project IDENTIGENE (development and validation of new suitable technologies for gene expression studies to identify functional candidate genes without the use of specific DNA probes).

- 286 -

Page 289: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GE Healthcare

Pollards Wood, Nightingales LaneChalfont St.Giles, Bucks HP8 4SP, UKWeb site: http://www.gehealthcare.com/President & CEO, GE Healthcare: John DineenPresident & CEO of Medical Diagnostics business: Pascale Witz

Overview. GE Healthcare, a $17 billion unit of General Electric Company (GE), provides transformational medical technologies that are shaping a new age of patient care. In 2003, GE acquired Amersham Biosciences for $9.5 billion and the combined Amersham and GE medical businesses are located in the UK. GE Healthcare's expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, disease research, drug discovery and biopharmaceuticals is dedicated to detecting disease earlier and tailoring treatment for individual patients. GE Healthcare offers a broad range of services to enable healthcare providers to better diagnose, treat and manage patients with conditions such as cancer, Alzheimer's disease (AD) and cardiovascular disorders. In 2006, GE Healthcare acquired Biacore for $390 million in order to expand its worldwide protein research footprint. In 2008, GE acquired Whatman for £363 million ($713 million). GE Healthcare Medical Diagnostics is the largest provider of in vivo imaging agents in the world, and is comprised of over 5000 professionals in over 30 countries. Yearly sales approach $2 billion. In October 2010, GE acquired Clarient, a cancer biomarker and diagnostic company, for $580 million. As of May 2011, GE was acquiring Applied Precision Inc, whose super-resolution microscopes enable researchers to investigate nanoscale cellular processes in vivo.

Technologies and products. The following are relevant to molecular diagnostics:

Molecular imaging technologies. GE has MRI and PET, which provide clinicians with diagnostic information about metabolic activity in the human body.

Microarrays. GE has a portfolio of commercially available products for custom fabrication and use of cDNA array. It is close to launching its first Protein Array products based around CyDye™ fluors. Protein arrays are already used in disease profiling, where differential expression of specific proteins is measured and correlated to a particular disease state or drug treatment. They can be used in many stages of the drug discovery process, including target identification and validation, toxicology, pathway elucidation, mode of action, and to look at drug resistance and surrogate markers of drug response.

CodeLink SNP System. In 2007, Applied Microarrays acquired CodeLink microarrays and sells the tools. In 2008, SurModics acquired the CodeLink Activated Slide microarray business, which GE had not sold to Applied Microarrays.

Sequencing. MegaBACE 500 DNA Analysis System is a high-throughput, fluorescence-based DNA system using capillary electrophoresis, which performs sample injection, gel matrix replacement, DNA separation, detection, and data analysis. MegaBACE 500 can be configured for both sequencing and genotyping applications.

Collaborations relevant to molecular diagnostics. GE is a member of the international SNP consortium for advancing genotyping techniques, software

- 287 -

Page 290: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

and automation methods. It has also an agreement with Oxagen Ltd for the SNiPer high-throughput SNP genotyping technology platform.

In 2005, Roche and GE started collaboration in which patients with AD in clinical trials taking a Roche anti-A drug will be monitored for drug response using GE's PET imaging technology, which measures levels of A.

In 2006, Translational Genomics Research Institute signed an agreement to apply GE’s cell imaging systems, IN Cell Analyzer 1000 and 3000, to cancer research.

In 2007, GE licensed certain of its patents for biomagnetic nucleic-acid isolation to NorDiag, which will enable diagnosis from smaller-volume patient samples by increasing yield of nucleic acids that can isolated from pathogens. In 2007, GE and Eli Lilly signed a 3-year agreement to study the pharmacological effects of a wide range of cancer drugs and develop IVD tests that predict cancer treatment response to targeted therapies to enable physicians to make informed decisions about those most effective for patients.

In 2008, GE Healthcare signed an agreement with Merck & Co to provide lung imaging for respiratory drug development. Merck will receive nonexclusive access to GE's Spin Signal Technology, which provides quick MRIs of lung function.

In May 2010, GE formed an alliance with the molecular diagnostics firm CardioDx to co-develop diagnostic technologies for the care and management of patients with cardiovascular disease. GE also invested $5 million in CardioDx as part of a Series D round of financing for the startup. CardioDx is developing Corus CAD, a gene expression-based test, which is aimed at determining non-invasively the likelihood that a patient has obstructive coronary artery disease.

- 288 -

Page 291: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genaco Biomedical Products Inc

2707 Artie Street, Building 100, Suite 18. Huntsville, AL 35805, USAWeb site: http://www1.qiagen.comTel: 256-425--0051Fax: 256-425-0053

Overview. Genaco Biomedical Products Inc is a biotechnology company with breakthrough technologies. Its Tem-PCR (target enriched multiplex PCR) technology is a multiplex PCR strategy. Based on Tem-PCR technology, it has developed Templex™ products for comprehensive analysis of pathogenic microorganisms. On 30 October 2006, Genaco was acquired by QIAGEN for $40 million.

Technology/products. Tem-PCR. IT is a proprietary multiplex PCR technology that overcomes the obstacles of traditional multiplex PCR assay development. It enables specific and sensitive amplification of multiple targets in a single reaction tube. The PCR products are labeled during amplification and used directly for detection with the xMAP technology platform. Tem-PCR may also be compatible with other detection methods.

xMAP technology. It uses a suspension array for multiplex detection. For each target in an xMAP profile, thousands of capture oligos are covalently coupled onto the surface of color-coded microspheres. The assigned color-coding identifies each target. With the Luminex xMAP instrument, a microfluidics system delivers the suspension hybridization reaction mixture to a dual-laser detection device. A red laser identifies each bead (or target) by its color-coding, while a green laser detects the hybridization signal associated with each bead. Software is used to collect the data and report the results immediately.

Multiplex testing. Genaco has developed multiplex testing products currently used by medical researchers to investigate respiratory (ResPlex™ I; II, III), hospital-acquired, and bacterial (StaphPlex™) infections as well as additional panels for other pathogens. These products are currently available as for research use only products. The ResPlex™ III multiplex panel that is designed to differentiate between different subtypes of Influenza (H1, H2, H3, H5, H7, H9, N1, N2) from a single sample. Genaco is in the process of completing clinical studies in order to submit a 510k application to the FDA for its H5N1 avian flu assay, which is a subset of its ResPlex™ III panel product.

Collaboration. In 2001, Genaco entered into a multi-year agreement with Luminex Corporation permitting Genaco to develop and commercialize reagent kits for the Chinese in-vitro diagnostics market based on the Luminex LabMAP platform (see Chapter 3). Luminex's LabMAP platform will be marketed in China under the Gena MASA brand name (Multi-Analyte Suspension Array).

- 289 -

Page 292: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gene Express Inc

Gene Express, Inc.1410 Commonwealth Dr., Suite 105Wilmington, NC 28403, USAWeb site: http://www.geneexpressinc.com/Tel: 419-380-9930CEO: Gerald J. Vardzel Jr.Contact: Jim Hodges VP CFO ([email protected])

Overview. Gene Express Inc (GEI), founded in 1992, accelerates the supply and delivery of biomarkers and molecular diagnostics to further facilitate personalized medicine as a standard practice in healthcare. GEI achieves this by capitalizing upon its well-developed, patented portfolio that focuses on the incorporation of internal standards into PCR technologies. This technology allows Gene Express to produce tests of the highest quality and create commercial products that are globally translatable.

Technology. StaRT-PCR™ is a patented, standardized, quantitative method for measuring multi-gene expression in a tissue or cell culture sample of any living organism. The platform technique employs competitive templates incorporated into standardized mixtures of internal standards (SMIS™). Competitive template PCR was originally developed to provide quantitative DNA or RNA measurement that compensates for the unpredictable nature of PCR. Until now, the technique was not popular because of the immense work necessary to construct the competitive templates. Gene Express has resolved this problem and has added standardization, automation, and convenience. The use of competitive templates in its SMIS™ reagents allows data from different experiments, different laboratories and across the development lifecycle of a particular product, to be directly compared since the values are determined relative to the same standardized mixtures. Gene Express designs, manufactures, and validates a competitive template for each gene before it is eligible to be an internal standard. Validation includes assessment for specificity and sensitivity. Gene Express then generates large batches of SMIS™ (enough for billions of assays of hundreds of genes).

Products and services. The Gene Express SEM Center™ is a high throughput gene expression assay process using automated equipment and proprietary software that ensures that all assays are setup, performed and analyzed with minimal human intervention. The SEM Center uses the proprietary Gene Express StaRT-PCR process to provide quantitative, reproducible, sensitive, standardized gene expression measurement. Four molecular diagnostic tests focus on lung cancer.

New gene assays development for internal standard products used in StaRT-PCR™ Gene Transcript Abundance Assays.

StaRT-PCR™ Biomarker Assay Kits of a specific set of genes are based on the needs of the individual researcher.

Collaborations. The StaRT-PCR™ technology is now commercialized and used by numerous pharmaceutical concerns, including Pfizer, Eli Lilly, Wyeth and Amgen.

In 2006, GEI expanded its strategic relationship with VWR International Inc for 3 years to resell and distribute the Gene Express SEM Center services to biotech and pharmaceutical companies as well as clinical research organizations in Europe.

- 290 -

Page 293: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In January 2009, PEI signed an agreement with Biogenuix Medsystems Pvt Ltd for the distribution of GEI's StaRT-PCR™ and research molecular diagnostic tools in India.

- 291 -

Page 294: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gene Logic Inc

50 West Watkins Mill RoadGaithersburg, MD 20879, USAWeb site: http://www.genelogic.com/Tel: (301) 987-1700Fax: (301) 987-1701Email: [email protected] & Chief Executive Officer: Mark D. Gessler Contact: Larry M. Tiffany, VP Business Development ([email protected])

Overview. Gene Logic Inc, founded in 1994, is a public company devoted to the development of genomics technologies, bioinformatics systems and database products for use in pharmaceutical, biotechnology, diagnostic and agricultural product research and development. Since 1997, the Company has developed custom gene expression databases designed for individual pharmaceutical company customers' internal research programs targeted to specific therapeutic areas of interest. With the completion of the acquisition of Oncormed Inc in 1998, and building on key competencies in tissue sample handling and preparation, genomic microarray production, and bioinformatic and database software management and development, the Company began developing the GeneExpress Suite of databases in 1999. In 2001, a spin-off called Metrogenix was formed to further develop the Flow-thru Chip technology of the company.

Technologies. Those relevant to molecular diagnostics are:

GeneExpress Suite is the Company’s flagship product and is a comprehensive reference library of gene expression information combined with high value data mining, visualization and analysis software tools. The Suite itself can be segmented into multiple products all derived from a single whole. These product lines include DataSuites, MultiSuites, CustomSuites, and others and are more fully described in the Company's web site.

The Cardiovascular DataSuite, a subset of the GeneExpress Suite, is comprised of a diverse set of normal and diseased human cardiac and vascular tissues from a broad cross-section of individuals, races, medication regimens, lifestyles, disease stages and other demographic and/or clinical parameters. Based upon the quality of samples and the corresponding data contained in the Cardiovascular DataSuite, one will be able to use this product to identify potential new drug targets, as well as identify surrogate markers for diagnosis, progression and prognosis of cardiovascular diseases.

SCIANTIS™ System, an online gene expression analysis system, has been developed for use by academic, government and other non-profit research organizations.

Collaborations relevant to molecular diagnostics. Gene Logic has a long-term deal with Affymetrix Inc to purchase large quantities of their GeneChip microarrays, which forms the basis for a majority of the data content generated in the GeneExpress Suite.

In 2001, Aventis gained access to a customized selection of biosamples across a specific group of organ types culled directly from the BioExpress Module of Gene Logic's comprehensive gene expression database, the GeneExpress Suite.

- 292 -

Page 295: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2005, Gene Logic signed an agreement with GE Healthcare for global distribution of its SCIANTIS™ System. GE Healthcare will distribute the system in 32 countries and will be the exclusive distributor in Japan.

- 293 -

Page 296: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneDetect.com Limited

Suite # 4, 209 Taylor StreetAuckland, New ZealandWeb site: http://www.genedetect.com/Tel: 64-9-353-1320 Fax: 64-9-353-1320E-mail: [email protected]

Overview. GeneDetect.com Limited maintains a proprietary database of gene probe data partially derived from the scientific literature that includes within it the sequences of all known oligonucleotide gene probes validated by the scientific community to detect and localize gene expression in tissue sections. Other sequences within the database have been added by using state of the art bioinformatic techniques to design oligonucleotide probes to selectively distinguish between members of important but closely related gene families in tissue. It targets the most variable gene regions within the gene family for probe design and utilize oligonucleotide optimization algorithms to design its probe sequences.

The human genome project and the recent emergence of DNA microarray or "Gene Chip" technology allows for high throughput screening and identification of genes whose expression correlates with disease processes, thus identifying "which" genes are important. The need will arise in follow up studies to characterize in anatomical detail "where" these genes are expressed in tissues.

GeneDetect's strategy as a company therefore is to offer both "scientifically validated" and proprietary GeneDetect oligonucleotide gene probes that can be used to detect tissue gene expression. The company has plans to open a new UK-based European subsidiary in 2008.

Products. GeneDetect offers 4000 plus gene probes for use with in situ hybridization. The following are relevant to molecular diagnostics:

Oligonucleotide gene probes.

Transcription Factor ODN decoys.

In situ DNA binding kit and sequences

Gel shift (EMSA) sequences

GeneDetect oligonucleotide gene probes. In measuring tissue gene expression, independent of the technique used, the sequence of the gene probe must be complementary to the nucleotide bases of the specific mRNA or DNA sequence of interest. Gene probes can be as small as 20-40 base pairs or be up to 1000bp long. GeneDetect oligonucleotide gene probes are produced synthetically by an automated chemical synthesis using sequences derived from the GeneDetect oligonucleotide probe database and are usually 40-50 nucleotides long. GeneDetect oligonucleotide gene probes can be used in any of the following techniques.

In situ hybridization

Dot/slot blotting

Colony/plaque hybridization

Northern blots

- 294 -

Page 297: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Southern blots

GeneDx Inc

207 Perry Parkway Gaithersburg, MD 20877, USAWeb site: http://www.genedx.com/Tel: 301-519-2100Fax: 301-519-2892 E-mail: [email protected]

Overview. Established in 2000, GeneDx Inc is a full service genetic testing and cytogenetic company dedicated to serving the diagnostic and genetic counseling needs of individuals and families with rare hereditary disorders. The Company uses a cutting-edge technology developed in collaboration with LI-COR Inc and provides rapid diagnostic services using innovative mutation detection methods. GeneDx is certified by the Federal Government and licensed by the state of Maryland.

Services. GeneDx specializes in genetic testing for rare hereditary disorders. Its mission is to make clinical testing available to people with rare genetic conditions and their families. Most of its tests include full gene analysis by DNA sequencing, the gold standard of genetic testing.

GeneDx offers full-service molecular cytogenetic testing, including a custom-designed whole-genome aCGH test. In addition, an economical targeted aCGH test, FISHonChipDx, is available to rule out 65 common or novel genomic disorders as well as terminal and pericentromeric chromosomal rearrangements. Supplementing these tests is a FISH service that can be requested as a stand-alone test for genomic disorders or specific segmental aneuploidies, or as a follow-up test for parents of a proband with a positive array CGH result.

ExonArrayDx, a custom-developed test, is used to detect deletions or duplications of one or more exons of a gene. It is now available for >130 genes sequenced at GeneDx. Molecular testing for many disorders, which are frequently caused by partial or full gene deletions, now includes concurrent gene sequencing and ExonArrayDx, ensuring highest test sensitivity. This testing is performed for most autosomal recessive inherited metabolic disorders at no additional cost if sequencing at GeneDx identifies a mutation in only one allele. ExonArrayDx analysis is also available for deletion/duplication testing in inherited cardiac and eye disorders.

GeneDx provides prenatal genetic testing for known familial mutations, full gene sequencing for a limited number of genetic disorders, a comprehensive prenatal Noonan syndrome panel, and a custom-designed prenatal targeted aCGH.

AutismDx testing is offered as tiered genetic testing approach to identify the most common genetic causes of autism spectrum disorders (ASDs) in individuals in whom a diagnosis of Fragile X has already been excluded. AutismDx testing includes three different Autism Panels, which are tailored to the clinical characteristics of an affected individual. Each panel combines genome-wide microarray analysis with DNA sequence analysis of those disease genes that are most suitable for individuals within a distinct subgroup. Each panel comprises several sequential tiers of analysis, thus providing the highest possible diagnostic yield and most cost-effective testing strategy.

- 295 -

Page 298: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneFluidics Inc

2540 Corporate Place, Suite B-101Monterey Park, CA 91754, USAWeb site: http://www.genefluidics.com/Tel: (323)269-0900Fax: (323)269-0988 E-mail: [email protected] & CTO: Vincent Gau PhD

Overview. GeneFluidics, founded in 2000, is commercializing a novel molecular analysis platform that integrates nanobiotechnology and microfluidics. The platform’s components, which include a reader and disposable sensors with nanometer scale chemical functional structure and cartridges to automate the sample preparation, rapidly detect and quantify the presence of target genetic material, proteins, and small molecules in raw samples without the use of target amplification methods such as PCR. Based in high-throughput plastic injection molding with nanometer features and other low-cost manufacturing methods, the GeneFluidics platform will dramatically reduce the cost of molecular analysis and be able to analyze biological molecules at nanometer scale.

Technology. GeneFluidics makes a flexible, electrochemical-based molecular analysis platform capable of detecting DNA/RNA, proteins, and small molecules in raw samples using integrated nanotechnology and microfluidics. The platform consists of a benchtop reader and disposable sensor chips and cartridges. The reader and sensor chips enable extremely low target detection without requiring any amplification. The assay cartridges provide completely automated sample preparation, further improving detection capabilities and decreasing the need for advanced user training.

The Company's electrochemical platform is embodied in readers and disposable sensor chips. The systems range from 9 to 16 sensors, enabling the simultaneous detection of 9 to 16 unique target analytes.

Applications. In medical diagnostics, GeneFluidics is developing products in high-value market segments such as urology, cardiology, and infectious diseases. In the future, the Company will address the significant market opportunities that lie with genetic testing, such as personalized medicine. GeneFluidics is also developing products to test for pathogens in air and water for environmental monitoring industry. Currently, GeneFluidics is selling products to life science researchers for diagnostic development. In the future, the Company will address applications such as fundamental research, secondary screening, and gene cloning validation. GeneFluidics is developing tests for the most common food-borne microbes such as Salmonella spp, E. coli O157:H7, and Listeria monocytogenes.

An electrochemical biosensor with 16 sensors in the array has been used in a clinical study for rapid POC diagnosis of urinary infections (see Chapter 3).

- 296 -

Page 299: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genelex Corporation

3000 First Ave, Suite OneSeattle, WA 98121, USA Web site: http://www.healthanddna.com/Tel: (425) 825-2850E-mail: [email protected]: Howard Coleman

Overview. Incorporated in Washington State in 1987, Genelex is a privately held corporation. The company is an internationally recognized leader in paternity and forensic DNA analysis. It performs the broadest spectrum of human identity tests available anywhere, under contract to government agencies, in civil and criminal casework, and for private citizens from all over the world. More recently, Genelex has begun providing DNA sequencing, genotyping and other laboratory services to academic and biotechnology researchers.

Core competencies. These are as follows:

Genelex has gathered more than a million polymorphic data points on over 75,000 individuals by a variety of PCR and non-PCR GLP genotyping methods.

Through the use of a secure iFinch server clients can order testing and access results on the Internet. Bioinformatic processing and permanent archiving of data improve efficiency, accuracy and dependability.

For more than a decade Genelex has continuously validated and implemented new DNA and protein methods and instrumentation, some from scratch.

Services. These are as follows:

Forensic DNA analysis services for the justice system. Genelex has the advantage of performing STRs on both of the currently accepted instrument platforms. The testing is performed directly for clients or under contract to law enforcement agencies.

Genelex has completed DNA profiles under contract on more than 25,000 individuals that are currently in law enforcement data banks, including the FBI’s National DNA Index System.

Body identification can involve direct comparison of tissues and other samples, and often requires the performance of “reverse paternity” calculations. Genelex has an excellent track record with the unusual and suboptimal samples often encountered under these circumstances.

Predictive genetics services are offered for detection of hemochromatosis, cystic fibrosis, periodontal disease, and narcolepsy.

Products. In 2000, Genelex began offering pharmacogenetic tests directly to the public. Genelex becomes the first company to enter the direct-to-consumer pharmacogenetics market, starting with a screen for the CYP2D6 drug-metabolizing enzyme. The tests are also available for research and clinical trials.

- 297 -

Page 300: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneLink Inc

317 Wekiva Springs Rd, Suite 200 Longwood, Fl 32779, USAWeb site: http://www.genelinkbio.com/Tel: (609) 823-6991E-mail: [email protected]: Monte E. Taylor

Overview. GeneLink is the World's first family centered DNA Bank and hereditary genetic information service. GeneLink's DNA Bank is located at the University of North Texas Health Science Center at Fort Worth, a 105 year old medical facility. The Health Science Center has built an international reputation of DNA expertise since the opening of its state-of-the-art DNA/Identity Laboratory in 1990.

Products/applications. An attractive feature of genetic tests developed by GeneLink is the easy and non-invasive method by which the samples are collected using the patented GeneLink DNA Collection Kit. The DNA material is collected simply by rubbing the inside of the mouth with swabs, which are then mailed to the testing laboratory. The samples are kept strictly confidential by bar coding. On 25 September 2001, GeneLink was granted U.S. Patent No. 6,291,171 for DNA Collection Kit and is the only patented non-invasive DNA collection system in use today.

GeneLink's new osteopenia gene test (patent pending) is designed to look for SNPs in several key genes that are associated with bone density. Significant opportunities exist for GeneLink to market its proprietary, new osteopenia susceptibility gene test. As a predictive instrument, this assessment can assist medical, health and anti-aging practitioners as well as pharmaceutical and nutritional companies offer an even earlier awareness and intervention to individuals who may be susceptible to osteoporosis. Since osteoporosis can develop undetected for decades, this test can be a very important tool to help determine the future risk for fractures and related clinical conditions such as spinal column compression and bone breaks with or with out falls.

GeneLink's has also developed an oxidative stress (OS) gene test (patent pending) that is designed to measure SNPs in several key OS genes that are associated with a variety of medical conditions associated with oxidative stress. The OS test provides a score that can be used as a guide to determine what level of vitamin and nutrient therapy is helpful to combat oxidative stress. Significant opportunities exist for GeneLink to bring to market its proprietary, new OS gene test. This test can assist nutritional companies, medical, health and anti-aging practitioners a "more targeted'' and improved approach to wellness/nutritional therapies. This assessment test could be a superior solution to those companies seeking to predict their customer's genetic capacity to prevent oxidative stress and measure the level of oxidative pressure to which an individual (their customer) is subjected.

A genetics based obesity test (patent pending) is designed to look for SNPs in several key genes that are associated with obesity

Collaborations. In 2000, HealthScreen America signed an agreement with GeneLink to painlessly gather cheek cells using DNA mouth swab kits and store the samples for decades.

- 298 -

Page 301: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneNews

2 East Beaver Creek Road, Building 2Richmond Hill, Ontario, Canada L4B 2N3Web site: http://www.genenews.com/Tel: (905) 739-2030Fax: (905) 739-2031Email: [email protected] CEO: Heiner Dreissmann PhD

Overview. GeneNews (formerly ChondroGene Ltd), a publicly traded molecular diagnostics company founded in 1998, is focused on the application of functional genomics to enable early diagnosis and personalized health management based on disease-specific biomarkers. It has developed a novel approach, the Sentinel Principle™, to detect and stage virtually any disease or medical condition from a simple blood sample. Sentinel Principleis used in major areas with unmet clinical needs such as cancer, arthritis, cardiovascular disease and neurological disorders. GeneNews' first product, ColonSentry™, is a blood-based test that can detect colorectal cancer (CRC) and precancerous polyps. In 2008, GeneNews restructured and its operation in Canada will focus on the Canadian and US commercialization of ColonSentry™, whereas R & D of its pipeline, including patient sample accrual to support these activities, will be moved to Asian operations. By December 2009, GeneNews had raised more than $2 million in non-brokered private placement.

Technology. GeneNews™ is able to generate disease-specific molecular signatures from a simple blood sample. The Sentinel Principle identifies molecular signatures in blood that are markers of disease elsewhere in the body, for example, a colon tumor. A colon tumor elicits a response in the body that can include an immune response or inflammatory response. Those responses trigger gene expression changes that can be measured in blood using GeneNews technology. GeneNews diagnostic tests currently under development measure molecular signatures that are a reflection of disease in the body as detected in blood, not the gene expression of the colon tumor, for example, itself.

To obtain a molecular signature, the gene expression profiles from the blood samples of diseased patients are compared to the gene expression profiles from blood samples of control subjects without the disease in question. Advanced microarray technology is used to identify those genes that are differentially expressed between the two groupsand represent the molecular signature that is a specific reflection of the disease under study. The genes within the molecular signature are then further characterized to identify a small set of genes for further validation in the Discovery Funnel process to allow small panels of genes to be generated for use in a reliable and reproducible diagnostic kit.

In October 2009, US Patent No. 7,598,031, was issued to GeneNews entitled "Method for the detection of gene transcripts in blood and uses thereof. It protects the Sentinel Principle, is a powerful method for identifying biomarkers from whole blood relating to any disease or health condition, which is the basis of GeneNews' first commercialized product, ColonSentry™, the world's first blood test for colorectal cancer (CRC).

Collaborations relevant to molecular diagnostics. GeneNews collaborates with the Toronto University Health Network to gain access to clinical data for advancing research and development of diagnostic tools and therapies for the treatment of arthritis, CRC and other disease areas.

- 299 -

Page 302: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2008, GeneNews granting Centocor access to research from its osteoarthritis genomic biomarker program. In October 2009, GeneNews provided select access to its osteoarthritis genomic biomarker program to Eli Lilly & Co under a new agreement.

In 2010, Enzo gained distribution rights for New York and New Jersey to ColonSentry™.

- 300 -

Page 303: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GeneScan Europe AG

Engesserstr 4 b 79108 Freiburg, Germany Web site: http://www.genescan.com/Tel: +49 (0761) 5038-0 Fax: +49 (0761) 5038-111 Email: [email protected] Contact: Dr. Florian Heupel, Board of Directors

Overview. GeneScan Europe AG is a globally operating network of innovative and fast-growing biotechnology companies. Based on its biochip technology (BioChipnology®), GeneScan offers complete solutions for molecular biological analyses with Business Units in agricultural and food industry, medical diagnostics, and science research. GeneScan's majority shareholder is the Eurofins Group, the international bioanalytical service provider.

Technology and services relevant to molecular diagnostics. The key areas of GeneScan’s activities include the development, production and sale of customized as well as standardized microarrays. The GMOChip detects and identifies genetically modified organisms (GMO) in raw materials, food products and animal feed. GeneScan biochips are being developed to improve the diagnosis and therapy of disease. Custom-tailored, special chips or standardized application chips that are produced in large series for gene expression studies help customers from the science sector to accelerate the progress of their research projects that are based on ultra-efficient genetic analyses. The ConceptArray human series consists of a series of pre-configured, topic-specific application chips for gene expression analyses. The kits of the series contain ready-to-use biochips with oligonucleotide probes representing genes relevant in particular areas of research and application.

ToxChip (toxicology)

CancerChip (oncology)

InflameChip (inflammation)

NeuroChip (neurobiology)

The Business Unit Diagnostics has transformed existing medical knowledge on the correlations between the pharmacogenetic profile of human beings and their individual reactions to drugs into the development of a biochip. This Pharm-O-Kin®Chip allows to identify patients who react positively to a medical therapy and to draw up personalized dosage regimes. Another attractive market for these pharmacogenetic analyses is the choice of test subjects for clinical trials. These studies are carried out with the aim of determining the efficacy and target accuracy of the treatment, plus the type and severity of adverse drug reactions. In addition, information can be obtained on the best method of administering the medication and the optimal dosage. During drug development, the Pharm-O-Kin®Chip enables suitable patient groups to be assembled that will result in statistically more significant and more valid information about the test substances in clinical trials.

GeneScan Europe offers a service package with respect to BSE, which covers highly sensitive and specific tests to detect components of animal origin in fodder and food as well as individual assignments of products to meat stock.

- 301 -

Page 304: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genetic Technologies Ltd

60-66 Hanover StreetFitzroy, Victoria 3065, AustraliaWeb site: http://www.gtg.com.au/ Tel: 61-3-9415 1135 Fax: 61-3-9417 2987 E-mail: [email protected]

Overview. Genetic Technologies Corporation Ltd, a biotechnology company founded in 1989, is listed on the Australian Stock Exchange as GTG. GTG pioneered the recognition and the importance of 'non-coding' DNA, which has enabled it to develop strategies by which non-coding variation in the DNA is utilized to analyse genetic material and also to map genes and traits of interest across all multicellular species. GTG holds several US and international patents in genetics. GTG has utilited its laboratory and genetics expertise to build a DNA service testing business for humans, animals and plants. GTG is establishing a world- class cancer susceptibility testing facility in Melbourne to service the Asia-Pacific region.

Technologies/services. Those relevant to molecular diagnostics are:

Non-Coding Sequences in HLA. This core project proved that the non-coding ("junk") DNA region of the human HLA Gene complex on chromosome 6 is in reality not "junk", but in fact a valuable and highly ordered reservoir of useful genetic information.

Genomic Mapping. GTG's novel gene-mapping/gene-hunting strategy exploits its unique knowledge of non-coding structures and searches for new genes of special interest, especially disease-causing genes, or genes associated with particular traits.

Fetal Cell-RareCellect . This enables live fetal cells to be identified, separated and collected from the peripheral blood of a pregnant woman, permitting routine chromosomal and DNA testing on the fetus, avoiding the invasive procedures of amniocentesis or chorionic villus biopsy.

DNA testing of athletes. Determination of the type of ACTN3 gene in the athlete to help tailor their training regime.

Canine DNA testing. This is based on acquisition of Melbourne-based Genetic Science Services will facilitate GTG’s immediate expansion into the field of DNA testing services for animals, complementing the company’s existing human and plant genetic testing services provided at the Melbourne facility.

Forensic testing services. GTG established the first private forensic testing service in Australia, which incorporates Orchid technology for testing identity and parentage, etc.

Collaborations. The following collaborations started in 2002:

GTG granted a license to Sequenom for use of its non-coding patents for genomic mapping and intron sequence analysis including the use of SNP’s, mutations and markers located in the non-coding DNA.

GTG granted a non-exclusive limited license to Nanogen Inc for applications of its technology in genetic research and human diagnostics.

GTG and Myriad Genetics formed a strategic alliance for cross-licensing of certain technologies. Myriad Genetics will receive a broad, non-exclusive

- 302 -

Page 305: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

license to GTG's non-coding DNA analysis and mapping patents for all applications in human therapeutics and diagnostics. GTG will become Myriad's exclusive marketing agent in Australia and New Zealand for its predictive medicine products for several diseases, including breast cancer, ovarian cancer, colon cancer, melanoma and hypertension.

The following collaborations started in 2003:

GTG signed an agreement with Biotage AB to develop new gene-based assays using Pyrosequencing's genotyping platform.

GTG granted a license to its non-coding patents to Associated Regional & University Pathologists Inc (ARUP), of Salt Lake City, Utah.

GTG granted a license to its non-coding patents to Inguran LP that will permit Inguran to provide various genetic testing services for genetic markers of interest, paternity, and disease susceptibility on livestock in the US, Colombia and Brazil.

GTG signed a cross-licensing agreement with Orchid Biosciences, giving it intellectual property rights to Orchid’s DNA tests including forensic tests used to identify the victims of the 11 September 2001 terrorist attacks on the World Trade Centre in New York.

In 2006, GTG licensed its non-coding DNA patents to GenoSense, which will use it in anti-aging diagnostics and preventive testing services.

- 303 -

Page 306: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genetix

Queensway, New MiltonHampshire, BH25 5NN, UK Web site: http://www.genetix.com/Tel: +44 (0)1425 624600Fax: +44 (0)1425 624700Email: [email protected]: Charles de Rohan, Head of Genetix Business Unit within Leica Microsystems

Overview. Genetix, an image technology company for cell biology, proteomics, and genomics, entered cytogenetics in 2007, when it completed acquisition of Applied Imaging Corporation for $18.3 million. In March 2010, Danaher completed acquisition of Genetix for $102 million. Genetix will operate as part of Danaher subsidiary Leica Microsystems, and its products will continue to be marketed and sold through existing channels. The acquisition will bring together Genetix's expertise in imaging systems and software for research purposes with Leica's microsopes and life science instruments.

Technologies/products. Genetix capabilities include:

Imaging and isolating cells, DNA and proteins

Automation-picking and placing robotics

Reagents and consumables

Dedicated software

The following are relevant to molecular diagnostics:

Applied Imaging CytoVision. Automated slide scanning and metaphase finding for chromosome abnormalities. Analytical packages include FISH and CGH. CytoVision is used by over 1,000 laboratories worldwide. It provides a high-resolution cytogenetic analysis with high throughput capabilities. It is easy to use and has advanced network capabilities. It provides a complete solution to the imaging and analysis needs in the cytogenetic laboratory. Its fast, easy-to-use interface offers benefits to laboratories of every size. Each CytoVision is customized to include the imaging modules, hardware and networking capabilities needed to meet the requirements of individual laboratory and workflow.

Applied Imaging Ariol. Automated immunohistochemical slide scanning for brightfield and fluorescence analysis of disease tissues. Complete slide scanning and location of areas of interest and automated return. Used as an industry standard for Her-2/neu and combined FISH/immunochemistry.

Microarraying. Genetix technology that underpins microarraying is increasingly being used for a diverse set of applications such as protein arrays (to analyze protein-protein or protein-antibody interactions), reverse transfection arrays (to provide mammalian cells which express a range of fluorescently-tagged proteins within a single substrate), screening RNAi libraries (for their efficacy in silencing gene expression) and finally array-based comparative genomic hybridization (CGH) studies (to investigate chromosomal changes in the whole human genome). These exciting new areas add to the versatility of microarraying as a technique, in addition to its utility for analyzing gene expression.

- 304 -

Page 307: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Reagents. In 2008, Genetix introduced reagents for FISH, designed for integration with the Applied Imaging CytoVision workstation.These reagents are also highly effective and well-suited for use in any cytogenetic system.

- 305 -

Page 308: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GenMark Diagnostics

757 S. Raymond AvenuePasadena, CA 91105, USAWeb site: http://www.genmarkdx.com/Email: [email protected] & CEO: Jon Faiz Kayyem PhD

Overview. GenMark Diagnostics (formerly Osmetech Molecular Diagnostics), a British company, located its operting division in the US following 2005 acquisition from Motorola of eSensor, a microarray technology suitable for molecular testing. On 19 March 2010, Osmetech filed with the US Securities and Exchange Commission for an IPO of stock in the US under the name of its parent, GenMark Diagnostics.

Technology/products. eSensor® DNA detection system is designed to meet the demands of clinical laboratories that need access to molecular testing capabilities in an easy-to-use and cost-effective format. At the core of the eSensor detection technology are DNA fragments attached to electrodes on the surface of a small circuit board. Each electrode is electronically active and detects a different DNA sequence. Finding the complimentary sequence in the target DNA generates a characteristic electrical signal. Each eSensor cartridge can detect several different DNA targets at once, providing a cost-effective platform for complex analysis. This DNA microarray is the basis of detection by the eSensor System for any DNA sequence. Combining universal platform design and advanced electrochemical detection technology, the eSensor System can detect and identify many different targets at once. The advantages of the eSensor system include:

Easy-to-use system and test components

Sensitive target detection without signal interference from common sample contaminants

Expandable test panel menu

Improved instrument reliability with no moving parts

A PCR-based assay on the OptiGENE platform is used for detecting Factor V Leiden mutation. It is 100% concordant with an established Roche LightCycler assay kit and is rapid and simple to perform with excellent sensitivity, specificity and reproducibility.

The FDA-cleared eSensor® CF Carrier Detection System offers highly accurate and reproducible cystic fibrosis carrier results delivered in an easy to interpret report.

eSensor® XT-8 System, True Random Access Microarray System, can run multiple types of tests at the same time.

The SensiTube™ product line consists of plastic tubes, ergonomically designed sealing caps and a carousel for use in the Roche LightCycler® as a replacement for the Roche glass capillaries, sealing cap and carousel. SensiTube™ is a robust alternative solution that eliminate the dangers of glass breakage and minimize the risk of laboratory personnel exposure to potentially dangerous samples and glass shards.

In May 2009, Genmark requested FDA for Emergency Use Authorization for its Respiratory Pathogen Test Panel test based on QIAplex to be used to

- 306 -

Page 309: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

screen for the swine flu virus, which is expected to be launched as a research use only product.

Collaborations. In 2005, GenMark granted a non-exclusive license to Roche Diagnostics for its proprietary tube technology used in the OptiGENE device. In 2007, GenMark licensed warfarin biomarkers from Marshfield Clinic to develop a genetic test for warfarin to optimize its safety worldwide. In 2008, GenMark signed an agreement with QIAGEN to adapt a QIAplex-based respiratory viral test for use on its eSensor XT-8 molecular diagnostics system.

- 307 -

Page 310: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GenOdyssee SA

Genopole Entreprises,4 rue Pierre Fontaine, 91058 Evry Cedex, FranceWeb site: http://www.genodyssee.com/Tel/Mobile: (+33) (0) 6 16 41 68 57 Fax : +33 (0) 1 60 87 89 99CEO: Dr Jean-Louis Escary, PhDContact : David Brown ([email protected])

Overview. GenOdyssee, a functional genomics company incorporated in 1999, has pursued a dual business model since its inception: genetic analysis servicing through its division GenOdyssee Genetics, and the development of its own therapeutic products through its division GenOdyssee Pharmaceuticals. GenOdyssee Genetics has developed a fully-integrated high throughput screening platform in order to provide its customers a unique value chain of post-genomic services that include high throughput detection and identification of genetic polymorphisms including SNPs, high throughput SNP genotyping, bioinformatics and statistical genetics and functional proteomic services.

Technologies. The following are relevant to molecular diagnostics.

SNP Discovery. GenOdyssee has developed an original approach to human genetic variability that the company has already applied to over 100 genes coding for therapeutic proteins, their receptors and tyrosine kinases involved in the corresponding biological pathways. The Company has the world's largest HTS-DHPLC platform, processing up to 2,880 samples per day, using a proprietary multiplexing method. It has the capacity for up to 30, 000/day of high throughput SNP genotyping. More than 1,300 SNPs have already been discovered that establish the natural genetic variability of cytokine and growth factor pathways in the human population. Among these variants, over 300 functional SNP candidates have been identified. Many of these mutations code for either null mutations or point mutations that provoke significant amino acid changes, either lowering or increasing therapeutic protein activities.

DNA collection. GenOdyssee has constituted the most thorough private collection of human individual DNA samples. Theses samples were collected in a population of 278 individuals representing 85% of the human ethnic diversity, encompassing 16 ethnic subgroups.

Collaborations relevant to molecular diagnostics. In 2000, UroGene SA and GenOdyssee entered into a two-year collaboration agreement. UroGene, a biotech company dedicated to genetic analysis of prostate cancer. The goal of this collaboration is to discover novel genomic diagnostic and therapeutic targets for the management of prostate cancer.

In 2002, Transgenomic entered into a services provider agreement with GenOdyssee SA. Under the agreement, Transgenomic will market and sell nucleic acid analysis services that will be performed by GenOdyssee Genetics, the service division of GenOdyssee that has been providing such services since its inception. Transgenomic will leverage the customer relationships it has developed as a provider of tools and consumables used in the synthesis, separation, purification and analysis of nucleic acids to market the services. GenOdyssee has owned and operated the largest HTS platform of Transgenomic's WAVE Systems in Europe.

- 308 -

Page 311: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GenoMed

9666 Olive Blvd, Suite 310 St. Louis, Missouri 63132, USAWeb site: http://www.genomed.com/Tel: (314) 977-0110Chairman & Chief Medical Officer: David Moskowitz, MD ([email protected])

Overview. GenoMed is a Next Generation Disease Management company that uses medical genomics to improve patient outcomes. Genes are used as biomarkers of disease. GenoMed is working to translate knowledge of medical genomics into clinical practice: developing better drugs, using existing drugs for new indications, and identifying diseases before symptoms arise. In 2002, GenoMed established a clinic to deliver preventive molecular medicine in St. Louis, Missouri. The clinic will dispense GenoMed's proprietary treatments and diagnostic tests. GenoMed's patient outcomes have shown that the major benefit of its interventions, at least for kidney failure, come early in the disease process. After a certain point in kidney failure, the Company's proprietary treatments are no better than conventional treatment. But in other diseases, such as emphysema, even a terminal patient may receive a significant benefit from this approach. It appears that for patients with diabetes or hypertension, there is little time to waste if one wants to delay the complications of these diseases.

Technology/services. GenoMed is carrying out industrial-scale SNP scoring. In stead of the usual approach of using "marker" SNPs to try to get close to the disease-causing gene, GenoMed will use SNPs which themselves have a high likelihood of being the cause of the disease. GenoMed believes that SNPs in the regulatory regions of each gene, which control how much protein is eventually produced from that gene, are the best SNPs to use. By limiting the search to only functional, regulatory SNPs, GenoMed can create a net as wide as the entire genome.

Gene-based diagnostic tests: Knowing the genes which cause a disease allows a physician to diagnose that disease before symptoms ever become visible. In clinical medicine, the earlier the diagnosis, the better the clinical outcome.

GenoMed's primary scientific initiative consists of its Disease GeneNet™. The Disease GeneNet™ is the set of single nucleotide polymorphisms (SNPs) GenoMed uses to locate disease genes. The Disease GeneNet™ is currently made up of 13,000 SNPs. Once the disease genes are identified, disease-associated SNPs will be placed onto a single DNA chip, the HealthChip™, for clinical diagnostic testing including cancer.

The Company found several thousand genes associated with the top six cancers in Caucasians: breast, colon, lung, ovarian, pancreatic, and prostate. Using a “genetic” computer algorithm, this large amount of data was “boiled down” to 220 SNPs, which accurately predict which cancer a person will get with 85% sensitivity and 100% specificity.

Collaborations. BioCollections Worldwide Inc (Miami, Florida), with extensive network of physician and patient contacts throughout the world, collects samples for GenoMed from African American and Hispanic patients with a variety of common diseases.

- 309 -

Page 312: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genometrica Ltd

via Cantu 8, CP 5991, CH - 6901 Lugano, SwitzerlandWeb site: http://www.genometrica.com/ Tel: +41(0)44 586 88 58; +41(0)91 922 97 25Fax: +41(0)91 923 33 92Email: [email protected]: Ralf Vayntrub Vice-President: Vladimir Vidro PhD, MBAUS Branch: BioPhotonics Corp25 East Loop Road, Stony Brook, NY 11790, USAFor technical support please call: 631 974 67 46For operational support please call: 516 770 54 28Email: [email protected]

Overview. Genometrica Ltd was founded in 2008 for the development and commercialization of this innovative, unique technology platform capable of performing all major tests of molecular biology and targeting a rapid transition from research technologies to personalized medicine and pharmacogenetics. Genometrica has implemented several technical advances in fluorescent detection technology developed in the past years by BioPhotonics Corp (BP) and the research group led by Prof. Vera Gorfinkel at SUNY Stony Brook. Based on multicolor laser excitation and single photon counting, this technology offers an ultrasensitive system capable of detecting minute amounts of fluorescent material – down to single fluorescence molecules.

In 2008 Genometrica acquired BioPhotonics Corp and received an exclusive license for the technology from the SUNY Research Foundation. Additional patents have been filed since 2008, reflecting additional innovations.

The Stony Brook technology has received wide recognition by the NIH. Over a period of 11 years, two NIH institutes, the NHGRI and the NCI, provided about $13 million of federal funding in eight8 distinct but complementary projects. These projects addressed and successfully tested all of the principal design issues. Genometrica invested $7 million into further research, development, and industrial design of GenometricaLab. Genometrica intends to launch its equipment to the world market. We expect it to become the new industry standard due to a unique combination of high technical characteristics, low price and operational costs.

Technology/products. Proprietary Genometrica bead-based platform consists of large sets of color encoded microbeads which carry various biomolecules. The number of distinct codes in the set may reach hundreds of millions. Color encoding is based on incorporating into the bead random combinations of up to 10 types of fluorescent markers (e.g. quantum dots) characterized by different fluorescence spectra. Devices enable ultrafast detection of fluorescence emitted by the beads and highly accurate repetitive recognition of color codes.

The basic configuration of GenometricaLab comprises a single photon spectrometer, opto-fluidic module, and laser modules. Combinations of appropriate hardware and software modules allow the configuration of various systems, including:

Automated single lane DNA Sequencer based on capillary electrophoresis (DLS-10)

- 310 -

Page 313: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Automated single-lane Flow-Fluorometer for fluorometry and detection of spectrally encoded micro-beads with capabilities of quantitative end point PCR (DLR-10)

High-Throughput Flow-Fluorometer with High-Multiplex Absolute Quantitative PCR and Hybridization Assays (DLR-100) (under development)

Medium-Throughput DNA Sequencer based on Sequencing by Synthesis (DLS-100) (under development)

High-Throughput DNA Sequencer based on Sequencing by Synthesis (DLS-1000) (under development)

GenometricaLab has a modular design, with all the modules connected via standard electrical and optical cables and controlled by PC (plug & play concept). This lowers the overall cost by allowing the reuse of expensive stand-alone modules (lasers, photon detectors), a feature not found in current industry systems that integrate these within operational components (DNA sequencers, bead readers, etc.). The system software provides data of different assays in a unified format and offers database and network capabilities. Genometrica is planning to launch its equipment in the international markets and provides a number of significant advantages including:

Low equipment and consumable cost.

Extremely sensitive, accurate and multiplexed data acquisition for major applications in molecular biology including DNA sequencing.

Quantitative PCR, hybridization assays.

Several-fold reduction in the cost of performing various tests due to modular construction and universality of the platform.

Unified data format and database for different types of assays due to special software and informational architecture of GenometricaLab.

Modular system that uses the Ethernet standard.

Affordability of equipment for small research laboratories due to the possibility of gradual acquisition of further GenometricaLab components, depending on the requirements of the scientific and technical tasks.

Ease of use and maintenance.

Capability of performing multiplex assays (up to one thousand disease biomarkers in thousands of patients simultaneously) with replacement of microchips with much cheaper microtubes.

Radical reduction in the cost and time necessary to perform assays.

Opportunity to quickly master the equipment due to the use of conventional biochemical reactions and reagents.

Open format of measured data and the possibility of developing own software.

Possibility of using reagents of various manufacturers.

Technical solutions employed in GenometricaLab provide a number of significant advantages such as low equipment and consumables cost;

- 311 -

Page 314: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

extremely sensitive, accurate and multiplexed data acquisition for major applications in molecular biology including DNA sequencing; quantitative PCR; and hybridization assays. GenometricaLab is suited to small laboratories and individual researchers: it is affordable, has a modular design, low recurring costs, a small size, and is easy to use and maintain. GenometricaLab easily scales to lab-wide and global projects: its unique software suite allows collaborative intra- and inter-lab research, data sharing, and distributed data analysis.

- 312 -

Page 315: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genomic Health Inc

101 Galveston DriveRedwood City, CA 94063, USAWeb site: http://www.genomichealth.com/Tel: (650) 556-9300 Fax: (650) 556-1132Email: [email protected] and Chief Executive Officer: Kimberly Popovits

Overview. Founded in 2000, Genomic Health Inc is conducting clinical research on new genomic services to guide and improve treatment selection for targeted therapies. Genomic Health's ultimate goal is to make personalized medicine a reality and to dramatically improve patient care. In August 2010, the company started to upgrade software tools for next-generation sequence analysis and biomarker discovery. It will also develop tools for areas such as transcriptomics and splice discovery.

Technology. Genomic Health has technology to perform HTP multi-gene RNA analysis on FFPE sections of tumor tissue. This technology enables Genomic Health to complete clinical studies using routinely stored tumor specimens from patients with known clinical outcomes. The result is a substantial improvement over other technologies that require fresh-frozen tissue and the initiation of new, long-range clinical studies. RNA analysis of thin sections of standard tumor biopsies was used to evaluate panels of genes that may predict breast cancer recurrence and response to chemotherapy. Genomic Health has a next-gen-driven biomarker discovery program for breast cancer. Based on sequencing of the whole human transcriptome in FFPE tumor and normal breast tissue samples, the company found hundreds of differences in both coding and non-coding transcripts between the 2 sample populations indicating an association between specific genes and some non-coding RNAs with risk of breast cancer.

Products. Oncotype DX™ Breast Cancer Assay, a clinically validated test, is now available for use in clinical practice. It quantifies the liklihood of recurrence for newly diagnosed, stage I or II, node negative, estrogen receptor positive breast cancer who will be treated with tamoxifen. The assay, performed using formalin-fixed, paraffin-embedded tissue, analyzes the expression of a panel of 21 genes using RT-PCR. Unlike the diagnostic assays for BRCA1 and BRCA2, genes carried by only a small percentage of women, Oncotype DX™ applies to a large population of patients because a greater number of genetic markers are involved in the diagnosis. Validation studies have been performed on the 12-gene Oncotype DX Colon Cancer Assay which is commercially available for newly diagnosed patients with stage II colon cancer. The following are in development:

Tests to be used in conjunction with the Gleason Score and other clinical parameters to allow the right prostate cancer patients to get active surveillance and the right patients to be treated aggressively with surgery or radiation therapy. A study looking at more than 700 candidate genes in patients is currently underway.

A test for predicting response of NSCLC to gefitinib, an EGFR kinase inhibitor.

A test to provide insight into the individual biology and behavior of melanomas to facilitate treatment decisions for newly diagnosed patients with this cancer.

- 313 -

Page 316: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. Genomic Health has a strategic partnership and equity relationship with Incyte. This agreement gives Genomic Health access to certain genomic intellectual property, rights to manufacturing technology, access to Incyte genes and exclusive rights to certain intellectual property. Incyte has also made a financial commitment to Genomic Health and owns 10% of the company. In 2008, Genomic Health started collaboration with Pfizer for the development of a genomic test, based on the same molecular technology used to develop its Oncotype breast cancer test, to estimate the risk of recurrence following surgery for patients with clear cell type stage I-III renal carcinoma that has not spread to other parts of the body.

- 314 -

Page 317: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genomic Nanosystems LLC

Suite #130, 8000 Virginia Manor RoadBeltsville, MD-20705, USAWeb site: http://www.gnanosystems.com/Tel: 301-470-6267Fax: 301-470-6269Contacts: Elaine Lanza PhD, Managing Partner (Elaine@ GenomicNanoSystems.com)Luke Ratnasinghe PhD, Chief Technology Officer ([email protected])

Overview. Genomic Nanosystems LLC (GNS) is a Digital PCR company, holding IP that is central and enabling to almost every frontier of life science and medicine. GNS was founded in 2006 as a wholly owned subsidiary of the Cytonix Corporation to develop technology, manufacture products, and provide licenses for digital PCR. Since 2006, GNS has developed self-assembling digital arrays, digital emulsion materials, devices and methods, and generated almost 2000 claims set forth in pending patent applications. Drawing on other Cytonix IP, nanofluidic and electrowetting concepts are being applied to carry out complex digital PCR assays. Collaborations have lead to high-resolution detection systems for Digital PCR, and licensing efforts have resulted in a potentially robust network of business partnerships.

Technology. Digital PCR (DigitalPCR™) overcomes the difficulties of RT-PCR by transforming unreliable exponential data from conventional PCR to digital signals that simply indicate whether or not amplification has occurred. Digital PCR is achieved by capturing or isolating each individual nucleic acid molecule present in a sample within many separate chambers, zones or regions that are able to localize and concentrate the amplification product to detectable levels. After PCR amplification, a count of chambers, zones or regions containing PCR end-product is a direct measure of the initial nucleic acids quantity.

Products. Digital Emulsion PCR Kit. It PCR ready sample into millions of droplets (or micelles) in a hydrophobic, immiscable oil matrix. After amplification, nucleic acids are counted using a high resolution, florescence DigitalPCR reader that determines the properties of each micelle. The volume of each droplet is approximately 10 picoliters. All sample preparations are carried out in one 96-well plate, eliminating the need for expensive robotics.

Digital Emulsion PCR Pathogen Kit. In this sets of PCR primers, probes and reagents for the detection of different pathogens are pre-loaded in optically clear 96 well plates. It is used for surveillance of pathogens in hospitals, foods and veterinary laboratories, for early detection and counting of harmful pathogens, and for assessment of antibiotic resistance. Each 96-well plate will be available for analysis of one pathogen in ninety samples or ninety pathogens in one sample.

Digital Emulsion PCR Genotyping Kit. It comprises a Digital Emulsion PCR kit for quantitative genotyping for assessment of allele imbalance and loss of heterozygosity for cancer detection and assessment of cancer recurrence. PCR primers, probes and reagents for well characterized polymorphisms in genes lost during cancer development are pre-loaded into 96 well plates. Loss of heterozygosity is well studied phenomenon in cancer cells. During cancer development and cancer recurrence, tumor DNA with signature loss of heterozygosity patterns are spilled into serum. The kits are designed to count deviation from heterozygosity or allele imbalance in serum (or other

- 315 -

Page 318: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

biological material) that sample from tumors among cancer survivors or from individuals at high risk for cancer.

Collaborations. In September 2008, SEQUENOM secured exclusive rights to fundamental patents for digital PCR technologies and methods from Genomic Nanosystems LLC for use in noninvasive prenatal diagnostics. These include USPTO Nos. 6,143,496 and 6,391,559 and pending applications. Sequenom also secured the exclusive right to use digital PCR methods in conjunction with mass spectrometry for any commercial, diagnostic or research purpose, excluding second generation sequencing.

GenomicTree

829 Tamnip-dong, Yuseong-guDaejeon, 305-510 South KoreaUS branch: 168 San Lazaro Ave, Sunnyvale, CA 94086Tel: 408-522-5224; Fax: 408-522-5223Web site: http://www.genomictree.com/Tel: 82-42-861-4551Fax: 82-42-861-4552Email: [email protected]/CSO: Sunghwan An PhD

Overview. GenomicTree develops novel methylation biomarkers and molecular diagnostics that enable detection of cancer at the earliest possible stage and selection of proper therapeutic strategy. It has discovered methylation biomarkers frequently methylated in specific cancers involving cervix, lung, bladder, colon, thyroid stomach, liver and breast. Its business strategy is out-licensing these biomarkers for commercialization and co-development through large-scale clinical validation. In addition, it is developing various pathogens detection tools using DNA biochip technology.

Technologies. Genome-wide methylation analysis by using microarray-based technology is suitable for identifying novel and potential DNA methylation biomarkers for early detection, prognosis and progression of cancer. GenomicTree’s unique platform technology can be used to develop and commercialize DNA methylation biomarkers for IVD.

Methyl DNA Scan (MDScan) is designed to discover novel DNA methylation-based biomarkers through a genome-wide analysis of DNA methylation alterations in cancers. This technology is based on affinity-based methyl DNA enrichment, a proprietary technology for selective enrichment of methylated DNA from any biological source. Therefore, this technology does not depend on bisulfite modification, restriction endonucleases and specific antibodies. The selectively isolated methyl DNA can be used for microarray analysis or whole genome sequencing. MDScan™ technology is a powerful tool for the discovery of potential methylation target genes with high sensitivity and specificity in the screening of individuals at risk of cancer or prognosis of treatment outcome with tissue, serum, stool, sputum or urine.

MDetect™ is also based on selective enrichment of methylated DNA and subsequently followed by quantitative DNA measurement by realtime PCR. This detection technology also does not require bisulfite modification of target DNA. MDetect™ is a highly sensitive and quantitative method to asses aberrant methylation status in target samples. MDetect™ technology can be widely applied in detection of methylation biomarkers in any type of clinical samples, especially in non-invasive samples such as serum, sputum and urine.

- 316 -

Page 319: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

It is also developing an identification system of methylation-associated genes inactivated in cancer (i-MAGIC).

Products in development. GenomicTree’s is focused on development of molecular biomarkers of cancer for cancer-screening tests in noninvasive samples including exfoliated cells, fine-needle biopsy specimen, blood and urine. The tests are aimed at early detection and pharmacodiagnostics of cancer to fulfill unmet diagnostic needs.

It has developed a GeneTrack HPV DNA Chip capable of typing 28 HPV genotypes including 17 high-risk types (Naive Bayes Classifier) and 11 low-risk types.

Services. Microarray services include gene expression, miRNA, CGH and methylation microarrays.

- 317 -

Page 320: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genomic Vision

Pasteur Biotop28 rue Dr RouxF-75724 Paris Cedex 15, FranceWeb site: http://www.genomicvision.com/Tel: +33(0) 145 688 407Fax: +33(0) 614 881 632CEO: Aaron Bensimon ([email protected])

Overview. Genomic Vision develops novel diagnostic and drug discovery solutions based on its world-leading nanotechnology for DNA analysis in the areas of cancer and acute diseases. These diagnostic tests and drug discovery tools operate where genome dynamics and human disease intersect. The company is focused on three key areas:

1. Diagnostics : discovery of genomic biomarkers and the development of DNA-based diagnostic tests for early disease identification and management.

2. Drug Development : exploiting the Combing Replication Assay to test the efficacy of lead compounds by studying DNA replication in proliferating cancer cells.

3. Drug Response Biomarkers : the analysis and identification of the genomic region in the human genome to enable the characterization of genetic differences between individuals who respond differently to the same drug.

Technology. Molecular Combing is based on the binding of DNA molecules to chemically -vinyl silane- treated glass surfaces. One or both extremities of the DNA molecules present in a solution spontaneously bind to these treated surfaces when the surface is dipped into the solution. As the surface is slowly pulled out of the solution, the molecules are “combed”. As a result of the combing process, the DNA fibers are irreversibly attached, stretched, and aligned uniformly in parallel to each other over the entire surface. Therefore, the physical distance measured with optical microscopy is proportional to the length of the DNA molecule.

The technology enables direct visualization of single DNA molecules attached, uniformly and irreversibly, to specially-treated glass surfaces. It considerably improves the structural and functional analysis of DNA across the genome by allowing exploration of the entire genome at high resolution in a single analysis. It provides clear visualization of genomic anomalies in multiple aligned DNA molecules, and has led to novel findings with implications in cancer genomics and medicine. It is possible to identify genetic anomalies and to localize genes or particular sequences that hybridize to selected probes in the human genomes, which usually cannot be detected by other methods. This technology has already shown its value in the analysis of subtle genomic changes by the detection of microdeletions, amplifications and complex rearrangements in tuberose sclerosis, breast cancer, renal cell carcinoma and HPV-associated cancer.

In January 2007, Genomic Vision received certification and financing of two of its R&D projects by organizations involved in oncology Medicen Paris and France’s National Cancer Institute. The research grants amount to €473,000 ($643,000).

- 318 -

Page 321: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gen-Probe Inc

10210 Genetic Center Drive.San Diego, CA 92121-4362, USAWeb site: http://www.gen-probe.com/Tel: (858) 410-8000Email: [email protected], President and CEO: Carl Hull

Overview. Gen-Probe Inc, founded in 1983, develops manufactures and commercializes diagnostic products based on its patented genetic probe technology. PACE was the first DNA-based direct assay system for detection of Chlamydia trachomatis. In 2003, Gen-Probe increased its ownership of Molecular Light Technology Limited (MLT) to 82.6% placing the acquisition value at $11 million. Gen-Probe had licensed from MLT the chemiluminescent technology it uses in its Hybridization Protection Assay. With the historical background of pionering work in diagnosis of infections, collaboration with Corixa is a significant step forward in Gen-Probe's long-term strategy to become a leader in cancer diagnostics. The period 2005-2008 was a time of strong product sales growth for Gen-Probe, driven by the roll-out of the TIGRIS® system, continued international expansion in blood screening, and the US approvals of its Procleix® Ultrio and West Nile virus assays. In 2009, Gen-Probe acquired Tepnel for $132 million and entered the HLA testing for transplantation and genetic testing markets. Also in 2009, Gen-Probe acquired Prodesse Inc (see separate profile), a privately held leader in molecular testing for influenza and other infectious diseases, for ~$60 million in cash.

Technologies. Gen-Probe has five core technologies:

1. Ribosomal RNA Targeting for assays with increased sensitivity and specificity.

2. Target Capture uses oligonucleotides and magnetic microparticles to isolate target nucleic acid for amplification and eliminate potentially inhibiting substances.

3. Transcription-Mediated Amplification (TMA) technology amplifies target RNA or DNA sequences a billion fold within 15-30 minutes.

4. Hybridization Protection Assay (HPA) uses a specific DNA probe that hybridizes with nucleic acid target amplicon to emit a chemiluminescent signal.

5. Dual Kinetic Assay extends the power of HPA and TMA by enabling the simultaneous detection of two analytes.

Products. Gen-Probe currently markets several product lines, including the PACE 2 System, the Gen-Probe Amplified Direct Tests, and the AccuProbe System.

Two laboratories in the US Ameripath and Bostwick Laboratories have independently validated Gen-Probe’s analyte specific reagents for PCA3 and tests for this biomarker for prostate cancer are commercially available. PROGENSA™ PCA3, a urine test to aid in the diagnosis of prostate cancer, was launched in UK in 2007.

Gen-Probe developed and manufactures the first FDA-approved blood screening assay for the simultaneous detection of HIV-1 and HCV, which is marketed by Novartis Diagnostics as the Procleix® System. Gen-Probe is

- 319 -

Page 322: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

developing a single nucleic acid amplification assay that screens the blood of potential organ donors for the HIV-1, HBV and HCV.

Procleix WNV, approved by the FDA, was the first West Nile Virus blood test to screen donors of blood, organs, cells and tissues. Developed by Gen-Probe and marketed by Novartis Diagnostics, it detects viral genetic material (RNA). Approximately 80% of the US blood supply is screened using this assay.

The Tigris System is a fully automated, high throughput instrument for use for clinical diagnostics using the Company's Aptima Combo 2 Assay. It is a second-generation nucleic acid probe test for the in vitro simultaneous detection of rRNA from C. trachomatis (CT) and N. gonorrhoeae (GC). FDA has approved Aptima CT and Aptima GC as stand alone tests for these infections. In 2005, the FDA granted marketing clearance to use Gen-Probe’s APTIMA Combo 2® assay to test for CT and GC from liquid Pap specimens collected and processed with Cytyc’s ThinPrep® 2000 System. On 5 Oct 2010, Gen-Probe submitted a 510(k) application to the FDA for its Aptima Trichomonas vaginalis assay that runs on the Tigris system and is CE marked for sale in Europe.

Gen-Probe is developing the APTIMA® HPV Assay, targeting E6/E7 mRNA. Gen-Probe has chosen to develop the next generation of HPV assay utilizing its proven technologies of Target Capture, Transcription-Mediated Amplification and Dual Kinetic Assay.

In November 2009, Gen-Probe was granted EUA (emergency use authorization) for the Prodesse ProFlu-ST™ to be used in CLIA high-complexity laboratories for detection of the 2009 H1N1 influenza virus. Other Prodesse products are ProParaflu+™, hMPV+™, and ProGastro™ Cd. In July 2010, the company received FDA clearance for an assay for the simultaneous detection of three influenza A virus subtypes.

Collaborations. In 2003, Gen-Probe signed an agreement with DiagnoCure to develop and market a urine test to detect a specific genetic biomarker for prostate cancer. A licensing agreement in 2004, provides Gen-Probe access to bioMerieux's Nuclisens EASYQ platform for detecting genetic mutations and tests that predispose people to blood clotting disorders. In 2005, Gen-Probe licensed from Corixa the rights to develop molecular diagnostic tests for approximately 50 potential genetic markers for various cancers including AMACR for prostate and CRC, CA125 for ovarian cancer, and L523S for cervical and lung cancers. In 2005, Gen-Probe licensed technology from AdnaGen for molecular diagnostic tests for prostate and bladder cancers that also help determine the aggressiveness of these malignancies, and monitor responses to therapy.

Collaborations in 2006. bioMerieux exercised an option to develop diagnostic products for certain undisclosed disease targets using Gen-Probe's patented rRNA technologies, pursuant to terms of a 2004 agreement. Gen-Probe started funding a 3-year study at the Center for Prostate Disease Research to create a new generation of highly specific gene panels in urine for diagnosis of prostate cancer and got a non-exclusive license to develop and commercialize the resulting test. Gen-Probe licensed from the University of Michigan the rights to develop diagnostic tests for genetic translocations specific for prostate cancer. Gen-Probe granted DiagnoCure Inc exclusive rights to develop in vivo products, and co-exclusive rights to develop FISH products, using the PCA3 gene a biomarker for cancer. The companies submitted a PMA for a PCA3 IVD product to the FDA in Sep 2010.

In 2008, Gen-Probe licensed Flow-Thru Chip technology from Xceed Molecular to develop next-generation multiplexed molecular diagnostics.

- 320 -

Page 323: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gen-Probe will pay up-front licensing and milestone fees and will purchase Xceed’s custom TipChips, Ziplex automated gene expression system, and other Xceed products.

In Jan 2009, Gen-Probe and Novartis extended their blood screening collaboration until 2025. The companies also plan an exploratory collaboration in pharmacogenomics.

On 23 March 2010, Life Technologies agreed to commercialize Gen-Probe's Elucigene QST® aneuploidy test kits, labeled for use with Applied Biosystems' capillary electrophoresis systems, in Eastern Europe, Asia, Africa, Australia, Latin America, and Canada. However, the kits will not be available for sale in the US.

On 21 June 2010, Gen-Probe made $50 million investment in Pacific Biosciences, a sequencing company, for co-development of an integrated diagnostic system based on its expertise and PacBio's single molecule real time platform for a period of 30 months.

- 321 -

Page 324: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gen-Probe Prodesse Inc

W229 N1870 Westwood DriveWaukesha, WI 53186, USAWeb site: http://www.prodesse.com/Tel: (262) 446-0700 Email: [email protected]

Overview. Prodesse Inc was founded to commercialize a novel, patented method licensed from researchers at the Medical College of Wisconsin where it was developed. In 1995, Prodesse established a CLIA lab to offer services to local hospitals using its in-house developed and validated assays. In 1998, Prodesse began offering products so that other CLIA labs could develop and validate their own assays based upon this technology. Prodesse is focused on the development, manufacture and distribution of cost-effective, easy-to-use reagents for infectious disease agents. In October 2009, Prodesse was acquired by Gen-Probe; however, the combined entity will continue to offer products under the Prodesse product line brand.

Products. In 2008, Prodesse received FDA clearance for its ProFlu Assay, for influenza making it the first real time multiplex RT-PCR to achieve this milestone. It is so sensitive that FDA does not recommend culture backup. ProFlu+ is an upgraded version of Prodesse’s highly regarded ProFlu-1™, which has been discontinued from sale. In 2008, FDA cleared the addition of the easyMAG™ extractor and the removal of the culture backup recommendation for influenza viruses. Prodesse is developing tests for:

ParaFlu for differentiating parainfluenza 1, 2, and 3 viruses and adenovirus. It is CE marked in Europe.

Human metapneumovirus (hMPV) was discovered in 2001 and causes acute respiratory illness. Its prevalence ranges from 6.6-12% annually of patients with symptoms of respiratory infection. In 2008, Prodesse filed with the FDA for 510(k) clearance of its real-time PCR-based Pro hMPV+ Assay for rapid detection of hMPV, which can provide accurate results in as little as 3 h compared to days or weeks for non-molecular methods.

ProGastro Cd, a real-time PCR kit, for detecting toxigenic strains of C. difficile. In clinical trials, ProGastro Cd detected 43% more positive test results than the gold-standard cytotoxin assay. Results are available in about 3 hours, while cytotoxin assay results usually take at least 48 hours.

- 322 -

Page 325: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

GenUs BioSystems Inc

1808 Janke Dr. Unit MNorthbrook, Illinois 60062, USAWeb site: http://www.genusbiosystems.com/Tel.: 847 291 9600Fax: 847 291 9903E-mail: [email protected]: Scott Magnuson PhD

Overview. GenUs BioSystems provides a time-saving and cost-effective way for scientists to utilize high-performance gene expression profiling without investing in costly equipment or personnel. It uses state-of-the-art bioarray technology to turn biological samples into practical genomic data, accurately and reproducibly.

Technologies. GenUs uses Arcturus RiboAmp® RNA Amplification technologies to generate enough RNA to run bioarray experiments on GE Healthcare CodeLink™ bioarrays. It allows researchers to perform microarray hybridization experiments using total RNA from as little as 100 picograms of total RNA (about ten cells). RNA samples are amplified up to ten-million-fold in two amplifications. This ultra-high-sensitivity kit is one hundred-times more sensitive than other linear amplification methods.

GeneSpring software is used for gene expression data analysis that enables sifting through an almost infinite number of data points to uncover genes of interest or gene expression patterns. With this technology, you can ask detailed questions and receive accurate and reproducible answers that are based upon complex gene expression data sets.

Services. GenUs offers a full range of services related to bioarray experimentation, such as gene expression profiling, RNA isolation, data analysis, pre- and post-experiment consulting, and RNA amplification from as little as 100 picograms of total RNA.

- 323 -

Page 326: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genzyme Corporation

1 Kendall SquareCambridge, MA 02139, USAWeb sites: http://www.genzyme.com/; http://www.genzymegenetics.com/Tel: (617) 252-7760Fax: (617) 252-7759CEO: Henri A. TermeerDon Pogorzelski: President, Genzyme Diagnostics (http://www.genzymediagnostics.com)

Overview. Genzyme Corporation is a public biotechnology company interested in integrated healthcare. One of its divisions, Genzyme Oncology is profiled separately. Genzyme develops and markets therapeutic products and diagnostic products through Genzyme Diagnostics and Genzyme Genetics. In 2004, Genzyme acquired Impath (oncology testing) for $215 million and it became part of the Genzyme Genetics. In January 2009, Genzyme acquired EXACT’s IP assets related to the fields of prenatal and reproductive health for $24.5 million, including 15 patents that may be useful for the development of diagnostic products and services including detection of CRC. In November 2010, Laboratory Corporation of America purchased Genzyme Genetics for $925 million in an all-cash deal, including all testing services, technology, IP rights, and its 9 testing laboratories.

Technologies/products of Genzyme Diagnostics. Genzyme has over 30 easy-to-use, IVD products for infectious diseases; some of these tests are for POC market. OSOM Influenza A&B Test can detect H1N1 influenza virus infection. Two FDA approved tests OSOM® Trichomonas Rapid Test, and OSOM® BVBLUE® Test for bacterial vaginosis detect pathogenic antigens directly from vaginal swabs. Results for both tests are rapid within approximately 10 min. Genzyme CF gene sequencing test can detect approximately 98% percent of the more than 1,200 disease-causing mutations in the CFTR gene. One test can detect MRD in patients with B-cell CLL. There are two molecular tests for AML: (1) test for FLT3 mutation, which is considered a prognostic indicator of poor survival and response to standard chemotherapies; and (2) WT1 RQ-PCR designed to detect MRD. Genzyme has licensed the diagnostic testing rights to two proteins, RRM1 and ERCC1, from the Moffitt Cancer Center, which it plans to develop into tests that could help predict patients’ response to NSCLC treatments.

Genzyme's p53 Mutation Analysis for B-cell CLL is a gene sequencing assay that detects specific mutations in the p53 gene with a higher degree of sensitivity than FISH alone, thereby providing more comprehensive diagnostic information for high-risk patients.

Genzyme Analytical Services offers cost-effective services high quality services from preclinical development through phase IV including:

Target validation

Tumor biomarker surveys across indications

Chemoresistance monitoring

Diagnostic assay development

Patient stratification for clinical trials

Circulating tumor cell monitoring

- 324 -

Page 327: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2004, Genzyme licensed WT1 gene to Ipsogen as biomarker in acute leukemia. It holds the exclusive worldwide diagnostic rights for the use of EGFR gene mutations in testing for NSCLC through a 2005 agreement with Massachusetts General Hospital and the Dana Farber Cancer Institute. It has licensed DxS rights to develop and sell diagnostic and research products to detect mutations in the EGFR gene for NSCLC.

- 325 -

Page 328: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Genzyme Oncology

15 Pleasant Street ConnectorP.O. Box 9322One Mountain RoadFramingham, MA 01701-9322, USAWeb site: http://www.genzyme.com/molecularoncology/Tel: (508) 271-2627Fax: (508) 271-2604President: Gail Maderis

Overview. Genzyme Molecular Oncology (GMO) is one of the three divisions of Genzyme. The general division of the company markets proprietary therapeutic and diagnostic products as well as genetic testing services (see separate profile). GMO was formed in 1997 by takeover of PharmaGenics, which was developing the p53 tumor suppresser gene and has developed SAGE (serial analysis of gene expression) technology for comparing gene expression patterns in normal and diseased tissues. It is shaping these new therapies through the integration of its genomics, gene and cell therapy, small-molecule drug discovery, and protein therapeutic capabilities. This division will have access to technology in four areas: 1) genomics, 2) gene therapy, 3) molecular diagnostics and 4) small molecule combinatorial chemistry drug discovery. Only the diagnostic activities will be considered in this report.

GMO has an extensive portfolio of intellectual property related to cancer gene diagnostics based on the work of its collaborators and is out-licensing its diagnostic rights to generate funds to help support its internal cancer therapeutic development efforts. Laboratory Corporation of America, Quest Diagnostics, Mayo Medical Laboratories, SRL Inc and City of Hope Cancer Center have been granted non-exclusive colon cancer diagnostic rights to the APC and/or MSH2 gene for use in diagnostic testing services that detect increased risk for certain colon cancers. CDT Testing Inc has been granted non-exclusive diagnostic rights to test for mutations in the p53 gene.

Technology. SAGE is a sequence-based technology for gene identification and quantitation. It measures the levels of virtually all genes expressed in a cell at a given time (see Chapter 7). GMO has an exclusive license to SAGE from Johns Hopkins University (patent holder) through GMO's takeover of PharmaGenics.

Applications. SAGE can be used in a wide variety of applications to identify disease-related genes, analyze the effect of drugs on tissues and provide information about disease pathways. Its power in finding rare genes in gastrointestinal cancer has been demonstrated. Understanding different expression patterns between normal and tumor cells or between tumor cells at different points in time should identify better diagnostics and more relevant therapeutic targets. GMO will use the SAGE technology internally and market it other biotechnology and pharmaceutical companies.

Collaborations. In 2002, GMO sold to Genzyme Genetics the rights to cancer diagnostics including dozens of proprietary cancer biomarkers. Genzyme Genetics will also have diagnostic rights to cancer biomarkers found in the future through GMO's antigen-discovery program and gains access to the SAGE database to identify diagnostic cancer markers, and options to diagnostic-related discoveries found through research collaborations with laboratories at The Johns Hopkins University and other centers. GMO will have the right to use this intellectual property in diagnostic products offered in conjunction with molecular therapeutics that it

- 326 -

Page 329: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

develops in the future. In 2010, Genzyme Genetics was purchased by Laboratory Corporation of America.

- 327 -

Page 330: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Health Discovery Corporation

2 East Bryan Street, Suite 601 Savannah, GA 31401, USAWeb site: http://www.healthdiscoverycorp.comTel: (912) 443-1987Fax: (912) 443-1989Chairman: Stephen D. Barnhill, MD ([email protected])

Overview. Founded in 2003, Health Discovery Corporation (HDC) is a systems biology-oriented biomarker and pathway discovery company, which provides all aspects of First-Phase Biomarker Discovery. HDC was established to provide pharmaceutical and diagnostic companies with a broad range of analytical and decision support solutions to produce more effective and cost effective diagnostic and drug discovery tools.

Technology/application. Using its technologies, HDC intends to become the first company to perform the total process of identifying a particular clinical medical problem to be solved and performing the entire process leading to the identification of the biomarkers (genes or proteins), and the relationships among them (the pathways), that are relevant to the solution of the medical problem. This process will consist of an assessment of the clinical problem, the determination of the clinical trial set-up (the number of patients and what medical conditions they represent), the proper selection and procurement of high quality specimens for analysis, an analytical evaluation of the specimens through laboratory tests to produce the clinical data, and the mathematical evaluation of the data using pattern recognition techniques and fractal geometric modeling to produce an accurate determination of the relevant genes and proteins and the manners in which they interact. The information will then be sold or licensed to diagnostic companies for development into diagnostic assays and the same information will be sold or licensed to pharmaceutical companies for further development as potential drug targets.

HDC has discovered a new set of genetic biomarkers related to prostate cancer, which is expected to lead to considerable improvement in the diagnosis and treatment of clinically significant prostate cancer. These biomarkers have been shown to accurately separate high-grade prostate cancers from less malignant grades, with a high degree of accuracy. This ability would allow physicians to tailor prostate cancer treatment to a patient’s specific type or grade of cancer – resulting in significant cost savings by minimizing unnecessary or overly aggressive treatments as well as eliminating the adverse effects that invariably accompany unnecessary treatments. HDC's new Cellular Imaging Technology is used to identify circulating tumor cells in blood and will further add the diagnostic ability of the company in cancer. On 24 June 2008, HDC’s phase II clinical trial results for its gene-based molecular diagnostic test for prostate cancer successful.

Collaborations. HDC’s gene-based molecular diagnostic test for prostate cancer is licensed exclusively to Clarient and it will receive a 30% royalty on each test performed based on the per test reimbursement received by Clarient. In addition to the license HDC granted to Clarient, itretained the right to commercialize this molecular diagnostic test for prostate cancer in any clinical laboratory that HDC elects to own and/or operate.

- 328 -

Page 331: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Helicos Biosciences Corporation

One Kendall Square, Building 700Cambridge, MA 02139, USAWeb site: http://www.helicosbio.com/Tel: (617) 264-1800Fax: (617) 264-1700Chief Executive Officer: Ronald Lowy

Overview. Helicos BioSciences is a life science company focused on innovative genetic analysis technologies for the research, drug discovery, and diagnostic markets. Helicos's proprietary True Single Molecule Sequencing (tSMS™) technology allows direct measurement of billions of strands of DNA enabling scientists to perform experiments and ask questions never before possible. Helicos is a recipient of the $1,000 genome grant and committed to providing scientists the tools to unlock the era of genomic medicine. The company is currently planning the introduction of its first product, the Helicos™ Genetic Analysis System.

In September 2009, Helicos hired investment bank Thomas Weisel partners to assist the firm in evaluating and executing strategic alternatives, such as financings, joint ventures, or partnerships. Because Helicos has been making improvements to its next-generation sequencing technology, it could benefit from the NIH's stimulus funding. Helicos has thus far placed 14 of its Helicos Genetic Analysis Systems at research centers in North America. As of November 2009, it held cash and cash equivalents of $8.4 million.

Technology/products. Based on Helicos's tSMS technology, the Helicos Genetic Analysis System enables ultra-highthroughput genetic analysis by directly sequencing single molecules of nucleic acids. The tSMS workflow is based on a simple, cost effective sample preparation process that can easily be scaled and replicated to meet the requirements of large, complex experiments, overcoming laboratory workflow bottlenecks.

Helicos believes the tSMS sequencing by synthesis approach will represent the first comprehensive and universal solution for single molecule genetic analysis, dramatically lowering the cost of individual analyses. The Helicos™ Genetic Analysis System will have extensive capabilities in basic and translational research, and pharmaceutical R&D, thus increasing the potential for improved drug therapies, personalized medicine and more accurate molecular diagnostics for diseases such as cancer.

In February 2009, Helicos announced significant improvements in the performance of its Genetic Analysis System, which is generating 20 to 30 GB of high-quality sequence data per run, an output equivalent to the sequencing of 7 to 10 human genomes per run.

On 25 June 2010, Helicos announced that it is in the early stages of validating molecular diagnostic tests that utilize its SMS, which simplifies the diagnostic testing workflow obviating the need for the amplification steps utilized by most genetic analysis methods. This has several advantages including the potential for Helicos to sell its tests for substantially less than the price of comparable existing diagnostic tests.

Collaborations. In 2006, Helicos started partnership with the Institute for Systems Biology (ISB), which will allow ISB access to Helicos’ tSMS™ technology and protocols for use in its scientifically groundbreaking research projects. Helicos has recently joined the Personalized Medicine Coalition,

- 329 -

Page 332: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

seeking to advance the understanding and adoption of personalized medicine concepts and products for the benefit of patients.

- 330 -

Page 333: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Helixis Inc

5421 Avenida Encinas, Suite BCarlsbad, CA 92008, USAWeb site: http://www.helixis.com/Tel: 760-444-4255Fax: 760-683-3366President & CEO: Alex Dickinson PhD

Overview. Helixis is dedicated to building a new generation of products that unlock the full potential of molecular analysis. These instruments offer the promise of precise identification of genetic sequences related to infectious diseases or cancer, together with the ability to guide treatment selection.The primary goal at Helixis is to enable access to molecular diagnostics: delivering great products that are accessible to the widest possible base of customers.

Technology. Helixis’ Real-Time PCR system is built on novel technologies from the Caltech labs of Nobel Laureate David Baltimore and Axel Scherer and includes high performance, flexibility and ease of use for both experienced and novice real-time PCR users. Advantages are:

Low cost, priced for the individual user

Temperature control and uniformity far exceeding more costly instruments

High performance optics

Uniquely improved user interface for easy set up and data analysis

Compact size for a "personal scale" real-time PCR

All chemistries and applications supported, including multiplexing

Plug and play set up, no calibration required

- 331 -

Page 334: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

High Throughput Genomics Inc

6296 E. Grant Road Tucson, AZ 85712, USAWeb site: http://www.htgenomics.com/Tel: (520) 547-2827Fax: (520) 547-2837CEO: Tim JohnsonContact: Dr. Bruce Seligmann, Founder & CSO ([email protected])

Overview. High Throughput Genomics Inc (HTG) was established as a wholly owned subsidiary of Systems Integration Drug Discovery Company Inc (SIDDCO) in 1997. In 2001, HTG was divested to the shareholders of SIDDCO but remains privately held. HTG markets ArrayPlate assays for the multiplexed measurement of DNA, RNA, or proteins. The technology is targeted at drug discovery and diagnostic markets. Clients can access ArrayPlate technology through the purchase of custom kits, software, and imagers, or through services to establish and validate custom assays or perform high throughput screening and optimization.

Technologies relevant to molecular diagnostics. HTG's ArrayPlate is a 96-well microplate containing a 16-target Universal Array in each well. These Universal Arrays are customized to simultaneously measure 16 DNA, RNA, or protein targets in each well. Combined with HTG's qNPA technology, the ArrayPlate quantitatively measures RNA from samples of fewer than 1,000 cells without extraction or amplification. The ArrayPlate can be used to measure protein from the same sample. Drug efficacy, safety, and metabolism can be measured with whole assay CVs of <10% and excellent QSAR dose response curves and precise EC50 values can be generated. Standard automation and workstations perform all assay steps. HTG also markets its own high performance Omix Imager.

Products/applications. HTG has introduced the ArrayPlate, its first quantitative Nuclease Protection Assay (qNPA) product, to measure multiple targets simultaneously. The ArrayPlate combines the high sample throughput of traditional microplates with HTG's novel Universal Array™ technology. With the combination of these two technologies, researchers now have access to the excellent sensitivity and reproducibility of conventional biochemical assays in a multiplexed format for high volume profiling. In practical terms, this combination provides sensitivity down to 1,000 cells on 0.01 micrograms of total RNA and exceptional reproducibility of 3% to 13% coefficient of variation across the entire assay, for cellular in vitro and in vivo tissue assays. After processing an ArrayPlate, researchers measure their targets by imaging the entire plate to provide to read-out all the data points. With HTG's Omix Imaging System, researchers use integrated proprietary software to analyze results quickly and efficiently.

Collaborations. Johnson & Johnson Pharmaceutical Research & Development uses HTG's ArrayPlate for gene profiling in its drug discovery program.

In 2003, ProSkelia, a biopharmaceutical R&D company, incorporated HTG’s ArrayPlate™ high throughput screening technology into one of its drug discovery programs.

In 2004, Merck & C0 signed an agreement for use of HTG’s patented ArrayPlate qNPA™.

- 332 -

Page 335: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2004, Takeda Pharmaceutical Co Ltd signed a one-year agreement for HTG’s patented ArrayPlate™ technology and service support.

In 2008, Harvard Medical School researchers agreed to use HTG’s qNPA technology to develop an assay that can measure the expression of miRNA precursors, mature miRNAs, and regulated RNA.

Through an agreement in 2008, Roche NimbleGen will provide HTG with high density, multiplex DNA microarray slides for advanced gene expression analysis, which will be applied to HTG’s quantitative nuclease protection assay microarray process.

- 333 -

Page 336: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Hitachi High-Technologies Corp

Medical Systems 24-14, Nishi-Shimbashi 1-ChomeMinato-ku, Tokyo 105-8717, Japan Web site: http://www.hitachi-hitec.com/Tel: (+81)-(0)3-3504-5938Fax: (+81)-(0)3-3504-7756President, CEO and Director: Hidehito Obayashi

Overview. Hitachi High-Technologies (HHT) offers a variety of products for clinical laboratories worldwide. The product line includes the analytical instruments for clinical chemistry, immunoassay, urinalysis, and automation system for preanalytical process. Many analytical instruments including HPLC (high performance liquid chromatography) are introduced.

Technology/products. The following are relevant to molecular diagnostics:

HPLC. LaChrom Elite SMASH features high efficiency in semi-micro analyses, and LaChrom Elite HTA is capable of analyzing more samples with higher accuracy in a short time. These LaChrom Elite systems open new horizons in liquid chromatography.

Fluorescence Spectrophotometer F-2500. Hitachi’s excellent spectroscopy technology is combined with state-of-the-art software technology. The Model F-2500 fluorescence spectrophotometer will serve analytical needs in broad applications including life sciences, biotechnology, and other basic scientific researches.

Amino acid analyzer L-1800. It is capable of analyzing physiological fluids and protein hydrolysates.

Collaborations. Hitachi clinical chemistry systems are marketed and distributed by Roche Diagnostics except for Japan, Korea, and China (including Taiwan, excluding Hong Kong).

In April 2007, Hitachi signed a joint research agreement with the National Cancer Center in Tokyo, Japan and began joint research into developing a commercially viable method of blood diagnosis based on proteome analysis.

In February 2007, Waters Corporation and Hitachi announced their intent to develop a software interface for Hitachi’s Liquid Chromatograph Instruments 'LaChrom Elite' Control for Waters® Chromatographic Data Station Software Empower 2. It is anticipated that HHT will develop and sell an interface for the Waters Empower® 2 chromatography data software in combination with its own line of liquid chromatography systems in the North American market.

- 334 -

Page 337: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Hologic Inc

35 Crosby Drive Bedford, MA 01730, USAWeb site: http://www.hologic.comTel: (781) 999-7300Chairman and Chief Executive Officer: Jack Cumming

Overview. Hologic Inc is a leading developer, manufacturer and supplier of premium diagnostics, medical imaging systems and surgical products dedicated to serving the healthcare needs of women. Hologic's core business units are focused on breast health, diagnostics, gynecological surgery, and skeletal health. Hologic provides a comprehensive suite of technologies with products for mammography and breast biopsy, radiation treatment for early-stage breast cancer, cervical cancer screening, treatment for menorrhagia, osteoporosis assessment, preterm birth risk assessment, and mini C-arm for extremity imaging.

In 2008, Hologic Inc completed its $580 million acquisition of Third Wave Technologies (TWT), which will provide Hologic with complementary products targeted to the women’s health and diagnostics market. Hologic has an established sales and distribution network for women's health, as well as extensive relationships with clinical labs and obstetric/gynecology channels. TWT’s HPV tests, which received FDA approval, were quickly and effectively taken to the market.

With the acquisition of BioLucent and the completion of the merger with Cytyc in 2008, Hologic had more than doubled in size in one year. After the Cytyc merger, Hologic holds the number one position in nine technology areas serving women's health, including breast cancer diagnosis and treatment, cervical cancer screening, prenatal testing, and osteoporosis detection.

Technologies/products. Those from takeover of TWT are as follows:

TWT's patented Invader operating system (OS) is based on a "perfect match" enzyme-substrate reaction. The Invader OS uses proprietary Cleavase enzymes, which recognize and cut only the specific structure formed during the Invader process. The Invader OS relies on linear amplification of the signal generated by the Invader process. This allows easy quantification of target concentration, and reduces the effects of sample contamination, which may result from exponential target amplification (see Chapter 2).

Scientists at various universities have successfully applied TWT's patented Invader technology to a microarray platform. Their findings demonstrate that the accuracy, performance and ease of use provided by this technology can enhance the high degree of multiplexing, the ability to simultaneously test for multiple genetic variations with the same sample, and ultra high-throughput capabilities of microarrays. This has high potential for large-scale genotyping and gene expression analyses applications.

The Invader platform, because of its ease of use and robustness, enables routine DNA diagnostic testing in both large laboratories and small ones who previously did not perform any nucleic acid testing assays. TWT has the ability to make cost-effective reagents available for 'home brew' applications shortly after clinical correlations are shown for any given genetic variation, to assist physicians in diagnosing, treating and monitoring their patients. The most frequently requested tests include:

- 335 -

Page 338: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Mutations in Factor V (Leiden) and Factor II (prothrombin) genes, which are associated with deep vein thrombosis and pulmonary embolism.

Connexin 26 mutations are associated with one category of neurosensory deafness.

In 2008, the FDA cleared InPlex CF Molecular Test, based on TWT's Invader chemistry and a microfluidic card, and developed in collaboration with 3M.

Mutations in gene for MTHFR. Decrease of MTHFR activity increases the risk of cerebrovascular, peripheral vascular, and coronary heart disease as well as up to a ten-fold increase in the risk for venous thrombosis.

Invader® platform has been successfully extended to prenatal chromosomal analysis. It is easier to use, faster and more cost-effective than traditional methods.

Invader® HCV, which detects 14 high-risk types of HPV and is used in screening for cervical cancer, has CE approval in EU and is in the market. In March 2008, TWT submitted an application to pFDA for approval of this test in the US.

A product to detect the presence of and distinguish between HSV-1 and HSV-2.

Products to detect varicella-zoster virus, EBV, human HSV-6 and CMV.

Invader® UGT1A1 Molecular Assay for IVD to identify patients who may be at increased risk of adverse reaction to the chemotherapy drug Camptosar (irinotecan) by detecting and identifying specific mutations in the UGT1A1 gene.

The upcoming expiration of basic PCR patents provides TWT with additional opportunities and another level of differentiation. The combination of the Invader® chemistry and PCR will provide a highly sensitive, accurate and rapid solution that is more robust than either of them alone. TWT's pipeline will enable the company to move even more aggressively into the infectious disease market, continue to build on its strong menu of genetics and pharmacogenetics products, and enter the emerging oncology market with a new approach that is faster and easier to use than traditional methods.

Collaborations. TWT had the following collaborations but the status after takeover by Hologic is not known and pending further information.

TWT has agreements with major pharmaceutical companies to allow use of its Invader technology for large-scale pharmacogenomics studies and emerging therapeutic selection applications in the clinic. These include Novartis, Pfizer and GlaxoSmithKline. TWT also has collaborations with research institutes, including the Sanger Center and Stanford, Cambridge and Oxford Universities, for use of Invader technology in genome research.

In 2006, TWT and Mitsubishi formed a joint venture for personalized medicine in Japan and the Asia-Pacific region, Third Wave Japan, which plans to develop products for the Japanese molecular diagnostic market, including tests for diagnosing infectious diseases and products to improve drug safety and efficacy. TWT will hold worldwide rights outside the Asia-Pacific region to any new technology or product developed by Third Wave Japan.

In 2007, SeqWright agreed to perform sequencing and analysis for clinical trials of IVD and a genotyong test for HPV types 14, 16 and 18, being conducted by TWT.

- 336 -

Page 339: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2008, TWT teamed up with DCL Medical Labs to showcase its existing molecular diagnostic products and collaborate on research for future assays.

In 2009, Exact Sciences licensed worldwide rights to Hologic's Invader plus and real-time Invader detection chemistries for colorectal screening applications.

- 337 -

Page 340: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Human Genetic Signatures Pty Ltd

Postal Address: PO Box 184North Ryde NSW 1670, AustraliaStreet Address: Level 4, 11 Julius AveNorth Ryde, NSW, 2113, AustraliaWeb site: http://geneticsignatures.com/Tel: + 61 2 9870 7580Fax: + 61 2 9889 4034Email: [email protected]: Angus Hastie

Overview. Human Genetic Signatures (HGS), a privately held biotechnology company operating since 2001, is positioned in the molecular diagnostics marketplace and has a rich portfolio of IP, know-how and development projects relating to clinical diagnostics, methylation, cancer detection and alternative molecular detection methods. HGS has developed a technology designed to simplify the molecular detection of microorganisms.

Technology/products. 3base™ technology simplifies the genomes of microbial targets, improving patient testing. It is adaptable to a broad menu of tests for detecting the presence of viruses and bacteria and in the future, monitoring disease progression and guiding therapy. 3base™ is cost effective, platform-flexible, highly sensitive and designed to significantly improve the ability to clinically screen for highly variant subtypes compared to existing technologies. It can be applied for the development of molecular diagnostics to detect specific microbial targets such as HPV, HCV, HIV, MRSA, CT/NG and TB. Key features of this microbial detection technology are: (1) detection of multiple microbial strains in a single reaction without the need for multiplexing; and (2) reduction of 4 genomic bases to 3 (ACTG to ATG) to create a simplified and non-natural genome.

Products based on Simplification Technology include the High Risk HPV Detection Kit and MethylEasy™ method, which is used worldwide for analysing chemical changes that occur in DNA in cancer, aging, stem cells and cell reprogramming. MethylEasy™ products includes MethylEasy™High-throughput for centrifuge and vacuum and MethylEasy™ “Xceed – the latest, fastest and most sensitive protocol.

Products in development for hospital-acquired infections: tests for methicillin-resistant Staphylococcus aureus (MRSA) and C. difficile

Collaborations. In 2004, HGS acquired the IP and activities relating to Intercalating Nucleic Acids from the Danish company UNEST. HGS aims to partner with diagnostics companies having a platform which can assimilate the simplification method and has agreements with offshore companies and institutions.

In 2008, ProGenTech (current status unknown) signed an agreement with HGS to develop molecular diagnostic assays for hospital-acquired infections: MRSA, methicillin-sensitive S. aureus, vancomycin-resistant Enterococcus, and C. difficile.

- 338 -

Page 341: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ibis Biosciences Inc

A subsidiary of Abbott Molecular1300 E.Touhy AveDes Plaines, Illinois 60018, USAWeb site: http://www.ibisbiosciences.com/Tel: (224) 361-7000Email: [email protected]

Overview. Ibis Biosciences Inc has developed the Ibis T5000™ Biosensor System for molecular diagnostics. Ibis has received contracts from other government agencies to fund expansion of its pathogen detection and identification assays and to use the firm’s assay services laboratory. In 2008, Ibis Biosciences received $8.4 million in funding from US government agencies to develop and run assays on its biosensor platform for pathogen detection and human forensics. In 2008, Abbott Molecular exercised an option to acquire the remaining 81.4% Ibis Biosciences that it didn’t already own for $175 million; 18.6% was acquired earlier for $40 million.

Technology. The Ibis T5000™ Biosensor System interrogates common sequences among classes of organisms for non-diagnostic use. Despite the enormous class diversity of organisms, Ibis scientists have carefully selected and curated genetic sequences that allow this interrogation to produce powerful results for surveillance, epidemiology, forensic, and biological research. The Ibis T5000 Biosensor System can produce results in ~5 h after the sample has been obtained.

For example, bacteria have highly conserved sequences in a number of genomic locations, including the universally conserved regions of ribosomal and other non-coding RNAs and essential protein-encoding genes. These conserved sequences can serve as priming sites for sequence amplification in PCR tests. When the regions between these conserved PCR primer-binding sites contain sequences that are variable depending on the class of organism, the base compositions of the PCR products can be used as identification markers.

Mass spectrometry rapidly determines the precise weights of the nucleic acids present and the A, C, T, and G content (i.e., base composition) of each amplicon. The base compositions of the PCR products are used to help identify the organisms present.

In addition to broad-range organism identification, the Ibis T5000 Biosensor System can be used with specific assay kits from Ibis to provide strain genotyping information, for human forensics and other non-diagnostic purposes. The US Department of Agriculture’s Animal and Plant Health Inspection Service awarded the firm up to $4.2 million to use its influenza assay to identify and differentiate avian influenza strains, to distinguish high pathogenicity from low pathogenicity strains, and to aid in the tracking of avian influenza transmissions. The contract also includes funding for the development of assays for detection of a broad range of agricultural pathogens.

Ibis is developing microfluidic sample prep system for next-gen sequencing. The technology lyses cells, extracts nucleic acids, and performs whole-genome amplification to generate starting material from trace specimens for whole-genome sequence analysis; and has already been tested with sequencing platforms from Roche 454 and Pacific Biosciences.

- 339 -

Page 342: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ICx Technologies

2100 Crystal Drive, Suite 650Arlington, VA 22202, USAWeb site: http://www.icxt.com/Tel: (703) 678-2111 Fax: (703) 678-2112Email: Vicki Contavespi, Public Relations Director ([email protected])President, Chief Executive Officer: Hans Kobler

Overview. ICx Technologies is a leader in the development and integration of advanced sensor technologies for homeland security, force protection and commercial applications. Its proprietary sensors detect and identify chemical, biological, radiological, nuclear and explosive threats, and deliver superior awareness and actionable intelligence for wide-area surveillance, intrusion detection and facility security. It then leverages its unparalleled technical expertise and government funding to address other emerging challenges ranging from a cleaner environment, alternative energy to life sciences. ICx acquired Nomadics Inc, a nanotechnology company, in 2005. On 29 May 2008, ICx acquired S3I, LLC, a technology leader specializing in biological threat detection. The company will be part of ICx BioSystems and adds the IBAC sensor (Instantaneous Bioaerosol Analyzer and Collector) to ICx's sophisticated biological-detection product line.

On 1 October 2008, ICx was awarded a system-engineering, analysis and integration contract by the US Army Research and Development Engineering Command Acquisition Center. The award, with an estimated value of up to $711 million over seven years, was presented as a single contract for the Joint Nuclear, Biological, Chemical Reconnaissance System Increment II program.

Technology. ICx sensors use new materials with novel characteristics, such as new semiconductors, crystals, polymers, reagents and other recently developed materials. These new materials are extraordinarily sensitive, some of which respond to trace exposures of specific chemical compounds, such as explosives, nerve agents, or biological proteins. Other new materials respond to low intensity radioactive emissions or specific types of electromagnetic energy, such as specific bands of infrared light. These new materials are now the key starting point in development of extremely compact sensors, imagers and detectors. Various chemical detectors incorporate a number of different technologies, including enzyme-based detection and mass spectrometry.

Diagnostic applications. In July 2007, Cx introduced its revolutionary field-portable mass spectrometer system. The system, developed by the ICx Griffin business unit, is comprised of the Griffin 450™ Gas Chromatograph/Mass Spectrometer (GC/MS/MS), multiple sample introduction methods including the handheld Griffin X-Sorber™, and enhanced supporting software. The system is ideal for military, emergency response, homeland security and environmental monitoring applications.

ICx is able to work with diagnostic companies to design new IVD biosensors using its proprietary enzyme-immobilization chemistries. Past developments include both single use and process continuous sensors.

Collaborations. In October 2007, ICx signed a development and license option agreement with Siemens Healthcare Diagnostics to develop diagnostic sensors. The goal is to generate new diagnostic tests based on proprietary

- 340 -

Page 343: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

enzyme-polymer chemistries developed by ICx, and know-how for use in Siemens’ blood gas analyzer systems.

- 341 -

Page 344: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Idaho Technology Inc

390 Wakara WaySalt Lake City, Utah 84108, USA Web site: http://www.idahotech.com/Tel: (801) 736-6354Fax (801) 588-0507Contact: Todd Ritter, Chief Corporate Development Officer ([email protected])

Overview. Idaho Technology is a privately held company and home to the fastest, highest-quality machines in the world for DNA analysis including DNA amplification, real-time thermocycling and SNP detection. Its complement of products includes the R.A.P.I.D.® System, Hi-Res Melting® (based on high-resolution melt analysis), mutation scanning and genotyping. SNP:Odyssey System, Indy™ Air Thermocycler and the RapidCycler® Instrument. IT BioChem™, a division of Idaho Technology offers a complete list of reagents, probes and primers. Also developed by Idaho Technology, the LightCycler and LightTyper Systems and the IndyCycler Instrument which have been licensed and now are sold through Roche Applied Science.

Products. R.A.P.I.D.® System (Ruggedized Advanced Pathogen Identification Device) is lab proven and field-tested. Designed through a collaboration with the US Air Force, it is the only real-time thermocycling system designed for portability and ruggedness.

RAZOR® Instrument is a portable, field-hardened, heat-plate thermocycler with fluorescence monitoring capabilities. Its small, field-hardened design and simple sample preparation makes it the ideal instrument for pathogen detection for military and homeland defense personnel.

HR-1™ Instrument detects subtle differences in fluorescent signals over temperature change. In conjunction with the proprietary LCGreen™ I dye, this system gives laboratories a simple, fast, cost effective method for pre-sequencing gene scanning.

RapidCycler® 2 Instrument is the fastest air thermocycler and offers the highest product specificity, exceptional reproducibility and simple operation in the least amount of time at an economical price.

- 342 -

Page 345: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ikonisys Inc

5 Science ParkNew Haven, Connecticut 06511, USAWeb site: http://www.ikonisys.com/Tel: (203) 776-0791Fax: (203) 776-0795Email: [email protected]: Dr. Petros Tsipouras

Overview. Ikonisys Inc is a privately held medical technology company developing a platform for the early diagnosis of diseases using rare cell identification and analysis. Early diagnosis offers the promise of a wider choice of treatments, better outcomes and lower treatment costs. Based on its proprietary technology, Ikonisys aims to create a novel field of medical diagnostic analysis, namely cell based diagnostics. The importance of cell-based diagnostics is that these will be designed to generate information from within the contour of an accurately defined individual cell, relating the genetic profile to a cell of known origin.

Technology. Ikonisys' platform, the Ikoniscope microscope, combines robotic, fluorescent, and digital microscopy with biological signal generation that facilitates the recognition of an individual cell in a large population. The Ikoniscope microscope platform of automated high-speed microscopy is optimized for the identification and analysis of single cells in a biological sample. The image detection component of the Ikonisys platform can be adapted to acquire and analyze a great variety of biological signals from different cells and tissues. This level of adaptability makes the Ikoniscope microscope a unique tool for cell-based diagnostics.

On 5 March 2008, Ikonisys established a clinical laboratory registered with the Centers for Medicare and Medicaid Services under the CLIA provisions and licensed by the state of Connecticut. The company’s clinical laboratory is intended to support proprietary and non-proprietary tests based on FISH. The clinical laboratory will enable Ikonisys to showcase the breadth and depth of its products including proprietary tests for circulating fetal cells (CFC) and circulating tumor cells. Most immediately, Ikonisys will initiate clinical trials of its non-invasive oncoFISH® cervical cancer test at the clinical laboratory. Additionally, the clinical laboratory offers FISH-based laboratory testing and services to medical providers that lack the internal resources necessary for this specialized laboratory service. Ikonisys’ state-of-the-art facility is designed for rapid turnaround time and accurate, high-quality FISH analysis performed by highly-trained staff with a core competency of FISH testing.

Applications. The Ikonisys platform can be applied to many interesting and important medical and environmental applications. The Ikoniscope microscope and Ikonisoftware can be modified to detect and analyze a wide variety of target cells or other life forms (viruses etc.). With the high-speed scanning and analysis steps, materials with an extremely low abundance of target cells can be analyzed. Information about the DNA of a target structure can be analyzed directly via a signal-generating marker. Ikonisys' integration of molecular diagnostic methods and powerful image recognition technology enables the accurate and rapid detection and analysis of a single cell in a complex mixture of cell types. Areas of current and future development are:

Prenatal detection of Down syndrome

Prenatal detection of other genetic disorders

- 343 -

Page 346: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cancer detection and monitoring

Environmental application

Collaborations. Ikonisys has forged a relationship with the Bracco Group of Italy, granting the company a license to use and market Ikonisys' non-invasive test for the detection of Down's syndrome. In return, Bracco will become an equity investor in Ikonisys and will assist the Company in its clinical trials of the Down's syndrome diagnostic test. Bracco plans to market the test in Italy, its home market.

In 2005, a license agreement granted Ikonisys a worldwide license under Abbott patents for the manufacture and sale of DNA probes in conjunction with Chromotest for prenatal diagnosis of chromosomal abnormalities using fetal cells from maternal circulation. Ikonisys can purchase chromosome FISH probes from Abbott for preimplantation diagnosis and automated detection in amniocytes of FISH signals of the most common chromosomal abnormalities.

In 2005, an agreement with Cancer Research Technology Ltd grants Ikonisys a worldwide exclusive option to commercialize MAbs and other reagents specific for the detection of circulating tumor cells in conjunction with the Ikoniscope™/IkoniLAN™ system enabling robotic microscopy.

- 344 -

Page 347: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Illumina Inc

9885 Towne Centre DriveSan Diego, CA 92121-1975, USAWeb site: http://www.illumina.com/Tel: (858) 202-4500Fax: (858) 202-4545President and CEO: Jay FlatleyContact: Jorge Velarde, VP Business Development ([email protected])

Overview. Illumina develops tools for the large-scale analysis of genetic variation and function. Its technology platform also extends to other applications such as high-throughput screening of pharmaceutical compounds and chemical detection. In 2005, Illumina acquired CyVera Corporation for $17.5 millionalong with its bead technology consisting of multi-sample Sentrix® microarray solutions with the capability of analyzing 384 to over 200,000 targets per sample in gene expression and genotyping applications. This is complementary to Illumina's portfolio of products and services and has become an integral part of the company's BeadArray™ technology used for biomarker R&D and molecular diagnostic opportunities. In 2006, Illumina acquired Solexa for $600 million. Solexa makes genetics analysis systems and specializes in whole genome sequencing. In January 2008, Illumina reorganized into two divisions: (1) Life Sciences Business Unit to provide products and services related to the research market including the BeadArray, BeadXpress, and sequencing product lines; and (2) Diagnostics Business Unit will develop BeadXpress platform and eventually its next-generation sequencing instruments. In 2008, Illumina paid $25 million to acquire Avantome Inc, a DNA sequencing technologies startup to target the low end of the sequencing market, providing the firm with entries across the price spectrum. Illumina will use a combination of its technologies, specifically its Genome Analyzer II sequencer and BeadXpress array platforms, to address the molecular diagnostic market.

Technology and applications. Illumina's BeadArray technology (see Chapter 3) addresses the limitations of other tools for genetic analysis. The ability to vary the size, shape and format of the fiberoptic bundles and to create specific beads for various applications gives it the flexibility to address multiple markets and market segments. The Oligator technology, which complements the BeadArray technology, permits parallel synthesis of the millions of different segments of DNA necessary to perform large-scale genetic analysis on arrays. Illumina has developed a set of over 2,300 assayed SNP markers that will be deployed on the BeadArray platform to provide linkage analysis for genotyping. The markers were assembled from the SNP Consortium panel, supplemented by new loci to provide enhanced frequency, distribution and coverage across the human genome, and then optimized for accuracy and multiplex assay performance. Illumina has an integrated, HTP genotyping system and also offers a SNP genotyping product for fine chromosomal or whole-genome mapping. The BeadLab is an end-to-end genetic analysis solution built around BeadArray™ technology and featuring extensive automation, parallel sample throughput, high-multiplex assay protocols, low running cost per sample and high performance. Software tools enable the use Infinium™ SNP genotyping data to analyze DNA copy number changes and characterize loss of heterozygosity in cancer.

Illumina's product for DNA Analysis, the HumanOmni1-Quad BeadChip with over four million data points on a single BeadChip, includes up-to-date content for all major classes of genetic variation for the study of human disease. The BeadChip utilizes tagSNPs from all three phases of the

- 345 -

Page 348: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

International HapMap Project and offers premier coverage of known regions of CNV and SNPs of known disease association. In addition, this is the first commercially-available product to offer content derived from the 1,000 Genomes Project.

On 4 May 2010, the FDA granted 510(k) clearance for the BeadXpress multiplex system, which includes the BeadXpress Reader and VeraScan software, for IVD applications. VeraCode holographic microbead technology enables simultaneous detection of multiple analytes in a DNA sample. This approval represents a significant and exciting transitional step for Illumina into the clinical diagnostics field.

Illumina’s cDNA-mediated annealing, selection, extension and ligation assay (DASL) is a gene expression solution to generate reproducible profiles from degraded RNAs such as those derived from formalin-fixed, paraffin-embedded tissues. DASL, based on GoldenGate™ genotyping assay, uses sequence-specific query oligos, two-color labeling, and redundant feature representation to probe three different sites on each transcript.

CyVera’s encoded microparticle assay technology, acquired by Illumina through takeover, provides practically unlimited multiplexing capability, which enables significant improvements in measurement rate, throughput, data quality, and detection sensitivity for solution-based assays. With measurement densities of typical microarrays, it has a broad range of applications from R&D to highly focused molecular diagnostic applications. It provides precise code identification and, therefore, low false-positive reads and higher quality data. There is zero code-label interference and a low assay consumable cost. Therefore, CyVera’s microbead technology finally enables bead based assays to reach their potential as a broad-based, application-diagnostic assay platform.

In January 2010, Illunina launched 12-sample OmniExpress BeadChip, which enables o interrogation of >700,000 variants per sample. Using Illumina's iScan System, customers that run OmniExpress chips can process around 1,400 samples per week.

Illumina has a multi-sample Bovine BeadChip that uses the Infinium assay to initially genotype over 10,000 cattle. The iSelect genotyping BeadChip allows the analysis of 12 samples in parallel with over 48,000 SNP markers per sample, on a single microarray.

In June 2009, Illumina started a service program to provide high-quality personal genome sequencing for consumers. This is the first service to offer complete coverage of the human genome sequence for under $50,000. The Personal Genome Sequencing Service is performed in Illumina’s CLIA-certified laboratory using its Genome Analyzer technology. The offering includes sequencing of an individual’s DNA to 30 times depth, providing information on SNP variation and other structural characteristics of the genome such as insertions, deletions and rearrangements.

On 13 January 2010, Illumina unveiled HiSeq 2000 that includes a variety of upgraded features over its Genome Analyzer and received its first order for 128 units of the system from China's BGI, which would enable it to sequence 11,000 human genomes/year. The system will brings the cost of sequencing a human genome to the sub-$10,000 level.

Collaborations relevant to molecular diagnostics. Illumina has a commercial agreement with Johns Hopkins Institute of Genetic Medicine to provide SNP genotyping services. BeadLab is installed at several universities worldwide including the Mayo Clinic. Illumina has a strategic collaboration

- 346 -

Page 349: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

with Life Technologies to develop and market a high-throughput, integrated system for SNP genotyping applications.

In 2004. Illumina and Genomas formed an alliance to study the metabolic syndrome using BeadStation 500GX for discovery of biomarkers. Galileo Genomics purchased 2 BeadStation 500GX genotyping systems from Illumina for use in fine mapping candidate regions in 5 disease gene discovery programs. Invitrogen (now Life Technologies) and Illumina agreed to leverage their strengths in NA synthesis to deliver oligonucleotides to the life sciences market.

In 2005. Illumina signed an agreement with GlaxoSmithKline (GSK) to conduct genetic studies of samples that may potentially lead to new treatments for diseases. Under the terms of the agreement, Illumina will use Sentrix Arrays in conjunction with the company's GoldenGate and Infinium assays to conduct genetic studies for thousands of samples provided by GSK. Illumina started collaborating with the Wellcome Trust Sanger Institute (WTSI) and the Wellcome Trust Case-Control Consortium (WT-CCC) on the design of a custom Sentrix® BeadChip that will enable researchers to study the impact of those SNPs that cause amino acid changes (non-synonymous), on a broad and deep range of disease samples. The WTSI will use the BeadChip to study four common disease phenotypes with common controls as part of the WT-CCC. The BeadChip configuration will enable the analysis of six samples simultaneously on one microarray, studying 15,000 SNPs apiece, using Illumina's Infinium™ assay. Illumina signed an agreement of sale with PharmacoDesign (PD) for a BeadStation system and whole-genome genotyping arrays and reagents for ongoing pharmacogenomics studies. PD will genotype various Korean populations with the aim of understanding genetic variation and personalizing treatment. Illumina will gain access to biomarkers discovered by PD and will be able to incorporate such markers into proprietary SNP panels under a worldwide, royalty-bearing exclusive license. PD will study diseases that include obesity, cancer and allergy.

In 2006. Genizon BioSciences agreed to use a custom version of Illumina's Sentrix HumanHap300 BeadChip, tailored to genetic sharing in the Quebec population, to query over 350,000 SNP loci per sample. decode Genetics agreed to co-develop and commercialize DNA-based diagnostic tests in several major disease areas using Illumina’s platform for high-multiplex SNP genotyping to develop tests for gene variants that deCODE has previously shown to have impact on the risk of common diseases. Illumina will gain access to disease-related biomarkers for joint validation as diagnostic panels to be marketed and sold by it on its forthcoming BeadXpress platform with focus on genes involved in disease-related pathways in heart disease, diabetes and breast cancer. Illumina agreed to develop custom SNP content for a multi-sample Sentrix BeadChip for Johnson & Johnson Pharmaceutical Research & Development. Ilumina and ReaMetrix agreed to develop molecular diagnostic panels to predict the risk of disease, and enable earlier intervention as well as guide therapy. Illumina will provide its VeraCode technology and other reagents while ReaMetrix will develop, validate, and market the panels based on Illumina's BeadXpress platform, which the company plans to launch before the end of the year. Illumina expanded the scope of its multi-year genotyping services agreement with GSK to use its Sentrix HumanHap550 BeadChips for a series of whole-genome association studies. To start, Illumina will genotype a collection of 2,000 case and control DNA samples provided by GSK for an undisclosed disease.

In 2007, llumina agreed to process more than 6,500 samples for researchers of the Type 1 Diabetes Genetics Consortium (T1DGC) via its FastTrack Genotyping Services. With financial support from the National Institute of Diabetes and Digestive and Kidney Diseases, T1DGC will attempt to identify

- 347 -

Page 350: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

genes that influence an individual's risk for developing type 1 diabetes. University of Virginia, a member of the T1DGC has chosen to use Illumina's recently launched HumanHap550-Duo BeadChip for the study.

Personal Genome Sequencing Service will be carried out in collaboration with a network of physicians who will discuss the process with the consumer, collect DNA samples order the sequencing service, and deliver results to the consumer. Genetic counselors will also play a role in counseling individuals on the results. Illumina is collaborating with a number of companies, including 23andMe, deCODE Genetics, Knome and Navigenics, to encourage secondary data analysis such as calculation of disease risk, ancestry, and information on traits of interest.

In October 2010, Sage Science Inc signed a co-marketing deal for use of its Pippin Prep system with Illumina's next-generation sequencers.

- 348 -

Page 351: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Immunicon Corporation

3401 Masons Mill Road, Suite 100Huntingdon Valley, PA 19006-3574, USAWeb site: http://www.immunicon.comTel: 215-830-0777Fax: 215-830-0751 President & Chief Executive Officer: Byron D. HewettContact: James G. Murphy, CFO ([email protected])

Overview. Immunicon Corporation is developing and commercializing diagnostic and research products for rare cell analysis and molecular research, with an initial focus on cancer. Its instruments and reagents are used to capture, count and characterize rare cells including circulating tumor cells (CTCs) in cancer patients or circulating endothelial cells (CECs), which are elevated in a variety of diseases. It aims to lead in the development and commercialization of specialized cellular analysis products that deliver high clinical impact for use in human diagnostics, life science research and pharmaceutical R & D.

Technologies relevant to molecular diagnostics. Immunicon has developed and integrated several patented, state-of-the-art technologies for the isolation, manipulation and analysis of rare cells. The technologies include: (1) “ferrofluids” (magnetic nanoparticles) with associated reagents to make the particles biologically active; and (2) gene expression profiling of cells for cell identification and development of new biomarkers of value in the diagnosis and treatment of cancer and other diseases.

Products. The CellTracks® Analyzer II is a semi-automated fluorescence microscope that is used to count and characterize the immuno-magnetically selected cells based on the fluorescence signals of the cells.

The CellTracks® AutoPrep® System is an automated sample preparation system for immunomagnetic cell capture and fluorescence staining of rare cells. In June 2005, the CellTracks® Analyzer II was released for sale for IVD use.

The EasyCount™ System is a small, inexpensive instrument and reagents for simple cell counting applications in the life science research market.

The MagNest® device exerts a magnetic field that causes the magnetically labeled cells to form a monolayer on one focal plane inside the reaction cartridge and enables essentially all of the cells from the starting samples to be analyzed with minimal loss.

Applications. Immunicon's technology has been used for isolating and quantifying cancer cells of epithelial origin. It is developing cell-based assays and genetic biomarkers, that may replace/supplement a wide range of diagnostics used currently to screen, diagnose, stage, and monitor cancer.

Collaborations relevant to molecular diagnostics. A joint venture with Veridex, a Johnson & Johnson company, markets Immunicon’s cancer cell diagnostic products.

In 2003. IMPATH Inc licensed Immunicon’s cellular analysis technology for analysis of circulating tumor cells in blood and offers this technology to pharmaceutical companies engaged in clinical studies of new anticancer agents. R&D Systems Inc licensed Immunicon's magnetic nanoparticle cell

- 349 -

Page 352: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

isolation technology in conjunction with reagents to develop products for life science research.

In 2006, Immunicon signed a supply and marketing license agreement to use its technologies in conjunction with Kreatech Diagnostics’ Universal Linkage System. In August 2006, Immunicon signed an agreement with AstraZeneca for the development of methods to identify and quantify cells circulating in blood as biomarkers for targeted therapies for cancer and infections. In August 2007, Immunicon signed a laboratory service and assay development agreements with Merck Serono for specialized biomarker assays based on CTCs within the scope of an early clinical drug study.

Immunomedics Inc

300 American Road Morris Plains, NJ 07950, USA Web site: http://www.immunomedics.com/Tel: (973) 605-8200 Fax: (973) 605-8282 E-mail: [email protected] President and CEO: Cynthia L. Sullivan

Overview. Immunomedics is a biopharmaceutical company focused on the development, manufacture and commercialization of diagnostic imaging and therapeutic products for the detection and treatment of cancer and infectious diseases. Integral to these products are highly specific monoclonal antibodies and antibody fragments designed to deliver radioisotopes and chemotherapeutic agents to tumors and sites of infection. Immunomedics has three therapeutic products in clinical trials and has two marketed diagnostic imaging products. The most advanced therapeutic products are LymphoCide (epratuzumab), which has begun Phase III clinical trials for the treatment of non-Hodgkin's lymphoma, and CEA-Cide, which is in Phase I/II clinical trials for the treatment of certain solid tumors.

Products relevant to diagnostics. CEA-Scan (arcitumomab) is a Tc99m-labeled murine antibody fragment for nuclear imaging of CEA-expressing cancers. Primary use is to determine the presence, location and extent of metastatic disease in primary/recurrent colorectal cancer. Marketed in the US & EU, approved in Canada and an application for approval is filed elsewhere.

CEA-Scan is a Tc99m-labeled murine antibody fragment for nuclear imaging of CEA-expressing cancers. Primary potential use being studied is to evaluate patients with suspicious mammograms and palpable /nonpalpable breast lesions.

CEA-Scan is a Tc99m-labeled anti-CEA murine antibody fragment for nuclear imaging of CEA-expressing cancers. Primary potential use being studied is to determine the presence, location and extent of metastatic disease in primary/recurrent lung cancer.

CEA-Scan is a Tc99m-labeled murine antibody fragment for nuclear imaging and intraoperative tumor targeting of CEA-expressing cancers. Primary potential use for the definition of tumor margins and the detection of clinically significant disease below SPECT resolution.

LeukoScan (sulesomab) is a Tc99m-labeled murine antibody fragment for nuclear imaging of activated granulocytes. Primary potential use is to differentiate soft-tissue infection from osteomyelitis and diagnose equivocal

- 350 -

Page 353: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

appendicitis. It is currently marketed in European Union for diagnosing osteomyelitis, and is under review by the FDA in USA and IKS in Switzerland.

LymphoScan is a Tc99m-labeled murine antibody fragment for nuclear imaging of CD22-expressing lymphomas. Primary potential use being studied is to stage and determine the efficacy of therapy in NHL. It is currently in phase III clinical trials.

AFP-SCAN is a Tc99m-labeled murine antibody fragment for nuclear imaging of AFP-expressing tumors. Primary potential use being studied is for primary liver and gem-cell cancer staging. It is currently nearing completion of phase II clinical trials.

- 351 -

Page 354: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

IncellDx Inc

1700 El Camino RealMenlo Park, CA 94027, USAWeb site: http://incelldx.com/Tel: (650) 777-7630Fax: (650) 587-1528Email: [email protected]: Bruce K. Patterson MD ([email protected])

Overview. IncellDx Inc is a molecular diagnostics company dedicated to the detection and monitoring of life threatening viral diseases in the areas of cervical cancer, HIV/AIDS, hepatitis, and organ transplant rejection. It is dedicated to revolutionizing healthcare one cell at a time by combining molecular diagnostics with high throughput cellular analyzer. In January 2011, the company raised $3 million in a Series A financing round to fund a clinical trial for its HPV test.

Technology. Simultaneous Ultrasensitive Subpopulation staining/Hybridization In situ (SUSHI) is a method for getting IncellDx's reagents into a cell in order to amplify signals. SUSHI is combined with a novel, cell-based instrument capable of quantifying molecular biomarkers inside intact cells. This enables protein and gene expression to be measured by distinct cell type, which aids both diagnosis and disease localization. The technology is ultra-fast, inexpensive, highly reproducible, and able to perform complex molecular testing without DNA extraction or amplification. The test has achieved ISO 13485:2003 and ISO 9001:2008 certification. Clinical trials on the test are planned for later part of 2011 followed by an application for FDA clearance.

Products. These include the following:

HIV viral reservoirs probe

HIV tropism probe

HPV OncoTect™ probe for detection of E6/E7 mRNA oncogenes

EBV viral reservoirs probe

HCV viral reservoirs probe

- 352 -

Page 355: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Incyte Corporation

Route 141 & Henry Clay Road, Building E336 Wilmington, DE 19880, USAWeb site: http://www.incyte.com/Tel: (302) 498-6700Fax: (302) 425-2750CEO: Paul Friedman MDContact: Dan Maravei PhD, Director Business Development ([email protected])

Overview. Incyte is a drug discovery company applying its expertise in genomics, medicinal chemistry and molecular, cellular and in vivo biology to the discovery and development of novel small molecule and protein therapeutics. Incyte has the largest commercial portfolio of issued US patents covering full-length human genes and the proteins they encode.

Technology/products. The following are relevant to molecular diagnostics:

LifeSeq Foundation . This is a database of human gene sequence and expression information designed to help scientists identify and prioritize potential drug targets. LifeSeq Foundation is the most comprehensive source of information about expressed human genes available. This unique resource is the result of assembling Incyte's vast EST sequence collection on the backbone of the human genome and adding extensive annotation for each sequence.

Collaborations relevant to molecular diagnostics. In 2001, Incyte discontinued its microarray/biochip business and has given access to its key microarray and gene expression patents to Agilent Technologies. PerkinElmer Life Sciences has access to Incyte's comprehensive collection of proprietary cDNA clones from LifeSeq database for the commercialization of microarrays. Incyte has an agreement with Amersham Biosciences to offer Incyte's pre-assembled sets of human and mouse clones in a format customized for Amersham's suite of integrated, gene expression microarray products.

SEQUENOM and Incyte work together to create high-quality validated SNP assays for use in genetic research. This collaboration has resulted in the most comprehensive SNP resource for target validation and pharmacogenomics ever assembled. The partnership allows Incyte to provide its customers with access to validated gene-based SNPs that allow researchers to develop diagnostic and therapeutic applications based on the medical utility of SNPs and genes.

In 2004, Incyte Corporation licensed its Eberwine Linear RNA Amplification technology to Roche for development of diagnostics that identify gene expression patterns.

- 353 -

Page 356: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Innogenetics NV

Technologie Park 6B-9052 Gent, BelgiumWeb site: http://www.innogenetics.be/Tel: +32 (9) 329 16 40Fax: + 32 (9) 245 1908Email: [email protected]: Christiaan de Wilde

Overview. Innogenetics NV is active in the research, development and marketing of diagnostic and therapeutic products in human healthcare, which facilitate the development of personalized medicine. In 2007, Innogenetics decided to focus on the development and sales of diagnostic products. In 2008, Solvay acquired Innogenetics.

Molecular diagnostics products. These include the following:

INNO-LiPA HIV protease Assay for simultaneous detection of mutations at codons 30, 46/48, 50, 54, 82/84 and 90 in the protease region of the HIV-1 pol gene.

INNO-LiPA HCV II. DNA Line Probe Assay for the classification of the 6 major HCV genotypes and their most common subtypes.

INNO-LIA HTLV I/II. Line Immuno Assay to confirm the presence of antibodies against human T-cell lymphotropic virus type I (HTLV I) and type II (HTLV II) in human serum or plasma and to differentiate between HTLV I and HTLV II infections.

INNO-LiPA MYCOBACTERIAv2 is a one strip test for the detection of Mycobacterium tuberculosis and 16 species. INNO-LiPA Rif TB DNA Line Probe Assay is used for the detection of mycobacterial resistance to rifampicin.

MRSA-Screen is a latex agglutination assay for discrimination between methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus.

INNO-LiPA CFTR DNA Line Probe Assay is used for the simultaneous detection and identification of 29 CFTR gene mutations and their wild type sequence.

INNO-LiPA HLA series of tests detect various alleles of HLA-A with one amplification and one strip for application in transplantation matching.

INNO-LiPA ApoE, INNOTEST™ hTAU Ag, INNOTEST™ ß-AMYLOID(1-42), and INNOTEST™ PHOSPHO-TAU(181P) are used for diagnosis of Alzheimer's disease.

INNOTEST™ hPLAP (a cancer biomarker) is used for the diagnosis, therapy control and monitoring of seminomas, with added value in other germ cell tumors.

INNO-LiPA HPV Genotyping assay has CE-marking approval.

Innogenetics is preparing to launch a test for human leukocyte antigen testing.

- 354 -

Page 357: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations relevant to molecular diagnostics. In 2003, Innogenetics granted Roche a license to its intellectual property for HCV genotyping in turn for an upfront license fee of €5 million plus future royalty payments. In 2005, Roche granted Innogenetics a full, worldwide license for the use of its PCR technology for the development and commercialization of molecular diagnostic products. In 2008, Innogenetics granted GlaxoSmithKline Biologicals a license to use its proprietary SPF10 technology in clinical and epidemiological HPV vaccine studies.

- 355 -

Page 358: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

InstantLabs

400 N. Capitol St NW, Suite 585Washington, DC 20001, USAWeb site: http://www.instantlabs.com/Tel: (703) 622-6896CEO: Hans C. Kastensmith ([email protected])

Overview. InstantLabs is developing Accelerated PCR “lab on a chip”, a ground breaking diagnostic technology, which will have a positive effect on public health, veterinary, homeland security, food safety, law enforcement and defense. It aims to carry out in minutes what traditional reference labs today take hours to days to accomplish. Not only will InstantLabs improve service and save time in each of these market sectors, it will also reduce the cost of laboratory testing by 10 to 15% and reduce the sample size and reagents required to conduct tests by 80%. InstantLabs plans to roll the first units off the assembly line by the end of March 2010 and place them at various gatekeeper organizations for the food safety industry globally in hopes of obtaining the necessary seals of approval to begin selling the system in the summer of 2010. The company is also currently negotiating with various core PCR patent holders such as Life Technologies and Roche to obtain freedom to operate, and hopes to submit its platform for regulatory approval for human diagnostic use by the end of 2010. So far, InstantLabs has raised about $5 million in three rounds of private equity funding.

Technology. Accelerated PCR is based on detection of a fluorescent signal produced proportionally during the amplification of a specific DNA sequence. Tests are completed with rapid thermal cycling (10o C sec) in 30 min vs. 4 h on a portable fully integrated controller - reader. The current "all-in-one" system that InstantLabs will market will use so-called multiple assay disposable cartridges, disposable chips that can test six individual samples for a single analyte or six analytes from a single sample.

InstantLabs provides nano technology that delivers PcR results on a disposable microchip. Accelerated PCR modules interface with controller/readers that serve fixed and mobile laboratory applications and POC solutions. The complete hand held unit is not much larger than a portable video.

The company hopes to supply pre-loaded MAC chips for testing more than 20 infectious agents including E. coli, salmonella, flu, HIV, hepatitis, malaria, MRSA, anthrax, West Nile virus, and tuberculosis; and the platform will allow customers to develop their own protocols and chemistry to test for other organisms of interest.

- 356 -

Page 359: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Integrated Diagnostics Inc

Street address: 837 N. 34th StreetMailing address: 1441 N. 34th StreetSeattle, WA 98103, USAWeb site: http://integrated-diagnostics.com/Tel: (206) 732-2190Fax: (206) 732-2199Email: [email protected]: Albert A. Luderer PhD

Overview. Integrated Diagnostics Inc (IDI) is creating large-scale, blood-based molecular diagnostics that leverage advances in proteomics and genomics. The company was co-founded by Dr. Lee Hood in 2009 to develop diagnostics and measurement technologies capable of monitoring hundreds of biomarkers simultaneously, for earlier detection and more accurate management of complex diseases like lung cancer and Alzheimer disease (AD).

IDI’s work is based on IP developed at the Institute of Systems Biology (ISB) and Caltech. In 2009, IDI became the first commercial enterprise to arise from a $100 million research collaboration between ISB and the University of Luxembourg; the company has ongoing access to the research from this partnership. IDI’s investors include InterWest Partners, The Wellcome Trust and BioTechCube Luxembourg.

Technology. IDI has licensed proprietary data on thousands of sentinel proteins that unique to an organ and is developing diagnostics capable of monitoring hundreds of biomarkers simultaneously to provide the best clinical relevancy. Protein blood biomarkers can indicate the physiological state of the body’s 50 major organs. By monitoring concentrations of select proteins in the blood, disruptions in healthy function can be detected and traced back to the diseased organ.

Because existing technologies are insufficient for tracking multiple biomarkers on the scale needed to gain systems level knowledge, IDI and its partners have developed advanced, proprietary applications of multiple reaction monitoring mass spectrometry for quickly and cost-effectively creating assays that monitor hundreds of proteins simultaneously. Current technologies, like antibodies, require months to develop assays for a small handful of proteins. Advanced technology enables IDI to evaluate a dramatically larger set of biomarkers, without having to guess in advance which ones are worth considering. Its mathematicians use sophisticated informatics to analyze and interpret different combinations of biomarkers for their diagnostic power.

Products in development. IDI’s current programs include developing highly-multiplexed, blood-based diagnostics for early detection of lung cancer and AD. IDI has in-licensed high quality data sets on organ and disease specific proteins relevant to both indications and has rapidly developed assays capable of monitoring hundreds of these candidate proteins simultaneously. These large-scale assays enable a broad choice for the combinations of biomarkers with the greatest diagnostic value. IDI’s technologies are applicable to a broad range of diseases including diabetes, CNS diseases and cancer. In addition to early detection, IDI’s technologies are relevant for stratification of disease types and monitoring disease progression, treatment and recurrence to develop personalized medicine.

- 357 -

Page 360: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

IntelligentMD

19 Blackstone StCambridge, MA 02139, USAWeb site: http://www.intelligentmd.com/Tel: 617-871-6400Fax: 617-871-6399Email: [email protected]: Alice Jacobs MD

Overview. IntelligentMDx, a privately owned company, develops and manufactures molecular diagnostics for clinical use, drug development and life sciences. Itshas been involved in the development and clearance of numerous unique IVD tests and systems amd is becoming a fully integrated diagnostics company. Its competitive advantages include use of intelligent software as well as development and manufacturing expertise within a Quality Management System that complies with both ISO and FDA regulations. Currently it has a large pipeline of tests in development for various infections.

Technology/products. IntelligentMDx test development process is composed of four integrated modules:

1. PreMD™ enables the definition and refinement of product candidate specifications.

2. PriMD™ uses intelligent informatics systems to power the design, development and manufacturability of a product candidate.

3. MetaMD™ module integrates R & D personnel with IntelligentMDx’s expanding lboratory capabilities.

4. ProMD™, the final module, is a unique, integrated manufacturing solution.

IntelligentMDx has multiplexing capabilities. Its comprehensive, systematic approach reduces the risk of costly redesign and enables rapid optimization. By removing many of the key limiting factors in the product development process, it enables earlier product launch and more rapid market expansion, prolongs market life and reduces risk.

R&D pipeline. The following are at various stages of development:

Tests in phase III (third party validation) include those for HSV, as well as for quantification of HIV and BK virus.

EBV and CMV are in phase II (verification).

HCV quantification/ genotyping are at design stage.

HPV, HBV, VRE and C. difficile are at concept stage.

Panels for transplantation and immunocompromised patients are in phase II (verification).

Panels for HAIs, blood screening and meningitis/encephalitis are at design stage

Panels for fungi, sepsis and STDs are at concept stage.

- 358 -

Page 361: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 24 March 2010, FDA granted EUA forIMDx test for the 2009 H1N1 flu virus.

Collaborations. In July 2009, IntelligentMDx agreed to provide DNA sequencing and other services for an unnamed US academic institution. The services are related to sequencing confirmation of the 16S ribosomal RNA gene and it also would provide bioinformatics processes for analyzing and verifying initial sequencing results and for identification of various microorganisms.

- 359 -

Page 362: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Interleukin Genetics Inc

135 Beaver StreetWaltham, MA 02452, USAWeb site: http://www.ilgenetics.com/Tel: (781) 398-0700Fax: (781) 398-0720CEO: Lewis H. Bender

Overview. Interleukin Genetics is a personalized medicine company with a mission to develop genetic tests to warn people about increased risk for disease and to develop preventive and therapeutic options to avoid those diseases. The company has one marketed product (PST) - a DNA test that assesses risk for periodontal disease. The In 2006 Interleukin is moving forward to realize its goal of harnessing genetic information to improve human health and combat disease. The company is developing three lines of business: (1) risk assessment genetic testing; (2) nonpharmaceutical products to maintain and enhance health; and (3) pharmaceuticals to treat disease.

Products. PST is a genetic marker that identifies individuals more likely to progress rapidly towards a severe form of periodontal disease. Approximately 30% of the population is likely to be positive for this genotype. This marker involves polymorphisms in the genes responsible for IL-1 biologic activity. Since IL-1 is thought to be involved in rapid tissue destruction in periodontitis, knowing the PST of patients makes it possible to target high-risk patients with appropriate preventive care or intervention and treatment. A specific pattern of IL-1 polymorphisms has been found to be associated with a significantly increased risk for developing severe generalized periodontitis. Clinical/biomarker association studies have been completed for the following:

Osteoporosis genetic test - North America

General nutrition genetic test - International

IL-1 cardiovascular genetic test – International

Weight management genetic test

Collaborations. Interleukin provides DNA sequencing information including SNP detection to Oscient Pharmaceuticals. The program focuses on key genes in the chromosomal region of 2q13 associated with risk for inflammatory diseases, Alzheimer's disease, asthma, cardiovascular disease, diabetes, gastric cancer and osteoporosis.

Since 2003, the company’s development efforts in collaboration with Alticor Inc, a major consumer products company. In 2006, Interleukin sold to Alticor two direct-to-consumer DNA-based risk assessment tests to be distributed by Quixtar. One test is designed to identify gene variants in two interleukin genes that have been associated with an increased risk of early heart attack. The other is designed to identify variants in 6 genes that have been associated with relative inefficiencies in either B vitamin metabolism (2 genes) or the management of oxidative stress (4 genes). The tests will be processed at the Interleukin Testing Laboratory, which secured appropriate licensure in 2005.

On 28 February 2008, Interleukin signed a new research agreement with Access Business Group International LLC (a subsidiary of Alticor Inc), which

- 360 -

Page 363: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

encompasses four main areas; osteoporosis, cardiovascular disease, nutrigenomics, and dermagenomics. Interleukin Genetics will conduct clinical studies, which shall be fully funded by Alticor.

On 13 August 2008, Interleukin licensed OralDNA Labs the rights to sell to dental practices in the US its PST test for IL-1 gene variations that identify an individual's predisposition for inflammation and risk for more severe periodontal disease.

- 361 -

Page 364: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Intrinsic Bioprobes Inc

2155 E. Conference Dr. Suite 104Tempe, AZ 85284, USA Web site: http://www.intrinsicbio.com/Tel. 480-804-1778Fax. 480-804-0778E-mail: [email protected] CEO/Director of Research and Technology Development: Dobrin Nedelkov PhD

Overview. Intrinsic Bioprobes Inc is a privately held Biotechnology Company focused on developing innovative technologies for rapid and sensitive proteome analysis. The company's proprietary technologies consist of Bioreactive Mass Spectrometer Probes (BRP), simple devices for rapid, sensitive and accurate protein characterization, and Mass Spectrometric Immunoassay (MSIA), a high-performance approach for the selective isolation of proteins from complex biological matrices. These root technologies are incorporated into the MASSAY Integrated System, a high throughput mass spectrometry approach geared for proteome characterization.

Technologies relevant to molecular diagnostics. Intrinsic Bioprobes has been devoted to the development of advanced technologies that are able to operate on proteins present in complex biological matrices, as well as high-sensitivity methods for their characterization. BRP is used for sequence verification, protein identification, detection of point mutations, determination of posttranslational modifications and sample preparation. The Company is using MSIA combined with bioreactive probes for the analysis of several body fluids. Examples are human cystatin C and b2 microglobulin screening of urine samples, which have clinical relevance as biomarkers of inflammatory ailments. Throughput rates of ~100 samples per hour have been achieved. This technique is easy, fast and amenable to robotics. Protein profiling by MSIA can detect protein-protein and protein-small molecule interactions.

Biomolecular Interaction Analysis Mass Spectrometry (BIA/MS). BIA/MS is a two-dimensional analytical technique geared toward functional and structural analysis of biomolecules in their native environments. In the first (functional) dimension, BIA/MS takes a form of micro-scale affinity chromatography performed on a sensor surface. Surface plasmon resonance (SPR) is used for detection of biorecognition events that occur at the sensor surface/solution interface. With SPR-sensing, biological interactions can be monitored in real time, allowing kinetic parameters delineation. Furthermore, the SPR detection is non-destructive, opening the possibilities for further manipulation of the analyte present on the sensor surface. For the second (structural) dimension, BIA/MS employs matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. BIA/MS represents a multidimensional analytical technique possessing the virtues of quantitatively and qualitatively detecting proteins of interest.

Finally, the Company has created Biosensor Chip Mass Spectrometry (BCMS), a concerted chip-based approach that can be used in functional analysis and identification of unknown proteins that bind specifically to immobilized receptors.

In 2005, Intrinsic Bioprobes received a phase I STTR grant from the National Institute of Diabetes and Digestive and Kidney Diseases at NIH to develop

- 362 -

Page 365: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MS-based approaches for diabetes biomarker discovery and in September 2007, it received a phase II STTR grant. In 2005, Intrinsic Bioprobes received an exploratory research grant from the National Center for Research Resources at NIH for the development of SPR/MS Protein Array Platform and in May 2007, it received continued funding on its phase II exploratory research grant.

- 363 -

Page 366: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Inverness Medical Innovations Inc

51 Sawyer Road, Suite 200Waltham, MA 02453-3448, USAWeb site: http://www.invernessmedical.com/Tel: (781) 647 3900Chairman, CEO and President: Ron ZwanzigerContact: John Bridgen PhD, VP Business Development ([email protected])

Overview. Inverness Medical Innovations Inc is a major global developer, manufacturer and marketer of advanced, pioneering consumer and professional medical diagnostic products. A leading supplier of consumer pregnancy and fertility/ovulation tests and rapid POC diagnostics, Inverness is committed to advancing health and creating shareholder value through a continuing flow of innovative new products brought about by its strong investment in R&D and intellectual property. Latest areas of focus are in the application of patented technologies to products in diagnostics, principally in the fields of cardiology, women’s health, and infectious diseases. It is exploring opportunities that will make optimum use of its technologies. It will also continually evaluate other technological advancements, for development or acquisition, in a variety of medical/health areas.

Acquisitions relevant to molecular diagnostics. In May 2007, Inverness acquired Biosite (see separate proile). In December 2007, Inverness acquired assets of Matritech for $36 million to incorporate them into its portfolio in course of time. In December 2007, Inverness acquired Redwood Toxicology Laboratory, a privately held drugs of abuse diagnostics and testing company On 13 February 2008, Inverness acquired BBI Holdings Plc, which specializes in the development and manufacture of non-invasive lateral flow tests and has achieved a global reputation for manufacturing superior quality gold reagents.

Products. Inverness offers an expanding range of clinical diagnostic products based on electrochemical and immunodiagnostic technologies. These includes Clearview®, Inverness Medical TestPack®, Binax®, Determine®, and BioStar.

Inverness Medical Innovations is committed to researching and developing products in the important area of cardiac risk. As several traditional and new biomarkers are being recognized as important indicators of cardiac risk, Inverness offers both the Homocysteine and Macra Lp(a) ELISA tests, the Clearview Troponin I and Clearview D-dimer tests, and the ACB® test to measure levels of Ischemia Modified Albumin as part of the growing cardiac test portfolio.

- 364 -

Page 367: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Investigen Inc

750 Alfred Nobel DriveHercules, CA 94547, USAWeb site: http://www.investigen.com/Tel: 510-964-9700 Fax: 510-964-9705 E-mail: [email protected] & President: Heather Koshinsky PhD Contact: Didier Perez, COO ([email protected])

Overview. Investigen was founded in 1998 to develop new multi-platform DNA testing technologies that are ideally suited for use in food quality assurance, health care, environmental safety, veterinary medicine, industry, and biodefense. Investigen's DNA diagnostic testing technology is designed to provide customers with fast, cost-effective tests to detect microorganisms and genetically modified organisms (GMO) without relying on culturing or antibodies. Investigen's DNA testing kits are designed to deliver immediate, reliable results, making them ideally suited for time-critical applications such as health assurance, food safety, or biological hazard testing. In 2002, Investigen closed its Series A funding round for an undisclosed amount. The monies raised through the Series A funding round were applied to introduce groundbreaking technologies in diagnostic tests.

Products and services. Investigen is engaged in leading edge research and development of truly rapid, accurate and, ultimately, equipment-free DNA-based diagnostic technologies. The Company is currently shipping the CommodityCheck™ GMO detection kit and offers GMO Detection Services. Unlike other PCR kits on the market, Investigen's kit requires little more than a thermal cycler and a results documentation system. In order to meet international or contractual obligations for content certification, Investigen offers two fast, easy and cost-effective alternatives: CommodityCheck™ GMO detection service or CommodityCheck™ GMO detection kits.

In 2003, Investigen filed a provisional patent for its smartDNA™ diagnostic technology, a revolutionary, portable test process designed to identify DNA/RNA in minutes. Investigen is currently researching and developing applications for its smartDNA solution, and is actively seeking global partners to package and market smartDNA for commercial applications.

Collaborations. In 2003, Cartagen Molecular Systems Inc was granted a license by Investigen to manufacture and distribute a new proprietary DNA separation technology created by Investigen. The strategic partnership Cartagen and Investigen have formed will ensure an ongoing flow of innovative products and helpful technology tools for life science research customers.

- 365 -

Page 368: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Invirion Diagnostics LLC

2001 Spring Road, Suite 450Oak Brook, IL 60523, USAWeb site: http://www.invirion.com/Tel: (630) 572-2800Fax: (630) 954-2874Contact: John M. Drews, President & General Counsel ([email protected])

Overview. Invirion Diagnostics LLC the first company dedicated to the detection, monitoring and treatment of life-threatening viral diseases such as HIV/AIDS, cervical cancer, and organ transplant rejection. Invirion Inc was founded in 1999 with the goal of commercializing state-of-the-art molecular virology technology and its research, development, and commercialization efforts are focused on monitoring viruses that cause human disease and using the information gleaned from these novel assays to develop therapeutic products that rationally target the viral lifecycle. Key strengths of the company are:

Diagnostic products already on the market

Proprietary approach to viral diagnostics and antiviral drug discovery

Valuable intellectual property portfolio

Collaborations with leading HIV researchers and clinicians

Technology. Invirion developed the paradigm of cellular diagnostics for viral infections. The technology is based on the use of a fluorescence oligonucleotide detection platform, utilizing genomics data from the Human Genome Project.

Diagnostic products. Invirion currently sells viral load monitoring assays for HIV, the virus that causes AIDS; SIV, the HIV animal model used in vaccine design; and HPV, the virus associated with cervical cancer, and HCV, the virus implicated in cirrhosis and liver cancer. In addition, Invirion is set to launch an HIV phenotyping assay that cuts the current assay time and cost by 75%.

PV OncoTect detects the actual genes leading to cervical cancer rather than the genes that confer risk of cervical cancer. PapSTAT is a novel assay to determine liquid based cervical cytology specimen adequacy in a physician’s office or in laboratories processing liquid-based cervical cytology specimens. This assay would greatly reduce the need for a woman to have a repeat sample taken just to obtain a diagnostic result.

ViroTect HCV is used in organ transplant related virology. This complete kit detects HCV RNA in cell lines and in human samples by ultrasensitive FISH. This assay can be combined with simultaneous immunophenotyping to detect HCV RNA in specific cellular reservoirs.

HPV OncoTect probe cocktail detects HPV E6, E7 mRNA in cells using ultrasensitive FISH.

Services. InviriCept patented assays are used for in vitro viral susceptibility determination. InviriTrop patented assays are used for in vitro HIV-1 tropism determination.

- 366 -

Page 369: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ionian Technologies Inc

4940 Carroll Canyon Road, Suite #100San Diego, CA 92121-1735, USAWeb site: http://www.ionian-tech.com/Tel: (858) 642-0998Fax: (858) 642-0997E-mail: [email protected]: Andrew Miller PhD

Overview. Ionian Technologies Inc is a privately held biotechnology company that is developing isothermal nucleic acid amplification technology. This technology has many attributes that make it an ideal choice for clinical and POC. It has also been used as a core component for pathogen detection systems.

Technology. Ionian’s patented NEAR technology is a novel rapid isothermal approach to nucleic acid amplification and detection, which is based on the very rapid detection of small DNA or RNA fragments generated directly from the target nucleic acid. The amplification products can be detected by a variety of standard methods including LC-MS, real-time fluorescence, and capillary electrophoresis detection. The technology can be used to detect any DNA or RNA targets (no separate cDNA synthesis step is necessary).

Ionian will develop products suitble for infectious disease diagnostics, biothreat pathogen detection and cancer gene expression. Its innovative technologies combine rapid amplification and detection in diagnostic assays with many competitive advantages over the PCR including DNA and RNA detection from bacterial or viral pathogens in <10 min.

Ionian has developed NEAR for the detection of biothreat organisms in several product development contracts with the DARPA and the Department of Homeland Security, which will provide 'detect-to-protect' and 'detect-to-warn' biothreat detection capabilities. The goal is to develop a handheld sensor that is capable of identifying biothreat agents across the entire threat spectrum, including bacteria, viruses and toxins.

Collaborations. Waters Corporation, the leading vendor of mass spectrometry equipment, is a strategic partner of Ionian through its subsidiary Micromass.

On 13 November 2009, Ionian agreed to collaborate with Roche Diagnostics to identify new applications and customers for its NEAR Assay, a rapid isothermal nucleic acid amplification technology, in return for exclusive manufacturing rights if the new applications are commercialized aimed at applications in IVD, food safety, biodefense, agriculture, and veterinary applications. The collaboration will allow the company to focus on its core strengths, including technology and assay development, while leveraging the business development, sales, and manufacturing expertise of Roche.

- 367 -

Page 370: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ipsogen

Luminy Biotech Entreprises, Case 923163 Avenue de Luminy, 13009 Marseille, FranceWeb site: http://www.ipsogen.com/ Tel: +33 (0)4 91 29 30 90 Fax +33 (0)4 91 29 30 99 Chief Executive Officer: Dr. Vincent Fert ([email protected])

Overview. Ipsogen is devoted to personalized management of cancer. As of 30 April 2008, Ipsogen employed 40 persons. By predicting disease aggressiveness, sensitivity to drugs and defining follow-up markers to assess treatment efficiency, Ipsogen's patented molecular tools address a large unmet medical need. Ipsogen's new molecular tools, adapted to clinical research or IVD, will allow unprecedented improvement in the disease management of cancer patients. The first product to be marketed by Ipsogen will facilitate disease management in acute leukemia. The second target of the company is breast cancer where the Ipsogen ProfileChip will focus on prognosis. By partnering with major medical institutions specialized in cancer disease management and with pharmaceutical companies involved in anticancer drug design, Ipsogen is building a portfolio of cancer management tools.

Technology/services. Ipsogen offers a new generation of products for personalized treatment and follow-up of cancer: diagnostic biochips, reagent sets for RQ-PCR and associated profiling software for data management.

Discovery services. A state of the art gene expression platform dedicated to cancer profiling and available to pharmaceutical companies and clinical oncology centers on a fee per service basis comprising:

Discovery tools such as large scale, pangenomic gene expression biochips

Bioinformatics data validation and analysis

A range of reference data from cancer cell line models

Molecular cancer profiling. Ipsogen provides oncologists and researchers with a straightforward approach to molecular cancer profiling: (1) molecular diagnostic tools for cancer profiling; (2) associated information systems and prognostic aids; (3) patented gene expression signatures for each tumor type; and (4) sample collections stored and annotated over long periods of time in a certified environment. Ipsogen is focusing on "cancer profiler" to improve therapeutic approaches to cancer by personalized treatments and rapid development of new drugs (optimization of clinical trials, information about molecular mechanisms of the action of new drugs). In 2006, Ipsogen and a group of cancer centers led by Institut Paoli-Calmettes started clinical trial SA02 aimed at studying a genomic signature based on gene expression analysis of tumor cells to predict the likelihood of relapse of node positive breast cancer treated with chemotherapy regimen for personalizing management.

Ipsogen is the exclusive worldwide licensee of the IP on JAK2 V617F mutation discovered by the INSERM team at Institut Gustave Roussy, Paris, and has developed a comprehensive solution of products and services to assist pharmaceutical companies in the development of JAK2 inhibitors in myeloproliferative disorders in order to reduce the number of patients included in clinical trials, reduce the time to results and provide the most adapted diagnostic solution to personalize drug prescription.

- 368 -

Page 371: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MPL W515L/K MutaScreen Kit has been designed to detect both MPL W515L and W515K mutations on genomic DNA isolated from peripheral blood, which were detected in about 5% and 1% of JAK2 V617F-negative primary myelofibrosis and essential thrombocythemia respectively. Ipsogen’s AK2 MutaQuant and MutaSearch Kits are now CE marked. Detection of JAK2 V617F is now fully integrated into the diagnostic work-up of myeloproliferative neoplasms. WT1 ProfileQuant® is also CE marked and can be used with most RQ-PCR instruments. Application of a standardized WT1 assay provides independent prognostic information in AML.

Collaborations. In 2003, Ipsogen and Fox Chase Cancer Center (Philadelphia, PA) started a bioinformatics collaboration for analysis of large scale gene expression data. In 2004, Ipsogen licensed WT 1 (Wilm's tumor 1) gene from Genzyme Genetics as a biomarker in acute leukemia to predict disease aggressiveness, determine patient response to treatment, and monitor minimal residual disease. In 2004, Ipsogen became an authorized service provider for Affymetrix GeneChip system for pangenomic, inter-platform biomarker research services to its partners. Also in 2004, Ipsogen signed an agreement with the Cleveland Clinic (Cleveland, Ohio) to identify molecular prognostic and predictive markers by large-scale gene expression profiling in early stage breast cancer for prediction of patient risk for recurrence.

In 2007, Ipsogen signed a Powered by Affymetrix™ (PbA) agreement to gain nonexclusive access to Affymetrix Inc's microarray technology to develop IVD tests, initially for breast cancer, on a worldwide basis. The PbA agreement enables Ipsogen to incorporate Affymetrix arrays into its diagnostic products. The resulting microarray-based tests will enable clinicians to provide more efficient and complete methods to diagnose, classify and manage patients suffering from cancer.

In 2007, Ipsogen signed an agreement with DNAVision and gains the capability to offer its portfolio of breast cancer profiling tests to institutions and patients in a CLIA/ISO17025 certified environment.

In 2007, LabCorp signed a non-exclusive license agreement with Ispogen to offer Ipsogen’s blood-based cancer assay in the US, which classifies and diagnoses a group of leukemias caused by variations in the JAK2 gene. A high proportion of individuals with myeloproliferative disorders have a dominant mutation of the JAK2 gene LabCorp will offer the test, which is registered as an IVD in Europe, through its CLIA-registered US labs. In August 2007, Ispogen granted similar rights Warnex to offer the JAK2 assay in Canada.

In 2007, Ipsogen signed a co-exclusive license agreement with XENOMICS, which enables it to develop, manufacture and commercialize research and diagnostic products based on the analysis of NPM1 mutations for the stratification and monitoring of patients with AML.

In 2007, bioMérieux signed an agreement with Ipsogen to codevelop a companion test for a new breast cancer drug, BN 83495, which targets to block the steroid sulfatase enzyme (STS) found in hormone-dependent breast cancer in postmenopausal women. It is currently in phase I clinical development. bioMérieux will devise a companion assay using its proprietary NASBA® amplification technology on its NucliSENS EasyQ® molecular diagnostics platform to determine the patients best suited to benefit from the new STS inhibitor treatment. The assay is intended for both the clinical development of the Ipsogen drug as well as a diagnostic test, potentially for future commercialization.

In 2007, Ipsogen signed an agreement with AstraZeneca to evaluate molecular services and products in cancer research and will provide

- 369 -

Page 372: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AstraZeneca with JAK2-based products for initial evaluation. It will conduct quantitative analysis on samples provided by AstraZeneca to help determine the viability of a test which could potentially be utilized by AstraZeneca in future clinical trials.

In October 2008, Ipsogen licensed to Quest Diagnostics the use of its JAK2 V617F mutation in Quest Diagnostic's laboratory developed tests.

- 370 -

Page 373: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

IQuum Inc

700 Nickerson RoadMarlborough, MA 01752, USAWeb site: http://www.iquum.com/Tel: 508-970-0099Fax: 508-970-0119CEO: Shuqi Chen, PhD ([email protected])

Overview. Founded in 1998, IQuum is dedicated to further developing a unique lab-in-tube platform that will improve the extraction of information from biological samples. The platform will deliver the recent achievements in genomics and biotechnology to healthcare and daily life. The focus is on developing rapid POC diagnostics. IQuum's research and development has been supported by Small Business Innovation Research (SBIR)- NIH grants.

Technology/products. IQuum's lab-in-a-tube platform, Liat™, simplifies sample handling, improve sample control, and completely integrate sample testing from sample collection through analysis for multiple assays on location. This technology integrates sample preparation, which includes target enrichment, purification, inhibitor removal, and DNA extraction, followed by amplification and detection in one closed system. The goal is to complete the assay from sample to result within 30 minutes to 1 hour. The Liat™ Analyzer is developed for nucleic acid based testing and the Liat™ Tubes serve both as collection devices and as test chambers, maintaining samples in a closed system from sample collection through sample disposal. The Liat™ system is suitable for a wide range of testing labs and near-patient test settings due to its ease of use, fast turnaround time, cost effectiveness and safety features. It is marketed for detection of B. anthracis.

In 2006, IQuum was awarded a phase II grant from the NIAID for the development of POC detection of Chlamydia trachomatis.

In 2006, IQuum started collaboration with the University of Massachusetts Medical School to develop rapid diagnostics based on its lab-in-a-tube platform for category A-C biodefense pathogens that cause viral hemorrhagic fever.

In 2006, IQuum was awarded a $3.8 million contract from the CDC for the development of rapid POC diagnostics for avian influenza based on the company’s innovative lab-in-a-tube technology to differentiate influenza A H5N1 from seasonal human influenza viruses. Liat assay, a nucleic acid test that can be performed from sample to result in 26 minutes, can detect and differentiate 2009 H1N1 influenza viral RNA from nasopharyngeal swab samples. On 7 May 2010, it was granted EUA by the FDA.

In 2007, IQuum was selected by the US DHS for participation in a phase III effort to continue development of the Liat™ Bioagent Autonomous Networked Detector (BAND), a "detect-to-treat" system for round-the-clock, distributed monitoring of outdoor urban areas for bacteria, viruses and toxins.

Collaborations. The Company has established key collaborations with hospitals and research institutes, which will provide access to hospital laboratories and sample sources for clinical research in the development of IVD applications for the lab-in-a-tube technology. IQuum is developing strategic partnerships with industry leaders for co-development and commercialization of lab-in-a-tube products for the in vitro diagnostic, biodefense, and industrial testing markets.

- 371 -

Page 374: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

IRIS International, Inc.

9172 Eton AvenueChatsworth, CA 91311-5874, USATel: (818) 709-1244Fax: (818) 700-9661Email: [email protected]: César M. García

Overview. Since 1979, IRIS International, Inc has been dedicated to the development and commercialization of innovative medical diagnostics and sample processing products that provide reliable and cost effective solutions for its customers and improved disease management for the patients. Its automated urinalysis systems and sample processing products are today used in hospitals, clinical reference laboratories, veterinary laboratories and research facilities around the world. IRIS is focused on the development and commercialization of innovative IVD products and solutions into related oncology, hematology, and microbiology markets.

Its manufacturing and research activities are conducted through three operating units: Iris Diagnostics Division, Iris Sample Processing Division (formerly StatSpin Inc) and Iris Molecular Diagnostics research and development subsidiary. The core competencies in these operating groups include flow imaging technology, morphological pattern recognition, chemistry, ultrasensitive detection of proteins and rapid and reliable processing of blood and other body fluids. On 2 August 2010, IRIS completed its $6 million acquisition of CLIA-certified AlliedPath, which specializes in oncology and molecular diagnostics for personalized medicine. The deal also offers a direct commercial channel for acceleration of IRIS' NADiA nucleic acid detection immunoassay platform

- 372 -

Page 375: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

IVS Technologies

6330 Nancy Ridge Drive, Suite 106San Diego, California, USA Web site: http://www.invivoscribe.comTel: (858) 623-8105Fax : (858) 623-8109 E-mail: [email protected] and CEO: Jeffrey E. Miller, PhD

Overview. IVS (InVivoScribe) Technologies, founded in 1995, is a privately-held biotechnology company with a focus on providing reliable cutting-edge tools for molecular diagnostics, hematopathology, and complementary DNA synthesis using proprietary in vivo cDNA synthesis technology.

Technology/products. IVS' in vivo cDNA synthesis technology converts unstable cellular mRNA into stable cDNA within the living cells and tissues - eliminating problems and difficulties associated with RNA extraction and in vitro methods for cDNA synthesis. IVS is also the world leader providing standardized PCR-based immunoglobulin and T cell receptor gene rearrangement and chromosome translocation testing products. These products are used by research groups and molecular pathologists to identify and monitor leukemias, lymphomas and other lymphoproliferative disease. InVivoScribe's gene rearrangement testing reagents and kits are covered by worldwide, exclusive-licensed patents.

Size-specific clonal products generated using these PCR tests are quickly identified using agarose gels, polyacrylamide gels, or capillary electrophoresis. IVS' PCR-based testing kits include robust and validated master mixes, positive, negative and specimen controls, and Standard Operating Procedures. Customers include medical centers, reference laboratories and molecular diagnostic testing centers.

In 2003, IVS initiated a minimum residual disease (MRD) testing program designed to identify and track a wide variety of leukemias and lymphomas. These tests will be developed to be compatible with a number of instruments and platforms, including capillary instruments. First standardized tests are scheduled for release in 2004.

In 2005, InVivoScribe launched JAK2 V617F Activating Mutation Assay , which is used to rapidly identify the clonal JAK2 V617F mutation, present in the majority of polycythemia vera patients and in a number of other myeloproliferative disorders. The test has been designed for both gel detection and capillary electrophoresis platform

Patents. US patents #5,296,351 and #5,418,134 cover PCR-based testing of immunoglobulin and T-cell receptor loci; technology that is required to detect and monitor leukemias, lymphomas and other lymphoproliferative disease in many patient samples. Techniques covered by these patents are also used to identify the tumor-specific, and patient-specific genetic sequences necessary for ultrasensitive minimum residual disease testing.

Collaborations. In 2003, ARUP Laboratories secured a sublicense from IVS Technologies to several dominant US patents enabling it to continue diagnostic molecular testing of the immunoglobulin and T-cell receptor genes.

In 2004, InVivoScribe finalized a long-term, world wide exclusive licensing agreement with the BIOMED-2 Concerted Action Group. A series of

- 373 -

Page 376: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

immunoglobulin and T cell receptor gene rearrangement assays as well as BCL1/JH and BCL2/JH gene translocation assays are included in this agreement.

- 374 -

Page 377: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Keygene NV

Agro Business Park 90 6708 PW Wageningen, The NetherlandsWeb site: http://www.keygene.com/Tel: +31 (0)317 466 866 Fax: +31 (0)317 424 939 CEO: Arjen J. van Tunen Business Development Manager: Mark van Haaren ([email protected])

Overview. Keygene is a private life science company that provides genetic and genomic research. Keygene works for leading vegetable and animal breeders, universities, hospitals and the fermentation and food industry. Keygene's aim is to support companies and institutes that carry out fundamental or applied genetic/genomic research or that seek to enhance the quality of their product through the improvement of the genetic material used in the production process.

Technologies. The following are relevant to molecular diagnostics:

AFLP® fingerprinting technology. This was developed by Keygene and reliably produces a high number of bands and markers per fingerprint and does not require prior sequence information. It detects DNA restriction fragments by means of PCR amplification.

GeneDiscloser technology. It permits the display and quantification of transcripts based on AFLP® fingerprinting of double-stranded cDNA. The transcript profiles obtained using this technique are a reliable and efficient tool for the identification of differentially expressed mRNAs. It is applicable to animals and microorganisms.

SNPs. Keygene offers a variety of techniques for the discovery and validation of SNPs. A discovery set of individuals/lines/species is selected and their DNA isolated. Keygene then uses three techniques for SNP discovery:

1. AFLP® fingerprints are run on the discovery samples. Polymorphic bands are then sequenced to determine the exact SNP’s.

2. Alternatively, genetically mapped AFLP markers are identified and linker PCR is applied to identify the SNP causing the AFLP polymorphism.

3. Fragments of proprietary or public sequences are re-sequenced in the discovery samples, and using both public and proprietary EST’s electronic SNP mining is carried out using Keygene’s in-house SNP discovery software. This software will determine the allele frequency and, as such, the value of the SNP.

Products. SNPWave™ is a novel multiplexed technology, capable of detecting various subsets of sequences, such as SNPs in a flexible fashion. The SNPWave technology targets the market segment defined by moderate numbers of SNPs (up to several hundreds) and medium to high number of samples. This includes both (human) diagnostic analyses and agricultural applications such as genetic mapping, genetic diversity analysis and marker-assisted breeding, in a wide variety of species including plants, mammals, and micro-organisms. With respect to target sequences, applications of the SNPWave technology are not limited to SNPs per se, but may also include detection of non-polymorphic sequences (introgression segments, transgenes, pathogens), detection of low-abundant sequences in a complex

- 375 -

Page 378: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

background and/or selected combinations of transcripts for diagnostic prediction of complex traits.

KeyGene provides bioinformatic and computational tools for biodetection, bio-mining, bio-interpretation and bio-infrastructure.

Collaborations. On 14 January 2008, University Medical Center (UMC) Utrecht signed an agreement with Keygene on HTP sequencing using the Roche Genome Sequencer-FLX system. The 2-year agreement will allow researchers of UMC Utrecht to use KeyGene sequencing services for bacterial and viral sequencing projects as well as for more complex studies. The latest improvements in parallel sequencing of bacteria and other organisms are applied as well as DNA tagging with the KeyGene™ SeqTag sample identification tags. KeyGene Bioinformatics analyzes sequence data using up to date software and custom built pipelines to present clear data and sequencing statistic reports. In addition, the contract allows for new research applications to be tested on the GS-FLX. The first projects under this collaboration agreement have already been executed.

- 376 -

Page 379: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Kreatech Diagnostics

P.O. Box 37078Vlierweg 201032 LG Amsterdam, The Netherlands.Web site: http://www.kreatech.com/Tel: +31 (0) 20 691 9181 Fax: +31 (0) 20 696 3531Chief Executive Officer: Kees Moonen, MA, MBA ([email protected])

Overview. Kreatech Diagnostics is a molecular diagnostics company focused on the development and commercialization of innovative detection products. These are used for diagnostic and research applications in the life sciences and healthcare industry. These applications include cytogenetics, microarrays, and proteomics. It has a special expertise in oncology, hematology and prenatal diagnostics.

Technologies relevant to molecular diagnostics. Universal Linkage System (ULS) labeling is a powerful, innovative and user friendly technique for binding any marker group or label to single- or double-stranded DNA, RNA, PNA, oligonucleotides, painting probes, telomere probes, centromere probes, single copy, nucleic triphosphates, primers and amplified products.

BAC arrays. ULS aCGH labeling kits produce fluorescently labeled DNA within minutes. It is a robust, non-enzymatic method to detect gains and losses of chromosomal material including single copy number changes on BAC arrays. Genome-pULSe aCGH Genomic DNA Amplification and Labeling Kit is a procedure that allows the uniform amplification and subsequent non-enzymatic labeling of whole genome from small samples

DoL. The calculation of the Degree of Labeling (DoL) of samples.

MicroRNA. ULS labeling for all types of miRNA.

Gene Expression. Kreatech offers labeling kits tailored to several microarray platforms.

Products. These include the following (details on company web site):

Poseidon™ FISH DNA Probes

CISH

Zymed Anatomical Pathology

ULS Microarray Labeling

KREAvital Cell Culture Media

MAUI Products

Collaborations. The following collaborations started in 2003:

KREATECH and Fermentas International (Hamilton, Canada) signed a marketing agreement for ULS®-technology.

KREATECH entered into a License & Product Supply Agreement with Master Diagnostica, Spain, to commercialize novel DNA probe assays to diagnose sarcoma by labels them with its ULS™ technology.

- 377 -

Page 380: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

KREATECH and PanPath BV extended their agreement to commercialize novel DNA probe assays to diagnose cancer. Under this agreement, PanPath used its proprietary methods to manufacture and purify DNA for these assays.

In 2005, BIOKE (Leiden, the Netherlands) started a partnership with Kreatech to exclusively supply ULS solutions to laboratories in the Benelux.

In 2006, KREATECH agreed to market Qiagen's Repli-g whole-gnome amplification kits worldwide in combination with its ULS in the life science research markets. It will also develop and manufacture microarray WGA amplification and labeling kits for genomic DNA and for array CGH applications.

In 2007, Kreatech and Immunicon Corp's Biotechnology BV expanded their current research collaboration related to centromere probes, started in 2006, involving the use of Immunicon’s technologies with Kreatech’s ULS™. Now Kreatech has an exclusive right to use certain of Immunicon’s technologies to improve its products and to manufacture and supply such improved products for sale exclusively by Immunicon in North America. Immunicon made an equity investment of $1.5 million in Kreatech.

In March 2009, Phalanx Biotech started partnership with Kreatech as it extended its reach into the miRNA market by launching catalog arrays for multiple organisms and offering miRNA expression profiling services in house. Phalanx is packaging its miRNA OneArrays with Kreatech's ULS miRNA Labeling Kit.

- 378 -

Page 381: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Laboratory Corporation of America

358 South Main StreetBurlington, NC 27215, USAWeb site: http://www.labcorp.com/ Tel: (336) 584-5171CEO: David King

Overview. Laboratory Corporation of America (LabCorp), one of the first laboratories to fully embrace molecular diagnostics, is a pioneer in providing leading-edge testing technologies. With annual revenues of $3.1 billion, 24,000 employees nationwide, and more than 220,000 clients, LabCorp offers clinical assays ranging from routine blood analyses to HIV and genomic testing. LabCorp is also moving into specialized growth businesses, such as occupational testing services, clinical trials testing, and identity testing. LabCorp's Centers of Excellence include the Center for Molecular Biology and Pathology (Research Triangle Park, NC) for the development and application of PCR technology in the areas of diagnostic genetics, oncology, and infectious disease. In 2003, LabCorp acquired Dianon Systems for $600 million to expand its cancer diagnostics. In January 2008, LabCorp acquired Tandem Labs, a drug development service company, which will retain its name and management structure and operate as part of LabCorp’s Esoterix clinical trials group. In August 2009, LabCorp acquired Monogram Biosciences, a provider of companion diagnostics, for $104 million. In November 2010, LabCorp purchased Genzyme Genetics for $925 million in an all-cash deal, including all testing services, technology, IP rights, and its 9 testing laboratories. The acquisition will expand LabCorp's capabilities in several testing areas including those in reproductive, genetic, hematology-oncology, and its ability to do clinical trials as a central laboratory. In April 2011, LabCorp purchased Orchid Cellmark for $85.4 million.

Technologies/products offered by Genzyme Genetics. These include: Prenatal testing, diagnosis of genetic disorders, genetic risk assessment, patient education and patient support. Genzyme offers a test panel to determine carrier detection rates among Ashkenazi Jews for the following autosomal recessive disorders: Tay-Sachs disease, cystic fibrosis, Gaucher's disease, Fanconi's anemia Group C, Bloom syndrome, Canavan disease, and Niemann-Pick disease type A. Genzyme Genetics has expanded its extensive prenatal test menu by adding FirstScreen and IntegratedScreen to its serum screening program. Genzyme Genetics has purchased rights to cancer diagnostics including dozens of proprietary cancer biomarkers, from Genzyme Oncology. Using these biomarkers, it develops and commercializes new specialized tests for a wide range of cancers to add to the test for HER-2 status in breast cancer. Cytogenetic services include: (1) FISH for metaphase/interphase analyses on blood, bone marrow, and prenatal samples; (2) Chromosome spreads from at least two different culture conditions when possible, are counted and analyzed completely under the microscope culture conditions when possible, are counted and analyzed completely under the microscope.

Services. LabCorp's services include standard clinical laboratory tests. It offers a comprehensive HIV resistance testing menu to complement to help monitor antiretroviral therapy by using: (1) rapid recombinant phenotypic assays to measure antiviral drug resistance; (2) full, double-stranded, redundant sequencing of the region of the pol gene in which antiretroviral resistance mutations have been documented; and (3) VircoGen Genotyping by a proprietary mutation expert interpretation system that generates a virtual phenotype from the genotype.

- 379 -

Page 382: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LabCorp offers a test, licensed from the Mayo Foundation, for genetic variants in the UGT1A1 gene associated with toxicity in individuals treated with the colorectal cancer drug irinotecan hydrochloride (Camptosar®).

LabCorp is commercializing a blood-based assay, developed at Duke University Medical Center, for early-stage lung cancer detection.

In 2008, LabCorp launched its OvaSure screening test for ovarian cancer. In September 2008, the FDA sent a warning letter to LabCorp stating that OvaSure test is “not within the scope of laboratory-developed tests over which the agency has traditionally exercised enforcement discretion

Collaborations. LabCorp offers Myriad Genetics' predisposition testing for breast, ovarian, colon, uterine and melanoma skin cancers, as well as for hypertension. LabCorp and Celera Genomics collaborate to establish the clinical utility of laboratory tests based on novel diagnostic markers for Alzheimer's disease, breast cancer and prostate cancer.

In 2006. LabCorp signed an agreement with Institute for Systems Biology to develop programs that integrate medicine and molecular diagnostics at LabCorp. LabCorp licensed Signature Genetics™, a drug response interpretation service from Seryx, to help select the most appropriate drug and establishing the most effective dosage for a given individual. Clinical and CYP450 genetic test information is evaluated by a vast "Signature Knowledge Base" and a comprehensive, actionable and personalized report is produced, which details the most effective medications and the dose, adverse reactions and/or react with other concurrent treatments, lifestyle as well as nutritional changes that would have the greatest impact on improving patient health. LabCorp licensed a blood testing technology for epithelial ovarian cancer from Yale University, which is based on a known serum proteins associated with cancer and each protein biomarker is analyzed by ELISA assay. Statistical analysis is then performed to score the combined results.

In 2007, LabCorp signed a therapeutic/diagnostic alliance with ARCA Discovery to develop a genetic test that can identify patients most likely to benefit from ARCA’s drug bucindolol, and those who are likely to be at greater risk of dying from the drug.

In 2008, LabCorp agreed to develop and distribute a series of companion diagnostic tests for iloperidone, a schizophrenia drug made by Vanda Pharmaceuticals. The tests will be based on a series of genetic markers that Vanda discovered while developing the drug that is now undergoing review by the FDA and will be marketed under the name Fanapta.

In February 2010, LabCorp agreed to co-develop and commercialize molecular diagnostic tests for cancer with CancerGuide Diagnostics as part of a multi-year licensing deal.

- 380 -

Page 383: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LGC

Queens RoadTeddingtonMiddlesex TW11 0LY, UKWeb site: http://www.lgc.co.uk/Tel:+44 (0)20 8943 7000Fax:+44 (0)20 8943 2767E-mail: [email protected] Executive Officer: David Richardson

Overview. LGC is Europe's leading independent provider of analytical and diagnostic services: chemical, biochemical and forensic analysis, DNA testing and genetic screening, research, method validation, consultancy and analytical outsourcing. LGC also distributes reference standards and ATCC biomaterials throughout Europe. LGC's services are designed to help organizations produce high quality data on which to base scientific and commercial decisions, providing a quantifiable basis for strategic decision making.

On 1 April 2010, LGC Genomics was launched as a new division within the LGC Group as part of a wider organizational restructuring and is in line with LGC’s strategy for growth and expansion of operations. As part of the restructuring process, its AGOWA genomics products and services will be rebranded LGC Genomics.

Technologies relevant to molecular diagnostics. DNA analysis is performed in specially designed laboratories comprising separate and dedicated areas for all aspects of the PCR process as well as contained microbiological suites to ensure the delivery of services to the highest quality. LGC's nucleic acid measurement capabilities cover a wide range of specialized areas and high throughput robotic based assay protocols. Specialized analyses include, the study of nucleic acid hybridization, STR typing (to forensic standards if required), DNA sequencing and related applications as well as automated sizing and quantification. GC's proprietary DNA probe technology (HyBeacons) has unique characteristics that makes it suitable for very rapid diagnostic and point-of-care applications.

Products and services. As the UK's largest independent provider of analytical and diagnostic services, LGC offers chemical and biochemical analysis, genetic screening, research, method validation, consultancy and analytical outsourcing. LGC also distributes reference standards throughout Europe. LGC serves diverse markets in the public and private sectors, including food and agriculture, chemicals, healthcare, life sciences and law enforcement. In 2008, LGC produced a prototype microarray quality control material which could lead to the first generic reference standard for use across multiple platforms and applications.

LGC Genomics (Berlin, Germany) has long-standing experience in large-scale sequencing gained in international and national genome projects. Through LGC genomics’ custom DNA sequencing service, it offers state-of-the-art technology (ABI 3730 XL), an overnight DNA sequencing service and an online ordering service. LGC genomics is constantly extending its range of genomic services, nucleic acid preparations and extraction services.

Collaborations relevant to molecular diagnostics. In 2004, LGC signed an exclusive agreement for licensing its DNA probe technology (HyBeacons) with Genmark Diagnostics in medical genetic test applications for inherited genetic traits in all world markets, excluding India. Genmark Diagnostics will

- 381 -

Page 384: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

use the HyBeacon technology with its Genedrive molecular diagnostics instrument and other platforms. Genmark Diagnostics has been working closely with LGC for approximately one year, during which time scientific proof of principle has been established demonstrating the excellent compatibility of HyBeacon tests with the Genedrive. Discussions for LGC to grant similar licences for the detection of infectious human pathogens and diagnosis of human sexually transmitted diseases are also at an advanced stage with Genmark Diagnostics.

- 382 -

Page 385: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LI-COR Biosciences

4647 Superior StreetLincoln, NE 68504, USAWeb site: http://www.licor.com/Tel: (402) 467-0700Fax: (402) 467-0819Contact: Larry Middendorf, VP sales and marketing

Overview. LI-COR Biosciences, a biotechnology company, was founded in 1971. In addition to developing instruments for plant and environmental sciences, LI-COR began research in automated DNA sequencing in the early 1980s. The Company pioneered the development of infrared (IR) fluorescence labeling and detection systems for imaging, DNA sequencing, genotyping, and AFLP for genomic research and discovery. LI-COR systems are used in over 100 countries and are supported by a global network of distributors. LI-COR owns an extensive patent portfolio covering traditional electrophoresis-based methods for DNA sequencing.

Technology/products. The following tools are relevant to molecular diagnostics:

Odyssey Infrared Imaging System. The new instrument uses LI-COR's patented infrared technology, which offers advantages over radioactive and chemiluminescence applications. Odyssey’s infrared technology is the ideal choice for Western blots. Direct fluorescence detection on membranes at infrared wavelengths offers the distinct advantage of very low background, since membranes and most biomolecules do not fluoresce at infrared wavelengths.

Global IR2 System. This combines NEN's expertise in labeling technology and LI-COR's IR2 technology. Each Global IR2 System includes an NEN DNA sequencer or analyzer, Global Controller, e-Seq software, and a wide variety of reagent choices including IRDye 800 terminators.

Applications. Some examples of applications are:

The Global IR2 System has unique advantages for DNA foot printing, not only because of high-resolution imaging, but also because of the long read lengths.

IR2 System is excellent for quantitative PCR assays.

The Odyssey system is a fast and direct means of protein detection that does not require chemiluminescent or chemifluorescent substrates or exposure to film.

IR2 System can analyze both strands in a single gel to confirm the presence of a mutation.

Collaborations. The following are relevant to molecular diagnostics:

LI-COR and NEN Life Science (a subsidiary of Perkin Elmer Corporation) teamed up in 1999 to create a flexible new system for DNA sequencing and genotyping research.

LI-COR has a distribution agreement with MWG-Biotech AG to distribute, support and service LI-COR DNA sequencing instruments.

- 383 -

Page 386: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Life Technologies Corporation

1600 Faraday Ave PO Box 6482Carlsbad CA 92008, USA Web site: http://www.lifetechnologies.com/Tel: (760) 603-7200Fax: (760) 602-6500Chairman and CEO: Gregory T. Lucier

Overview. Life Technologies Corporation (LTC) was formed in 2008, when Invitrogen completed acquisition of Applied Biosystems (ABI) in a cash and stock transaction valued at $6.7 billion. ABI develops and markets instrument-based systems, reagents, software and contract services to the life science industry and research community. LTC had sales of $3.3 billion in 2009, employs approximately 9,000 people, has a presence in 160 countries, and possesses a rapidly growing IP estate of >3,900 patents and exclusive licenses.. It will have a major presence in key growth markets and exceptional technical capabilities in the areas of genetic analysis, proteomics, and cell biology.

Acquisitions. Besides ABI, the LTC family of companies now includes: Research Genetics, NOVEX and Serva Electrophoresis GmbH. In 2003, Invitrogen acquired a portfolio of biochemical research technologies and related assets from Vertex Pharmaceuticals Inc including PanVera unit (part of acquisition of Aurora Biosciences) for $95 million in cash. This broadened Invitrogen's product offerings for determination of protein function, labeling and detection of biological molecules. In 2003, Invitrogen acquired Molecular Probes for $325 million. In 2003, Invitrogen acquired product lines and technology rights from Genicon Sciences Corp, including proprietary tools and methods for ultra-sensitive signal generation and detection, for approximately $2 million. In 2005, Invitrogen acquired privately held molecular separation and purification technology pioneer Dynal Biotech from majority owner Nordic Capital and a co-investor for approximately $375 million. Dynal is the industry leader in magnetic bead technologies that are used in cell separation and purification, cell stimulation, protein research, nucleic acid research and microbiology. The acquisition will provide Invitrogen with bead-based isolation technologies that can be leveraged across the company's broad technology portfolio. In addition, Dynal is a major supplier of specialized magnetic particles to major diagnostic product manufacturers for use in high-throughput automated immunoassay and other instrument systems. The major product enhancements made possible by the use of Dynal's Dynabead® system will further Invitrogen's mission of accelerating disease research and drug discovery, as well as its initiative to provide cutting edge tools to diagnostic companies worldwide. Dynal is a market leader for HLA tissue typing used to ensure compatibility between donors and recipients in organ and bone marrow transplants. In 2005, Invitrogen acquired Quantum Dot Corp and the BioPixels® business unit of BioCrystal Ltd. Invitrogen also announced an agreement with Georgia Tech Research Corp to exclusively license novel "nanocluster" technology. The combination of these acquisitions and licenses will enable Invitrogen to create innovative products that enable life science researchers to better understand cellular processes/molecular interactions to diagnose disease. In 2008, LTC acquired VisiGen Biotechnologies for $20 million. In December 2009, LCT acquired BioTrove Inc. BioTrove’s primary technology is the OpenArray® platform, a high throughput gene expression and genotyping analysis system based on a flexible array format that enables researchers to perform more than 3,000 PCR genotyping or qPCR gene expression assays at

- 384 -

Page 387: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

a time. The increased adoption of next generation sequencing platforms, such as the SOLiD™ System, has generated greater use of qPCR for simultaneous validation of an increased number of gene targets. The OpenArray® platform has the flexibility to allow for samples to be validated against a large target panel, or a larger quantity of samples to be screened against select validated targets. The technology is also used in applied markets, such as pathogen testing, and may enable future digital PCR applications.

In January 2010, Danaher paid $1.1 billion to acquire the Analytical Technologies division of MDS, including the MS joint venture with LTC; MDS will receive $650 million and LTC $450 million for their stakes.On 12 January 2010, LTC acquired AcroMetrix, a provider of molecular and serological diagnostic quality control products to clinical laboratories, blood screening centers and IVD manufacturers. On 17 August 2010, LTC acquired Ion Torrent for $375 million in cash and stock and intends to retain it at present location. On 2 Nov 2010, LTC acquired certain assets from Labindia (New Delhi, India), which has been a distributor of LTC's Applied Biosystems products, including the SOLiD sequencing system and Ambion RNA reagents. LTC can now supply products directly to customers.

Technology/products of Invitrogen. SureScore SNP Genotyping Kit. This is an accurate, easy-to-use kit for SNP scoring based on the SNP-IT technology licensed from Orchid Cellmark.

NOVEX TBE gels for high-resolution analysis of restriction digests and PCR products.

DNA Retardation Gels are based on the hinderance of movement of a DNA molecule through a nondenaturing polyacrylamide gel when a protein molecule is bound to it.

Denaturing polyacrylamide TBE-Urea Gels provide sharp bands and high resolution of ssDNA or RNA oligonucleotides.

NuPAGE gels feature a greatly extended shelf life and enhanced temperature stability. They are recommended for use with Prionics kit (Prionics AG), one of three tests authorized for use in Europe to detect bovine spongiform encephalopathy.

GeniconRLS™, acquired from Genicon Sciences, is a RLS-based ultra-sensitive DNA microarray detection system (see Chapter 3). It uses nanoparticles as labels to provide increased sensitivity over CyDyes™ for analysis of previously undetectable genes.

NCode Array. This miRNA Chip can be used for miRNA expression profiling in molecular diagnostics and drug discovery. Version 3.0, an all-human tool, was released in 2008.

Zymeds SPoT-Light® HER2 CISH™ (chromogenic in situ hybridization technology) Kit is a complete, standardized for vitro test for detection of HER2 gene amplification in formalin-fixed, paraffin-embedded tissues. It is a FDA-approved companion test for breast cancer patients who are considered for treatment with Herceptin® (Roche).

DynaChip Antibody Analysis System, the only automated chip-based system for HLA antibody detection and identification, was cleared by FDA in 2008 and Health Canada's Medical Device Bureau in January 2009. It is the only automated chip-based system for HLA antibody detection and identification, which is an essential step in determining the compatibility of organ donors (Chapter 8).

- 385 -

Page 388: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Prodigy™ system. Launched in June 2009, this is an advanced DNA and protein analysis microarray system that simplifies and accelerates histocompatibility research, vaccine and drug development, and disease association studies. It is designed for research-use to simplify immunogenetic testing, including HLA research.

RiboMinus kit and the E-Gel®SizeSelect . These precast agarose gels simplify the workflows and reduce the experimental time and cost of applications such as discovery and characterization of the entire transcriptome, validation of whole genome association results, targeted resequencing, chromatin immunoprecipitation, rare and somatic mutation detection, and epigenetic studies. The solutions are compatible with next-generation high-throughput genome analysis platforms: SOLiD (Applied Biosystems), Genome Analyzer (Illumina) and Genome Sequencer FLX System (Roche).

Products/applications of Applied Biosystems. GeneAmp PCR System 9700 is used for high-sample-volume PCR applications. The AmpliCycle Sequencing Kit uses a specialized thermostable DNA polymerase, AmpliTaq DNA polymerase, CS (cycle sequencing). A comprehensive HIV drug resistance test - the ViroSeq HIV Genotyping System - has broad spectrum efficacy in typing all major global subtypes of the virus.

In February 2010, Applied Biosystems' ViralSEQ™ Vesivirus Detection Kit was introduced as a highly sensitive molecular test for the detection of Vesivirus 2117, a potential contaminant of mammalian cell culture based biopharmaceutical manufacturing. This is a PCR-based test that utilizes PrepSEQ™ magnetic bead technology to isolate viral RNA from a wide range of sample types, combined with TaqMan® technology for sensitive and specific detection of the viral RNA. It is expected that biopharmaceutical companies will use the kit to detect this potential contamination early in production, safeguarding the manufacturing processes.

On 24 March 2010, Applied Biosystems 7500 Fast Dx Real-Time PCR Instrument was approved in Europe as a platform suitable for IVD use. Clinical laboratories and institutions will now be able to leverage the instrument's regulatory clearance to develop tests for clinical applications. It enables scientists to complete real-time PCR amplification and accurately and precisely quantify nucleic acids in <40 min. Data analysis tools enable scientists to design laboratory tests that simplify detection and quantification of target nucleic acids.

PRISM 3100-Avant Genetic Analyzer provides a capillary-based system for life science researchers requiring low-to-medium throughput for DNA analysis. 3730 DNA Analyzer is a powerful tool for rapid, accurate, and cost-effective DNA analysis for researchers studying human and other genomes. It improves data quality and increases productivity.

Expression Array System is for the analysis of the whole human genome on a single microarray. Based on proprietary chemiluminescent technology, it is designed to detect a greater number of genes, including those expressed at lower levels, with higher sensitivity and specificity than existing technologies. SNPlex Genotyping System is a reagent and software product for ultra HTP genotyping.

TaqMan® OpenArray™ Genotyping System combines TaqMan® Assay and OpenArray™ System technologies to offer HTP, low-cost genotyping with a simple workflow.

TaqMan® miRNA Assays for the detection and quantitation of mature human miRNA expression levels in genomic research.

- 386 -

Page 389: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SOLiD system for sequencing utilizes hybridization-ligation chemistry and is based on the polymerase colony approach. The sample preparation aspect of this technology including library construction and clonal amplification of the target DNA by emPCR on beads is very similar in principle to the 454 approach. Applied Biosystems acquired the technology from Agencourt Personal Genomics in 2006 and has since increased the sample throughput by five times and the base read length by 66%. SOLiD3 is a third generation sequencer. In June 2009, the SOLiD™ Whole Transcriptome Analysis Kit was launched as optimized for use with the SOLiD System. This kit enables the detailed characterization of all expressed RNA in biological samples, allowing scientists to better understand a variety of cell types such as stem cells and cancer.

Genetic analysis applications are in the following areas:

Genetically-modified organisms (GMO) Detection. Automated systems are provided for the analysis of the DNA from processed foods and their ingredients for the detection and quantification of GMO content, even when the gene is not expressed.

Human Identification & Forensic DNA Testing. Using fragment analysis techniques on electrophoretic instruments, DNA analyses can determine human identity to one person in a trillion. This is useful not only in forensics applications but can confirm parentage. On 18 May 2010, Identifiler® Direct and Identifiler® Plus forensic kits were approved by the FBI for use by laboratories generating DNA profiles for inclusion in the National DNA Index System CODIS Database. These join MiniFiler™ kit, which was approved earlier.

Microbial Identification. The MicroSeq microbial identification kits are based on the DNA sequence of the ribosomal RNA genes, which is the new basis for bacterial taxonomic classification, leading to accurate and reproducible identification.

Food-borne pathogen detection. Automated systems for the detection of DNA from foodborne pathogens provide results in <24 h with high levels of sensitivity. TaqMan®Salmonella enterica Detection Kit, a molecular-based tool for monitoring the safety of the food supply, was certified by Emergency Response Validation program of the AOAC in June 2009.

TaqMan® Copy Number Assays enable pharmaceutical and clinical researchers to accurately detect and quantify CNVs from DNA samples through real-time PCR reaction.

Protein Expression Assays. These are a new line of TaqMan® real-time PCR assays that enable researchers to rapidly detect and quantify proteins in human cell samples.

3500 Dx Series Genetic Analyzers. On 23 Aug 2010, these analyzers, the first CE IVD-marked capillary electrophoresis system for nucleic acid analysis, became available for sale in Australia, India, New Zealand, Singapore, and Taiwan for use in the analysis of human DNA or RNA for the detection of genetic changes that may lead to disease presence or susceptibility. The 3500 Series enables researchers to run up to 1,100 sequencing or 1,200 genotyping samples per day. It features a novel consumables design that incorporates the ability to track key information with radio frequency identification tags, new optical and thermal sub-systems, and redesigned data collection and analysis software, creating a more cost-effective method for high-quality data analyses.

- 387 -

Page 390: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations of Invitrogen relevant to molecular diagnostics. Invitrogen provides a reagent kit to facilitate the use of Genzyme Oncology's SAGE technology. Invitrogen's I-SAGE Kit can be used in a wide variety of applications such as gene discovery, identifying disease-related genes, analyzing the effects of drugs on tissues, and providing insight into disease pathways. Its reagents are optimized for use with Affymetrix GeneChip, offering a complete, standardized sample preparation system. Collaborations in 2004 include:

Invitrogen started to provide validated HTP screening assays for drug discovery in single live cells that Exelixis Inc uses for lead discovery and optimization.

With Tecan to develop applications that combine the use of Invitrogen's products with Tecan's Freedom EVO® series of automated platforms, multimode detection devices and microarray systems for a range of life science applications, including nucleic acid sample preparation, microarray applications and cell-based assays.

In 2006. Invitrogen’s licensing deal with Affymetrix will impact its epigenetics business, which is built upon its NCode multispecies miRNA microarray platform. Prodesse Inc, a leader in Multiplex PCR, signed a license agreement for the first diagnostic assays using Invitrogen's LUX technology. Invitrogen licenced Oxford Gene Technology’s “Southern array patents”, covering the manufacture and marketing of oligonucleotide microarrays.

In 2008. Invitrogen extended its license and supply agreement for Luminex's multiplexed analyte detection technology. A licensing agreement with Genisphere Inc, combines Invitrogen’s Alexa Fluor® fluorescent dyes with Genisphere's 3DNA dendrimer signal amplification technology for NCode, fluorescent miRNA microarray labeling kits marketed by Invitrogen. It started to explore the use of field programmable gate array technology for analyzing next-generation sequencing data using Active Motif’s TimeLogic's biocomputing systems, which couple an FPGA accelerator with optimized genomics algorithms to rapidly compare novel sequences to databases of well-characterized genes. Invitrogen licensed its patents covering the random prime amplification of nucleic acids to QIAGEN, New England Biolabs, and Kirkegaard & Perry Laboratories for use in techniques such as random prime labeling reactions, first-strand cDNA synthesis, and whole genome amplification. Invitrogen signed a US distribution agreement with Biocare Medical LLC for its SPoT-Light® HER2 CISH Kit.

Collaborations of Applied Biosystems relevant to molecular diagnostics. ABI has granted a worldwide, royalty-bearing license to Eppendorf AG under a real-time thermal cycler patent rights agreement. API licensed several Affymetrix patents related to the manufacture, sale, and use of microarrays to expand its Expression Array system.

In 2006. ABI collaborated with SAIC-Frederick Core Genotyping Facility on biomarker studies for cancer research. The entire TaqMan® Drug Metabolism Genotyping Assay collection was used to examine genetic variations in the HapMap and SNP500Cancer samples in order to validate additional cancer biomarkers. Select assays with significant correlation from data analysis were used to genotype individuals who participated in a pharmacogenetic study at the NCI evaluating treatment for non-Hodgkin lymphoma. ABI granted Thermo Fisher Scientific licenses to allow its subsidiary, Abgene, to offer several PCR and real-time PCR products as well as the right to develop new real-time PCR products and technologies. Geospiza expanded collaboration with ABI for participation in Software

- 388 -

Page 391: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Community Program. The first product will integrate ABI’s GeneMapper® and SeqScape® genetic analysis tools with Geospiza's Finch® Suite data management system, and is expected to dramatically improve customers' ability to scale and automate their information technology infrastructure to meet growing challenges in data analysis.

In 2009. LTC and Nanosys Inc signed cross-licensing agreement to share rights to an IP estate related to quantum dots. New products developed as a result of this agreement will help prevent counterfeiting worldwide as they will allow manufacturers to trace the source of their materials and manage and track product shipments, helping stop counterfeit material use in pharmaceutical and diagnostic products. LTC agreed to sell assays for detecting KRAS and BRAF mutations in cancer, developed by TrimGen, to the research market. The assays, expected to be launched in 2010, will run on Applied Biosystems capillary electrophoresis sequencing systems, including its new 3500 Series Genetic Analyzer.

- 389 -

Page 392: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LightUp Technologies

Lunastigen 5S-141 44 Huddinge, SwedenWeb site: http://www.lightup.seTel: +46 8 556 40 660Fax: +46 8 779 87 26Email: [email protected] and Head of Commercial Operations: Håkan Randahl

Overview. LightUp Technologies, incorporated in 1998, is a privately held biotechnology company dedicated to the field of in vitro diagnostics. LightUp Technologies' activities are focused on developing and commercializing cutting edge molecular based diagnostic technologies, utilizing the company's proprietary probe construct for analysis of nucleic acids. The company's accomplishments include the development of a platform technology for diagnosis of infectious diseases that allows for rapid and sensitive testing of patients.

Technologies. LightUp Technologies has the fastest, most efficient way of obtaining accurate results in DNA targeting through a real-time PCR process with truly homogeneous testing. The unique LightUp Probe is a nucleic acid analogue tethered to a single reporter dye that becomes fluorescent – lights up – when binding to the chosen target DNA. LightUp Probes can be designed to bind specifically to any desired target nucleic acid. The potential clinical benefits of the LightUp Probe kits include:

Cost-efficient testing methods

Faster results while the patient waits

More accurate results

Potentially improved outcomes

Products. LightUp Probes are offered as kits. LightUp Technologies is working with a number of partners to develop diagnostic kits for clinical and laboratory use. The first product released in 2002 was a kit for determination of cytomegalovirus (CMV) viral load in clinical specimens.

LightUp Probe products containing the fluorescence-based technology of Molecular Probes Inc. The initial product is an assay for the detection and quantification of cytomegalovirus, to be marketed under the brand name ReSSQ CMV.

Collaborations. In 2000, Boston Probes Inc (now part of Life Technologies) granted a non-exclusive license to its PNA Technology to LightUp Technologies AB within the field of infectious disease diagnostics. The terms of the License Agreement require that LightUp pay Boston Probes an up-front fee, a milestone payment, and earned royalties from product sales.

In 2001, LightUp Technologies and Boule Diagnostics International AB signed a co-operation agreement covering both production and quality assurance system. The agreement means that Boule will now conduct the initial production (the so-called 0-series production) of LightUp Technologies’ first diagnostic kit for quantitative identification of the cytomegalovirus (CMV), a member of the herpes virus group, which can cause serious inflammation and affect the nervous system.

- 390 -

Page 393: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2003, LightUp launched DNA analysis products, including diagnostic assays, using unique fluorescence-based technology newly licensed from Molecular Probes.

In 2004, LightUp and DakoCytomation introduced ReSSQ™ EBV Assay, a nucleic acid test for detection and quantification of Epstein-Barr virus (EBV). The assay provides a rapid and accurate means of monitoring viral load of EBV in clinical specimens. Currently, it is validated for use in conjunction with the LightCycler® and ABI PRISM® 7000 SDS real-time PCR instrument platforms.

Lucigen Corporation

2120 West Greenview Drive, Suite 9Middleton, WI 53562, USAWeb site: http://lucigen.com/Tel: (608) 831 9011Fax: (608) 831 9012Email: [email protected] Executive Officer: David Mead PhD

Overview. Lucigen Corporation, founded in 1998, develops life science research products and technologies for gene cloning, protein expression, and nucleic acid sequencing and amplification. By focusing on improved methods for gene cloning, Lucigen products have dramatically improved DNA cloning reliability and efficiency, which has allowed researchers to successfully capture many genes that were impossible to clone using other methods. Lucigen has also used its own proprietary technology to be the first company to isolate viral DNA polymerases from boiling hot springs environments. These novel enzymes have been shown to be superior products for PCR, RT-PCR (reverse transcription-PCR) and rapid, isothermal amplification of RNA and DNA. In addition, its in-house expertise in the production of random-shear, BAC and fosmid libraries has been made available as a fast and reliable service, which can accelerate next-gen DNA sequencing and screening projects.

Technologies. Lucigen’s technology development is focused on nucleic acid research in three separate, but related areas:

DNA cloning, sequencing and protein expression. Lucigen has significant expertise in the development of DNA vectors that are designed to clone the unclonable and express difficult to obtain proteins. Examples are patented CloneSmart® and pJAZZ® technologies. pJAZZ is a unique linear vector that is able to readily clone highly repetitive and AT rich DNAs, which are normally difficult or impossible to clone. Expresso™ Cloning and Expression System is a ligation-free, PCR-based protein expression system that simplifies and accelerates the expression and purification of even insoluble proteins, which makes this system appropriate for HTP screening. Lucigen is developing new and improved BAC vectors useful for next-gen paired-end sequencing of complex genomes. These vectors will enable the rapid assembly of the enormous amount of sequencing data that is being generated, significantly reducing the cost of sequencing a complete genome.

DNA polymerase discovery and nucleic acid amplification. Lucigen has isolated an array of thermostable DNA polymerases having unique properties. For example, the commercially available PyroPhage® 3173 DNA polymerase has the highest fidelity available and has also been shown to have reverse transcriptase activity.

- 391 -

Page 394: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

DNA/RNA molecular test development. Lucigen scientists are continuing to add modifications to its collection of novel enzymes to optimize them for specific applications, such as isothermal amplification and PCR amplification directly from blood. Recently, the company has focused more attention on developing simple molecular tests appropriate for POC or home testing.

- 392 -

Page 395: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LumiCyte Inc

48480 LakeView Blvd.Fremont, CA 94538, USA Web site: http://www1.qiagen.com/Tel: (510) -226-3990Fax: (510) -226-4901

Overview. LumiCyte, established in 1999, is a leading provider of service products to aggregate, analyze and disseminate protein information, enabling new ways of unlocking the essence of human life. LumiCyte's BioChip products deliver information based on acquisition, integration of genomics, proteomics, and clinical diagnostics. Comprehensive molecular protein information is generated from human plasma, saliva or urine and can be used from the early detection of disease onset to the monitoring of response to drug therapy. This individualized protein profile information should dramatically improve the effectiveness of drug development efforts and the routine delivery of health care. In 2000, LumiCyte opened a new facility to provide protein mapping and discovery services using its patented BioChip technology and new bioinformatics platform. In 2005, QIAGEN acquired key assets of LumiCyte.

Technology/products/ applications relevant to molecular diagnostics. LumiCyte has integrated three powerful, proprietary, platform technologies. The molecular mapping BioChip technology known as SELDI (Surface-Enhanced Laser Desorption/Ionization) has been combined with new AI-based data analysis capabilities and a powerful bioinformatics interrogation platform. SELDI is a patented surface-based molecular capture and imaging process that uses pulses of laser energy to read molecular profiles and information patterns developed on the surface of small chips and other molecular probes. Unlike other molecular mapping technologies, and protein biomarker detection assays designed to reveal disease, the SELDI BioChip molecular profiling platform enables both discovery and routine assays to be performed on the same BioChip in the same unit operation.

LumiCyte uses its Seldiography technology based on SELDI to collect and analyze protein information from unprecedented numbers of individuals. LumiCyte plans to create the world's largest human proteomics database for integration with other databases, including the human genome sequence and gene expression data. Bioinformatics browsers, advanced pattern analysis methods and other powerful data mining techniques are being used to develop a patent portfolio of protein molecular fingerprints uniquely associated with disease onset, type of disease, and response to therapy.

LumiCyte generates high-information content protein maps with unprecedented speed, sensitivity and accuracy. Analysis of these maps with LumiCyte's proprietary suite of neural network and pattern recognition software enables: (1) early detection of disease onset; (2) more effective classification of disease; (3) more accurate monitoring of disease progression; and (4) early indication of patient-specific response to therapy.

LumiCyte, using its SELDI biochip technology in collaboration with scientists at the National Cancer Institute USA and the FDA, have discovered a unique pattern of proteins in the serum of asymptomatic prostate cancer patients. Further investigation is required to validate the utility of these potential biomarkers.

- 393 -

Page 396: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Luminex Corporation

12212 Technology BlvdAustin, TX 78727, USAWeb site: http://www.luminexcorp.com/Tel: (512) 219-8020 Fax: (512) 258-4173 E-mail: [email protected] Executive Officer and President : Patrick J. Balthrop Sr. MBA

Overview. Luminex Corporation develops, manufactures and markets proprietary biological testing technologies with applications throughout the life sciences industry. The company's LabMAP (Laboratory Multiple Analyte Profile) system is an open-architecture, multi-analyte technology platform that delivers fast, accurate and cost-effective bioassay results to markets as diverse as pharmaceutical drug discovery, clinical diagnostics and biomedical research, including the genomics and proteomics research markets. The company's LabMAP technology is sold worldwide and is already in use in leading research laboratories as well as major pharmaceutical, diagnostic and biotechnology companies. Luminex has completed the sale of its Rules-Based Medicine (RBM) research and development project to a newly formed company headed by Dr. M. B. Chandler former CEO of Luminex. RBM will use Luminex xMAP technology to analyze proteins, metabolites and other substances in the blood of normal and diseased individuals. In 2007, Luminex acquired Tm Bioscience (renamed as Luminex Molecular Diagnostics, see separate profile) to use Tm’s menu of kits and reagents with its own business connections for enhancing their sales. In March 2010, Luminex acquired robotics and automation firm BSD Robotics.

Technology/products. LabMAP combines microsphere-based assays with small lasers, advanced digital signal processors and proprietary software to offer greater speed, precision and flexibility over current bioassay technologies (see Chapter 3). Luminex100, based on this technology, is a sensitive, benchtop flow analyzer capable of performing 100 bioassays simultaneously. Its simple operation allows for targeted tests to be conducted quickly and efficiently. The versatility of the technology allows protein, RNA or DNA testing to be performed on the same system, while its throughput capabilities are applicable to any size laboratory. In 2007, Luminex introduced two new key products xPONENT, a new, more intuitive software interface, which simplifies the user experience, and MagPlex microspheres, which add a magnetic component to the company's core xMAP microsphere technology, enabling use on automation equipment. xPONENT and MagPlex will enhance both ease-of-use and automation capabilities expanding xMAP functionality in the company's core market segments.

Luminex’s approved xTAG RVP detects 12 major respiratory viruses and subtypes from one sample, including adenovirus, three strains of influenza A, rhinovirus, and others.

Collaborations. In 2002, Luminex and Rules-Based Medicine (RBM) entered into a Development and Supply Agreement pursuant to which RBM licensed Luminex's proprietary xMAP technology. Luminex will receive royalties from the commercialization of RBM's products based on Luminex's xMAP technology, as well as revenue from the sale of instruments. In 2003, Luminex granted Abbott license, supply and distribution rights to Luminex®'s proprietary biological testing technologies including bead-based xMAP technology, for the development of assays and proprietary instruments. In 2006, Luminex received a sub-contract from Smiths

- 394 -

Page 397: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Detection to develop a very low-cost early warning "trigger" sensor to detect the presence of weaponized biological pathogens in the ambient air. The award comes from the Homeland Security.

In 2007, Luminex licensed from The Johns Hopkins University genetic markers that it plans to use with its Tag-It cystic fibrosis test kits. In 2008, Luminex signed up ViraCor Laboratories offer the xTAG RVP test to detect respiratoryy viruses. On 26 March 2010, Luminex signed an with Advanced Liquid Logic to co-develop new analytic systems combining its xMAP technology digital microfluidics.

- 395 -

Page 398: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Luminex Molecular Diagnostics

439 University Avenue, Suite 900Toronto, Ontario, Canada M5G 1Y8Web site: http://www.luminexcorp.com/Tel: (416) 593-4323Fax: (416) 593-1066Contact: Jeremy Bridge-Cook PhD, VP of Luminex Molecular Diagnostics

Overview. Luminex Molecular Diagnostics (formerly Tm Bioscience) is a DNA-based diagnostics company developing a suite of genetic tests. Its product pipeline includes tests for genetic mutations related to hematology, toxicology, cystic fibrosis and other debilitating genetic disorders. In 2007, Luminex acquired Tm Bioscience to use Tm’s menu of kits and reagents with its own business connections for enhancing their sales and renamed the company.

Technologies. Tm100 Universal Array, in combination with the Luminex LabMAP™ system, is capable of combining any set of 100 single DNA tests and performing them simultaneously in a single reaction. Tm’s HybAssist™ platform encompasses 3 novel and proprietary technologies, which directly address hybridization issues, related to all types of DNA assay systems. It has been incorporated into Universal Array platform providing a highly accurate and flexible microarray platform for both diagnostic and pharmaceutical partners and customers. SignalAssist technology (SAT) encompasses a mechanism that enhances the signal emanating from a hybridization reaction. SAT is designed to significantly improve the sensitivity of detection for all types of DNA detection systems, including applications of DNA microarrays.

Products relevant to personalized medicine. Tm Universal Tag product consists of 1000 isothermal DNA tags, which can be ported to any array platform, either 2D biochips or coded microspheres. Complementary sequences are incorporated into the front-end assay, which is multiplexed to allow a large number of analyses to be carried out in a single tube format. Luminex is planning to launch new multiplex instruments.

Luminex is seeking FDA approval for warfarin pharmacogenomic test. Tm Tag-It, Mutation Detection Kit for Coagulation, has been validated in patient samples with 100% accuracy when compared to results obtained using slower, more expensive DNA sequencing methods. Tm licensed CF gene mutation patents from the Hospital for Sick Children (Toronto, ON) and the University of Michigan (Ann Arbor, MI) for use in its approved Tag-It Mutation Detection Kit for CF, which detects 40 mutations. Another Tag-It genotyping kit targets polymorphisms of P450 drug metabolizing genes.

Collaborations. In 2006, Tm licensed Epidauros patents on a specific biomarker related to the P450-CYP2D6 gene. In 2006, Tm licensed from Sirius Genomics certain patents for biomarkers linked to drugs used to treat severe sepsis and to incorporate these markers into a diagnostic assay for use by critical care physicians.

- 396 -

Page 399: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Lumora Ltd

Denmark HouseCambridgeshire Business ParkAngel Drove, Ely, Cambridgeshire CB7 4ET, UKWeb site: http://www.lumora.co.uk/Tel: +44(0)1353 646285Fax: +44(0)1353 646282Email: [email protected]: Laurence Tisi

Overview. Lumora Ltd was founded in 2002 as a spin-out from the Institute of Biotechnology at the University of Cambridge. Its BART technology enables rapid quantitative molecular diagnostics using remarkably simple, robust and low-cost hardware. Following two funding rounds, Lumora is seeking partners to bring its core technology to market across multiple sectors. Lumora is poised to introduce the benefits of molecular diagnostics to niches where the cost and complexity of available products prevents their practical application. Lumora is actively seeking partners to bring its molecular diagnostic products to market for food testing, medical, environmental and defense applications.

Technology. Lumora's BART technology offers a means to couple the sensitive detection of specific analytes, e.g. nucleic acids, proteins or small molecules, to a quantitative, real-time luminescent output. The use of luminescence instead of e.g. fluorescence, permits far simpler hardware platforms to be employed reducing both hardware and reagent costs. The simplicity of this technology not only permits the development of a truly universal platform upon which one is able to detect a wide range of disparate molecules, but in a range of capacities from single-sample portable detectors to ultra high-throughput laboratory-based instruments.

A major application of molecular diagnostics is the specific detection, identification and monitoring of pathogens, whether viral or bacterial in nature. Pathogens are not the only cause of disease however and molecular diagnostics are being increasingly applied to disease prediction, treatment and management via the analysis of genetic markers. For example, genetic markers in an individual can predict whether they will have an adverse reaction to a particular pharmaceutical.

- 397 -

Page 400: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Matritech Inc

330 Nevada St.Newton, MA 02160, USA Web site: http://www.matritech.com/Tel: (617) 928-0820Fax: (617) 928-082E-mail: [email protected] & CEO: Stephen D. Chubb

Overview. Matritech, founded in 1987, uses proprietary nuclear matrix protein (NMP2) technology to develop innovative cancer diagnostic products. In August 2007, Inverness Medical Innovations Inc acquired assets of Matritech for $36 million to incorporate them into its portfolio in course of time.

Technology. Matritech's NMP (nuclear matrix protein) core technology correlates levels of NMPs in body fluids to the presence of cancer. Multiple published clinical studies have validated this ability of NMPs to detect early stage cancerous abnormalities. NMP22 is elevated in bladder cancer cells by 10 to 100 fold and is released into the urine of bladder cancer patients. Matritech has a pipeline of NMP-based products in development for the detection of major cancers including cervical, breast, colon and prostate cancers.

Detection of breast cancer markers in blood has been accomplished using a novel approach for cancer marker detection, mass spectrometry (MS), a technique which the Company believes is immediately applicable to other cancer tests it is developing. S techniques for measuring the elevation of specific proteins in blood is expected to improve the accuracy of the tests in development by Matritech as well as expedite the introduction of second generation, blood-based cancer diagnostic tests to clinical laboratories worldwide. In addition to the MS format, Matritech is pursuing antibody-based immunoassays compatible with existing clinical laboratory instrumentation.

Products/applications in molecular diagnostics. The NMP22 Test Kit for bladder cancer is marketed in the US, China, Europe and Japan for management and screening of individuals at risk of bladder cancer. NMP22 BladderChek, as a POC test for bladder cancer is as accurate as the test performed in the laboratory. Detection of the prostate cancer markers in blood has also been accomplished using a novel MS technique, which forms the basis for further clinical and laboratory development.

Matritech has reported proof of clinical concept results for NMP66 in the detection of breast cancer. Using Matritech's proprietary specimen preparation and MS procedures, NMP66 was found in all samples from women with invasive breast cancer, and was absent in all "normal" specimens. Further clinical studies are in progress.

Collaborations. Matritech has a product supply and marketing agreement with Diagnostic Products Corp (DPC, Los Angeles, CA), which produces an automated version of NMP22 test for bladder cancer performed on DPC's Immulite fully automated analyzer.

In 2002, Matritech formed a partnership with Bruker Daltonics to develop an automated MS system that will allow clinical laboratories to efficiently perform its proteomics-based cancer tests, including blood tests for breast and prostate cancer.

- 398 -

Page 401: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2002, Matritech and Cytogen Corporation initiated the launch of NMP22 BladderChek to physicians throughout the US by a marketing agreement.

In 2003, Matritech signed an agreement for its NMP66 breast cancer test with Mitsubishi Kagaku Medical Inc to provide the test for the Japanese market.

- 399 -

Page 402: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Maxwell Sensors Inc

10020 Pioneer Blvd, Suite 103Santa Fe Springs, CA 90670, USAWeb site: http://www.maxwellsensors.com/Tel: (562) 801-2088Fax: (562) 801-2089E-mail: [email protected]

Overview. Maxwell Sensors Inc (MSI) is a molecular diagnostics and testing company focused on developing, manufacturing, and marketing next-generation biochips and biosensor platforms for a wide range of immunological and genomic applications. MSI's technologies combine the power of microfluidics, micro- to nano-particles, and molecular signatures to provide the highest sensitivity and precision for near real-time disease prognostics and diagnostics. MSI focus on developing the next generation technologies and products by an interdisciplinary team of scientists in the fields of molecular biology, immunoassay, physics, optics, chemistry, electrical and mechanical engineering. Moreover, MSI has formed an extensive collaborative network with universities, government laboratories, and industrial partners. These have enabled the company to extract optimum efficiency and resources, and help its customers maximize the benefit of our powerful tools. In addition to sensor development, MSI pursues R & D of custom systems for government and commercial contracts. MSI's spin-out, Applied BioCode Inc, is developing Barcoded Magnetic Bead technology for medical diagnostic and life sciences markets (see separate profile).

Technology. MSI developed a wavelength coded quantum bead (WCQB) technology for multiple analyte assays. The technology is based on optically barcoded microspheres, formed by latex beads impregnated with quantum dot particles. The novelty of the technology, is that wavelength coded beads can identify the reaction taking place on their microsphere surfaces. Each WCQB can perform one test, thus each WCQB acts as a single analyte analyzer. By adding a very small volume of sample into a mixture of WCQBs, several hundred analytes can be tested for simultaneously, easily, rapidly, and inexpensively. The spectral signatures were resolved and de-coded; also the concepts of wavelength and intensity multiplexing were demonstrated. WCQB technology is used in all-in-one disease diagnostics, fluorescence cell analysis, single cell analysis, signature recognition and security identification.

Point-of-care testing. MSI constructed a non-invasive, pharyngeal pathogen sensor (PPS) system, based on a one-step fluorescence immunoassay strip array, for respiratory pathogen detection and identification. The test, based on throat swab or nasal swab samples, is easy to perform, and is highly sensitive due to the use of fluorescence detection. Unlike conventional membrane-based color immunoassays, the PPS's low detection limit, by two orders of magnitude, will significantly improve POC precision and sensitivity. The example of assays include adenovirus, influenza A, streptococcus pyogenes, etc.

- 400 -

Page 403: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Meridian Bioscience Inc

3471 River Hills DriveCincinnati OH 45244, USAWeb site: http://www.meridianbioscience.com/Tel: (513) 271-3700Chief Executive Officer: John KraeutlerContact: Rick Eberly, President, Meridian Life Science

Overview. Meridian Bioscience Inc, a fully integrated life science company, manufactures, markets and distributes a broad range of innovative diagnostic test kits, purified reagents and related products. These products provide speed, simplicity and accuracy to aid in the early diagnosis and treatment of gastrointestinal, viral, urinary and respiratory infections. Meridian diagnostic products are used in vitro and require little or no special equipment. Meridian Life Science is its wholly owned subsidiary.

In July 2010, Meridian completed the acquisition of Bioline group of companies consisting of Bioline Ltd (UK), Bioline GmbH (Germany), Bioline (Aust) Pty Ltd (Australia), Bioline Reagents Ltd, and Bioline USA, Inc for $23.3 million in cash. Bioline is a leading manufacturer and distributor of molecular biology reagents with operations in Germany, Australia, and the US. The Bioline management team will remain in place and will continue to operate the Bioline group of companies.

Products. Products for rapid tests and faster diagnosis:

ImmunoCard STAT® EHEC

ImmunoCard® Toxins A&B

Premier™ Toxins A&B

ImmunoCard STAT® RSV PLUS

ImmunoCard STAT® HPSA®

In 2007, meridian received FDA clearance for two new rapid tests for the diagnosis of common upper respiratory diseases, influenza and respiratory syncytial virus (RSV). The tests are based upon a technology that features improved safety and saves space. TRU FLU® detects both influenza A and influenza B while TRU RSV® detects RSV. These companion tests are ideal for the.

Meridian's FDA-approved C. difficile molecular diagnostic test detects and amplifies a pathogenic DNA region of all toxin-producing strains of the organism using a stool sample and can provide results in <1 h. This is its first molecular diagnostic product based on illumipro-10 platform using Loop-Mediated Isothermal Amplification (LAMP), which requires no costly capital equipment and can be run in any size laboratory. LAMP technology uses special primers and a polymerase to produce DNA at higher amounts than can be achieved with PCR-based amplification. Pyrophosphates are released, resulting in visible turbidity due to precipitation, which can be seen with the naked eye, and the reactions can be followed by measuring either the turbidity or the DNA signals with fluorescent dyes. Sequences of interest are amplified during the process, allowing for detection. On 2 March 2011, the FDA cleared illumigene C. difficile test for pediatric use.

- 401 -

Page 404: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. Meridian licensed the LAMP technology from Japanese firm Eiken Chemical in 2006.

- 402 -

Page 405: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Microfluidic Systems Inc

47790 Westinghouse DrFremont, CA 94539, USAWeb site: http://www.mfsi.biz Tel: (510) 354-0400Fax: (510) 354-0404E-mail: [email protected] President and CEO: Dr. M. Allen Northrup ([email protected])

Overview. MicroFluidic Systems Inc (MFSI) was founded in 2001 and is focused on the development of automated microfluidic systems for biological assays. MFSI has been involved with the development of automated DNA-based pathogen detection systems and microfluidics for the US Government and commercial markets for over 10 years, including the world's first miniaturized, portable, battery-operated, real-time, PCR-based pathogen detection system.

Technologies/products. MFSI is building complete, integrated instrumentation consisting of biocompatible three-dimensional microfluidic circuitry. Most importantly, the core technology is adaptable to many diverse analytical operations. Devices based on this technology are designed to be reusable, thereby minimizing costly disposables and allowing autonomous, unattended operation. The technology can be incorporated into high-throughput, parallel laboratory systems or battery-powered, field-portable equipment.

In 2002, MFSI received a contract from the US Army's Soldier Biological and Chemical Command (SBCCOM) in Edgewood, Maryland to develop a microfluidic-based pathogen detection system. This system will be able to autonomously and quantifiably identify multiple specific pathogenic organisms. This system utilizes DNA-based identification technology being developed at SBCCOM along with MFSI's integration technologies and microfluidic devices, modules, and platforms. The combined program at MFSI is expected to result in an autonomous and portable system that could be used to identify air-borne pathogens such as in postal service mail sorting systems, buildings (such as hospitals), and outdoor environments.

In 2002, MFSI secured an exclusive license to US patent no. 6,100,084, entitled Micro-sonicator for Spore Lysis, from Lawrence Livermore National Laboratory. The licensed patent describes a device that couples ultrasonic energy to a fluid-filled chamber for the lysis of cells or spores to release the internal cellular components for analysis such as DNA, for specific genomic-based identification of the organism. Spores, which are formed by certain bacteria including anthrax, are particularly hard to lyse. The patented device has been shown to lyse such spore-forming pathogenic bacteria in 30 s or less providing rapid, highly specific and sensitive DNA-based identification of the organism. Other spore lysis methods can require over 45 min and special chemical treatments to obtain similar results. The use of the DNA for analysis is recognized as the best, most specific method for pathogen identification and the licensed device provides for key biodefense and other pathogen identification methods to be performed very efficiently.

Collaborations. In 2002, MFSI entered into a contract with Roche Molecular Systems Inc (RMS) to develop some microfluidics-based automated technologies for possible use in RMS's PCR-based clinical diagnostics systems.

- 403 -

Page 406: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2008, MFSI signed agreements with two scientific technology leaders, Life Technologies and Hamilton Sundstrand, for the continued development and production of MFSI's Bioagent Autonomous Networked Detector. These new systems in development are intended to improve the detection of airborne pathogens that could contaminate the air in a city or large region.

- 404 -

Page 407: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Micronics Inc

8463 154th Avenue NE, Building GRedmond, WA 98052, USATel: (425) 895-9197 Fax: (425) 895-1183 President/CEO: Karen Hedine

Overview. Micronics Inc, a privately held company founded in 1996, is a leading developer of POC IVD products for diagnosis, prognosis and monitoring of treatment. The Company employs a core patent estate in microfluidics and to process all assay steps within closed system disposable devices. Micronics provides comprehensive development services on behalf of clients worldwide that bring complementary technologies and business strategies for integration with its microfluidics and related expertise. Client projects include applications in life sciences, blood screening, immunoassays, and several molecular diagnostic methods (end-point and real-PCR, isothermal). The common theme for these projects is the reduction of time, materials and labor required to achieve an accurate answer in an easy-to-use test format.

On 18 October 2010, the US Department of Defense awarded Micronics an Applied Research and Technology Development Award for 3 years under the Army Medical Research and Materiel Command’s Polytrauma and Blast Injury project for advancement of PanNAT system for POC molecular diagnosis of infectious pathogens. It will support the development of assays on the compact, WiFi-enabled, mains and / or battery-powered PanNAT instrument for the direct detection of HBV, HCV, and HIV in fresh blood samples. The assay is intended for use in the battlefield to screen out any infectious blood donated for transfusion.

Technology. Micronics develops fluid miniaturization solutions that integrate and automate laboratory processes on single use, disposable, versatile and cost-effective cartridges. Integral to these solutions are Micronics’ core capabilities in microfluidics, surface chemistries, materials science and assay integration.

Patents. Currently Micronics holds 73 issued patents and has over 40 pending applications for its microfluidics technologies, including those exclusively licensed from the University of Washington and additional IP that it has developed independently. Micronics has licensed certain rights to the Molecular Beacons technology from PHRI Properties and to the BHQ®-Dyes, CAL Fluor® Dyes, and Quasar® Dyes from Biosearch Technologies Inc

Products. The Company’s first product in clinical testing is ABORhCard® – an immunohematology test. It has been granted the 510(k) clearance for marketing. Micronics also is in advanced stage of developing PanNAT™ system – molecular diagnostic products that integrate nucleic acid amplification tests for rapid POC. This will provide enable infectious disease molecular diagnostic tests in a decentralized environment and in a fraction of the time of required for currently available NATs.

- 405 -

Page 408: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Microsynth AG

Schützenstrasse 15P.O. BoxCH-9436 Balgach, SwitzerlandWeb site: http://www.microsynth.ch/Tel: +41 71 722 8333Fax: +41 71 722 8758CEO: Dr. Tobias Schmidheini

Overview. Microsynth AG was founded in 1989 as the first private DNA synthesis laboratory in Switzerland. Now it is a rapidly expanding routine molecular biology laboratory. The company is divided into five expert divisions with approximately 35 employees: (1) DNA Synthesis Division; (2) RNA Synthesis Division; (3) DNA Sequencing Division; (4) GMO Analysis Division; and (5) Genotyping Division.

Microsynth is one of a few laboratories accredited by the Swiss government to perform tests for bovine viral diarrhea (BVD). In 2005, Microsynth officially completed the certification process for all departments according to ISO 9001:2000. Moreover, Microsynth achieved the accreditation of the analysis divisions according to ISO 17025. The laboratory has signed exclusive contracts with several Swiss cantons accounting for about one-third of the Swiss cattle population to perform both initial tests based upon tissue samples and follow-up tests to verify positive results using blood samples. The main phase of the program will last three months and is scheduled to start in October 2008. Unlike in other countries, the Swiss program is designed to test every single animal, thus putting highest demands on test methodology and logistics.

Technology/services. Microsynth’s main interests are the production of oligonucleotides (for medical, pharmaceutical and research applications) and bioanalytical services such as DNA-sequencing, GMO analysis and genotyping. It also offers special services to supplement research projects on an individual base.

Microsynth is pioneering the implementation of molecular testing for primary screening of BVDV, which provides several unique benefits compared to traditional testing methods aiming at viral antibodies or antigens. QIAGEN's cador BVDV assay is based on the PCR technology and can detect even tiny traces of viral RNA from a wide range of biological samples. Unlike traditional methods, PCR enables the direct detection of the pathogen itself independent of the immune status of an animal, which is also important for the screening of newborn calves. The assay enables the testing of pooled samples and is suited for high-throughput settings. It has already proven successful by Microsynth in screening 50,000 samples from young animals before their first summer pasture. During the main phase of the eradication program, Microsynth expects to process as many as 350,000 biological samples in just three months.

Collaborations. On 23 April 2008, QIAGEN was awarded a contract by Microsynth to supply the molecular cador assays for detection of viruses causing BVD, one of the most widespread and costly infectious cattle diseases. The multi-year agreement is part of the Swiss national BVD eradication program in which over one million cows are to be screened to identify and contain infectious animals. QIAGEN and Mircosynth are pioneering the use of nucleic acid based tests for primary screening in a BVD eradication program. Currently, over 50% per cent of the Swiss cattle population are believed to be exposed to the BVD virus, causing significant

- 406 -

Page 409: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

economic cost to the livestock industry as the infection can lead to a dramatic loss in weight. The agreement also covers continuing screening of newborn calves through October 2009.

- 407 -

Page 410: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Millennium Predictive Medicine Inc

40 Landsdowne StreetCambridge, MA 02139, USAWeb site: http://www.mlnm.com/Tel: (617) 679-7000Fax: (617) 374-7788E-mail: [email protected]: Deborah Dunsire, MD

Overview. Millennium Predictive Medicine Inc (MPMx), a wholly owned subsidiary of Millennium, harnessing twin disciplines: Diagnomics and pharmacogenomics. Through these two sciences, the Company hopes to shift medical care from merely addressing symptoms to tackling the root causes of disease. The initial focus at MPMx is in oncology

Technologies/products relevant to molecular diagnostics. Diagnomics are molecular diagnostics that can describe a patient's current medical condition and provide prognostic and therapeutic information MPMx believes that in the future, by using Diagnomic and pharmacogenomic tests, physicians will identify not just the disease, but its genetic basis, and therefore be able to select the most effective drug for the patient, pharmacogenomics.

Melastatin, a Diagnomic product, is a clinical marker used to diagnose the metastatic threat of melanomas. Melastatin, a protein expressed in human melanocytes, is considered one of the two best prognostic markers, along with tumor thickness, for melanoma. Because loss of melastatin is an indicator of tumor aggressiveness, detection of melastatin in patient tissue samples can help determine whether a patient with melanoma has, or is at risk for developing, metastases (aggressive tumor proliferation).

Collaborations relevant to molecular diagnostics. In 2003, Millennium signed an agreement with Lynx Therapeutics Inc (now Solexa Inc) to study gene expression in specific blood cell populations using MPSS technology. Initially, MPSS was used to identify cell specific gene markers for a certain blood cell type. The results from this study provided important advances in the identification of genes responsible for the formation of certain specialized cells. In an additional study, MPSS was applied to evaluate gene expression patterns from RNA in peripheral blood monocytes in response to treatments with specific compounds. These data could provide information on treatment-related gene expression potentially leading to a greater understanding of drug efficacy and safety.

On 31 January 2008, Millenium and Harvard Medical School's Office of Technology Development entered into an innovative collaboration agreement to pursue a research program in the area of protein homeostasis, an emerging and expanding field of cancer biology.

- 408 -

Page 411: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Millipore Corporation

290 Concord RoadBillerica, MA 01821, USAWeb site: http://www.millipore.com/Tel: 978-715-4321 CEO: Martin D. Madaus, PhDPresident Bioscience Division: Jon DiVincenzoContact: Geoffrey Helliwell ([email protected])

Overview. Millipore Corporation a leading bioprocess and bioscience products and services company, organized into two divisions. The Bioscience division provides high performance products and application insights that improve laboratory productivity. It serves the biosciences market, defined as research and manufacturing within the areas of genomics, proteomics, drug discovery, molecular diagnostics and pharmaceuticals. Several thousand devices, products and systems serve the 250,000 laboratories around the world, as well as the 1,500 biotechnology, pharmaceutical and contract manufacturing companies. Millipore technology is used for a wide range of applications, from protein sample preparation to vaccine sterilization to monoclonal antibody production. Recent new products include new versions of MultiScreen membrane-based multi-well plates for molecular biology applications, and Opticap cartridges for biotechnology drug manufacturing. Millipore also provides consulting and customer support services for high-value applications. Millipore technology is particularly critical for new life science research applications in genomics, proteomics and drug discovery, and for the sterilization and purification of new biotech therapeutics. Several of its products and services are relvant to biomarkers. In 2006, Millipore completed acquisition of Serologicals Corporation for $1.4 billion in cash. Millipore operates with more than 6,000 employees in 47 countries worldwide. On 28 February 2010, Merck KgaA acquired Millipore for $7.2 billion to create a life sciences tools and pharmaceutical firm with annual revenues of nearly $3 billion. Merck intends to retain Millipore’s headquarters in Billerica, MA and combine it with its US chemicals headquarters. Millipore's senior management will be retained.

Technology/products. Millipore has developed a process using polymer technology that can immobilize chromatography beads in very small volumes. The first product from this technology is called ZipTip C18 provides a ready-made and convenient means of conducting sample preparation at the microliter scale. This fulfills a need for sample preparation prior to protein analysis by MALDI-TOF-MS and removal of salts, buffers and detergents, from the sample.

Millipore provides ProSep® Protein A and Protein G family of media products, as well as its Controlled Pore Glass (CPG®) and derivatized CPG matrices for chromatography applications. Combined with its Contract Immobilization Services, these media options span a broad range of applications, including antibody purification and unique uses requiring customized solutions.

Millipore offers proven biomarker assay validation, including “Fit-for-Purpose” strategy coupled with GLP compliance and CLIA-certification. Millipore is the leading provider of both single & multiplex assay kits, access to new & novel biomarker assays / custom kit prep, and dedicated production team for high quality sample analyses. BioPharma Biomarker Assay Capabilities include:

- 409 -

Page 412: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Development & validation of LBAs/immunoassays: RIA/ELISA/ mesoscale and Abs/fluoro/luminescence.

Conjugation chemistry

Antibody production/purification

Enzymatic assays

Cell-based assays and whole cell stimulation assays

Luminex multi-analyte assays

Client-specific custom kit prep and validation

On 15 March 2010, Millipore launched Milliflex® Quantum rapid microbial detection system, which enables drug and vaccine manufacturers to respond to microorganism contamination earlier in the production process. Millipore’s rapid microbial detection portfolio includes MilliPROBE® detection system for mycoplasma, developed in collaboration with Roka Bioscience and is based on real-time transcription mediated amplification.

Collaborations relevant to molecular diagnostics. Roka Bioscience Inc is working with Millipore to develop microbial detection systems to ensure the purity of biopharmaceutical products.

Applied Biosystems (ABI), now part of Life Technologies Corporation, and Millipore jointly develop and market next-generation sample preparation consumables for HTP proteomics, leveraging ABI's proteomics expertise, including MS systems, with Millipore's strength in consumable sample preparation technologies aimed at removing and purifying proteins from sources prior to analysis.

- 410 -

Page 413: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Miraculins Inc

6-1250 Waverley StreetWinnipeg, Manitoba, Canada, R3T 6C6Web site: http://www.miraculins.comTel: (204) 453 1408Fax: (204) 453 1546E-mail: [email protected] & CEO: Christopher J. Moreau

Overview. Miraculins Inc is dedicated to the discovery and development of diagnostics and therapeutic targets for select cancers. Currently, Miraculins is focused on developing improved diagnostics for cancers of the digestive, genital and urinary systems. Miraculins acquired several biomarkers related to colorectal cancer as part of an acquisition of the intellectual property assets of Europroteome AG.

Technology. Miraculins is using its proprietary BEST™ platform for the screening and identification of target proteins and peptides related to cancer. The BEST™ platform utilizes an approach that relies on both proteomics and traditional protein chemistry techniques. The proprietary technology is based upon conventional "biomarker" discovery whereby biological samples are carefully analyzed to identify subtle biological differences. The "profile" of samples taken from healthy individuals is compared to similar samples taken from diseased individuals. Comparison of the relative levels of proteins or protein fragments (peptides) in these protein profiles provides an opportunity for the development of useful diagnostics and therapeutics for the target disorders. Miraculins' BEST™ platform has the capability to produce a significantly more accurate and less invasive diagnostic tool. The test has sensitivity and specificity of more than 80%.

Products. Miraculins currently has five cancer diagnostic programs under development designed to assist with the early detection of cance. The lead product is a diagnostic tool for the improved detection of prostate cancer. Miraculins is able to correctly identify cancer positives, and correctly classify those without cancer, with sensitivity and specificity that is a significant improvement over the published numbers for current prostate cancer diagnostic tools. The company has validated biomarkers of prostate cancer. In March 2007, Miraculins announced positive results from its ongoing PCSC04 study, a prospective study of pre-prostate biopsy patients initiated in 2006 with CMX Research Inc. The study was designed to test whether Miraculins' biomarker diagnostic would be able to reduce the number of unnecessary biopsies when used sequentially with the PSA test and best clinical care practices. In June 2008, Miraculins started a 2nd pivotal pre-biopsy screen study for its urine based P2V™ prostate cancer diagnostic test. The FDA has suggested the company look specifically at how its test performs for men with elevated levels of PSA that may not be high enough to justify getting biopsies.

Serum-based tests for colorectal, gastric and pancreatic cancers are at validation stage. A breast cancer diagnostic is at discovery stage.

Collaborations. In 2006, Miraculins initiated collaboration with Fox Chase Cancer Center to validate biomarkers for colorectal cancer with its BEST platform.

In 2007, Miraculins signed an agreement with Diagnos Inc, a leader in the use of artificial intelligence and advanced knowledge extraction techniques,

- 411 -

Page 414: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

to provide services towards the development of Miraculins’ cancer diagnostic discovery program.

- 412 -

Page 415: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Mitsubishi Chemical Medience Corporation

4-2-8, ShibauraMinato-ku, Tokyo, JapanWeb site: http://www.medience.co.jp/english/President and CEO: Toshihiko Yoshitomi

Overview. Mitsubishi Chemical Medience (MCM) Corporation, one of Japan’s leading CROs, is involved in development, sale, export and import of IVD reagents and instruments. In the areas of diagnostic testing systems and clinical testing in pharmaceutical operations the company is involved in the development of highly-functional and easy-to-use diagnostic equipment for use at medical facilities, as well as the development of highly-sensitive and stable diagnostic agents. Its R&D is exploring new biomarkers. In carrying out the development of diagnostic reagents, diagnostic equipment, and testing technology that is intended to support advanced personalized medicine and preventative medicine, MCM is pushing itself to create a healthcare business that can cater to the future needs of healthcare users.

Technology/services. Clinical testing: biochemical, hematological, immunological, microbiological testing, genetic, and pathological. Other services are preventive medical services and drug development support services

Products relevant to molecular diagnostics. PATHFAST is a new POC testing system that enables highly-sensitive and high performance measurements in conjunction with panel testing.

Food safety testing. MCM can carry out a wide variety of bacterial tests on a range of food products, placing particular focus on raw materials and products used in food factories and kitchen facilities. Testing is available for a range of bacteria such as E. coli, S. aureus, Salmonella, and B. cereus.

Genetic testing. In this area of the company's operations we are focused on offering the best possible service through the adoption of cutting-edge technology, the latest analytical approaches, and appropriate designs for primers and probes. The knowledge and experience MCM has acquired during its long-term involvement in the field of genetic testing enables the company to strongly support a genetic approach whose use is aimed at healthcare workers carrying out medical treatment and research, or in dealing with various diseases. Categories of testing performed by MCM are:

Hematological disorder-related genes

Genetic disorder-related genes

Gene polymorphism

Chromosome testing for congenital abnormalities

Collaborations. Mitsubishi Chemical Medience Corp is partnering with Hitachi Software Engineering Co to develop DNA chips that can be used in practical applications at medical facilities. The companies have developed a DNA chip that makes possible the advanced diagnosis of septicemia. In addition to reducing the amount of time required for testing DNA in pathogens from days to hours, the partnership is also currently involved in developing DNA chips that can successively predict the efficacy of anticancer agents.

- 413 -

Page 416: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 414 -

Page 417: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Mobidiag

BiomedicumHaartmaninkatu 8 FIN-00290 Helsinki, Finland Web site: http://www.mobidiag.com/Tel: +358 9 191 25021Fax: + 358 9 191 25020E-mail: [email protected] Chief Executive Officer: Mr. Jaakko Pellosniemi ([email protected])

Overview. Founded in the year 2000, Mobidiag is a company specialized in the molecular diagnostics of infectious diseases by utilizing novel solutions based on biochip technology. The products are targeted at clinical diagnostic laboratories worldwide. Mobidiag's biochip assays combine different proprietary technologies in order to present the most advanced solutions currently available for infectious disease diagnostics.

Mobidiag not only to develop novel diagnostic tests, but also validates the assays for clinical use. This advantage is based on close collaboration with several University Hospitals. Continuous research and development as well as close communication with customers will ensure that the company is at the forefront of molecular diagnostics.

Technology/products. Mobidiag’s core competencies include the ability to analyze and manage vast amounts of genomic data in order to design clinically relevant panels for microbial pathogens. The company has the necessary expertise in the fields of medicine and molecular microbiology to transform this genomic data into advanced diagnostic platforms for infectious disease testing. Mobidiag's biochips combine the broad-range PCR method with DNA microarray technology to enable fast and accurate detection of large panels of bacterial pathogens.

Mobidiag’s use of broad-range universal approaches enables the rapid simultaneous detection of a large number of different pathogens. Mobidiag’s products provide unique advantages in terms of speed and accuracy in the diagnosis. Future products will also include point-of-care (POC) tests for the most common microbial infections. Future products will also incorporate viruses as well as markers for antibiotic resistance.

Collaborations. In 2003, STMicroelectronics signed a joint development agreement with MobiDiag to create a complete system for genomic-based detection of infectious diseases based on a silicon MEMS (Micro Electro Mechanical Systems) biochip. The system will allow clinical diagnostics laboratories faster, cheaper, and more user-friendly access to genomic-based techniques that will revolutionize the way infectious diseases are detected.

- 415 -

Page 418: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Molecular Partners AG

Grabenstrasse 11a8952 Zürich-Schlieren, SwitzerlandWeb site: http://www.molecularpartners.com/Tel.: +41 44 755 77 00Fax: +41 44 755 77 07Email: [email protected]: Dr. Christian ZahndChief Business Officer: Patrick Amstutz ([email protected])

Overview. Molecular Partners is a Swiss biotechnology company engaged in the discovery and development of Designed Ankyrin Repeat Proteins (DARPins), a novel class of binding proteins based on designed repeat proteins (DRPs), which can be used for a range of different applications, including therapy and diagnostics. Molecular Partners has successfully generated DARPins against more than twenty different disease targets, including cell surface receptors, cytokines, proteases, kinases and viral coat proteins.

Technology. DARPins are derived from natural ankyrin repeat proteins which are used in nature as versatile binding proteins with diverse functions such as cell signaling, kinase inhibition or receptor binding just to name a few. DARPins can be produced in bacterial expression systems at very high yields and they are the most stable proteins known. Highly specific high-affinity DARPins to a broad range of target proteins, including human receptors, chemokines, kinases, human proteases and membrane proteins, have been selected. Affinities in the single digit nanomolar range are obtained by default. DARPins can optionally also be subjected to affinity maturation yielding binders with picomolar affinities. This is comparable to the best affinities of antibodies known to date.

Applications. DARPins have been used in a wide range of applications, including ELISA, sandwich ELISA, flow cytometric analysis, paraffinated and frozen tissue sections, solid phase assays, chip applications, affinity purification or Western blotting. DARPins also proved to be highly active in the intracellular compartment, which was shown by the use of DARPins as highly specific kinase and protease inhibitors or as intracellular marker proteins fused to green fluorescent protein.

The beneficial biophysical properties are key for diagnostic applications of DARPins. The high affinity and specificity allows the generation of more sensitive tests with less false positive and false negative read outs. The high stability stands not only for prolonged shelf-life but can also enable new test formats, such as chip applications. Bacterial expression allows inexpensive production. The possibility of generating DARPins with single, well-defined reactive groups (e.g. unique cysteines) allows the direct labeling of the molecules with any detection reagent.

Collaborations. In 2006, Cambridge Antibody Technology (CAT) and Molecular Partners signed a cross-license agreement, under which both parties obtain substantial freedom to conduct research under certain of each others' IP, as well as the right to develop therapeutic, prophylactic and diagnostic products. CAT obtains access to Molecular Partners proprietary DRPs technology and Molecular Partners gains rights to IP in ribosome display, controlled by CAT, in the field of novel protein products.

- 416 -

Page 419: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 15 January 2008, Molecular Partners signed an agreement with Centocor Research & Development Inc, which focuses on designed Akyrin repeat proteins, a novel class of therapeutic proteins to treat inflammatory diseases.

- 417 -

Page 420: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Molecular Probes Inc

29851 Willow Creek RoadEugene, OR 97402, USAWeb site: http://www.lifetechnologies.com/Tel: (541) 465-8300 Fax: (541) 344-6504

Overview. Molecular Probes Inc is a biotechnology company specializing in the area of fluorescence technology. The Company has developed an extensive product line that includes a wide range of fluorescent probes and chemicals for research use in microbiology, diagnostics and high-throughput screening. In 2003, Molecular Probes acquired Interfacial Dynamics Corporation (Portland, Oregon), a leading manufacturer of surfactant-free, ultra-clean polymer microspheres used in bead-based assay systems. The acquisition gives Molecular Probes the ability to design and manufacture these latex microspheres for its own products and to offer a full line of microspheres to customers. Molecular Probes generated revenue of $56 million in 2002, a number that is expected to grow to $66 million in 2003. In 2003, Invitrogen acquired Molecular Probes for $325 million and it is now a part of Life Technologies.

Technologies. The focus is on fluorescence labeling. Molecular Probes has been working with a number of collaborators on a method of DNA labeling that incorporates aminoallyl dUTP enzymatically and then reacts the resulting amine-modified DNA with succinimidyl esters of its proprietary dyes. Other types of labeling the company is exploring include the use of a thiol-modified nucleotide plus a dye maleimide, the use of an aminoallyl ribonucleotide for RNA labeling, and the use of amine-modified deoxynucleotides other than UTP.

Products. More than 90% of the Company's over 2500 products are produced by the company and almost half are patented by the company. In 2000, the company introduced two unique methods for fluorescent labeling of nucleic acids, as well as additional fluorescent nucleotides, and the most-sensitive assay known for inorganic phosphate and enzymes that produce phosphate.

Publications. Molecular Probes publishes a "Handbook of Fluorescent Probes and Research Chemicals" that contain all the products available from the company.

Collaborations. In 2003, LightUp Technologies AB announced that it will launch DNA analysis products, including diagnostic assays, using unique fluorescence-based technology newly licensed from Molecular Probes.

Since 2004, Molecular Probes products are available from Life Technologies.

- 418 -

Page 421: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Monogram Biosciences

(a subsidiary of LabCorp)345 Oyster Point BlvdSouth San Francisco, CA 94080-1913, USAWeb site: http://www.monogrambio.comTel: (650) 635-1100 Fax: (650) 635-1111

Overview. Monogram Biosciences was formed in 2004 through merger of ViroLogic Inc and ACLARA and is a leader in developing and commercializing innovative products to help guide and improve the treatment of infectious diseases, cancer and other serious diseases. Its molecular diagnostics and testing services enable:

1. Healthcare providers to optimize treatment regimens for their patients to lead to better outcomes and reduced costs by matching the underlying molecular elements of an individual patient's disease to the drug best able to affect those elements; and

2. Pharmaceutical companies to develop new and improved antiviral therapeutics and vaccines as well as targeted cancer therapeutics more efficiently by providing enhanced patient selection and monitoring capabilities throughout the development process

Monogram has developed HIV tests, or assays, to help make the complexities of antiretroviral therapy easier to manage. It has also developed oncology products to help accelerate the development of targeted cancer therapeutics. In 2006, Pfizer invested $25-million ment in Monogram Biosciences. In August 2009, Monogram was acquired by Laboratory Corporation of America for $104 million and became a subsidiary of LabCorp.

Technologies relevant to molecular diagnostics. Monogram currently performs three types of assays: PhenoSense HIV for HIV phenotypic drug susceptibility testing (see Chapter 6), GeneSeq HIV for HIV genotypic resistance testing, and standard as well as ultrasensitive viral load testing by the Amplicor method.

The novel technology developed for PhenoSense HIV also has numerous applications beyond HIV. The Company is capitalizing on its molecular biology, virology, automation, clinical, and quality assurance expertise to develop phenotypic drug susceptibility tests applicable to many viral diseases, such as hepatitis B and C (HBV, HCV) and herpes.

Replication Capacity (RC) assay measures the ability of a patient's virus to make copies of itself and is designed to provide useful additional information to physicians to select optimal antiretroviral therapy cocktails for their patients. HIV RC, as measured by the PhenoSense HIV assay, may be an additional predictor of clinical outcome and may complement other laboratory parameters, such as viral load and CD4 cell counts, in making individualized antiretroviral treatment decisions, especially for patients experiencing failure of their treatment regimen.

Trofile™ is a patient selection co-receptor tropism assay that determines whether a patient is infected with a strain of HIV that uses either the CCR5 coreceptor, the CXCR4 coreceptor, or a combination of CCR5 and CXCR4 to enter cells. The use of CCR5, CXCR4 or both coreceptors defines the "tropism" of the virus strain. Trofile amplifies the envelope gene from a patient's HIV genome (from their blood sample) and then uses it to make HIV

- 419 -

Page 422: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

particles containing the patient's virus envelope protein. The resultant HIV particles are then used to infect cells that contain the CCR5 co-receptor or the CXCR4 co- receptor on the cell surface. Once the virus infects the cell, it undergoes a single round of replication. Virus replication results in the production of luciferase from a luciferase gene that is carried into the cell by the virus. The production of luciferase in either CCR5 cells, CXCR4 cells or both cell types defines the co-receptor tropism of the patient virus. Trofile is the only clinically validated tropism assay and has been used to select patients in all phase II and phase III studies of CCR5 antagonists to date.

Collaborations relevant to molecular diagnostics. Monogram has collaborations with several pharmaceutical companies including: Abbott Laboratories, Bristol-Myers Squibb, Quest Diagnostics, DuPont Pharmaceuticals, Gilead Sciences, GlaxoSmithKline, Merck & Co, Hoffmann-La Roche, Pfizer and Vertex Pharmaceuticals. Under the terms of the agreement, Monogram’s's phenotypic and genotypic drug resistance assays, PhenoSense HIV and GeneSeq HIV, will be used to evaluate the effectiveness of anti-HIV drugs in development. PhenoSense HIV is used to assess drug activity against HIV strains that are resistant to currently available drugs.

In 2005, Monogram signed an agreement with Merck KGaA to conduct a cancer biomarker study using eTag™ assays with application to Erbitux® (cetuximab), a MAb targeting the EGFR found on many cancer cells. Monogram will test formalin-fixed, paraffin-embedded tumor samples from patients with colorectal cancer before they are treated with Erbitux to evaluate the utility of these assays in identifying patients who would most likely benefit from Erbitux.

In March 2008, Monogram signed an agreement with Avexa Ltd to be the exclusive provider of HIV resistance and tropism testing technology in support of Avexa's drug discovery and development programs.

- 420 -

Page 423: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MP Biomedicals LLC

15 Morgan Irvine, CA 92618-2005, USAWeb site: http://www.mpbio.com/Tel: (949) 833-2500Fax: (949) 859-5095Chairman and CEO: Milan Panic

Overview. MP Biomedicals is a world-wide corporation, with its headquarters located in Irvine, California and satellite offices in Europe, Asia and Australia. In 2002, MP Biomedicals was purchased by Milan Panic, the former chairman and chief executive officer of ICN Pharmaceuticals. Currently, the company manufactures and sells more than 55,000 products and is one of the few companies in the industry to offer a comprehensive line of life science, fine chemical and diagnostic products. MP Biomedicals provides a broad line of life science products that serve everything from proteomic research, genomic research, and biotechnology to pharmaceutical development and the diagnosis of disease. The Company is continually expanding its product line with new, innovative products for all areas of life science research including new items for pharmacogenomics. the broad showcase of reagents continues to offer the largest selection of products for traditional research areas like cancer research and molecular biology.

In 2004, MP Biomedicals acquired the diagnostic business of Genelabs Technologies Inc conducted at Genelabs Asia Pte Ltd in Singapore. This is expected to add molecular diagnostics to the products line.

Diagnostic products. Diagnostic Division of MP Biomedicals has been committed to providing superior quality and service at competitive prices for more than 40 years. All of the Company's products are developed and produced under the strictest standards in its ISO 9002 facilities in Orangeburg, New York and in Burlingame, California. Products manufactured by the Diagnostics Division are CE marked for sale into Europe.

The MP Biomedicals Rapid Diagnostics Division designs, manufactures and distributes in-vitro diagnostic test kits for cancer markers, cardiac markers, drugs of abuse and fertility/pregnancy testing. The rapid diagnostic test results are available within less than five minutes.

- 421 -

Page 424: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MTM Laboratories AG

Im Neuenheimer Feld 519 D - 69120 Heidelberg, Germany Web site: http://www.mtm-laboratories.com/ Tel: +49 (6221) 64966-0 Fax: +49 (6221) 64966-10 CEO: Peter Pack, PhD ([email protected])

Overview. MTM Laboratories AG is a privately held ISO 9001 and ISO 13485 certified company that develops IVD systems for the early detection and diagnosis of cancer with a focus on cervical cancer screening. On 9 October 2006, MTM raised €22 million in a Series C financing from a consortium of existing and new investors. Proceeds from this financing will enable the Company to fund the clinical development and commercialization of its proprietary diagnostic and screening devices in the field of cervical cancer.

Technology/products. MTM’s products rely on the sensitive detection of specific molecular biomarkers, which indicate the existence of precancerous and cancerous cells. The Company is in the process of developing and clinically validating the cell-based CINtec® Assays as well as the biochemical Cervatec™ assay. MTM’s proprietary p16INK4a biomarker is strongly over-expressed in precancerous and cancerous cells of the cervix. It is the scientifically most accepted marker for cervical cancer. Screening and diagnostic tools based on this biomarker will be developed to meet the need for accurate and efficient testing to facilitate screening and early diagnosis of cervical cancer. MTM's CINtec® IVD products focus on the detection of p16INK4a over-expression in biopsies (CINtec® Histology) and cervical cytology specimens (CINtec® Cytology). In parallel, the company is developing the biochemical based product Cervatec™ ELISA, a screening device which does not rely on the integrity of cells.

On 5 February 2008, MTM launched the Cervatec™ ELISA assay, which will initially be commercialized in Central Europe as an adjunct to the Pap Test in screening of women aged 35 and younger.

Collaborations. MTM works in close collaboration with noted scientific groups within the European Molecular Biology Laboratory (EMBL) as well as the Deutsche Krebs Forschung Zentrum (DKFZ) that provides it with a continuous source of technological innovation. GlaxoSmithKline and Merck (Darmstadt) are already using MTM Laboratories' services.

In 2001, DakoCytomation entered into a strategic licensing and product development agreement with MTM to gain exclusive rights to the CINtec technology. Both parties agreed to further develop the CINtec technology for use in the diagnosis of other tumors.

In 2002, MTM and EMBLEM, the commercial arm of the European Molecular Biology Laboratory signed an agreement combining bioinformatics and molecular medicine with the goal of the in silico identification and clinical evaluation of molecular biomarker candidates for both colorectal and lung cancer.

- 422 -

Page 425: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Multiplicom NV

Galileilaan 18B-2845 Niel, BelgiumWeb site: http://multiplicom.com/Tel: +32 3 265 1000Fax: +32 3 400 2316CEO: Dirk Pollet PhDContact: Luc Segers, Head of Marketing ([email protected])

Overview. Multiplicom is a spinout of Jurgen Del-Favero's laboratory at the VIB department of molecular genetics at the University of Antwerp and is developing tests to determine whether individuals have increased risk for certain diseases, to detect congenital genetic defects, and to identify the most appropriate treatments.

Multiplicom has received €2 million ($3 million) in a funding round. Investors included Belgian venture capital firm Gimv, Gimv-managed Biotechfonds Vlaanderen, life science research institute VIB, and the University of Antwerp. Proceeds will be used to develop diagnostic tests, get CE marking for them, and to commercialize them. The initial focus of the firm will be on creating a direct sales force covering Western Europe and a distribution channel in other nations.

Technology. Multiplicom’s multiplex PCR technology (an algorithm for the design of multiplex PCR primers called Multiplexer™ has a number of applications:

Multiplex Amplicon Quantification (MAQ)

Multiplex PCR based 454 sequencing

Multiplex based microsatellite genotyping

Every application benefits fully from the advantages of multiplex PCR: a large reduction in time and costs compared to standard PCR methods and other molecular approaches. All of these applications are based on the same principle: primers are designed that enable the simultaneous amplification of several targets in one reaction. When brought to the bench, they work: multiplex PCR amplification of up to 50 targets was performed successfully. Due to the robust primer design, there are no problems generally associated with multiplex PCR like generation of non-specific fragments, lack of amplification product, etc. Moreover, multiplex PCR optimization consists solely of primer concentration adjustments since all primer pairs work under the same conditions.

Products . MAQ Assays have a distinct genomic target; CNV and an associated disease.

Multiplex PCR Assays contain products that are not directly related to CNV analysis, but still exploit the advantages of multiplexed PCR amplification.

Multiplex Amplification of Specific Targets for Resequencing (MASTR) is the latest product development. These assays are to be used as front end amplification tool for next generation sequencing applications.

MASTR related kits are used for sample barcoding (454 sequencers) or as a Universal PCR step (short read sequencers).

The company has developed assays for breast cancer and cystic fibrosis.

- 423 -

Page 426: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. Multiplicom has agreements with pharmaceutical firms to use its multiplex PCR technology, Multiplexer, to identify genetic biomarkers linked to drug safety and efficacy.

- 424 -

Page 427: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

MWG Biotech AG

Anzinger Strasse 7a D-85560 Ebersberg, GermanyWeb site: http://www.mwg-biotech.com/Tel: +49 (8092) 82890 Fax: +49 (8092) 21084E-mail: [email protected]: Dr. Florian Heupel

Overview. MWG-Biotech is an international innovator of techniques, instruments and services for life sciences. Since its founding in 1990, the Company has undergone a transformation from a pure distributor to a creative competence center capable of offering full service and business power in the world of genomics through the synergistic union of its business units: oligonucleotides, DNA sequencing and siRNA technology.

MWG has a long international standing as an expert for sequencing projects of all sizes, from single reads to be delivered in 25-30 hour turnaround time to the sequencing of complete genomes. The highly automated sequencing department operates from three production sites in Germany, the US, and India with a total annual capacity of approx. 1.5 to 1.9 million reads per year. By means of MWG Biotech's proprietary bioinformatics platform the identified sequencing data can be annotated to identify the genes. With an experienced team and strong partnerships MWG Biotech AG has gained an excellent scientific reputation for the competent handling of genomic information. The Company is a renowned expert for comparative sequencing and resequencing projects.

In November 2007, MWG Biotech AG sold its US facility MWG Inc to Operon Biotechnologie Inc.

Technology/products/ services relevant to molecular diagnostics. Quantitative PCR or Real-time PCR is able to detect the “real-time” accumulation of PCR products as they accumulate during the amplification process. This allows the researcher to quantify the number of templates present in the original sample before the PCR reaction began. MWG offers two different methods for this technology: Dual Labeled Probes and Molecular Beacons.

- 425 -

Page 428: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Myriad Genetics Inc

320 Wakara WaySalt Lake City, UT 84108, USAWeb site: http://www.myriad.com/Tel: (801) 584 3600Fax: (801) 584 3640CEO: Peter D. MeldrumContact: Catherine Oyler MBA, Director, Business Development ([email protected])

Overview. Myriad, a leader in gene discovery, research and testing, has been instrumental in the characterization of genes shown to influence predisposition to cancer. Through partnerships with leading pharmaceutical companies, Myriad contributes to the development of gene-based therapeutics to treat or prevent major diseases. To complement its gene discovery and genetic analysis services, Myriad provides genetic education and support materials to physicians and other health care providers-as well as to patients-to assure that its services are used appropriately and responsibly. Myriad has 2 wholly owned subsidiaries: Myriad Pharmaceuticals, which develops and markets therapeutic compounds, and Myriad Genetic Laboratories, which develops and markets molecular diagnostic services and introduces products for and personalized medicine.

R & D. Myriad is a world leader in the discovery and sequencing of disease-related genes and the elucidation of their biochemical pathways. Built on a strong foundation of gene discovery research and proprietary technologies, Myriad is uniquely positioned to develop and commercialize new medical tests and therapies. Myriad provides genetic testing services to identify inherited gene mutations that predispose people to specific diseases.

Products. Those relevant to molecular diagnostics are:

1. BRACAnalysis, which detects BRAC1 and BRAC2 mutations in women with family history of breast and ovarian cancers. BRACAnalysis Rearrangement Test was added to detect rare, large rearrangements of the DNA in the BRCA1 and BRCA2 genes.

2. MELARIS® is a predictive medicine test for inherited susceptibility to melanoma and pancreatic cancer. This test detects inherited mutations in the p16 gene (also called CDKN2A or INK4A), which occur in up to 40% of families with hereditary melanoma.

3. COLARIS is a genetic susceptibility test for hereditary nonpolyposis colorectal cancer and endometrial cancer.

4. COLARIS AP® is a predictive test for risk of hereditary colorectal polyps and cancer.

5. TheraGuide 5-FU assesses a person’s risk of developing a severe toxic reaction to 5-FU-based chemotherapy by detecting variations in 2 genes, dihydropyrimidine dehydrogenase and thymidylate synthetase, which are responsible for serious ADRs.

6. OnDose measures a patient's exposure to the chemotherapy drug, 5-FU, for adjusting dose to maximize efficacy and reduce toxicity.

7. Prezeon assesses loss of PTEN gene function in cancer patients, which is associated with disease progression and poor survival. PTEN is involved in cell

- 426 -

Page 429: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

signaling pathways that are the target of anticancer drugs, e.g. EGFR and mTOR inhibitors.

Collaborations relevant to molecular diagnostics. In 2004, Chemicon International Inc, a division of Serologicals Corporation, licensed the research use of several of Myriad's tumor suppressor and breast cancer susceptibility proteins and antibodies. In 2005, Myriad extended an alliance with Abbott to focus on pharmacogenetics. Abbott will fund the research, while Myriad will use its technology and mutation screening software to analyze samples from different populations. On 9 Dec 2010, Myriad acquired technology from Melanoma Diagnostics for the diagnosis and prognosis of malignant melanoma using genetic markers.

- 427 -

Page 430: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NABsys Inc

4 Richmond Square, Suite 500Providence, RI 02906, USAWeb site: http://www.nabsys.com/Tel: 401-861-9770Fax: 401-861-9777Email: [email protected] Executive Officer: Barrett Bready, MD ([email protected])

Overview. NABsys is a next-generation sequencing company. In 2006, NABsys purchased DNA hybridization company GeneSpectrum in an all-stock transaction. It will combine GeneSpectrum's probe design and hybridization techniques with its nanopore-based technology, which it has licensed from Brown University (Rhode Island), to sequence human DNA at dramatically cheaper rates.

Technology. NABsys is developing a nanopore-based sequencing platform that promises to reduce the cost of sequencing an entire human genome by more than four orders of magnitude, from its current level of $10-20 million to approximately $1,000. Unlike other nanopore-based sequencing approaches, the NABsys platform does not depend on single-base resolution of the nanopore detector in order to obtain accurate sequence information. The commitment to single-base resolution has been a limiting factor since the notion was first proposed in the mid-1990s. Another important advantage of the NABsys platform is the addressability of its nanopore arrays (i.e. the ability to keep track of different DNA molecules traveling though different nanopores simultaneously on the same silicon chip), which enables markedly increased throughput. NABsys’ efforts to reduce the cost of sequencing would take DNA sequencing from the research lab to the doctor's office and facilitate the development of personalized medicine.

- 428 -

Page 431: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NanoDetection Technology

2160 Lakeside Centre Way, Suite 250Knoxville, TN 37922, USAWeb site: http://www.nanodetectiontechnology.com/Tel: (865) 300-5497CEO and President: Charlie Barnett ([email protected])

Overview. NanoDetection Technology, an in vitro diagnostics company, is developing the diagnostic segment of biochip sensor technology. NanoDetection is one of the first few companies to leverage this technology for diagnostic purposes in veterinary diagnostics, bioterrorism and food safety. NanoDetection’s initial markets enable lower technology development and refinement costs because of easy access to biological samples and lower regulatory hurdles and oversight.

Technology/products. NanoDetection’s ‘biochip’ is a patented microchip biosensor, based on multiple phototransistor integrated circuits, that detects light (e.g. fluorescence or luminescence) emitted as a result of a chemical reaction caused by DNA hybridization or an antibody/antigen pairing.

The beta-version clinical detector, which is the size of a desktop computer, is ideal for the research, central testing laboratory, and veterinary markets. A field detector is in development for use by farmers, soldiers and those on the front line of an early warning biological threat network. The field detector will be about the size of a large PDA.

In addition to the detectors, the Company is developing two types of disposable testing cartridges that will leverage either labor-rich or technology-rich users. Where trained labor is cheap, the testing cartridge will be a simple glass or plastic slide affixed by a handle that contains an RF identification tag for accurate and unique testing. Solutions and washes are administered separately in a ‘lab in a box’ concept. Where technology is cheaper than labor, the company is developing a self-contained ‘lab on a card’ testing cartridge, which will use miniature pumps, heating elements (if necessary) and microfluidics to control samples, solutions and washes, which can be operated with minimally trained personnel.

In 2006, NanoDetection Technology and three academic research centers University of Tennessee Health Science Center, St. Jude Children’s Research Hospital, and Oak Ridge National Laboratory started to develop an onsite avian influenza detection system. The technology is based on a biochip that detects photons produced as a result of DNA hybridization or protein conjugation, which constitutes a “positive” result. The same biochip can conduct multiple, simultaneous tests and can use most biological and environmental samples. The test results would not require any sophisticated analysis.

A test for bovine viral diarrhea is in development. The biochip biosensor platform can also be applied for the detection of BSE.

Collaborations. NanoDetection Technology is currently collaborating with the USDA’s National Animal Disease Center in Ames, Iowa, to optimize the conditions and develop quantitative results reporting of a test for bovine viral diarrhea.

- 429 -

Page 432: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Nanogen Inc

(new name will be given on completion of merger with Elitech Group)10398 Pacific Center CourtSan Diego, CA 92121, USAWeb site: http://www.nanogen.com/Fax: (858) 410-4952Chairman: Howard C. Birndorf (following completion of merger with Elitech Group)CEO: Pierre Debiais (following completion of merger with Elitech Group)

Overview. Nanogen Inc integrates advanced microelectronics and molecular biology into a platform technology with potential commercial applications in the fields of medical diagnostics, biomedical research, genomics, genetic testing and drug discovery. Through the use of microelectronics, the Company's technology enables the active movement and concentration of charged molecules to and from designated microlocations, or test sites, on the semiconductor microchip. Nanogen has received considerable government funding and commitments to support its biowarfare and human identification efforts. On 14 May 2009, Nanogen executed an asset purchase agreement with Elitech Group, a privately held diagnostics company, to acquire substantially all of the assets of Nanogen for $25.7 million. As part of the sale, Nanogen filed a voluntary petition under chapter 11 of title 11 of the US Code in the Bankruptcy Court for the District of Delaware, including a motion seeking bankruptcy court approval of the sale, subject to a court-supervised auction.

Acquisitions. Nanogen acquired SYN X for $12 million in 2004, providing it with a pipeline of complementary products in order to expand its market share in IVD market. In 2004, Epoch Biosciences was merged with Nanogen. Epoch’s organization and operations were incorporated into Nanogen’s genetic diagnostic business. Nanogen plans to maintain Epoch’s research and development and reagent manufacturing operations at its Bothell facility. In 2005, Nanogen paid $1.5 million for a 25% stake in Jurilab. In 2006, Nanogen completed acquisition of Spectral Diagnostics' rapid cardiac immunoassay test business for $7.7 million, including the cardiac STATus, Decision Point, and i-Lynx product lines. Nanogen will assume related sales, marketing, and manufacturing activities for the product lines, which it said it will combine with its own StatusFirst congestive heart failure test. In 2006, Nanogen acquired the diagnostics division of Italy-based Amplimedical for $10 million.

Technology/products. Nanogen has developed the NanoChip Molecular Biology Workstation that incorporates a proprietary microchip capable of rapid identification and precise analysis of biological molecules. Researchers in the field of molecular biology and genetics use the workstation to study how genes function and to understand the correlation between genetic variation and disease. Important applications are:

Human identification. The NanoChip can also be used for human identification, important in the forensics field. Recurring genetic patterns, known as STRs, are analyzed in this application. Future applications in development include analysis of gene expression and on-chip amplification to analyze of minute amounts of genetic material. DNA amplification can be performed directly on the chip with Anchored Strand Displacment Amplification (see Chapter 3) and optimizing methods to analyze gene expression. Nanogen believes that gene expression research can benefit not only from the system' s flexibility and speed, but also its reproducibility and accuracy.

- 430 -

Page 433: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SNP genotyping. The NanoChip uses electronically enhanced hybridization of complementary DNA strands and has near 100% accuracy in the detection of SNPs. This technology allows on-chip amplification of DNA material directly on the NanoChip cartridge and folds it into a single, simplified and time-saving detection procedure.

DrugMet ® drug-metabolizing enzyme microarray . This is developed jointly by Jurilab and Nanogen and received CE Mark approval as IVD in the EU in 2006. DrugMet is designed to detect variation in genes including CYP2D6, CYP2C9, and CYP2C19, as well as duplication and deletion of the CYP2D6 gene.

In 2006, Nanogen released reagents designed for research use only studies analyzing CYP2C9 and VKORC1, two genes with potential applications in drug metabolism and response.

Genetic research. Nanogen’s multiplex Analyte Specific Reagent (ASR) is designed for: (1) detection of Factor V Leiden and Factor II Prothrombin gene mutations associated with cardiovascular disease; (2) HFE gene for hereditary hemochromatosis; and (3) detection of 25 most common mutations of the CFTR gene associated with cystic fibrosis. Nanogen’s Assay ToolBox is a set of consumable products that allows customers to facilitate their own protocol and assay development on the NanoChip® platform.

Detection of biowarfare agents. Nanogen has developed microelectronic chips for the detection of biowarfare related agents found in blood using its electronic hybridization technique (see Chapter 9) for the Space and Naval Warfare Systems Center (San Diego, California) under the DARPA sponsored Chips (BioFlips) and Simulation Tools for Chemical/Biological Microsystems Program.

POC Diagnostics Division has developed a rapid quantitative test for NT-proBNP as an aid in diagnosis of congestive heart failure. This product has been cleared by FDA and CE self declaration in the European Union is pending.

MGB technology is a crescent-shaped molecule that stabilizes a detection-target duplex when coupled with an oligonucleotide probe. Currently more than 35 reagents and kits are sold for clinical diagnostic use under the brand names MGB Alert and Q-PCR Alert.

Cardiovascular disease. StatusFirst™ CHF NT-proBNP EDTA plasma test has been approved by the FDA to aid in the diagnosis of individuals presenting with congestive heart failure (CHF) symptoms. It was developed by Nanogen under license from Roche and is being manufactured by Princeton BioMeditech Corp. This product complements the company’s existing three cardiac rapid tests (CK-MB, Myoglobin, and Troponin I). The company also offers reagents that detect molecular targets related to cardiovascular risk, including reagents for the detection of mutations related to the Factor V Leiden, Prothombin, and HFE (hemachromatosis) genetic markers. In addition, the company has collaboration with Jurilab, in which Nanogen is investigating genetic markers associated with acute myocardial infarction, hypertension and type 2 diabetes.

Avian flu. fluID Rapid Influenza Test, a third-generation lateral flow immunoassay, was developed with a $4.5 million grant from the CDC.

Collaborations. Nanogen entered into following agreements in 2002:

A Development Site Agreement to instal a NanoChip Molecular Biology Workstation at the Centers for Disease Control and Prevention (CDC)'s

- 431 -

Page 434: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Foodborne and Diarrheal Diseases Branch in Atlanta, Georgia to develop methods for simultaneously detecting specific strains of E. coli and other pathogens on the NanoChip System. Nanogen will receive commercialization rights to the assays developed by the CDC.

Collaboration with the NASA Ames Research Center has provided one of its NanoChip® Molecular Biology Workstations to NASA in exchange for certain commercialization rights to intellectual property and assays developed by NASA. Scientists in NASA's Fundamental Biology Program will use the Nanogen platform to develop and validate protocols for specific SNP and STR analyses related to NASA's mission requirements. Also, scientists in NASA's Center for Nanotechnology will evaluate Nanogen's NanoChip® technology for the potential development of certain biosensors for astrobiology and biomedical applications.

DNAPrint Genomics Inc obtained rights to use of NanoChip Molecular Biology Workstation to develop NanoChip versions of its complex genomics tests involving simultaneous reading of large sets of genetic markers.

Genetic Technologies granted a non-exclusive limited license to Nanogen for applications of its technology in genetic research and human diagnostics.

License agreement with Miami Children's Hospital Research Institute includes three of the most common gene mutations associated with Canavan disease.

Athena Diagnostics granted Nanogen license to patents relating to methods of using ApoE isoforms for the diagnosis and monitoring of Alzheimer's disease.

In 2003. Nanogen signed an agreement to to integrate its automated NanoChip platform with Prodesse's proprietary multiplex amplification technology to develop automated, highly sensitive microarray-based products for detection of infectious agents, including influenza, pneumonia, adenovirus, herpes, West Nile Virus, and SARS. The companies will jointly market gene-based testing products to health care providers and clinical reference labs. In 2003, Nanogen gained rights from Institut Pasteur to patents relating to detection of mutations in the GJB2 gene for the diagnosis of hereditary deafness. In 2004, Nanogen signed an agreement with Transgenomic Inc allowing it to distribute NanoChip Molecular Biology Workstation in Western European countries.

In 2006, Nanogen signed a manufacturing and distribution agreement with Princeton Biomeditech (PBM) to develop a point-of-care IVD that detects NT-proBNP, a biomarker of congestive heart failure (CHF). Nanogen will develop reagents that PBM will incorporate into a final product and will be responsible for clinical trials necessary for regulatory approval. PBM will develop a reader for the test, half of whose development will be funded by Nanogen, and the will seek regulatory approval for the device as well. PBM will have the right to supply aggreement for Nanogen reagents for detecting biomarkers related to CHF, stroke, or traumatic brain injury.

In 2006, Nanogen and Pathway Diagnostics agreed to develop diagnostic products to detect genetic variations associated with responses to antidepressant and antipsychotic drugs, which could be used to select the most appropriate drug and dosage.

In 2006, Nanogen signed an agreement with Jurilab to identify and validate new prognostic biomarkers for type 2 diabetes.

In 2006, Nanogen and American Bio Medica Corporation (ABMC), a global provider of immunoassay test kits, entered into a supply agreement in which

- 432 -

Page 435: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ABMC will sell its rapid drugs of abuse (DOA) tests to Nanogen. Nanogen will market the tests, under their own Tox STATus™ brand name, to customers in hospital-related markets using its existing sales force and distribution network. The DOA immunoassays, which can be used to detect up to 15 commonly abused substances including cocaine, methamphetamine and THC (active ingredient in marijuana), are FDA-cleared and CE marked. The ABMC-manufactured tests can deliver results using Nanogen’s portable hand-held I-Lynx reader.

In 2007. Nanogen signed an agreement to allow it to use Epidauros' CYP2D6 IP as a predictive marker for responsiveness and adverse drug reactions. Nanogen acquired rights to genetic biomarkers related to schizophrenia and responses to antipsychotic therapies from the Co-operative Research Centre for Diagnostics and Queensland University of Technology in Australia. Nanogen plans to utilize the biomarkers to create diagnostic tests for schizophrenia and related conditions.

In 2008. Thermo Fisher Scientific became the exclusive provider of certain Nanogen products used for gene expression experiments, which are based on Nanogen’s second-generation probe technology for real-time PCR applications, and are used for quantitative detection of DNA and RNA sequences. Nanogen agreed with HX Diagnostics to develop a rapid, POC diagnostic based on its fluID test to detect multiple strains and subtypes of influenza, including avian influenza, in one test. Celera extended its 2004 agreement for license of Nanogen’s patent portfolio in molecular biology to use MGB technology for developing IVD products for cardiovascular diseases and cancer.

On 4 February 2009, Gene Synthesis gained rights to use Nanogen's technology in making oligos for molecular diagnostic applications. On 4 March 2009, Nanogen signed an end user license agreement with Quest Diagnostics to allow use of the its proprietary MGB Probe technology for development of in human in vitro diagnostic testing .

- 433 -

Page 436: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NanoLogix Inc

843 North Main StreetHubbard, OH 44425, USAWeb site: http://www.nanologixinc.com Tel: (330) 534-0800 Fax: (330) 534-0826CEO: Bret Barnhizer ([email protected])

Overview. NanoLogix Inc (formerly Infectech Inc), a biotechnological company founded in 1989, specializes in the research and development of equipment used in the rapid identification and antibiotic sensitivity testing of disease causing pathogens. Infectech's Identikit was invented by Robert A. Ollar PhD, the Chief Scientist of Infectech.

Technology. Rapid BioNanoChannel Microorganism Diagnostics Technology. Identikit involves growing a certain class of bacteria on a patented paraffin coated slide. Gene amplification methods can then "photocopy" the cell growth thousands of times and cut the lab waiting time. The 34 bacteria that can be identified by this method include M. tuberculosis, Pseudomonas aeruginosa, and Nocardia asteroides. The Identikit has also been utilized as an antibiotic sensitivity assay system for M. avium complex and atypical mycobacteria.

NanoLogix’s AFZ and Adaptor Buffer Genomic Products permit isolation of nucleic acids from microbial cells. When the Identikit is combined with AFZ or Adaptor Buffer a variety of molecular tests can be performed on the "in situ" growth (blotting, thermocycling, "in vitro" transcription, and antibiotic resistance gene studies). When M. tuberculosis is coupled with gene amplification protocols, amplicons have been generated as early as 96 hours post inoculation.

NanoLogix has patents in the field of alternative carbon source baiting for use in the isolation of a variety of bioterrorist organisms. By adapting this to the specific biological agents the Company will develop a system with several important attributes, e.g:

Use as a transport media to inoculate suspect specimen and transport to specialized Public Health Facility for identification.

Isolation media for isolation of the specific biological agent

Link with the NanoLogix AFZ Molecular Systems for species identification and subsequent genetic analysis

Development of an antibiotic sensitivity assay system for microorganisms

Patents. NanoLogix owns 31 patents which will extend the same methods for the rapid detection and antibiotic sensitivity testing of all other bacteria such as E. Coli, Staphlococcus, Streptococcus, and H. pylori. NanoLogix also has patents for allowing the duplication of a patient's exact metabolic condition using an Infectech developed diagnostic test kit. This is extremely important when using antibiotics against ulcers or patients rapidly dying in an intensive care unit. NanoLogix’s patents have yielded a method vital to the development of nanotechnology products. In May 2007, NanoLogix filed a total of 5 patents (2 US, 2 provisional US and 1 international) for its BioNanoChannel™ Technology for rapid bacterial detection and identification.

- 434 -

Page 437: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2002, NanoLogix signed a testing and licensing agreement with ERBC Holdings Ltd - a European Merchant Bank based in Berlin with controlling interest in Advanced Technology Industries Inc. Under the terms of the agreement, NanoLogix technology for early identification of M. tuberculosis and M. avium bacteria and its development for bioterrorism defense will be evaluated and modified for manufacturing and marketing by an internationally recognized Israeli laboratory.

- 435 -

Page 438: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Nanosphere Inc

4088 Commercial AvenueNorthbrook, IL 60062, USAWeb site: http://www.nanosphere-inc.com/Tel: (847) 400-9000Fax: (847) 400-9199CEO: William MoffittContact: Ms.Vijaya Vasista, Chief Operating Officer ([email protected])

Overview. Nanosphere Inc, a privately held life-sciences company, uses the unique properties of nanoparticles for its proprietary technology. The Company has developed a comprehensive system for detecting biomolecules such as nucleic acids and proteins.

Technology/products. At the core of the Nanosphere technology are nanoparticle probes. DNA is attached to the nanoparticles through a proprietary modification procedure. The probes are then used to bind and signal the presence of a specific DNA sequence. The nanoparticle probes change color if the target is present in a sample. Nanosphere has developed an integrated system of probes, assays and detection hardware. The assays can be in either a spot format (single test on a membrane) or in a chip format (multiple samples or tests on one chip). The unique properties of the gold nanoparticle probes allow detection through a variety of methods including optical, electrical or magnetic processes (see Chapter 3). Nanosphere's products include:

Nanosphere Spot Assay. This is a user-friendly method for colorimetric detection of amplified DNA sequences using the proprietary gold nanoparticle probe technology. The nanoparticle probes appear red when suspended in solution, but turn blue if a complementary DNA target is present in the sample due to the formation of a nanoparticle/DNA network structure. The specificity of the nanoparticle probes allows identification and differentiation of SNPs.

SNP genotyping on microarrays. Nanosphere's nanoparticle-based technology enables a microarray-based method for multiplex SNP genotyping in total human genomic DNA without the need for target amplification. This is a powerful example of the versatility of Nanosphere's proprietary ClearRead nanoparticle technology.

Detection system. Detection hardware is being developed and marketed in three phases.

1. Manual Research System will be used as a tool for the research market, geared toward low volume processing. An example of the detection system is the Nanosphere Imaging System, which are now available for Nanosphere's use.

2. Clinical System will be developed and marketed as a partially automated medical device to be used by clinicians to perform diagnostics with multiple patient samples.

3. Point-of-Care Device will be completely automated and will include sample preparation (for blood), microfluidics and detection technologies in an integrated system, using simple disposable cartridges. The Phase III system will be designed for medical professionals that do not typically use diagnostic systems.

- 436 -

Page 439: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Verigene System. Nanosphere is developing its Verigene™ platform with integrated systems to meet the needs of IVD, biodefense and genomic research markets. Verigene ID is a simple, cost effective optical detection instrument with the ability to identify biological targets at low concentrations. The instrument and its components enable less skilled lab personnel to produce automatic, definitive results. No target amplification such as PCR is required. The Verigene ID is designed for diagnostic and research environments, including molecular and clinical labs. For Verigene System to be used with the Verigene ID, the the assay will be automated using integrated fluid processing. This instrument makes one-step processing possible, requiring users only to prep the sample. No target amplification (PCR) is required. The Verigene System will introduce low-cost biological screening to hospitals, clinical labs, reference labs and biodefense units.

Verigene AutoLab, offering complete sample-to-result processing, requires no additional sample preparation. The user will simply insert the sample, and a result will be generated. Labs will be capable of running multiple assays on multiple samples simultaneously. This level of simplicity and ease of use will make the Verigene AutoLab particularly suitable for clinical laboratories, forensic labs, military labs and first responders.

Verigene Mobile. The next generation Verigene Mobile will transfer the power and accuracy of the Verigene AutoLab to an affordable, hand-held device. With minimal training, users will simply insert a sample and a result will be generated through a completely automated unit incorporating microfluidic processing and electrical detection technologies. Its portability will make it useful for POC.

Verigene-based assays. The FDA has cleared Verigene Warfarin Metabolism Nucleic Acid Test, which detects variants of CYP2C9 and VKORC1 genes, responsible for sensitivity to the anticoagulant warfarin. Also approved is Verigene® F5/F2/MTHFR nucleic acid test, which detects disease-associated gene mutations that can contribute to blood coagulation disorders and difficulties metabolizing folate. Other Verigene tests will be for cystic fibrosis and to test CYP450. Several assays include those for detection of PSA in recurrent prostate cancer (where low levels may be undetectable by conventional tests), test for ovarian cancer, troponin test for cardiovascular disease, and a test for Alzheimer’s disease. Nanosphere has filed a 510(k) application to the FDA for marketing clearance of its Verigene SP Respiratory Virus Assay, which is already CE-marked, to detect influenza and RSV. It provides greater sensitivity than currently available rapid tests, combined with ease of use and turnaround time not found in either culture methods or the currently available molecular tests. In 2009, the package insert was updated to include reactivity with Influenza A in cultured clinical isolates containing 2009 H1N1 influenza virus.

A 510(k) application has also been submitted to the FDA for cardiac troponin I test to provide early diagnosis of myocardial infarction and risk stratification for acute coronary syndromes. The test runs on the firm's Verigene platform.

Bio-barcode technology. This is devleoped by Prof. Mirkin, a co-founder of the company (see Chapter 4). Warfarin sensitivity assay is being marketed currently. Other tests are:

Detection of low PSA in recurrent prostate cancer that is undetectable by other tests.

A cystic fibrosis assay which has been filed with the FDA.

- 437 -

Page 440: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2002, Nanosphere formed a development and distribution alliance with Takara Bio Inc for the development of highly sensitive, selective and portable detection systems that combine Nanosphere's nanoparticle DNA probe technology with Takara's proprietary ICAN isothermal gene amplification technology. Takara will have exclusive distribution rights for certain Nanosphere products in Asia and Europe.

In 2003, Nanosphere acquired nanoparticle detection technology for protein biomarkers by a licensing agreement with Northwestern University (Chicago, IL).

In 2006, Nanosphere and Applied NeuroSolutions Inc, a company focused on the development of an integrated product portfolio for the diagnosis and treatment of Alzheimer's disease (AD), formed collaboration for the development of diagnostic tests for AD. This research program will apply Nanosphere's Biobarcode technology for protein detection to Applied NeuroSolutions' proprietary biomarkers, which have been shown to be 85 to 95% accurate in the detection of AD. Ultrasensitive detection of these markers has the potential to lead to the next generation of diagnostic tests for AD.

In 2007, Nanosphere signed an agreement to allow it to use Epidauros' CYP2D6 IP as a predictive marker for responsiveness and adverse drug reactions.

- 438 -

Page 441: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NanoString Technologies

530 Fairview Avenue, NorthSeattle, WA 98109, USAWeb site: http://www.nanostring.com/Tel: (1) 888-358-6266E-mail: [email protected]: Brad Gray

Overview. NanoString Technologies spun out of the Institute for Systems Biology (ISB, Seattle, WA) in 2003 and holds an exclusive license for the technology from the Institute. The technology at the heart of NanoString was developed in the laboratory of Dr. Leroy Hood, the co-founder of the ISB, inventor of the first automated DNA sequencer. NanoString also is developing nCounter for use in molecular diagnostics. In 2009, the company closed a Series C financing round worth $30 million to accelerate commercialization of its nCounter Analysis System for both research and diagnostics.

Technology. NanoString Technologies is developing a patent-pending nanotechnology-based platform for high speed, completely automated, robust, highly multiplexed, single molecule identification and digital quantification. This breakthrough has the potential to become a biological operating system onto which any biomolecular analysis application can be developed. The NanoString system uniquely barcodes each individual target molecule, scans them, and delivers a literal inventory of single molecules in the biological sample. Applications include gene expression analysis, genotyping, proteomics, clinical diagnostics and, in the future, predictive, preventive, and personalized medicine. nCounter, which uses single-molecule reporters to bind to targets to quantify mRNAs in a sample, allows researchers to count these target molecules without amplification The NanoString system is anticipated to ultimately be as much as 100,000 times more sensitive than a DNA microarray and can scan entire transcriptomes in minutes.

NanoString is pursuing a strategy around oncology gene signatures in the clinic with the overall aim of becoming the platform of choice for FDA approved IVD tests that are based on multiplex gene expression profiling in cancer. Its first test will be based on the PAM50 gene signature for breast cancer, which it licensed from Bioclassifier in December 2010. In May 2010, the nCounter platform received ISO 13485:2003 certification, which was the first step in preparing it for FDA clearance anticipated in 2012. The technology was licensed to ARUP Laboratories to be offered as a laboratory-developed qPCR-based assay. In addition to developing the PAM50 gene assay, NanoString is in discussions with researchers who are using the nCounter platform to validate gene signatures for cancers other than breast cancer, and diagnostic companies who may be interested in using the nCounter platform after being unable to develop a multiplex gene signature expression assay on other technology platforms.

Collaborations. In 2007, NanoString signed an agreement with Precision System Science (PSS) to co-develop an automated fluidics handling tool and to distribute it with its nCounter gene expression platform. The agreement, the companies will integrate PSS’s Magtration technology, which uses magnetic particles to extract and purify substances, with NanoString’s nCounter.

In 2007, NanoString signed an agreement with Applied Precision to co-develop a high-speed fluorescent imager for its gene expression system.

- 439 -

Page 442: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Applied Precision’s base instrument will be used to help create an imager that will be incorporated into nCounter System and also will be coupled with a fluid-handling instrument, offering gene-expression functioning with less than 30 minutes of hands-on time per run.

In 2009, NanoString started 3-year collaboration with the Broad Institute of MIT to investigate molecular networks involved in immune response and other biological processes. Potential new basic and clinical research applications for NanoString's digital gene expression technology will also be explored. Broad scientists plan to identify unique signatures for various genes of interest, for which NanoString will design custom color-coded molecular barcodes called CodeSets. The partners may eventually develop these gene sets into commercially available assay panels for the nCounter system.

- 440 -

Page 443: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NeoGenomics Inc

12701 Commonwealth Drive, Suite 9Fort Myers, FL 33913, USAWeb site: http://www.neogenomics.org/Tel: (941) 513-9612Fax: (941) 513-9022E-mail: [email protected] & CSO: Robert P. Gasparini, MS Contact: Michael Thomas Dent MD ([email protected])

Overview. NeoGenomics Inc is a CLIA–certified molecular diagnostic laboratory, provides genetics testing services that are used to confirm diagnosis of various types of cancer. NeoGenomics is also working to identify biomarkers for a number of diseases and has collaborations with universities and private businesses to help facilitate its ongoing research activities. Established in 2001, NeoGenomics is a publicly traded company now with four primary objectives:

1. Development of the most comprehensive genetic database of female diseases and cancers.

2. Determining the key genetic sequences related to maternal and fetal diseases and cancers.

3. Providing molecular cytogenetic services nationwide.

4. Providing an environment fostering creativity and innovation leading to new and innovative genetic products.

Products. NeoGenomics currently offers three primary types of testing services: (1) cytogenetics testing, which analyzes human chromosomes; (2) FISH testing which analyzes abnormalities at the gene level; and (3) flow cytometry testing services, which analyzes clusters of differentiation on cell surfaces.

The company is expanding its product offerings in the oncology sector to include additional types of genetic and molecular tests. In July 2005, NeoGenomics began testing for bladder cancer, breast cancer and cervical cancer.

R & D. NeoGenomics is trying to identify the biomarkers responsible for the preeclampsia. It will work to create protein expression profiles which can be compared between healthy and unhealthy individuals - something genetic analysis alone could not accomplish. NeoGenomics plans to use proteomic technologies such as ProteinChip (Vermillion) along with its large phenotypic database, to discover unique biomarkers.

Collaborations. In 2002, Florida Cancer Specialists, the largest privately owned Oncology/Hematology practice in the state of Florida, agreed to utilize NeoGenomics Genostics laboratory for various tests. The most common testing that NeoGenomics will perform includes cytogenetic and molecular genetic analysis of bone marrow and leukemic blood samples. Other testing will include gene rearrangement studies, clonality assays, molecular genetic profiles for acute leukemias, and her-2/neu FISH analysis for breast cancer.

In 2007, NeoGenomics and Power3 formed a joint venture to create a CRO to sell Power3’s protein biomarker-based diagnostics. NeoGenomics will provide

- 441 -

Page 444: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

access to cancer samples, management, sales and marketing personnel, and laboratory facilities.

- 442 -

Page 445: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Network Biosystems

1 Gill Street, Suite B Woburn, MA 01801, USA Web site: http://www.networkbiosystems.com/Tel: 781-938-6060 Fax: 781-938-6062 President: Mary Consalvi ([email protected]) Overview. Network Biosystems is a development stage biotech/high tech company developing nanotechnology and microfluidics for DNA analysis in clinical, forensic, and genomic applications. Privately held and founded based on pioneering research performed at MIT's Whitehead Institute, NetBio fuses microelectronics and biotechnology to build "bio/nanotech" systems that sense and manipulate the physical world.

Technology/products. The Company has several broadly enabling technology platforms, all based on the integration of nanotechnology and microfluidics with biotechnology and molecular biology:

Clinical diagnostics: real-time sequencing of patient samples in the hospital laboratory will have a dramatic impact on clinical decision making. Network will also use this platform to develop POC diagnostics.

Forensics: Network is commercializing a rugged, portable STR identification instrument that functions both at the crime scene as well as the forensic laboratory.

Homeland security: Network’s instrumentation for the rapid, on-site screening of large numbers of individuals has a broad application to homeland security.

Genomic sequencing: large scale, high capacity sequencing of the human genome in the academic and pharmaceutical settings.

NetBio has already completed the development of individual subsystems for the platform and is currently in the process of integrating them. They include modules for DNA purification, RT-PCR for RNA analysis, multiplexed PCR, Sanger sequencing reactions, and separation and detection of the Sanger products. The clinical Sanger sequencing system, Genebench, will accept clinical samples and generate sequence within an hour, instead of trying to sequence entire genomes. It will generate relatively small amounts of sequence in real time at the POC to allow a physician to make an immediate clinical intervention. The system could be used, for example, to identify strains of bacterial pathogens and to determine their antibiotic resistance profiles. The system will have relatively low throughput, ranging from a single sample to maybe as many as 96 samples per run, allowing users to run the instrument on an as-needed basis, rather than having to wait for enough samples to accumulate. It will be more rugged than conventional capillary electrophoresis sequencers, so it can be moved around easily without breaking. Development of the instrument and its modules has been funded in part by a grant from the National Human Genome Research Institute’s “$100,000 Genome” Advanced Sequencing Technology program.

- 443 -

Page 446: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Newfound Genomics Inc

187 Lemarchant RoadSt. John's, NL, A1C 2H5 CanadaWeb site: http://www.newfound-genomics.comTel: 709-753-3900Fax: 709-753-1927President & CEO: Ms. Siobhan Coady ([email protected])

Overview. Newfound Genomics Inc is a clinical genomics research company based in Newfoundland that specializes in complex gene disease R & D through novel gene discovery, validation studies and genotyping services. Using clinical and medical information and analysis, Newfound Genomics has undertaken genetics research to build a better understanding of the relationships between genes, human health and disease, which will be important for the development of personalized medicine. Through this research Newfound hopes to contribute to an earlier diagnosis of disease, a more accurate prediction of the prognosis of disease and identification of targets that will lead to the development of more effective drugs for the treatment of disease. By using integrated clinical measurements and genetic information derived from DNA sampling, Newfound Genomics maintains a series of study-specific databases.

Technology/research. Newfound has a state-of-the-art genetics laboratory equipped with all the basic molecular capabilities including thermal cyclers, a gel electrophoresis system and a gel documentation system which allows for molecular genotyping. It employs leading-edge MassArray and AffyMetrix technology to further enhance its research capabilities.

As a clinical genomics company, Newfound focuses on clinical and medical information as the starting point in its search for disease-relevant genes. It believes that collecting and analyzing detailed clinical and genetic data relating to the presence of disease, or the risk of disease, is more effective in discovering disease relevant genes than focusing on genetic data alone. This is because clinical data also allows for the identification of individuals who exhibit risk traits toward becoming affected by disease and their relevant clinical measurements. This information allows Newfound Genomics to conduct a more focused search of genetic data by looking for genes and SNPs shared by individuals affected by some disease or with risk traits in common.

Newfound Genomics' scientific goal is to identify the specific function of genes and SNPs that relate to common human diseases. This is accomplished by analyzing extensive high quality clinical measurements and genetic samples from groups of donor volunteers.

Collaborations. In 2008, Newfound Genomics signed a memorandum of understanding with the Genesis Group, the technology transfer of the Memorial University of Newfoundland, to commercialize certain discoveries from the university in the field of human genetics. A second agreement provides the company with certain exclusive rights to develop and market a test for arrhythmogenic right ventricular cardiomyopathy (AVRC). Concurrent with this deal, Newfound granted an exclusive sub-license to Clinical Data’s PGxHealth unit to perform and market a test to diagnose AVRC in the US, Europe, and certain other undisclosed territories.

- 444 -

Page 447: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NewGene Ltd

Bioscience BuildingInternational Centre for Life,Newcastle upon Tyne, NE1 4EP UKWeb site: http://www.newgene.org.uk/Tel: +44 (0)191 242 1923 Fax: +44 (0)191 241 8799Email: [email protected] Executive Officer: David Huntley

Overview. NewGene, a UK firm, was founded in 2008 to address an identified need within the National Health Service (NHS) and the wider health sector both nationally and globally. It is a partnership between the Newcastle Hospitals NHS Foundation Trust and University. NewGene is now jointly owned by Newcastle University and the NHS, and the NHS provides the majority of funding. For its fiscal-year 2012, which will start in April 2011, the company anticipates generating more than £1 million ($1.6 million) in sales. NewGene provides competitively priced and rapid DNA and RNA based assays for the detection of genetic variations of clinical significance, which are available to the NHS, private sector and international markets. Testing is done at NewGene's facility and the firm plans to continue doing so as it expands to areas surrounding the UK. However, it may license its technology out to other firms or healthcare organizations to do the testing.

Technology/products. In 2010, NewGene launched its next-generation sequencing-based BRCA1 and BRCA2 testing service for breast cancer in the UK. NewGene uses the Roche 454 GS-FLX platform for pyrosequencing. Initially, the test is being targeted to patients with a family history of breast cancer with a longer-term goal of developing it as a general screen for the disease. Since its launch, the company has been refining the test, reducing the turnaround time, and improving production procedures. NewGene is currently focused on adoption of the test in the UK, but it aims to expend the testing in rest of Europe, and eventually the US.

NewGene uses the pyrosequencing platform largely because of its ability to run multiple tests. The system also can be used to read long stretches of DNA compared to other platforms, which is an advantage for clinical diagnostics as compared to other platforms that are more appropriate for research work. NewGene may explore other next-gen sequencing platforms as well.

In addition to its BRCA tests, NewGene offers five other assays. The test for KRAS mutation; EGFR mutation; BRAF mutation; and JAK-2 and MPL mutation are run on Sequenom's MassArray mass spectrometry platform. The BCR-ABL mutation test is run on Roche's LightCycler PCR system. The company also plans to launch a test for muscular dystrophy in the UK in April 2011, and other tests in the pipeline include those for melanoma, hereditary non-polyposis colorectal cancer and familial adenomatous polyposis, and atypical hemolytic uremic syndrome. Those tests will also be based on Roche 454 sequencing.

Collaborations. In November 2010, Roche NimbleGen appointed NewGene Ltd as official Certified Service Provider for NimbleGen Sequence Capture Arrays with sequencing on the Genome Sequencer FLX System from 454 Life Sciences.

- 445 -

Page 448: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 446 -

Page 449: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NorDiag ASA

Thormøhlensgate 55N-5008 Bergen, NorwayWeb site: http://www.nordiag.no/Tel: + 47 55 54 39 60Fax: + 47 55 54 38 98CEO: Mårten Wigstøl ([email protected])

Overview. NorDiag has developed a novel, proprietary DNA-based technology for cancer testing and believes that its technology will help increase patient participation in cancer screening programs and hasten the successful launch of new screening programs. It currently focuses on colorectal cancer and Genefec™ is its first product. Sales of this product have grown strongly since market introduction in Norway in 2002. Genefec™ was recently introduced in Sweden and Denmark, and NorDiag is planning to introduce the product in additional countries. Since many countries are currently considering or preparing nation-wide screening programs for colorectal cancer. The company's main goals for the next few years will be market entry in several additional European countries; completion of its broad clinical study in Germany, and the continued improvement of its test leading to a next generation Genefec™ test.

NorDiag is listed on Oslo Stock Exchange under the ticker NORD. On 5 March 2007, NorDiag acquired Genpoint, a DNA sample preparation company based in Norway, in a stock deal worth $13.3 million. The acquisition will expand its cancer and infectious diagnostics line and will help speed its colorectal cancer test to the market.

Technology/product. Key benefits to Genefec™ are its non-invasiveness, scalability, cost-effectiveness and its accuracy at the early stages of cancer development. Early detection gives the best chances for successful treatment. NorDiag' new GeneOpsy test can detect genetic mutations in biopsy tissue. The introduction of GeneOpsy is complimentary to the Genefec test for fecal analysis, which allows for early detection of colorectal cancer using a similar technology.

The patented technology platform can also be applied to detect other cancers, including pancreatic cancer. The Company has also initiated a development program for a potential diagnostic test in relation to the treatment of lung cancer.

Collaborations. In 2006, NorDiag signed an agreement with Manipal AcuNova Ltd in India for marketing and distribution of NorDiag' new GeneOpsy test to detect genetic mutations relevant to colorectal cancer in biopsy tissues.

In 2007, GE licensed certain of its patents for biomagnetic nucleic-acid isolation to NorDiag, which will enable diagnosis from smaller-volume patient samples by increasing yield of nucleic acids that can isolated from pathogens.

In 2007, EXACT extended a licensing agreement for its long-DNA biomarker technology, DIA, with NorDiag. NorDiag will use the technology, which is designed to identify abnormal apoptosis at the molecular level, in its colorectal cancer-screening tests in Europe, Japan, and Australia.

- 447 -

Page 450: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Novartis Vaccines & Diagnostics Inc

4560 Horton Street Emeryville, CA 94608-2916, USAWeb site: http://www.novartisdiagnostics.comTel: (800) 524-4766

Overview. Building on its strong presence in transfusion medicine, Novartis Diagnostics creates innovative diagnostics to detect, prevent and predict disease and to improve medical outcomes. Novartis is developing a future of innovative solutions for preventive screening. Its products are used to test millions of blood donations around the world each year for pathogens such as HIV (the AIDS virus,) hepatitis B and hepatitis C, and West Nile virus. More than 80% of the US blood supply is tested on Novartis systems to make sure they are safe for transfusion or use in other blood products.

On 24 Jan 2011, Novartis signed a definitive agreement to acquire personalized diagnostics lab services firm Genoptix for approximately $470 million. The acquisition will provide Novartis with a lab testing services business that focuses on cancers of the blood and solid tumors. Genoptix uses a variety of technologies, including flow cytometry, cytogenetics, FISH, and molecular tests to provide personalized diagnostic results. Through its flagship Compass service, Genoptix correlates DNA sequencing results with these technologies to arrive at a patient-specific diagnosis. The acquisition complements Novartis' hematology oncology drug franchises, i.e. Gleevac for leukemia.

Technologies/products. Procleix® assays, such as the Procleix® UltriO® assay, use transcription-mediated amplification (TMA) technology to simplify NAT by enabling simultaneous detection of multiple viruses in a single tube. TMA technology allows a lab to perform NAT assays for blood screening with fewer steps and less processing time for faster results. Fewer material transfer steps also means less risk of contamination.

The Bio-Seeq platform (licensed from Smith Detection) is used to detect viral and bacterial pathogens, and it is designed for users with little or no biological testing experience. The late-PCR technology in this platform, which it licensed by Smith under an exclusive agreement with Brandeis University, is a method for isolating and amplifying individual DNA sequences to identify pathogens.

Collaborations. State-of-the-art TMA technology was developed by Gen-Probe, which partners with Novartis for NAT innovation.

In 2006 the American Red Cross and Chiron (now Novartis Diagnostics), signed a multi-year agreement for the supply of Nucleic Acid Testing products. The agreement extends the existing contract for the Procleix® HIV-1/HCV Assay and amends the contract to include the Procleix® West Nile Virus Assay.

In March 2010, Smiths Detection and Novartis Diagnostics signed a license and collaboration agreement to develop and commercialize Smiths Detection's Bio-Seeq PCR-based instrument and infectious disease diagnostic tests. Smiths will develop and enhance the Bio-Seeq platform for use in a range of POC diagnostic tests that Novartis Diagnostics will then move through clinical trials, regulatory affairs, and sales and marketing. Under the agreement, Novartis Diagnostics will pay Smiths Detection for product development and commercial milestones.

- 448 -

Page 451: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

On 4 Jan 2011, Foundation Medicine, a pharmacogenomic test development firm, started collaboration with Novartis to develop, enhance, and optimize its cancer genome panel test. If the pilot phase is successful the two companies will evaluate opportunities to commercialize the test.

On 5 April 2011, Fluidigm amended an agreement with Novartis Vaccines and Diagnostics for the development of non-invasive prenatal diagnostics test for fetal aneuploidies based on its dPCR system.

- 449 -

Page 452: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Novel Diagnostics ASA

Bergen High Technology CenterThormoehlensgt 55, N-5008 Bergen, NorwayWeb site: http://www.noveldiagnostics.com/Tel: +47 55543965Fax: +47 55589683CEO and CFO: Marit Wick ([email protected])

Overview. Novel Diagnostics uses advances in diagnostics for prediction, predisposition, earlier detection and characterization of disease. Current focus is on early diagnosis of infectious diseases and colorectal cancer, with the PlasmAcute and Genefec technologies, respectively. Novel Diagnostics invests in diagnostic technologies that target diseases in fast, effective and cost-efficient ways. This is achieved by:

The transformation from manual to automated test methods

Market and industry oriented product development

Clinical trials, documentation, standardization

International marketing or licensing

In March 2007, Novel Diagnostics acquired the diagnostic company Genpoint AS, which will strengthen its technological platform and reduce time to market for a fully automated genetic test for screening of colorectal cancer. The combined company will have a broader product portfolio in cancer and infectious diagnosis, as well as internationally extended management and R & D resources. The aim is to build a leading gene-based diagnostics company in 3-5 years.

Technologies/products. These are PlasmAcute and Genefec.

PlasmAcute. This is a radically improved immunoassay for the detection of infectious diseases, enabling accurate diagnosis at an unprecedented early stage. Clinical tests suggest that PlasmAcute matches or surpasses the nucleic acid technology platform in this capacity. Results from a large scale clinical trial are expected in 2004. PlasmAcute is a complement to the traditional ELISA immunoassay, ideally suited to:

Narrow the window phase of infection.

Distinguish between maternal and new antibodies.

Early and precise identification of infections by virus or bacteria both in man and animal.

Follow the clinical effect of chemotherapeutic intervention (antibiotic and antiviral).

Analyze the precise kinetics of the immune response, in particular for vaccine testing.

Genefec. This is a genetic test for the early detection of colorectal cancer:

Detection at an early, curable stage

High sensitivity for both premalignant and malignant colorectal cancer

- 450 -

Page 453: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Patient-friendly, non-invasive test (stool sample)

Little or no false positive test results

Suitable for public screening

Genefec is now available to physicians in Norway through Capio Diagnostics, one of the largest health care providers in Scandinavia. Norwegian healthcare authorities fully reimburse the test in their national healthcare scheme.

Collaborations. In 2004, bioMérieux signed an agreement to gain access to Novel Diagnostics' patented PlasmAcute acute phase antibody detection technology for rapid diagnosis of tuberculosis.

In May 2007, Novel Diagnostics signed a non exclusive distribution agreement with Roche Diagnostics Scandinavia AB where Roche will lease instruments and purchase kits from NorDiag for resale to their customers in the field of sexually transmitted diseases.

In June 2007, Novel Diagnostics and EXACT Sciences entered into a collaboration and a non-exclusive license agreement to advance the development and commercialization of colorectal cancer screening technologies outside the US and Canada.

- 451 -

Page 454: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

NuGEN Technologies Inc

821 Industrial Road, Unit ASan Carlos, CA 94070, USAWeb site: http://www.nugentechnologies.com/Tel: (650) 590-3600Fax: (650) 590-3630CEO: Elizabeth A. Hutt MSEmail: [email protected]

Overview. NuGEN Technologies Inc focused on the development and commercialization of the next generation of genetic and proteomic analysis products and technologies to enable better understanding, diagnosis and treatment of disease. Its genomics sample preparation expands the utility of next generation sequencing (NGS).

Technologies/applications. NuGEN's SPIA™ Isothermal Linear Amplification (SPIA™) technology provides rapid, continuous isothermal linear nucleic acid amplification and analysis. SPIA™ is carried out at a constant temperature, eliminating the need for thermocycling, substantially reducing assay complexity, and enhancing speed and throughput. SPIA™ DNA amplification method generates up to 109 copies of a target sequence in about 30 minutes. The process has been successfully applied to the rapid generation of high fidelity copies of DNA samples for use in target identification, sequencing, and for SNP and genotyping analysis. The process is faster and produces more accurate sequence replication than PCR.

NuGEN’s Ribo-SPIA™ technology is the proprietary foundation for the Ovation System product family. Ribo-SPIA technology provides a single, reliable, sensitive, rapid, and cost-effective amplification and labeling solution for gene expression analysis that is easily automatable. Ovation® WGA FFPE and the Ovation® RNA-Seq FFPE systems are the first commercially available products designed specifically to enable researchers to utilize NGS technologies to analyze nucleic acids extracted from FFPE tissues

NuGEN has also developed a proprietary exponential isothermal amplification method called X-SPIA (eXponential Single Primer Isothermal Amplification) for applications requiring very high amplification efficiency (e.g. detecting very low levels of pathogenic agents). Both SPIA methods produce single-stranded copies of the target sequence, and are readily amenable to integration with microarrays or microfluidic chips. SPIA is also ideally suited for environmental or field-based applications for the detection of anthrax, when integrated with existing microfluidic miniaturized devices.

As gene expression analysis discoveries lead to new biomarkers for predicting disease risk and drug response, clinical diagnostic applications will become a reality. As this demand grows, NuGEN’s products will offer clinical diagnostic laboratories robust, high fidelity RNA amplification from clinical specimens such as biopsies, LCM tissue, FFPE and whole blood samples. NuGEN is poised, with its core technologies, to significantly participate in the high growth potential of clinical RNA-based gene expression profiling.

Collaborations. In 2003, Affymetrix and NuGEN started to develop WT-SPIA™ system for use with Affymetrix GeneChip technology.

- 452 -

Page 455: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2007, NuGen integrated Kreatech’s ULS into its FL-Ovation cDNA fluorescent module to provide a sample-preparation workflow for gene expression analysis projects performed with Agilent's DNA microarrays.

On 27 Jan 2011, Caliper Life Sciences and NuGen agreed to co-market their sample preparation products for NGS applications. They will co-develop automation scripts for NuGen's Ovation RNA-Seq System and Encore NGS Multiplex System I on Caliper's Sciclone NGS Workstation. The combined offering will provide end-to-end, high-throughput library construction from <500 pg of total RNA.

- 453 -

Page 456: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

OncoMethylome Sciences SA

Tour 5 GIGA niveau +3Av. de l’Hopital 114000 Liege, BelgiumWeb site: http://www.oncomethylome.com/Tel: +32 (0) 4 364 20 70Fax: +32 (0) 4 364 20 71US Office of OncoMethylome Sciences Inc2505 Meridian Parkway, Suite 310, Durham, NC 27713Tel: 919-281-0980; Fax: 919-281-0981CEO: Jan Groen PhDVP Business Development: Harry Schrickx, ([email protected])

Overview. OncoMethylome Sciences Inc (OMS) is a leader in the research, design and validation of molecular gene methylation tests to (1) detect cancer at an early stage of the disease and at a higher level of accuracy than currently available tests; (2) determine the aggressiveness profile of a patient’s cancer; and (3) predict and monitor response to cancer therapy for optimal and more individualized treatment decisions.

In August 2010, OMS changed its business model to concentrate on its commercial clinical diagnostic operations while moving away from basic research. Its goal is to reap the full benefits of its proprietary DNA methylation platform by developing stand-alone molecular diagnostic products for rapid commercialization. Colorectal cancer (CRC) blood-based screening test that has been undergoing clinical validation no longer fits in OMS' new strategy is discontinued and the biomarkers will be outsourced.

Technologies. OMS's diagnostic tests determine the methylation status of cancer-associated gene promoter regions, but can also be adapted for identifying specific oncology markers. Depending on the biomarker or combination of biomarkers, the technology can be used for various diagnostic settings. Its patent-protected MSP platform is the only scalable technology that enables a sensitive and specific detection of methylated genes in a background of normal cells, critical for early diagnosis or detection of micrometastases in serum, saliva or sputum samples. MSP detects abnormal gene methylation utilizing small amounts of DNA. The process employs an initial bisulfite reaction to modify the DNA, followed by PCR amplification with specific primers designed to distinguish methylated from unmethylated DNA. This specific alteration allows for the detection of a few cancer cells embedded in otherwise normal tissue. This process can be applied to the detection of promoter hypermethylation any other cellular genes related to cancer. This approach is far less labor intensive and more amenable to high throughput screening than microarray assays.

OMS is also investigating methods to quantitate the methylation of gene promoter regions. The quantitative MSP (QMSP) employed is important for diagnostic applications. The aim is to determine quantitative ratios of biomarker genes and suitable reference genes, which allow for an accurate detection of the presence of cancer cells in clinical samples. A number of methylated gene biomarkers have been shown to be closely associated with the development and progression of human cancer. These genes are among the candidates that OMS is actively screening as biomarkers.

Products. OncoMethylome has a broad product development pipeline. It has partnered its prostate cancer diagnostic assays with Veridex. It is evaluating gene hypermethylation markers in urine, with a goal of developing a

- 454 -

Page 457: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

noninvasive, highly sensitive and specific test for early detection and monitoring of bladder cancer. It is developing a methylation test to further improve the early diagnosis of cervical cancer. The same cervical swab, which is used to test for Pap cytology and the HPV test, could be used in a methylation-based assay to improve the sensitivity of the Pap test and to confirm the likely presence of cancer in women who test positive for the HPV virus. Along with its collaborators, it is investigating the methylation status of specific tumor biomarkers in cells obtained from ductal lavage, fine needle aspirations and other techniques under investigation for screening women at high risk for developing breast cancer. A methylation-based noninvasive test is being investigated for screening those at risk for developing lung cancer, such as current and former smokers.

In September 2009, OncoMethylome announced promising results from its evaluation of a blood-based methylation assay for the screening and detection of CRC. There was a high frequency of two newly reported methylation genes, SYNE1 and FOXE1, in CRC patients, whereas they occur infrequently in noncancerous individuals. This program is being discontinued and the biomarkers will be outlicensed.

Collaborations. OncoMethylome collaborates with leading international molecular oncology research centers and its products are based on methylation technology invented by Johns Hopkins University. Commercial collaborations and partnerships include: Veridex LLC (a Johnson & Johnson company), GlaxoSmithKline Biologicals, Abbott, Millipore Corporation, Merck KGaA and Qiagen.

In 2005. OMS licensed Chemicon International Inc’s patented fluorescent detection technology, Amplifluor®, for the clinical development of diagnostic assays for detection of DNA methylation patterns based on measurement of the differences between healthy and diseased states to provide a reliable and sensitive method for identifying disease and disease progression. Schering-Plough (SP) licensed from OMS technology to measure the methylation status of the MGMT gene in brain cancer patients being treated with its drug Temodar. In 2006, the terms of a new agreement enable OMS to receive processing fees for providing SP with testing services for clinical trials in other cancer as well.

In 2006, OMS agreed to provide MGMT Gene Methylation Testing in a phase III clinical trial for patients with brain tumors, conducted jointly by the Radiation Therapy Oncology Group and the European Organization for Research and Treatment of Cancer.

In 2007, Exact Sciences granted OMS rights to its DNA-stabilization, -isolation, and -extraction technology for stool-based CRC-screening tests in Europe, and intends to apply for FDA approval for the test in 2012. On 27 July 2010, Exact obtained worldwide rights to up to two OMS' DNA methylation biomarkers for use in stool-based detection of CRC.

In 2008, OMS signed an agreement with LabCorp® to supply reagents for detecting methylation of the Vimentin DNA biomarker with methylation-specific PCR to be developed into a stool-based test for colorectal cancer screening.

OMS collaborates with SelfScreen BV, to develop a diagnostic aimed at women who have tested positive for human papillomavirus. The test is for the identification of those patients who, in fact, have cancer and would need a follow-up with a gynecologist.

On 6 January 2010, OMS signed an agreement with Roche covering its MGMT assay, which will be used in a phase III clinical trial to determine the

- 455 -

Page 458: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

clinical utility of Roche's Avastin in newly diagnosed glioblastoma multiforme.

- 456 -

Page 459: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Onconome Inc

201 Elliott Avenue West, Suite 510Seattle, WA 98119, USAWeb site: http://www.onconome.com/ Tel: (206)-268-8500Fax: (206)-268-8501Email: [email protected] and CEO: H. Raymond Cairncross

Overview. Onconome Inc (formerly Tessera Inc) is dedicated to developing new, cutting-edge diagnostic products for the early detection of prostate and colon cancers. The company was incorporated in Washington State in 2000. Using new, patented technology discovered by leading scientists from Johns Hopkins University's School of Medicine (Baltimore, MD) and from the University of Pittsburgh, (Pittsburgh, PA), Tessera is developing diagnostic tests that are many times more sensitive and more accurate than other methods currently used. A funded research program with Dr. Robert Getzenberg is currently underway at the Brady Urological Research Institute at Johns Hopkins to develop antibodies for the detection of early-stage prostate cancer and colon cancer.

Technology. Onconome has entered into an agreement with the Johns Hopkins University under which the company has licensed prostate-specific Nuclear Matrix Proteins (NMPs) identified by Johns Hopkins researchers. The 14 NMPs identify normal, benign and cancerous prostates and their presence or absence can provide information about the health of the prostate. The NMPs are described in the following four United States issued patents: 5,849,509, 5,874,539, 6,030,793, and 6,215,567.

For example, one of the prostate NMPs, PC-1, is only present in prostates with cancer, and it is not present in normal or benign prostates. Identification of those men expressing PC-1 would help urologists to identify prostate cancer early, and would hopefully lead to earlier treatments to alleviate suffering and loss of life. Even after surgery to remove a cancerous part of a prostate it would be advisable to continue to monitor for this cancer marker. This technology is the basis of development of Xanthus Prostate Cancer Research products that differentiate between normal, benign, and cancerous prostates. These tests will be used to detect prostate specific NMPs in blood and tissue samples from men. In addition, Tessera Diagnostics has licensed novel technology from the University of Pittsburgh for additional prostate markers.

Products. ProstaMark EPCA Analyte Specific Reagent (ASR): A prostate biopsy stain for use in immunohistochemistry as an adjunct to the digital rectal examination and the prostate specific antigen (PSA) assay.

Collaborations. In 2004, GTx Inc entered into collaboration with Onconome for the development of a commercial blood or urine test, which could detect high grade prostatic intraepithelial neoplasia (PIN) in men who unknowingly harbor this precancerous lesion of the prostate or who may develop prostate cancer. GTx will provide clinical samples from its completed Phase IIb clinical trial program which evaluated Acapodene (toremifene citrate) for the reduction of the incidence of prostate cancer in men with high grade PIN, a premalignant lesion that has the potential to progress to prostate cancer.

In 2005, collaboration with Unipath LLC (Denver, CO), a pathology laboratory was the first to offer EPCA (Early Prostate Cancer Antigen), which

- 457 -

Page 460: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

will be used on prostate biopsy tissues that appear negative using current technology.

- 458 -

Page 461: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Oncotech Inc

(an Exiqon Company)15501 Red Hill AvenueTustin, CA 92780, USAWeb site: http://www.oncotech.com/Tel : (800) 576-6326Fax: (714) 566-0421

Overview. Oncotech provides innovative molecular oncology testing services to over one thousand hospitals throughout the US and Europe to assist physicians in the care and management of their cancer patients. Oncotech is a market leader in the field of in vitro drug resistance and therapy selection testing, and performs innovative genomic research aimed at rapidly identifying new cancer diagnostics and therapeutics to improve the outcome of cancer patients. Oncotech is applying this research capability to identify the next generation of proprietary molecular diagnostics that will enable identification and employment of genomic markers to individualize chemotherapy. This will enable medical oncologists to prescribe chemotherapy in a patient-specific manner

In 2007, Exiqon S/A aquired Oncotech Inc and the combination of resources will lead to a leading supplier of molecular diagnostic tests based on proprietary miRNA biomarkers. Oncotech will gain access to Exiqon’s superior LNA™-detection technologies and proprietary miRNA biomarkers and Exiqon can master a number of challenges in building a platform for its future molecular diagnostic business.

Services. In addition to its proprietary drug resistance assays, Oncotech also offers a full line of specialized laboratory tests including immunohistochemistry, flow cytometry, immunophenotyping, FISH, molecular diagnostics, and pathology services.

Research relevant to cancer diagnostics. Some of the research projects are:

Identification of amplifications/deletions in taxol resistant ovarian cancer by CGH.

Detecting altered expression and activation of signaling pathways in cisplatin resistant ovarian cance.

In vitro drug resistance profiles correlate with DNAa ploidy and p53 expression in 3,106 endometrioid and papillary serous adenocarcinomas of the uterus

Optimization of protocols and screening of topoisomerase II-alpha for SNPs that predict response to etoposide and doxorubicin.

In vitro chemoresistance and biomarker profiles are unique for histologic subtypes of epithelial ovarian cancer

Correlation of tumor-associated biomarkers with in vitro drug response in malignant gliomas.

Application of SELDI technology to discover ovarian cancer biomarkers for early detection and individualized treatment.

The relationship of molecular markers of p53 function and angiogenesis to prognosis of stage I epithelial ovarian cancer

- 459 -

Page 462: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Differential gene expression analysis for genetic fingerprinting of tumors.

Development of an in vitro chemo-radiation response assay for cervical carcinoma.

To identify tumor miRNA signatures that correlate with drug resistance.

Collaborations. In 2006, Oncotech granted the rights to market its cancer diagnostic services in South Korea to Innocell Corporation.

Operon SA

Camino del Plano 1950410-Cuarte de Huerva (Zaragoza), SpainWeb site: http://operon.es/Tel: +34 976 503597Fax: +34 976 503531Email: [email protected] Director: Mr Tomas Toribio

Overview. Operon SA is a biotechnology company focused on research, development, manufacturing and sales of IVD products. It has facilities to produce the reagents needed in the manufacture of its products. It is supplying its products with Operon brand name or in bulk to important international companies, which sell its tests world-wide with their own brand names. Operon welcomes collaborations with other companies and organizations.

Products. Recombinant proteins are produced and new PCR extraction, primers and purification systems are being designed for its customers in the Molecular Biology Department. The use of latex particles in its rapid IVD tests, enables detection of different colors in the results and control lines, making the tests very attractive for the end-user. Since 1987, its R&D team has developed hundreds of hybridomes that are now producing monoclonal antibodies (MAbs). Operon produces IVDs for applications in several areas:

Clinical diagnostics such as infectious diseases, pregnancy, and tumor biomarkers.

Veterinary diagnostics for quickly detection of bacteria, viruses or other pathogens.

Food analysis to ensure cost-effective production of high quality products.

MAbs are produced by using single antibody-forming cells to tumor cells grown in culture. The resulting cell is called a hybridoma.

Operon develops and produces its proprietary recombinant antigens for its IVD kits and also sells them to universities and private companies for diverse purposes.

Services. Operon offers various services related to MAb engineering, development and production. Recombinant antigens, new primers and extraction/ purification systems are also offered upon request.

- 460 -

Page 463: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

OpGen Inc

510 Charmany Drive, Suite 151Madison WI 53719, USAWeb site: http://www.opgen.com/Tel: (608) 441 8100 Fax: (608) 441 8101 E-mail: [email protected]: Noel Doheny

Overview. OpGen® is commercializing technology that will revolutionize modern medicine by providing the first means for rapid, cost-effective comparison of whole genomes in populations. Such whole genome analysis will enable practical pharmacogenomics, forensic microbiology, and whole genome molecular diagnostics. Optical mapping, the technology that makes this all possible, is the first and only publicly validated system for single DNA molecule analysis.

Technology. OptiChip™ is a microfluidic device consisting of a derivatized glass surface with 10-48 channels. The process of optical mapping begins with a DNA sample from virtually any source. DNA samples are prepared for analysis by extraction methods similar to that used for pulsed field gel electrophoresis. As the sample flows through the multiple channels of the OptiChip™, individual DNA molecules elongate and become fixed to the surface. This massive array of molecules can then be interrogated for the presence of specific markers. OpGen uses optical mapping to produce information across whole genomes in a single, cost-effective manipulation, with no requirement for prior sequence information, PCR, synthesis, cloning or probes. Applications and advantages of OptiChip are described in Chapter 3. The OpGen Microbial Identification System based on OptiChip can uniquely identify an organism using only the DNA molecules from the sample without isolation or PCR. OpGen has created, and begun the population of a database dedicated to the identification and characterization of microbial isolates important to biodefense (see Chapter 9).

In 2003, OpGen added a genome map of the Category "A" pathogen, Francisella tularensis, the causative agent of tularemia, to its genome map database. The organism poses a potential bio-threat.

In 2004, OpGen completed a whole genome map of the fungal pathogen, Aspergillus fumigatus for an international project aimed at determining the complete genome sequence of this organism.

Collaborations. In 2004, OpGen commenced an Optical Mapping study of oligodendroglioma a malignant brain tumor. OpGen is working with the Hermelin Brain Tumor Center, a division of the Henry Ford Health System in Detroit. Optical Maps will enable researchers to pinpoint and characterize lesions in the genome to determine what is happening at the DNA level and how well a patient will respond to treatment.

In 2005, OpGen signed an exclusive distribution agreement with M&S Instruments Inc, one of Japan's leading importers of pharmaceutical, biotechnology, and information technology tools and solutions.

In 2006, OpGen signed agreements with Stratos Product Development LLC and Micronics Inc for the development of its first commercial product. The companies each bring unique capabilities to the innovation of cost-effective, high-throughput instruments and disposables employing OpGen's Optical Mapping technology platform. The company intends to market these systems

- 461 -

Page 464: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

worldwide to genome analysis and clinical microbiology research laboratories.

- 462 -

Page 465: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

OraSure Technologies Inc

220 East First Street Bethlehem, PA 18015, USAWeb site: http://www.orasure.com/Tel: (610) 882-1820Contact: William F. Bruckner ([email protected])President & Chief Executive Officer: Douglas A. Michels

Overview. OraSure Technologies was formed by the merger of Epitope Inc with STC Technologies Inc in 2000. OraSure develops, manufactures and markets medical devices and diagnostic products for use by public- and private-sector clients, clinical laboratories, physicians' offices and workplace testing. OraSure is the leading supplier of oral fluid collection devices and assays to the life insurance industry and public health markets for the detection of antibodies to HIV. In addition, the company supplies oral fluid testing solutions for drugs-of-abuse testing.

Technologies. The following are relevant to molecular diagnostics:

OraQuick Rapid Test Platform. This is designed to test oral fluid, whole blood or serum/plasma samples for the presence of various antigens. The device includes a porous pad used to collect an oral fluid specimen. After collection, the pad is inserted into a vial containing a pre-mixed amount of developer solution and allowed to develop. When whole blood, serum or plasma is to be tested, a loop collection device is used to collect the sample and insert it into the developer solution, after which the collection pad is inserted into the solution. The specimen and solution then flow through the testing device where results are observable in about 20 minutes. This technology can be used for the detection of a variety of infectious diseases, such as HIV, viral hepatitis, syphilis and other diseases. On 14 August 2001, the Centers for Disease Control and Prevention selected the OraQuick rapid HIV test to be used to provide results to pregnant women as part of the CDC funded clinical study, the Maternal Infant Rapid Intervention at Delivery (MIRIAD) Project. On 22 June 2004, the FDA approved OraQuick Rapid HIV-1/2 Antibody Test for use in detecting antibodies to the HIV-2, in oral fluid samples.

UPT (Up-Converting Phosphor Technology). This is the trademark name for OraSure Technologies’ new, rapid, on-site in vitro diagnostic system. UPT particles are used to amplify and make easier the detection of biological materials in microchips such as DNA, infectious disease markers and drugs of abuse. UPT particles are small ceramic nanospheres composed of rare earth metals and have been shown to be 1000 times more sensitive than current fluorescent technologies. UPT particles are excited by infrared light and up-convert the energy to give a visible emission. This use of infrared light rather than ultraviolet light to create a colored signal is called up-conversion. In addition to UPT's greater sensitivity, particles, which produce different colors, are available for use and enable simultaneous identification of a greater number of biological targets of interest. Since UPT particles are not visible to the eye, any test employing UPT labels requires an instrument to "read" the test device and show the result on a screen. Advances in compact laser diodes have enabled the development of a portable, benchtop instrument system designed to read the lateral flow test strips. Working with SRI International, OraSure has been able to incorporate UPT labels into a rapid lateral flow test format. UPT has potential in a broad array of DNA testing applications including drug discovery, SNP analysis, and infectious disease testing. A 510(k) application has been filed with the FDA for UPT reader drugs of abuse assays.

- 463 -

Page 466: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Orchid Cellmark Inc

4390 US Route OnePrinceton, NJ 08540, USAWeb site: http://www.orchid.com/Tel: (609) 750-2200Fax: (609) 750-6400Email: [email protected] Executive Officer: Thomas A. Bologna

Overview. Orchid Cellmark Inc (formerly Orchid BioSciences Inc) is a leading provider of identity DNA testing services for the human identity and agriculture markets. Orchid provides DNA testing services for forensic, family relationship and security applications. Orchid's strong market positions in these segments reflect the company's accredited laboratories in the US and UK, its innovative genetic analysis technologies and expertise, and the world-renowned Cellmark brand. In 2001, Orchid acquired Lifecodes Corp, a leading provider of identity genomics testing for forensics and paternity. Cellmark Europe was established in 2001 through the acquisition of UK-based Cellmark Diagnostics, one of the first commercial DNA testing laboratories. It is one of the largest providers of paternity and relationship testing services in Europe, and a leading supplier of forensic DNA profiling for criminal investigation. In April 2011, Laboratory Corporation of America purchased Orchid Cellmark for $85.4 million.

Technology/ products relevant to molecular diagnostics. Orchid conducts SNP scoring using its proprietary SNP-IT primer-extension technology. SNP-IT primer extension is a method of isolating the precise location of the site of a suspected SNP and utilizing the inherent accuracy of DNA polymerase to determine the presence or absence of the SNP. In order to conduct SNP-IT primer extension, a specially synthesized DNA primer is bound to the sample DNA to expose the DNA site of interest where a SNP may be present. DNA polymerase, a naturally occurring molecule that accurately and reliably inserts the appropriate complementary base to a chain of DNA, is then added to extend the DNA chain by one base at the suspected SNP location. One of several conventional methods, such as fluorescence, optical density, electrophoresis and mass spectroscopy, is used to detect this single base extension. The result is a direct read-out method of detecting SNPs that creates a simple binary “bit” of genetic information representing the presence of a SNP in a DNA sample.

Orchid's Heritage ID product line is designed to help individuals establish their genetic heritage. It can help Native American tribes confirm the familial relationship of specific individuals to existing tribal members for tribal enrollment applications.

Applications/services relevant to molecular diagnostics. Orchid provides high throughput SNP-IT scoring services to pharmaceutical, biotechnology, agricultural and academic customers through its MegaSNPatron facilities. Identity genomics testing for forensics and paternity, as well as clinical genotyping, are done through its GeneScreen and Cellmark units.

Orchid's CF genetic screening test Elucigene CF29 is used by CLIA-approved laboratories in the USt. Elucigene CF29 reagents use ARMS detection technology to provide a simple and accurate means of routinely testing for 29 common mutations of the CFTR gene.

- 464 -

Page 467: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SNPstream MT genotyping platform performs multiplexed SNP analyses using SNP-IT in a bead-based fluorescent assay and runs on the Luminex Corporation's LabMAP platform.

Orchid's second major line of business is to provide SNP analyses and other genetic diversity testing on a fee-for-service basis. These services are offered by its MegaSNPatron high-throughput SNP scoring facility through its GeneScreen laboratories in the US and Cellmark Diagnostics subsidiary in Europe. The peak capacity of the MegaSNPatron is one million SNPs daily. Orchid intends to leverage this unique mix of capabilities to become a leader in clinical pharmacogenetic testing. GeneShield, Orchid's direct-to-marketplace initiative, uses the Internet to provide genetic diversity testing and information directly to physicians and patients. For example, BoneMarrowTest.com web site provides for patients the resources to identify and test potential bone marrow donors.

In 2004, Orchid was selected to be the exclusive provider of high-throughput DNA testing for a large-scale Canadian pork traceability program a joint venture between Maple Leaf Foods Inc of Toronto and Pyxis Genomics Inc of Chicago. This represents the first commercial application of DNA technology for pork traceability. The program is designed to enable Canadian pork marketed anywhere in the world to be traced in a matter of hours from the store shelf back to the farm where the meat originated and even back to the maternal sow.

In 2005, Orchid was awarded a contract by the Louisiana Department of Health and Hospitals to provide forensic DNA testing to help identify victims of Hurricane Katrina. Orchid will generate DNA profiles from reference samples provided by families of the hurricane victims for comparison to DNA profiles from the victims.

Collaborations. In 2000, Orchid and the SNP Consortium entered into an agreement to determine the allelic frequency of 60,000 SNP genomic markers in diverse populations. Orchid purchased an option to co-develop and co-commercialize certain existing and future intellectual properties and products of DNAPrint genomics. The option covers software and information resources such as SNP and haplotype determinations and multivariate associations with complex human traits and diseases.

In 2002, Beckman Coulter acquired certain assets of Orchid's including SNP genotyping instruments, bioinformatic software and related consumables business.

In 2004, Tepnel Life Sciences completed the acquisition of the assets of its diagnostics unit of Orchid. These include consumables and services for HLA testing for organ transplantation matching, tests for CF genetic screening and certain related support services. In the same year, Orchid's Cellmark Unit licensed Cybergenetics' TrueAllele software for forensics applications. These proprietary computational methods fully automate routine DNA analysis, replacing the slow and costly manual scoring.

- 465 -

Page 468: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Orion Genomics

Center for Emerging Technology4041 Forest Park AveSaint Louis, MO 63108, USAWeb site: http://www.oriongenomics.comTel: 314-615-6977Fax: 314-615-6975Email: [email protected] & Chief Executive Officer: Nathan D. Lakey

Overview. Orion Genomics is the Second Code™ biotechnology company developing oncology diagnostic products and generating revenue in a hybrid products services model. Orion's various proprietary technologies, trademarked as MethylScope and MethylScreen, detect both normal and abnormal epigenetic patterns of genes and genomes and are used in various molecular diagnostic applications.

Molecular diagnostic technologies. Orion’s proprietary biomarker discovery platform is MethylScope® technology. A single MethylScope® microarray is capable of quantitatively detecting the methylation status of each and every human gene. DNA from a tumor sample is labeled with different colors to distinguish between methylated and unmethylated fragments. The fragments are hybridized to the MethylScope® array and scanned, generating a methylation score for every gene on the array. By comparing methylation profiles of two or more samples, Orion discovers biomarkers associated with specific diseases. MethylScope® technology is the only platform capable of detecting inappropriate DNA methylation for all human genes on a single array, providing a fast, cost-effective, and comprehensive biomarker discovery tool.

MethylScreen technology is a single-step, high-sensitivity assay system that is amenable to high-throughput operation, and detects not only trace amounts of specific methylated biomarkers in a background of normal DNA (as would be required in, for instance, a serum test for cancer), but it also quantifies the relative methylation density within each detected biomarker. The technology is based on treating DNA with methylation-specific enzymes and quantifying DNA using real-time quantitative PCR. For each biomarker locus, the assay measures unmethylated copies and methylated copies independently and with redundant checks. This information is used to ascertain the presence of several different classes of methylated biomarkers, which are related to presence of disease, the stage of disease, and/or the response to therapeutics. Automated instruments suitable for MethylScreen assays are already available in most reference testing laboratories.

In March 2007, Orion was issued a US Patent # 7,186,512, entitled, "Methods and Compositions for Determining Methylation Profiles", which covers Orion's MethylScope technology, a broad approach to discovering and quantifying the DNA methylation status on each and every gene in the human genome.

Collaborations. Orion has entered into various academic collaborations to develop epigenetic patterns or maps that correlate with cancer. These patterns are the foundation for the development of the company’s proprietary screening and therapy selection molecular diagnostic tests. The collaborations include: (1) Johns Hopkins University to explore the role of DNA’s “Second Code” in colon cancer and to enable the development of a simple new diagnostic test for its early detection; (2) Joslin Diabetes Center for effect of DNA methylation on low birth-weight and an elevated risk of

- 466 -

Page 469: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

adult onset diabetes; (3) Washington University (St. Louis, MO) for lung, breast, cervical, prostate and ovarian cancer; and (4) Whitehead Institute for Biomedical Research.

In 2005, Orion initiated several collaborations with leading researchers at Washington University (St. Louis, MO) to discover “Second Code” biomarkers that indicate the presence of cancer and how it will respond to certain therapies. In 2006, Orion and the University of Glasgow started a collaboration to use Orion's methylation technologies identify epigenetic biomarkers for developing early screening and personalized therapy options for cancers of the lung, breast, and ovaries.

- 467 -

Page 470: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ortho Clinical Diagnostics Inc

100 Indigo Creek DriveRochester, NY 14626, USAWeb site: http://www.orthoclinical.com/en-us/Fax: (585) 453-3660E-mail: [email protected]: Cathy BurzikContact: Mark Straley, Worldwide Commercial President

Overview. Ortho Clinical Diagnostics (OCD) Inc, a Johnson & Johnson (J&J) company, is a leading provider of high-value diagnostic products and services for the global health care. These include diagnostic and blood screening systems, services and supplies to medical laboratories and blood and plasma centers worldwide. In addition through its patented MicroSlide™ and enhanced chemiluminescence technologies, the Company transformed the way clinical laboratories perform testing. In 2008, J&J Nordic AB acquired Åmic, a privately held Swedish developer of IVD technologies based on microfluidic biochip for use in POC for $40 million. This will supplement OCD products.

Technologies/products. In clinical chemistry, patented dry-slide technology and systems are used in stat and random access in IVD testing. The Company offers a broad menu covering basic metabolites, chemistry, proteins, toxicology and therapeutic drug monitoring tests. In immunodiagnostics, there is enhanced chemiluminescence technology and systems offering immunoassay-testing for thyroid function, reproductive endocrinology, cardiology, anemia, metabolism, oncology and infectious diseases.

The VITROS ECi with Enhanced Chemiluminescence Technology is automated and provides continuous random access capabilities to immunodiagnostic testing. Ortho Summit System provides a comprehensive system of infectious disease assays, automation and information management components needed for performance, compliance and efficiency. The VITROS Chemistry hsCRP assay is available on the VITROS 5,1 FS Chemistry System and is used to quantitatively measure CRP in human serum to assess the risk of developing coronary heart disease. In 2006, the FDA approved VITROS NT-proBNP Assay to detect a key biomarker in human serum to assess the risk of developing coronary heart disease. It is available in all the major markets.

VITROS® 5600 Integrated System for laboratory diagnostics received FDA 510(k) clearance in December 2008. Important features are: (1) MicroWell technology with enhanced chemiluminescence enables exceptional assay performance with small sample volume requirements across a broad range of diseases; (2) MicroSensor technology automatically performs sample quality indices checks for the first time ever on an immunoassay system; and (3) Intellicheck® technology verifies analytical performance and reduces error potential by providing real-time operator notification and tracking

In blood screening/transfusion medicine, development and commercialization of instrument systems and reagents that screen blood for AIDS and hepatitis is aimed at ensuring the safety of the world's blood supply. Ortho ProVue™ is the first FDA-approved fully automated blood banking system for use with the ID-Micro Typing System™ (ID-MTS) Gel Test™ in North America.

Collaborations. In 2002, OCD signed an agreement for DxS Ltd' nucleic acid detection technology, 'Scorpions,' for use in molecular assays. In 2003, OCD was awarded a multi-year contract by the American Red Cross as a primary

- 468 -

Page 471: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

supplier of tests for infectious disease, blood typing, and antibody detection. In 2004, OCD was granted a non-exclusive license by Roche Diagnostics for the development, manufacture and marketing of immunoassays that detect a key marker of congestive heart failure, NT-proBNP. In 2005, OCD signed an agreement with Compugen Ltd for the development and commercialization of immunoassay diagnostic biomarkers. OCD will have the right to select up to nine biomarkers for development from Compugen's portfolio, with the parties then collaborating on the initial clinical validation of the selected biomarkers.

- 469 -

Page 472: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Oxford Gene Technology

The Hirsch BuildingBegbroke Business & Science ParkSandy Lane, YarntonOxford OX5 1PF, UKWeb site: http://www.ogt.co.uk/Tel: +44 (0)1865 856340Fax: +44 (0)1865 842116CEO: Dr Mike Evans

Overview. Oxford Gene Technology (OGT) was founded by Professor Edwin Southern in 1995 to exploit patented technology developed in his research laboratories at Oxford University. These techniques and their derivatives have led to significant research programs in many different fields of biology, diagnostics and medicine including early work in the human genome project. Of particular note is work on DNA microarrays and methods of synthesizing customized short sequences of nucleic acids on solid glass surfaces to investigate gene sequences and their behavior.

Technologies. Ink jet in-situ synthesis (IJISS). Synthesized oligonucleotide microarrays are fabricated using array makers evolved from ink jet printer technology developed by Rosetta Inpharmatics and Agilent Technologies. This technology is rapid and versatile and enables fast turnaround of array fabrication. It also utilizes robust, well characterized phosphoramidite chemistry. A high coupling efficiency enables in situ synthesis of short and long oligonucleotides . Flexibility in fabrication enables the generation of custom microarrays. This results in custom specified, random access high density arrays with probe sets which can be rapidly empirically optimized for any purpose in any research. OGT arrays enable any gene sequences or combinations of genes to be surveyed. This means total flexibility tailored to individual research projects.

Protein binding arrays. OGT has a protocol to convert synthesized single stranded oligonucleotides into double DNA duplexes to establish binding profiles of human transcription factors. During incubation with the microarray the protein binds to the dsDNA and can then be detected using Fluor labeled antibodies to the protein.

MiRNA. OGT's flexible approach to probe optimization, array design and fabrication ensures that all miRNAs are included in the OGT miRNA microarray including those that have only recently been identified whilst Ink jet in-situ synthesis provides quality arrays with excellent spot to spot variability and morphology. On 10 March 2008, Agilent Technologies officially granted OGT status as its microarray Certified Service Provider in Europe following the completion of several successful projects.

Products. OGT has developed a proprietary target preparation protocol and probe design workflow to develop quality customized comparative genomic hybridization (CGH) microarrays. OGT is planning to launch array CGH, which enables high-throughput, rapid identification and mapping of genomic DNA copy number changes, and maps them directly onto the genomic sequence. Array CGH is a widely used technique for cancer research and the identification of chromosomal abnormalities associated with congenital disorders, with higher resolution than is possible using traditional, non-array methods

Collaborations. OGT licensed Ink jet in situ synthesis technology from Rosetta Inpharmatics. OGT commercializes its microarray patents through

- 470 -

Page 473: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

licensing and these were granted to Incyte Genomics in the area of gene expression and to Agilent Technologies for the bulk manufacture of arrays using ink jet printing technology.

In 2006, OGT, St. George’s University of London, and St. George’s Healthcare NHS of UK started to develop a single-platform microarray that could diagnose multiple sexually transmitted diseases (STDs) with a single specimen and offer cost-effective results on the same day. The aim is to develop POC testing for STDs. In February 2007, OGT and the Wellcome Trust Sanger Institute agreed to develop a single platform microarray to test for genetic defects in unborn children.

- 471 -

Page 474: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Oxonica Inc

7 Begbroke Science Park, Sandy Lane Yarnton, Kidlington, Oxfordshire OX5 1PF, UK Web site: http://www.oxonica.comTel: +44 (0) 1865 856 700Fax: +44 (0) 1865 856 701Email: [email protected]: Kevin Matthews, MA DPhil CChem CSi MRSC MACSContact: [email protected]

Overview. Oxonica operates in the area of nanomaterials. The company is application focused with a portfolio of in-house developed new product opportunities. It also commercialises IPR researched over many years in The University of Oxford. It employs scientists from the key enabling areas of physics, materials science, chemistry and biochemistry. Its strong commercial team has wide ranging industry experience from electronics and telecommunications through to speciality and performance chemicals. Oxonica's technology allows it to successfully design, manipulate and engineer certain properties of materials at the nano-scale. It has a portfolio of 22 patents covering materials and applications of commercial significance. Oxonica's intellectual property derives from a compelling combination of three key technology pillars: solid state physics, colloidal chemistry and coating technology. Oxonica has a strong platform technology. It currently offers commercial products in the fields of fuel catalysis and personal care, and its research and development department is developing a suite of products for diverse sectors including medical diagnostics and security. In 2005, Oxonica acquired Nanoplex Technologies Inc, which forms the basis of its nanodiagnostics platform.

Products relevant to nanobiotechnology. Oxonica's nanoparticle capability allows it to offer a range of novel nanocrystalline luminescent materials to the academic and research communities. These materials have been engineered to emit in a very narrow wavelength range, giving clear, clean colors. Oxonica is able to manipulate the particles to achieve different colours with no requirement to control the particle size. The materials are based on non-toxic inorganic compounds and are therefore highly stable. There are many applications for these products, e.g. fluorescent labeling.

Oxonica uses nanosized phosphor materials as biolabels. Such compounds naturally emit very narrow wavelength range, giving clear, clean colors. Oxonica has engineered the particles to achieve different colors with no requirement to control the particle size. This could drastically improve techniques for ultrasensitive, high throughput diagnostics in medicine. Oxonica biodiagnostics includes nanocrystal fluorescent beads and SERRS (Surface-Enhanced Resonant Raman Spectroscopy)-Beads (see Chapter4). Nanocrystal fluorescent beads are non-cadmium based alternatives to quantum dots. For integration into assay development and cellular/tissue/whole organism imaging, Oxonica capitalizes on its extensive expertise in nanoparticle manufacture, to encapsulate numerous Nanocrystals in a single polymer or silica bead (typically 50-200 nm in size). Protected within organic and polymer layers, the Nanocrystal bead can be functionalized with bioprobe molecules using standard bioconjugation protocols.

OPTISOL™, based on nanosized titanium dioxide, is a photostable ultraviolet (UV) absorber that has applications in skin-care products and other materials.

- 472 -

Page 475: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SERS (Surface-enhanced Raman Scattering)-based nanotags. These are novel optical detection tags for use in point of care diagnostics. Many unique tags can be generated by varying the Raman active molecule, thus allowing multiplexed detection to be performed (see Chapter 2).

Colloidal Gold Amplified SPR. Surface plasmon resonance (SPR) is a widely used technique but it cannot be highly multiplexed without an amplification method. Nanoplex metal nanoparticle-based amplification technique for ultrasensitive bioanalysis enables SPR experiments to be carried out at each element in a microarray. It is more sensitive than conventional SPR for detection of protein-protein and DNA-DNA interactions, and is a powerful tool for HTS screening of ligand libraries against protein targets.

NANOPLEX™ technology, comprising portable readers, software, nanoparticles, and conjugation protocols, allows high-performance, multiplexed assays to be developed for immunodiagnostics, molecular diagnostics, and proteomics, in a wide range of formats, from disposable, rapid lateral flow tests to highly innovative assay formats for near patient and hospital lab testing, to high-throughput multi-well screens. Together, these benefits translate to unprecedented capabilities for biomarker quantitation, with the ability to support the implementation of the next generation of ultra-sensitive, multiplexed biomarkers, covering a wide range of areas, from infectious disease, cardiac and cancer diagnostics to food testing for pathogens and animal health.

Collaborations relevant to molecular diagnostics. Oxonica is working closely with Avalon Instruments to develop its RamanSpec plate reader with the SERS-Beads configuration.

In 2006, Oxonica signed a licence agreement for its Nanoplex™ technology with Becton, Dickinson and Company (BD) for the clinical IVD market. A cooperative research program will be initiated to apply Oxonica’s technology for use in diagnostics by BD.

- 473 -

Page 476: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Pacific Biosciences

1505 Adams DriveMenlo Park, CA 94025, USAWeb site: http://www.pacificbiosciences.com/Tel: (650) 521-8000CEO: Hugh MartinChief Technology Officer: Stephen Turner PhD ([email protected])Contact: Martha Trela, VP Marketing ([email protected])

Overview. Pacific Biosciences (PacBio), founded in 2004, is developing a transformative single-molecule, real-time (SMRT™) DNA sequencing platform. PacBio’s goal is to commercialize SMRT DNA sequencing technology, eventually enabling sequencing of individual genomes as part of routine medical care. In November 2008, the company raised $20 million in funding from new investor Blackstone Cleantech Venture Partners, bringing its total financing since it was founded to $193 million.

Technology/products. PacBio's SMRT technology offers a completely new performance envelope - long reads, increased throughput, and low cost. Long reads are a critical advantage for a broad range of genomic analysis applications. For resequencing, long reads enable confident genomic placement of repetitive regions and characterization of structural variation. For de novo sequencing, long reads greatly simplify the reconstruction process and can achieve more complete sequence with less coverage. Requiring less coverage translates to much higher performance because fewer reads are needed. This combination of performance characteristics is the result of a unique approach that uses a single DNA polymerase working in a continuous, processive manner to synthesize DNA. For the first time, natural DNA synthesis by a DNA polymerase can be observed as it occurs. SMRT technology is built upon two key innovations that overcome major challenges facing the field of DNA sequencing:

1. The SMRT chip is composed of a 100 nm thick metal film deposited on a silicon-dioxide substrate and dotted with thousands of tiny wells, each only tens of nanometers in diameter enabling observation of individual fluorophores against a dense background of labeled nucleotides.

2. Phospholinked nucleotides, which produce a completely natural DNA strand through fast, accurate, and processive DNA synthesis.

Scientists from PacBio have used SMRT™ to perform uninterrupted template-directed synthesis with four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). They are using zero-mode waveguide (ZMW) nanostructure arrays, which provide optical observation and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions (see Chapter 2). PacBio is aiming to bring its platform to the market by 2010. Due to the combination of long reads, fast cycle times, low costs, and high quality data, SMRT™ sequencing will be applicable for a broad range of applications, from de novo sequencing to whole genome resequencing.

Collaborations. In 2008, PacBio acquired “sequencing by incorporation” technology from LI-COR Biosciences, which generally identifies nucleotides in a DNA sequence based upon synthesis of a complementary DNA strand.

On 21 June 2010, Gen-Probe made a $50 million investment in PacBio to explore co-development for a period of 30 months of an integrated diagnostic

- 474 -

Page 477: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

system based on its expertise and PacBio's single molecule real time platform.

- 475 -

Page 478: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ParagonDx LLC

133 Southcenter Court, Suite 200Morrisville, NC 27560, USAWeb site: http://www.paragondx.com/Tel: (919) 653-5520 Fax: (919) 653-5554 Email: [email protected] and CEO: Michael P. Murphy

Overview. ParagonDx is a leading provider of applied molecular diagnostic products. Initially a pioneer in the field of pharmacogenomics, ParagonDx broadened its expertise into molecular diagnostic products in 2007 when it acquired the assets of Gentris Diagnostics Inc. Its products are intended to enhance medical care by providing early diagnostic information rapidly. This should benefit patients and save money for the healthcare system. Among the key assets ParagonDx purchased from Gentris Diagnostics were the first six FDA-cleared human genomic reference controls and 46 other reference control products currently being sold to reference laboratories and developers of diagnostic product. ParagonDx also develops and markets reference controls for laboratory quality control and diagnostic kits that bring the promise of personalized medicine to physicians and patients. ParagonDx was the first company to bring FDA-cleared human DNA genomic reference controls to the market. These products are intended to enhance patient safety, improve patients’ response to therapy and help realize the promise of personalized medicine.

Technology/products. ParagonDx is leveraging its know-how to develop human genomic DNA reference controls and new diagnostic test kits that can be used to make pharmacogenomic profiling accessible to physicians and patients. ParagonDX is the first company to bring FDA-cleared Human Genomic Quality Controls to the market. ParagonDx’s controls are isolated from B-lymphoblastoids derived from individual donors. A proprietary prescreening process is used to identify potential sources for these reference controls from a group of properly consented subjects. The presence of all polymorphisms has been verified by bi-directional sequencing and, in some cases, by multi-laboratory testing. These controls can be used for assay validation, staff training and proficiency testing, and as a quality control in routine IVD testing.

The company's human genomic DNA reference controls are listed at the Genetic Testing Quality Control Materials Program of the US Centers for Disease Control and Prevention (CDC) website. The controls are also listed on the European Community EuroGenTest Quality Control and Reference Material Producers website.

ParagonDx currently offers controls for cytochrome P450 polymorphisms (CYP2D6, CYP2C19 and CYP2C9), VKORC1, UGT1A1, MTHFR and NAT2. Controls for other related genes are under development. It also provides custom controls upon request.

In 2008, ParagonDx received 510(k) marketing clearance from the FDA for its IVD Rapid Genotyping Assay to be used to detect polymorphisms in the genes CYP2C9 and VKORC1, which may be used to identify patients at greater risk for warfarin sensitivity.

- 476 -

Page 479: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

PathoGene LLC

2225 N. Gemini Drive, Suite E-11Flagstaff, Arizona 86001, USAWeb site: http://www.pathogene.com/Tel: 928-863-3248Email: [email protected] and CEO: Todd Snowden

Overview. PathoGene LLC, founded in 2008, is a medical diagnostics company dedicated to identifying pathogenic microbes using cutting edge DNA technologies. The company’s mission is to develop novel molecular diagnostic assays for detection, surveillance and treatment decision support to the global healthcare, veterinary and public health markets. These developments will help control the spread of infectious agents, improve patient outcomes and lower healthcare costs associated with the treatment of infectious diseases.

On 18 August 2010, PathoGene completed its first round of financing and raised 150% of its stated goal of $500K in seed money for a total of $750K. This new venture is being championed by top tier scientists, successful laboratory managers and experienced biotech executives who are using licensed technology from Northern Arizona University and The Translational Genomics Research Institute as a launching pad for building a successful bioscience business.

Product pipeline. PathoGene is developing diagnostic products for the following:

Coccidioidomycosis: identification

Methecillin Resistant Staphylococcus aureus: identification, antibiotic resistance profiling, and strain differentiation.

Influenza: strain differentiation and antiviral resistance identification

- 477 -

Page 480: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Pathwork Diagnostics

595 Penobscot DriveRedwood City, CA 94063, USAWeb Site: http://www.pathworkdx.com/Tel: 650-366-1003Fax: 650-599-9083E-mail: [email protected] President and CEO: Deborah J. Neff

Overview. Pathwork Diagnostics (formerly Predicant Biosciences Inc), an emerging life sciences company, is committed to transforming patient care by providing physicians a clinically reliable method of detecting, diagnosing and monitoring complex disease states through the analysis of protein patterns in blood. Predicant Biosciences acquired Pathwork Diagnostics in 2006.

Technology. Pathwork is developing an integrated system incorporating proprietary separation, detection and informatics technologies to provide reliable, reproducible and sensitive measurements for protein pattern discovery and clinical assay. It is using microfluidics as a core technology for the company’s proteomic tests. Protein patterns generated on a platform designed to maximize reproducibility while meeting clinical standards, will be more robust and provide clinicians with more high-value information than any single marker for many complex and important diseases. This technology has broad applications including detecting the earliest stage of disease, disease progression, improving the accuracy of disease diagnosis, and predicting the efficacy of therapy.

Product. Pathwork' proprietary analytics has a companion Pathchip® microarray, which runs on the proven Affymetrix GeneChip® System. Pathwork® Tissue of Origin Test was developed for use in determining the origin of uncertain tumors. The test analyzes a tumor's gene expression pattern to help pinpoint the source of hard-to-identify tumors. The test aids in determining a tumor's origin so that standard-of-care, cancer-specific treatment can start. It was approved by the FDA in 2008. In January 2009, Pathwork launched a formalin-fixed paraffin-embedded (FFPE) version of Tissue of Origin Test, which is available through its CLIA certified laboratory. On 15 June 2010, the FDA cleared Pathwork's microarray-based Tissue of Origin test with FFPE tissue.

Collaborations. In 2005, Pathwork non-exclusively licensed a major portion of Caliper Life Sciences' microfluidics patent estate for use with its technology for the analysis of proteins using mass spectrometry. The agreement covers the full set of Caliper’s intellectual property assets that is relevant to Pathwork’s product development efforts.

On 30 July 2010, Pathwork started collaboration with Novartis for discovery of cancer biomarkers.

- 478 -

Page 481: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

PerkinElmer Life Sciences

549 Albany StreetBoston, MA, 02118, USAWeb site: http://las.perkinelmer.com/Tel: (617) 482-9595Fax: (617) 482-1380President: Robert Friel

Overview. PerkinElmer Life Sciences is a global provider of services and technologies for the life science industry. Incorporating Packard BioScience, NEN, and Wallac product brands, PerkinElmer offers a complete line of instrumentation, reagents and consumables, as well as assay development, sample preparation and biochip technologies for high-throughput screening, and other areas involved in target validation for drug discovery. In 2007, PerkinElmer opened a new corporate headquarters and lab in Waltham, MA. The company’s new 115,000-square-foot digs contain an R&D facility for the company’s drug-discovery, cellular-science, and diagnostics businesses.

Acquisitions. In 2006, PerkinElmer acquired Spectral Genomics Inc. In the same year, PerkinElmer acquired NTD Laboratories and J.N. Macri Technologies for approximately $56.65 million, bringing the company closer to its goal of building a screening and diagnostics capability in maternal health. J.N. Macri holds global patents related to free beta human chorionic gonadotropin, which is widely recognized as a critical biomarker for first-trimester prenatal risk assessment. NTD developed UltraScreen, a screening test, which when used with ultrasound and maternal demographic data provides clinicians with a patient-specific risk probability for fetal abnormalities. In 2006, PerkinElmer bought Evotec Technologies for $30 million for high-content screening platform. In April 2007, PerkinElmer acquired UK imaging company Improvision, which makes 3D and 4D cellular-imaging software and hardware. PerkinElmer adds the Volocity software, which captures, visualizes and analyzes cellular images, and a software system for cellular control and analysis, which will complement its Ultraview Live Cell Imaging systems used for high-speed, multi-dimensional imaging. In 2007, PerkinElmer acquired Viacell for $300 million, which focuses on collecting and preserving umbilical cord blood (UCB) stem cells, and the acquisition will significantly expand PerkinElmer's neonatal and prenatal screening business. Because many disorders are treatable using UCB stem cells, bringing both the screening and therapeutic benefits of these two businesses together offers a more comprehensive solution to patients and physicians. In April 2010, PerkinElmer acquired Signature Genomic Labs for $90 million, which will strengthen its existing genetic testing service business, expand its position in early detection of disease, specifically in the cancer molecular diagnostics. On 14 Feb 2011, PerkinElmer acquired Chemagen Biopolymer-Technologie (Baesweiler, Germany) as part of its strategy to advance its product offerings in the molecular diagnostics and research markets. Chemagen offers automated nucleic acid isolation products. Its M-PVA Magnetic Bead technology is used to purify DNA, RNA, or viral DNA/RNA, and its instrument, the Chemagic MSM, enables the automated separation of nucleic acids from sample volumes between 10 microliters and 10 milliliters.

Technologies/ products relevant to molecular diagnostics. Western Lightning™ and DNA Thunder™ are chemiluminescence reagents that can be used in detecting many different blot-based protein and nucleic acid studies, including western blotting assays, non-rad nucleic acid labeling and DNA slot blot applications. They comprise kits with both high sensitivity and

- 479 -

Page 482: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

conventional strength reagents for horse radish peroxide-based assays, as well as kits designed for alkaline phosphatase-based detection assays in each family. All feature high sensitivity detection, up to 4x times higher than other brands.

Tyramide signal Amplification (TSA) system is designed for chromogenic or indirect fluorescence detection in ISH and IHC applications. This popular original TSA system deposits multiple biotinyl tyramides onto tissue sections or cell preparations, which are visualized using streptavidin-conjugated fluors or chromogens.

PerkinElmer provides full set of gene probes for use in genetic typing of type 1 diabetes. Based on its DELFIA® technology, these probes provide an effective method for significantly increasing daily sample throughput, enabling quicker, more effective research. They are capable of handling large sample volume throughput, and are less technically demanding than traditional solutions. The probes specific for HLA-DQB1, HLA-DQA1 and HLA-DRB1 alleles are currently used exclusively for research to discover the genes involved in conferring a genetic risk of or protection from developing type 1 diabetes. Once the DNA in a blood sample is amplified, the presence of particular alleles relating to type 1 diabetes can be determined by a hybridization reaction using allele-specific, short oligonucleotides labeled with lanthanide chelates. DELFIA® Xpress offers the speed and convenience of random access in maternal health screening.

PerkinElmer provides DNA as well as protein microarrays. ProteinArray Workstation has enabled the automation of microarray processing.

PerkinElmer's state-of-the-art BioXPRESSION™ Biomarker discovery and screening platform includes the novel prOTOF 2000™ MALDI mass spectrometer, ProXPRESSION™ carrier protein-based blood biomarker enrichment kits.

AcycloPrime™-FP SNP Detection Systems detect known SNPs from genomic DNA, after amplification of the region of DNA containing the SNP of interest.

In 2006, PerkinElmer unveiled the Comprehensive Solution™ Autoplex Gene Expression Platform and the Spectral Genomics Array CGH Platform important tools for improving gene expression validation, molecular karyotyping and genome profiling.

PerkinElmer has BACs-on-Beads assays for targeted molecular karyotyping and gene panels directed at leukemia as a service. It also has a number of assays and systems for maternal and newborn health screening. It has introduced a next-gen sequencing service.

Collaborations. PerkinElmer has access to Incyte's collection of proprietary cDNA clones from LifeSeq® database for the commercialization of microarrays. In 2005, PerkinElmer and Waters Corporation started collaboration with a reagent/software/MS-LC platform to deliver advanced newborn screening solutions. Agreements in 2006 were:

5-year research agreement with George Mason University (Fairfax, VA) to design clinical assay platforms using both the amino acid identification of a protein fragment and its specific mass to identify biomarkers of cancer: lung, ovary, breast.

A multi-year agreement with the Russian Ministry of Health to supply DELFIA neonatal screening technology for for cystic fibrosis, hypothyroidism, phenylketonuria, adrenal hyperplasia, and galactosemia.

- 480 -

Page 483: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

With Johns Hopkins University and the University of Birmingham, UK, to establish tools and technologies using BioExpression platform to discover low-abundance disease-related diagnostic and therapeutic biomarkers for undisclosed indications.

A multi-year license and research collaboration with Photonics and the University of Leicester (UK). Together, the two organizations will begin to lay the groundwork for the clinical investigation and discovery of biomarkers that predict preterm birth. This collaboration, which will be financed by PerkinElmer, reinforces the company's long-term commitment to the area of maternal health.

Expansion of neonatal screening in China with a 5-year agreement, and donation of VICTOR multilabel plate readers for genetic testing. The Ministry of Health of the People's Republic of China purchased the assay kits used on the system. The program will provide training to physicians and technicians at screening centers.

In 2009, PerkinElmer licensed silicon photomultiplier technology for photon detection from Max Planck Institute for analytical applications and clinical diagnostics.

- 481 -

Page 484: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Pes Diagnosesysteme GmbH

Hauptstrasse 10304416 Leipzig-Markkleeberg, GermanyWeb site: http://www.pes-d.de/Tel: +49 (0) 341 / 305 46 0Fax: +49 (0) 341 / 305 46 20E-mail: [email protected]: Dipl. Kaufm. Volker Richter

Overview. Pes diagnosesysteme GmbH was founded in 1999 as a subsidiary of pe Diagnostik GmbH under financial contribution of Siemens Medical Solutions AG and the venture capital fund Sächsischer Beteiligungsfonds (SBF). As of mid 2004 pes diagnosesysteme GmbH has 20 employees, mainly in R&D and production. The company’s focus is on the development and production of innovative biosensor systems for use in clinical point-of-care (POC) diagnosis. Since 1 August 2007, the Pes diagnosesysteme is a part of the DiaSys Goup.

Products. The company is developing a biomarker product based on troponin and myoglobin CK-MB for detection of myocardial infarction

The company will develop a POC immunoassay system. The new system consists of a fully integrated disposable cartridge and an analyzer unit. The initial assay development will focus on rapid diagnosis of acute myocardial infarction using only a small amount of whole blood. Results from the novel peS platform will be available in a matter of just a few minutes, allowing emergency medical personnel to perform the analysis directly at the patient bedside.

Collaborations. In 2004, Pes and Siemens Medical Solutions Diagnostics (SMSD) signed an agreement to that included Gesellschaft für medizinische Diagnosesysteme to develop and commercialize a point-of-care immunoassay system that will allow rapid and accurate diagnosis of various pathological conditions. Through this agreement, the partners will strengthen their position in POC diagnosis based on novel fully integrated system that drastically reduces time for data collection and analysis in emergency situations. SMSD will also support the assay development, clinical trials and the system’s global regulatory approvals and will have exclusive rights to market and distribute the system globally.

- 482 -

Page 485: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

PharmaSeq Inc

1 Deer Park Drive, Suite FMonmouth Junction, NJ 08852, USAWeb site: http://www.pharmaseq.com/Tel: (732) 355-0100Fax: (732) 355-0102CEO: Richard G. Morris President: Dr.Wlodek Mandecki ([email protected])

Overview. PharmaSeq Inc, a privately held biotechnology company, has developed the world's first light-powered microtransponders and nanotransponders for performing nucleic acid-based assays. The Company has eight US patents covering microtransponder-based assays and technology and several more patents pending. PharmaSeq's strategy is to apply microtransponder technology to DNA probe diagnostics, SNP detection, and proteomics. The Company will then move forward in other aspects of genomics, as well as pharmaceutical drug discovery, combinatorial chemistry, radio frequency identification and related areas. Mitsui & Co of Japan has a multimillion-dollar stake in the company.

Technology. Microtransponders are used in a novel DNA detection system that will be capable of accurately detecting and differentiating a large number of unique DNA sequences in a single assay (see Chapter 3). When multiple probes (and, thus, multiple transponders) are employed, the scanner can identify which transponder(s) were involved in the reaction by means of laser activation of the transponder's memory. In so doing, the specimen nucleic acid is identified. This multiplex feature makes the technology ideal for assays in which screening for several genes, gene fragments or mutations is necessary, a typical requirement in medicine and research. It also allows screening a patient specimen for multiple pathogens. PharmaSeq has a fully functional electronic microchip for use in tracking and tagging molecules in DNA and drug-related applications. Along with microfluidic-based analytical instruments, these can be used to perform complex asssays. A test for cystic fibrosis that detects 50 mutations is in development.

Collaborations. PharmaSeq and Sarnoff Corporation are collaborating to develop microtransponder chip.

- 483 -

Page 486: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Phase 2 Discovery

3130 Highland AvenueCincinnati, OH 45219, USAWeb site: http://www.phase2d.com/Tel: (513) 475-6618Fax: : (513) 221.1891 E-mail: [email protected]: Jeff Mulchahey, VP Regulatory & Clinical Affairs ([email protected])

Overview. Phase 2 Discovery conducts cutting edge research in the development of novel biomarkers for psychiatric and neurologic disorders. These internally developed and proprietary biomarkers are being commercialized as neurodiagnostic procedures for detecting early central nervous system damage as well as surrogate biomakers for use in clinical trials. Phase 2 Discovery is also developing new therapeutic agents for depression and anxiety.

Phase 2 Discovery forms strategic collaborations with world-class diagnostic companies for large scale manufacturing, sales and marketing of its diagnostic reagents.

Products relevant to molecular diagnostics. Phase 2 Discovery presently has in vitro diagnostics for aneurysmal subarachnoid hemorrhage and traumatic brain injury that rely on the detection of a specific form of processed MAP-tau protein. This processed MAP-tau, named cleaved tau (or C-tau), is produced as a result of neuronal injury and is measured in blood or cerebrospinal fluid.

Collaborations relevant to molecular diagnostics. In 2002, Phase 2 Discovery formed a multi-year collaborative agreement to license its proprietary biomarker, C-tau, to Biosite Inc, which intends to evaluate C-tau for use in diagnostic tests for stroke and brain injury. Under the collaborative agreement, antibodies will be developed against C-tau employing Biosite's Omniclonal phage display technology, which will then be used to develop an assay to identify patients with brain injury and stroke.

- 484 -

Page 487: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Power3 Medical Products Inc

3400 Research Forest Drive, Suite B2-3The Woodlands, TX 77381, USAWeb site: http://www.power3medical.com/Tel: (281) 466-1600Fax: (281) 466-1480Chief Scientific Officer: Ira L. Goldknopf, PhD ([email protected]) Chief Executive Officer: Steven B. Rash

Overview. Power3 Medical is specializing in the identification of disease footprints in the areas of chemotherapeutic drug resistance and the early detection of breast cancer and neurological diseases. The Company has identified over 190 protein biomarkers with the following potential medical applications: breast cancer; chemotherapeutic drug resistance; Alzheimer's disease (AD); leukemia; ALS; gastrointestinal disease; Parkinson's disease (PD) and metabolic syndrome.

Technology/products. The Breast Cancer NAFTest is Power3's initial breast cancer product developed in collaboration with the University of Texas MD Anderson Cancer Center. The test utilizes fluids from the breast called nipple aspirates to identify groups of breast cancer proteins. The collection of the nipple aspirate fluid is a non-invasive procedure utilizing a modified breast pump to obtain a drop of fluid from the nipple. The aspirate is analyzed to identify the specific breast cancer protein footprints. Power3 believes this test is the first test of its type that detects breast cancer earlier than any technologies currently allow. The initial proof-of-concept has been completed with remarkable effectiveness and sensitivity. Clinical trial preparation is currently underway.

BC-SeraPro is a serum protein biomarker-based diagnostic test for breast cancer. It can be applied regardless of a woman’s genetic makeup or ethnicity. Power3 plans to finish the clinical validation study and to launch the BC-SeraPro.

Power3's study of protein concentrations in blood serum has resulted in a remarkable breakthrough in the diagnosis of neurodegenerative diseases. NuroPro distinguishes individually diseased patients from each other, as well as from normal patients and patients with other neurological disorders. Furthermore, these methods have the potential for presymptomatic diagnosis in AD, ALS and PD. Power3 technology assigns a probability score that links a patient’s sample to a biostatistical model for neurodegenerative disease, and it indicates if the patient should then consult a physician.

Power3 technology has the potential to be used to develop new drugs based upon the precise differences between diseased-related and healthy-related protein footprints. It completed an initial proof of concept that addresses drug resistance to a major chemotherapy agent and believes this technology will increase the success rates of chemotherapy agents and eliminate futile treatments early in the clinical trials.

Research. Power3 uses technologies, know-how and proprietary techniques to focus on protein-based biomarkers, which are simply proteins that are significant in the diagnosis, monitoring or treatment of disease. Discovery of the conjugation of ubiquitin to other proteins is called "protein ubiquitination" is a key technology. Power3 has developed a structured approach to the discovery and development of protein footprints and biomarkers of human disease. The company's Discovery Platform is a 7-step

- 485 -

Page 488: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

process that creates intellectual property through clinically focused, precise, and controlled analysis.

Collaborations. Power 3 collaborates with Baylor College of Medicine (Houston, TX) to search for biomarkers that directly impact the diagnosis of neurodegenerative diseases. In 2005, Power3 agreed to provide Biosite Inc access to its protein biomarker antibody targets for the evaluation and development of diagnostic tests. In 2007, NeoGenomics and Power3 formed a joint venture to create a CRO to sell Power3’s protein biomarker-based diagnostics. NeoGenomics will provide access to cancer samples, management, sales and marketing personnel, and laboratory facilities. In December 2008, Transgenomic licensed Power3’s neurodegenerative biomarkers.

PreAnalytiX GmbH

Garstligweg 88634 Hombrechtikon, SwitzerlandWeb site: http://www.preanalytix.com .Tel: 055-254-22-11Fax: 055-254-22-13Contact: Noel Doheny, Vice President of PreAnalytiX and QIAGEN

Overview. PreAnalytiX GmbH is a joint venture between BD (Becton, Dickinson and Company) and QIAGEN NV, which develops, manufacture, and market integrated systems for the collection, stabilization, and purification of nucleic acids for molecular diagnostic testing. The first product from PreAnalytiX, the PAXgene Blood RNA System, was launched in 2001, and has set a new standard for stabilizing whole blood cellular RNA profiles at the time of blood collection in an evacuated blood collection tube. This enables researchers and clinicians to perform more accurate analysis of gene expression profiles without the variations caused by sample collection, storage, transport or fractionation while relying on highly standardized and proven sample collection principles.

Products. The following are relevant to molecular diagnostics:

The PAXgene Blood RNA System. It consolidates and integrates the key steps of whole blood collection, nucleic acid stabilization, and RNA purification. By minimizing the unpredictability associated with RNA processing, the system provides enhanced accuracy of intracellular RNA analysis.

The PAXgene Blood DNA System. It standardizes blood collection and DNA purification from whole blood samples. The integration of sample collection and purification and a single processing tube streamlines workflow and shortens processing time, resulting in cost savings.

In 2005, Affymetrix launched new GeneChip Globin-Reduction kits and associated protocol developed in conjunction with PreAnalytiX. The new kits optimize the PreAnalytiX PAXgene Blood RNA System for use with Affymetrix GeneChip technology and improve gene expression profile results of cellular RNA extracted from whole blood. Use of the Globin-Reduction Protocol and associated reagent kits enables researchers to detect subtle changes in gene expression by reducing the overwhelming amounts of globin messenger RNA (mRNA) present in whole blood. Large amounts of globin mRNA can significantly interfere with gene expression assay results. High globin mRNA levels contributed from a fraction of the red blood cells have typically masked the less abundant, but more important, changes of gene expression associated with white blood cells, such as lymphocytes and monocytes. Counteracting the effects of globin mRNA during target preparation

- 486 -

Page 489: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

significantly increases assay sensitivity on GeneChip arrays. The optimized protocol, the PAXgene system and the controls will significantly improve the ability to obtain high quality profiles from blood, thus enabling clinical research and collecting samples for multi-site clinical trials.

- 487 -

Page 490: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Predictive Biosciences

128 Spring Street, 400 Level, B AnnexLexington, MA 02421, USAWeb site: http://www.predictivebiosci.com/Tel: 781-402-1780Fax: 781-402-1785Email: [email protected] & CEO: Peter Klemm PhD

Overview. Predictive Biosciences is a leader in developing highly accurate, noninvasive diagnostic products for personalized cancer management. Launched in 2006 with a $10 million Series A financing, the company was jointly founded by leading healthcare investors, experienced entrepreneurs, and internationally-renowned scientists in the areas of tumor growth, tumor angiogenesis, and cancer biomarkers. Predictive Biosciences possesses an extensive IP portfolio – including 18 issued and pending US patents – and in-house expertise in proteomics, diagnostics, oncology, and tumor biomarkers.

Technology/products/applications. The Company is validating the superior clinical utility of its proprietary, patented urinary biomarkers and clinical algorithms across multiple cancer types. Predictive Biosciences' products will enable Intervention Diagnostics™ with exceptionally high negative predictive value (NPV) or positive predictive value (PPV) by detecting the changes resulting from cancer development and progression. Predictive Biosciences’ non-invasive, urine-based diagnostic assays will employ patented clinical algorithms, enabling physicians to reliably determine the presence or absence of cancer, so that additional follow-up may be accelerated (if cancer is detected) or avoided (if a patient is cancer-free). These assays include:

Triage Monitoring Assay™, enabling physicians to delay costly and/or invasive diagnostic procedures (i.e., cystoscopy, biopsy, colonoscopy) based on extremely high confidence in a negative result with high NPV, identifying a patient as cancer-free

Interval Monitoring Assay™, for surveillance and early detection of cancer between standard follow-ups, where a positive result (with high PPV) would accelerate diagnostic procedures and/or treatment, and

Stratification Assay™, which supports a physician’s decision to manage a symptomatic patient with: (a) no further follow-up, (b) standard follow-up exam, or (c) intensive diagnostic methodologies

On 6 November 2009, following a successful pilot study, the company has started two prospective studies to compare how its assay performs against cystoscopy and whether it can more accurately diagnose patients who do not have bladder cancer.

Predictive Biosciences’ biomarkers are applicable across multiple types of epithelial cancer, and the company is initially focusing on diagnostic applications in bladder, breast, and colorectal cancer. The first tests – for cost-effective monitoring and personalized management of bladder cancer survivors – are based on the detection of proprietary urinary biomarkers, including matrix metalloproteinases and a disintegrin and metalloproteinases.

- 488 -

Page 491: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Primagen

Meibergdreef 591105 BA Amsterdam, The NetherlandsWeb site: http://www.primagen.com/Tel: +31 (20) 566 8575Fax: +31 (20) 566 9081Email: [email protected] Manager: Drs. Gijs Vermeulen

Overview. Primagen is a biotech spin-off of the Academic Medical Center (AMC) of the University of Amsterdam. It develops molecular tests that have high, individualized predictive value and improve the quality of life for patients suffering from chronic diseases, such as AIDS and cancer. Primagen’s success is built on a unique combination of features that include the following:

Excellent capabilities for product development, manufacturing and marketing, to ensure rapid transition from bench to market.

A strong intellectual property portfolio including patents and patent applications and a pipeline with leads for new products in the field of HIV-1/AIDS and oncology.

Technologies. Real time NASBA (see Chapter 2), molecular beacons (see Chapter 2) and Retina Technology have been described in Part I of the report.

Products. These include the following:

Retina™ Mitox. The test measures the mitochondrial DNA content per cell in a real-time duplex NASBA, in which both DNA targets are simultaneously amplified in a one-tube format.

Retina™ Rainbow. This fast, sensitive, real-time NASBA monitored RNA assay can detect all HIV-1 subtypes and groups, including group N and O.

Retina™ Parvo. This is a real-time NASBA based test for detecting human parvoviruses, including B19 and V9.

R & D. The following are some of the important research activities:

Angiogenesis. Primagen's prime focus in this research will be on these two types of tumors. Primagen has launched a program to develop proprietary molecular diagnostic tools to detect and monitor angiogenesis. These tests will be used in conjunction with angiogenesis-inhibitors in clinical trials of new drugs. They will also be used in trials to monitor the effectiveness of existing anti-cancer products such as drugs for chemotherapy.

Virus Discovery. Primagen has pioneered a fundamentally new approach to the discovery of new viruses. The company's analysis of virus discoveries over the past decades shows that new viruses are all members of known virus families. Based on this new family tree, molecular tests can be designed to detect all members of the same family. Apart from all known virus members, such a test can also detect unknown viruses in any given sample.

Collaborations. In 2002, Primagen and Gilead extended a service testing agreement to use the Retina Mitox test for mitochondrial toxicity in a multi-year clinical study of Viread for HIV.

- 489 -

Page 492: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2005, Focus Diagnostics, a US Laboratory, licensed the newly discovered coronavirus CoV-NL63 from Primagen. In 2006, Primagen expanded the worldwide license for the CD133 diagnostic biomarker to include the cardiovascular field. Primagen originally licensed the CD133 biomarker from The University of Texas M. D. Anderson Cancer Center.

- 490 -

Page 493: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Primera Biosystems Inc

171 Forbes Blvd, Suite 2000Mansfield, MA 02048, USAWeb site: http://www.primerabio.com/Tel: 508-618-2300Fax: 508-339-0452Email: [email protected]: Martin L. Verhoef

Overview. Primera Biosystems, Inc is an emerging molecular diagnostics company with assay programs in infectious disease and oncology. It has closed on $21 million of Series B financing led by Abingworth and joined by Interwest Partners. Existing investors Malaysian Technology Development Corporation (MTDC), MPM Capital, Burrill & Company and the Invus Group also participated in the round. Primera plans to use this financing to complete development of its instrument system, reagent kits for disease-specific clinical research, future diagnostic tests as well as to support ongoing research and development efforts.

Technology/applications. Scalable Transcription Analysis Routine (STAR) Technology is a gene analysis process that combines the desirable traits of both RT PCR and DNA microarray into a single bench-top system. Advantages over existing gene analysis technologies include:

Improved specificity for more precise identification of given gene(s)

Reduced overall cost relative to other molecular diagnostic platforms

Minimal handling of samples to minimize contamination and cost

Rapid time from sampling to results (3-4 hours)

Rapid development and integration of new gene assays enabling timely incorporation of emerging pathogens, clinical needs, and scientific discoveries.

Clear path for miniaturization to develop lab-on-chip

The STAR technology was validated in collaboration with the Genome Institute of Singapore (GIS) by demonstrating its ability to detect SARS-CoV at the single digit copies level in RNA extracted from clinical samples. The STAR assay for SARS-CoV detection employed simultaneous amplification of several target sequences from the SARS-CoV genome to confirm specificity of the assay in the context of complex clinical samples. This assay served as a prototype for future STAR diagnostic tests in which a single clinical sample can be assessed for the presence of multiple pathogens.

The technology can be applied for gene expression, DNA/RNA analysis, micro RNA analysis, mutation analysis and methylated DNA analysis. The Company's first test leveraging STAR is ViraQuant, a market-ready assay for the simultaneous quantitative measurement of multiple viral agents that cause infections in immune compromised patients. A multiplex fungal test will follow. These assays will permit rapid, efficient and quantitative measurement of pathogens and will help choose the appropriate therapeutic intervention, taking treatment from empirical therapy to complete and personalized medicine. Primera plans to commercialize its STAR platform and assay reagents to hospital and reference laboratories that service the relevant clinical populations, and will seek future regulatory approval.

- 491 -

Page 494: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Primera has applied for a number of patents that include claims for the core process, diagnostic applications, key reagents and instrumentation.

- 492 -

Page 495: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

PROCREA Biosciences Inc

1361 Beaumont Avenue, Suite 301Montreal, Quebec H3P 2W3, CanadaWeb site: http://www.procrea.com/Tel: (514) ) 345 8535Fax: (514) 496 5288 Email: [email protected] Chairman: Pierre St-Michel MD

Overview. PROCREA BioSciences Inc is a biotechnology company founded in 1990 with a strategy based on a unique integrated approach that favors commercialization of new products in the field of reproductive medicine and human genetics. Its research activities are supported by clinical services and diagnostic laboratories in fertility and genetic screening. The Company has 80 employees. PROCREA's activities are regrouped in three integrated divisions: (1) Research & Development; (2) Clinical Services; and (3) Diagnostics.

PROCREA integrates its research and development activities into its clinical and diagnostics laboratory activities, thereby benefiting from an excellent synergy. For example, the research work is stimulated by the medical practice and the needs of diagnostics. In turn, the results from Research & Development stimulate Clinical Services and are marketed through Diagnostics Laboratories. This unique set-up also allows direct access to patients for testing PROCREA's new products.

Technologies/services. The following are relevant to molecular diagnostics:

Prénatest. This maternal prenatal screening test is used to detect the most common genetic anomalies that could affect their unborn child. Prénatest establishes a pregnant woman’s individual risk of carrying a fetus with trisomy 21 (Down syndrome), trisomy 18 or a neural tube anomaly (anencephaly or spina bifida).

Male infertility test. This uses 12 markers to identify main Y chromosome microdeletions in infertile males to determine the appropriate therapy for treatment of male infertility.

MetrioGene. This non-invasive in vitro test for endometriosis includes a set of differentially expressed genes in women with endometriosis.

RAM genomics. This is based on gene recombination, allowing 3-D genome mapping to access clusters of functionally related gene regions, which physically interact together in living cells. This may lead to the discovery of new diagnostic and therapeutic targets, as well as to identify regulatory elements to modulate gene expression. RAM differs from other existing functional genomic approaches, as it does not rely on the detection of expressed genes, mutations or polymorphism, and does not required heavy bio-informatic support. RAM can validate gene targets initially identified by conventional functional genomics approaches (e.g. DNA Chips and arrays, differential display and expression cloning). This technology platform is in research phase with completion planned for mid-2002.

Collaborations. PROCREA and Tm Bioscience Corporation collaborate to explore the feasibility of combining the proprietary endometriosis gene database owned by PROCREA and the universal array platform developed by Tm Bioscience to create a DNA-based screen for endometriosis.

- 493 -

Page 496: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Proligo LLC

6200 Lookout RoadBoulder, CO 80301, USAWeb site: http://www.proligo.com/Tel: (303) 516 3100Fax: (303) 516 9133E-mail: [email protected]

Overview. Proligo LLC is a joint venture between SKW Trostberg AG of Germany (majority owner) and Gilead Sciences (Foster City, California). In 2002, Proligo and Genset Oligos merged to become one entity that retains the name Proligo. Proligo is focused on the supply of key ingredients for genetic information processing. Through its R&D organization, strong patent portfolio and licenses, multi-disciplinary infrastructure, and manufacturing capabilities and capacities, Proligo supplies a wide range of key ingredients for genetic information processing. Its expertise spans the entire genomics development supply chain, from raw DNA synthesis reagents to oligo synthesis to genetic therapeutics. The last item was transferred to Raylo Fine Chemicals. In 2005, Sigma Aldrich Corporation acquired Proligo.

Products relevant to molecular diagnostics. Locked Nucleic Acid (LNA) oligonucleotides are manufactured exclusively by Proligo under a license from Exiqon. The LNA modification has been shown to increase the biological stability of nucleic acids and fully modified LNA oligonucleotides are resistant towards most nucleases tested (see Chapter 2). These features of LNA make it highly attractive as a tool for DNA diagnostics. Applications of LNA include detection, identification, capture, characterization and quantification of natural or synthetic nucleic acids. LNA oligonucleotides can be used for:

Capture probes such as MT LNA for detection of the Factor V Leiden mutation

In situ hybridization probes, Molecular Beacons, Padlock probes and Taqman probes

TrueSNP allele specific PCR (AS-PCR) kits are used to probe clinically relevant genomic DNA samples for the presence of a particular allele of a given SNP

Proligo sells Molecular Beacons probes licensed from the Public Health Research Institute. Molecular Beacons are hairpin-shaped oligonucleotide probes that enable real time PCR detection of specific DNA sequences as well as detection of RNA within living cells.

Collaborations relevant to molecular diagnostics. In 2000, Proligo and Exiqon AS established a partnership for the commercialization of Exiqon's LNA technology. Under the terms of the agreement, Proligo will have the right to manufacture and sell LNA oligonucleotides and monomers to third parties worldwide, while Exiqon will retain the right to develop and grant licenses for biochemical, diagnostic, and therapeutic products containing LNA nucleic acid compositions.

- 494 -

Page 497: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Promega Corporation

2800 Woods Hollow Road Madison, WI 53711-5399 USA Web site: http://www.promega.com/Tel: (608) 274-4330 Fax: (608) 277-2601President and CEO: William A. LintonE-mail: [email protected]

Overview. Promega Corporation is a worldwide leader in applying biochemistry and molecular biology to the development of innovative, high-value products for the life sciences including the following areas: molecular biology, genetic identity, bioluminescence and non-isotopic reporter systems.

Program relevant to molecular diagnostics. Amplification Assistant is a troubleshooting and optimization program developed by scientists at Promega Corporation for the polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR).

Products for molecular diagnostics. These are in the following categories:

Nucleic Acid Purification, e.g. Wizard genomic DNA purification kit

Mutation Detection, e.g., The Protein Truncation Test (PTT) allows mutation detection at the protein level rather than the DNA level

Amplification. A complete set of reagents for various types of PCR.

Genetic Analysis. SSCP, gel electrophoresis and various blotting tests.

Detection. Both radioactive and non-radioactive.

SNP genotyping. The READIT SNP Genotyping System provides an accurate and flexible method for detection of sequence variation/genotyping in a moderate- to high-throughput format.

Forensic applications. These are mainly in the area of human identity.

Products for STR analysis silver stain: GenePrint SilverSTR III System, GenePrint STR systems and GenePrint sex determination systems

Products for STR analysis by fluorescent detection: GenePrint fluorescent STR systems and GenePrint sex determination systems

Products for VNTR analysis: GenePrint light alkaline phosphatase-conjugated probes, GenePrint light EquiLadder System, GenePrint EquiLadder system and GenePrint probes.

HaloCHIP™ System: the first antibody-free alternative to chromatin immunoprecipitation.

CytoTox-Glo™ Cytotoxicity Assay: monitoring chemical toxicity, anti-cancer drug efficacy or cytokine response. It provides a highly sensitive, simple, luminescent method that allows the user to detect small changes in cell viability

Collaboration. In 2001, Promega, in collaboration with Beckman Coulter, launched its DNA IQ System with Beckman Coulter's Biomek 2000 laboratory automation workstation. This will resolve many of the time-consuming

- 495 -

Page 498: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

challenges of isolating DNA from contaminants and impurities in forensic samples.

In 2003, Abbott Laboratories and Promega signed an agreement to provide nucleic acid extraction products that will give molecular diagnostics laboratories the ability to further automate testing for infectious diseases.

In 2004, EraGen granted Promega Corporation exclusive rights to its quantitative gene expression assays for the life science research marketplace.

In 2009, Hamilton Robotics started collaboration with Promega to develop an automated system for isolating genomic DNA from large-volume blood samples. The new system that combines Hamilton's Microlab Star liquid handling technology and Promega's systems and reagents to increase throughput for applications such as pharmacogenomics, genetics research. Hamilton expects to launch the new system later in 2009.

- 496 -

Page 499: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

QBiogene

15 Morgan Irvine, CA 92618-2005, USAWeb site: http://www.qbiogene.com/Tel: (440) 337-1200Fax: 949-421-2675

Overview. QBiogene, a privately owned company, was formed in 2000 by merger of Quantum Biotechnologies Inc, a wholly owned US subsidiary of Quantum Biotechnologies and the California company BIO101. Quantum Biotechnologies was founded in 1991 to exploit the inventions arising from National Research Council of Canada's Biotechnology Research Institute (Montreal, Canada). Other sources of technology input for the company are the National Cancer Institute (USA) and the French Centre National de la Recherche Scientifique. In 2004, Qbiogene was acquired by MP Biomedicals (formerly ICN Biomedicals). The company provides tools to researchers working in molecular biology, genetic engineering, gene expression, functional genomics and gene therapy. It provides both viral and nonviral vectors.

Technology/products relevant to molecular diagnostics. PCR products including Q-BioTaq DNA Polymerase is a novel thermostable DNA polymerase, which can be used effectively for PCR and DNA, sequencing by the chain termination method. DNA and RNA purification products including GENECLEAN. Qbiogene supplies reagents for FISH and special probes include the following:

The 2nd generation of Direct Labeled Satellite DNA probes by Qbiogene, manufactured by use of ULS®) technology (Kreatech), are specific to each individual chromosome. They hybridize to highly repeated alphoid and classical DNA sequences located at the centromeric regions of human chromosomes. These are available only outside of US.

The Qbiogene probe for HER-2/neu uses the ULS® and is optimized to detect amplification of the HER-2/neu gene region. The included Chromosome 17 Alpha Satellite probe serves as an internal control and simultaneously defines the ploidy status of Chromosome 17.

All Satellite Combination Probes have been qualified on regular metaphase/interphase preparations, direct blood smears and formalin-fixed paraffin-embedded tissue sections. Hybridizations with these Satellite probes allow analysis of direct blood smear samples after only 2 hours. These Combination Probes are intended to enable a fast screening of specimens with suspected chromosomal aberrations in a variety of leukemias and lymphomas.

Collaboration relevant to molecular diagnostics. Qbiogene has a strategic partnership with Molecular Sensing plc (MSL) to produce an integrated solution for DNA diagnostics. This system will combine MSL's rapid DNA amplification and detection system GENE DRIVE with Qbiogene's industry standard GENECLEAN nucleic acid purification chemistries to produce a disposable device suitable for clinical diagnostics, including near patient testing.

In 2000, KREATECH signed a license agreement with Qbiogene SA regarding the production and sales of its ULS-labeled DNA probes for the molecular cytogenetics market. This agreement was extended in 2002 for joint R & D activities and a substantial expansion of Qbiogene's product portfolio based on ULS labeling technology.

- 497 -

Page 500: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 498 -

Page 501: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

QIAGEN NV

Spoorstraat 505911 KJ Venlo, The NetherlandsWeb Site: http://www.qiagen.com/Tel: +31 (77) 320-8400Fax: +31 (77) 320-8409E-mail: [email protected]: Peer Schatz ([email protected])

Overview. QIAGEN NV is a leading provider of innovative enabling technologies and products for the separation, purification and handling of nucleic acids. It has developed a comprehensive portfolio of more than 320 proprietary, consumable products for nucleic acid separation, purification and handling, nucleic acid amplification, as well as automated instrumentation, synthetic nucleic acid products and related services. It is positioning its products for sale into three commercial markets: DNA sequencing and genomics, nucleic acid-based molecular diagnostics, and gene therapy. QIAGEN’s Applied Testing segment includes rapidly growing application areas such as food safety testing, forensics, biodefense, quality control and veterinary testing. QIAGEN has now 20% of the market share in molecular diagnostics and can be considered a major player in this area.

Acquisitions. In 2002, Qiagen acquired GenoVision AS. In 2004, QIAGEN acquired the technology and product portfolio of Molecular Staging Inc (MSI) for $28.5 million in cash plus potential earn-outs of up to $6.75 million. MSI’s whole genome amplification activities were integrated into QIAGEN’s operations and a series of kits, which have been launched. In 2005 QIAGEN acquired artus Gesellschaft für molekularbiologische Diagnostik und Entwicklung GmbH for $39.2 million in cash. In 2005, QIAGEN acquired 100% of the outstanding shares of PG Biotech Co Ltd (Shenzhen, China) for $14.5 million. PG Biotech is a leading developer, manufacturer and supplier of PCR-based molecular diagnostic kits in China. In 2005, QIAGEN acquied the bioanalytical business of SuNyx GmbH, a spin-off of the Bayer Healthcare, which was developing and marketing products with functional surfaces, which are accessible through novel concepts and processes of nanotechnology. At the same time QIAGEN acquired key assets of LumiCyte, which had developed and initiated marketing of the first products based on its proprietary STS- (Surface Tension Segmented) Biochip™ sample preparation solution for MALDI MS. In 2006, QIAGEN acquired Gentra Systems Inc, a manufacturer and supplier of non-solid phase nucleic acid purification products, for $38 million. In 2006, QIAGEN acquired Genaco Biomedical Products Inc (see separate profile) for $40 million. In 2007, QIAGEN acquired eGene for $34 million. eGene is commercializing a patented sample separation and analysis technology based on capillary electrophoresis. In 2007, QIAGEN acquired Digene for $1.6 billion. Digene (see separate profile) will become a subsidiary of QIAGEN. In 2008, QIAGEN acquired Corbett Life Science (Sydney, Australia), a life sciences instrumentation firm, for $135 million. Corbett is the developer of a rotary real-time PCR cycler system called Rotor-Gene, which “extends QIAGEN’s molecular testing solution portfolio from sample to result. In 2008, QIAGEN acquired all assets related to the Biosystems business (Pyrosequencing) from Biotage for $53 million in cash plus $7 as milestones in next 4 years. In 2009, QIAGEN acquired SABiosciences Corporation (www.sabiosciences.com), a developer and manufacturer of disease- and pathway-focused PCR assays, for $90 million. In 2009, QIAGEN acquired DxS in a deal worth $130 million; $95 million in cash plus extra payments if certain milestones are met. The acquisition provides QIAGEN with a strong leadership position in the

- 499 -

Page 502: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

personalized healthcare arena and it intends to establish a Center of Excellence in Pharma Partnering at DxS' Manchester headquarters. In January 2010, QIAGEN acquired ESE GmbH for $19 million. ESE is a manufacturer of UV and fluorescence optical measurement devices for molecular testing applications, most notably for nucleic acid-based point-of-need testing. On 4 April 2011, QIAGEN reached an agreement to acquire Cellestis Ltd for ~A$341 million (US$355 million) in cash, providing QIAGEN with access to a novel "pre-molecular" technology that offers a new dimension in disease detection not currently possible with other diagnostic methods.

Technologies/products relevant to molecular diagnostics. QIAGEN offers a range of DNA and RNA purification kits based on a proprietary silica adsorption technology for selective purification of different types and sizes of nucleic acids. It also provides other innovative technologies for recombinant protein expression, purification, detection, and assay; mRNA purification; nucleic acid amplification; transfection; and large-scale cGMP-grade contract plasmid DNA production. QIAGEN supplies BioRobot MDx DSP system, a CE-certified automated sample preparation system for viral nucleic acids, which fulfills the requirements of the EU’s IVD directive. There are several technologies acquired from takeover of other companies. These include:

Rolling Circle Amplification Technology (RCAT). Acquired from MSI, RCAT is a highly sensitive and efficient amplification method that allows the user to detect the presence of target molecules in a wide array of testing formats (for details see Chapter 2). It is the only practical amplification method that allows recognition, amplification and detection of targets directly on a solid surface, such as within a cell (in situ analysis) or on a microarray/biochip. It solves several problems inherent in the PCR. RCAT can also be used to amplify signals from proteins in a highly multiplexed format (see Chapter 4).

In 2007, QIAGEN launched the first assays based on its QIAplex PCR multiplex technology, which enables highly sensitive detection of multiple molecular targets in one test. One to 20 targets can be detected with only one test using the same sample, including multiple pathogens such as viruses, bacteria and other disease markers. QIAplex products have been designed for use on Luminex® detection platforms and are optimized for use with QIAGEN’s LiquiChip® 200 Workstation.

REPLI-g technology. This provides highly uniform DNA amplification across the entire genome, with minimal sequence bias. The method is based on MSI’s Multiple Displacement Amplification (MDA) technology, which carries out isothermal genome amplification utilizing a uniquely processive DNA polymerase capable of replicating 100 kb without dissociating from the genomic DNA template.

Whole Genome Amplification (WGA). Based on REPLI-g, WGA can extract and amplify the entire human genome thousand-fold with unmatched accuracy in a few steps.

Avian flu virus (H5N1). In 2005, QIAGEN launched of two novel test kits: artus™ Influenza/H5 kit for the detection of influenza and the avian flu (H5N1) molecular detection kit targeting veterinary, import/export control and quarantine needs. This assay was launched in China by PG Biotech (now acquired by QIAGEN).

EpiTect Bisulfite Kit, developed with Epigenomics, significantly facilitates the complex and time consuming step of DNA bisulfite treatment in DNA methylation analysis.

- 500 -

Page 503: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Artus CMV PCR kit. EU has awarded the CE Mark to Qiagen's molecular diagnostic kit for parallel detection of four herpes viruses CMV, EBV, VZV, and HSV-1/2. The kit can be used on Life Technologies' PRISM 7000, 7700, and 7900HT SDS systems, various Roche LightCycler instruments, and the Corbett Rotor-Gene 3000.

eGene technologies. eGene has developed a multi-channel sample separation and analysis technology for nucleic acids that includes an affordable and robust instrument, software analysis package, and a selection of consumable cartridges specifically designed for specific high value applications in the molecular diagnostic and research markets. The HDA-GT12™ Genetic Analyzer is a revolutionary multi-capillary system which incorporates many capabilities into one easy to use platform, integrating automatic sample loading, separation, and data analysis. It significantly improves the workflow and increases the productivity of medium to high throughput laboratories. Currently, eGene’s consumable cartridges are available for a number of research applications, including formats addressing the Human Leukocyte Antigen (HLA) testing market, genetic testing including microsatellite analyses, DNA post-PCR separation and analysis at different resolutions, and RNA integrity quality control. eGene’s product offering is therefore highly synergistic with QIAGEN’s sample and assay technologies.

In 2008, QIAGEN introduced a molecular diagnostic test to type the HLA-B*5701 allele, a genetic variation in the HLA system. HIV patients carrying the HLA-B*5701 marker have a 60% higher risk to develop hypersensitivity reaction to Abacavir, which is a component of drugs inhibiting the reverse transcriptase of HIV. The Olerup SSP© PCR assay was developed and manufactured by Olerup SSP AB.

In 2008, QIAGEN launched a test to determine mutations of the K-ras gene, which can better define which CRC patients will benefit from treatment with EGFR inhibiting MAbs such as Amgen’s Vectibix® (panitumumab) and Imclone/Bristol-Myers Squibb’s Erbitux® (cetuximab).

In 2009, QIAGEN launched, for research use, the Type-it® HRM PCR Kit and Rotor-Gene® ScreenClust HRM Software to enable fast, accurate genotyping results.

In May 2010, QIAGEN acquired all rights to 70 molecular food safety tests developed by Institute for Product Quality, the Berlin-based laboratory center for food analysis.

Collaborations. Collaborations started by QIAGEN in 2005 were as follows:

Joint marketing and cross-promotion of Protedyne’s BioCube System in conjunction with QIAGEN’s QIAamp nucleic acid purification products as an integrated fully automated ultra-HTP sample preparation system for molecular diagnostics.

Roche Molecular Systems will market QIAGEN’s media sample preparation kits under its AmpliLute trademark.

Veridex LLC (a Johnson & Johnson company) will market QIAGEN’s preanalytical solutions under its GeneSearch trademark and as a component of its diagnostics.

Beckman Coulter Inc will market two of QIAGEN’s automated sample preparation kits for use with its new Vidiera NsP nucleic acid sample preparation platform.

- 501 -

Page 504: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Extension of an existing distribution agreement with Abbott to give distribution rights to a number of real-time PCR diagnostic tests developed by artus GmbH, a company that QIAGEN acquired. Abbott has non-exclusive distribution rights to certain QIAGEN products, including infectious disease tests for HBV, EBV, Varicella-Zoster virus, Parvo B19 virus, CMV, HSV and enterovirus.

Applied Biosystems (now Life Technologies) granted a license to QIAGEN under its expanded PCR, which includes patents for real-time PCR and other important PCR-related technologies.

In 2006. QIAGEN acquired Eppendorf AG’s reagent business which includes the Eppendorf “5-Prime” nucleic acid sample preparation and PCR reagent product lines and related intellectual property for $3 million. The companies intend to focus on improving biological sample management and analysis. NuGen Technologies and Qiagen formed a co-marketing alliance to create a series of joint applications for RNA amplification and analysis. QIAGEN acquired a license to commercialize outside the UK a portfolio of selected PCR-based, veterinary molecular tests (assays) developed by Veterinary Laboratories Agency (VLA). This initial portfolio consists of seven PCR-based assays for infectious veterinary diseases affecting livestock such as cows and horses. VLA will validate the assays which are based on QIAGEN’s preanalytical and assay technologies. In addition, QIAGEN will receive rights to future molecular assays for veterinary applications developed by VLA. VLA had already validated one QIAGEN assay for the detection of Mycobacterium paratuberculosis, the causative agent for the usually fatal infection of Johne’s disease in cattle. QIAGEN signed an agreement with Genome Diagnostics (GenDx) to sell reagents and software for sequencing-based HLA (HLA-SBT) typing as developed by GenDx starting in 2007. The QIAGEN-GenDx collaboration enables tissue-typing laboratories to perform accurate and affordable tissue typing by getting a complete solution from a single source − useful for transplantation patients.

In 2007. QIAGEN licensed real-time PCR technology from Roche expanding an existing arrangement to include all of Roche’s RT-PCR patents and pending patents. Through an Ortho Clinical Diagnostics agreement, Qiagen has licensed rights to patents for a taq-polymerase antibody method that speeds up the activation of PCR enzymes in the early phases of the process. These licenses expand QIAGEN's portfolio of assays and diagnostics using “almost any” basic IVD-related PCR and real-time PCR. QIAGEN and Epigenomics expanded their 2005 partnership, which provides QIAGEN with the exclusive world-wide rights to DNA methylation technologies for use in IVD.

In 2008, Singapore Ministry of Health awarded QIAGEN a 3-year contract to provide sample preparation technologies for the extraction of viral nucleic acids for the Avian Influenza Preparedness Program complemented by test kits for sensitive and specific detection of the highly pathogenic avian influenza strain. In 2008, QIAGEN and BioOne Capital started a new molecular diagnostics joint venture, Dx Assays, in Singapore. In 2008, Genmark Diagnostics adapted a QIAplex respiratory viral test for use on its eSensor XT-8 molecular diagnostics system. In 2008, QIAGEN and the Chinese Academy of Sciences started collaboration to develop new molecular tests to improve the safety of food products made in China.

In 2009, QIAGEN transferred distribution rights for the Olerup SSP® product line and the related assets to Olerup International AB, a subsidiary of LinkMed, a Swedish venture capital company specializing in Life Sciences. The Olerup SSP® product line includes molecular transplantation testing products used for DNA HLA typing. QIAGEN will retain rights to all Olerup

- 502 -

Page 505: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SSP® assays for applications outside transplantation testing, such as in personalized medicine. The transaction does not affect QIAGEN’s presence in new sequencing-based typing assays in the area of transplantation. As part of the transaction, QIAGEN will transfer all assets related to its Olerup SSP® HLA sales infrastructure to LinkMed, including office infrastructure in Austria.

In Feb 2010, QIAGEN signed an agreement with Celera for distribution of the next generation version of its ResPlex II assay for detection of respiratory pathogens in a single run. QIAGEN has the exclusive worldwide rights to distribute this multiplex test kit, which will be manufactured by Celera. The new ResPlex assay detects 19 different pathogens associated with respiratory infections and is designed for use with LiquiChip (Luminex) 100 and 200 instrument platforms.

In October 2010, QIAGEN and Abbott signed an agreement that significantly strengthens both companies' testing menus for automated IVD applications in the US and Canada. QIAGEN will receive kits for a PCR-based molecular assay for HIV-1 viral load testing to be commercialized under QIAGEN's brand. The new HIV-1 test will add to QIAGEN's pipeline of US regulatory submissions which is expected to also include a quantitative HBV test. In addition, Abbott will provide a quantitative HCV test which will be optimized and labeled for use on QIAGEN's QIAsymphony RGQ instrument and marketed under the Abbott brand in the US and Canada. Subject to regulatory approval, this test may be available by the end of 2012.

- 503 -

Page 506: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

QTL Biosystems

2778 Agua Fria St. Bldg. C Suite BCSanta Fe, NM 87507, USAWeb site: http://qtlbio.com/Tel: (505) 424-1000Fax: (505) 424-8679President: Duncan McBranch PhDE-mail: [email protected]

Overview. QTL (Quencher-Tether-Ligand) Biosystems LLC was founded in 1999 and began operations in 2000. The Company's mission is to revolutionize biomedical research by simplifying the process of drug development, and by creating powerful new tools for diagnosing infectious diseases and monitoring biological processes. QTL technology is based on a new class of biosensing plastic materials that allows nearly instantaneous detection of proteins, hormones, viruses, and other biological compounds that impact human health. The technology is built around a proprietary process that is up to one thousand times faster than competing assay technologies. QTL Biosystems is developing products in several markets: 1) advanced bioagent detection technologies for government sponsors; 2) rapid, or "high-throughput," assays for drug discovery and quality control for pharmaceutical companies; and 3) in-vitro diagnostics for the medical and research markets.

Technology. This provides a simple “lock-and-key” approach to selective identification of biological molecules. The “key” portion of this invention consists of a tailored molecule comprising three essential components: Quencher-Tether-Ligand (QTL). The ligand is the portion of the molecule, which binds selectively to a given biological molecule to be detected (the “lock,” or receptor). The tether connects it to the quencher, which binds weakly to a fluorescent polymer, quenching or “turning off” the light emission from the polymer. The QTL quenching can be reversed; “recognition” of a biological species (e.g. a virus) at a receptor site causes strong binding between the receptor and the ligand. As a result, the QTL is pulled away from the polymer, and the strong fluorescence of the polymer is turned back on. This is the QTL Biosensor

This technology forms the basis for a line of rapid, homogeneous assays termed QTLightspeed. The library of assays built from the technology is termed the QTLibrary. The same effect can be observed for polymer thin films coated with QTL. In principle, the ligand may be varied to include a wide variety of recognition molecules, including antibodies and antibody fragments, nucleic acid segments (DNA and RNA), and peptide chains. The power of the approach rests in the more than a million-fold enhancement of sensitivity to quenching that can be obtained by using fluorescent polymers compared to small molecule fluorophores. This gives an intrinsic amplification over small molecule-based assays such as ELISA and PCR. This simple effect provides the basis for a series of fluorescence-based sensor products, which can be inexpensive, portable, and tailored for many applications. To demonstrate the feasibility of making a portable sensing device, the company scientists have incorporated the biosensing polymer solution into a laptop computer and portable fluorimeter, which quickly (<1 second) measures the “turn-on” of the fluorescence spectrum of the polymer solution, upon addition of a small amount of receptor protein.

Products relevant to molecular diagnostics. The QTL Biosensor is a hand-held biodetection platform for first responders and military users (see

- 504 -

Page 507: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Chapter 9). QTL plans to deliver a full complement of bacteria, protein toxins, and virus tests. The system is being developed in conjunction with US Army and public health organizations.

- 505 -

Page 508: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Quanterix Corporation

One Kendall Square, Suite B14201Cambridge, MA 02139, USAWeb site: http://www.quanterix.com/Tel: 617-301-9400     Fax: 617-301-9401Email: [email protected] & CEO: David Okrongly PhD

Overview. Quanterix is a privately held firm developing a single molecule array (SiMoA) technology for clinical diagnostic, drug development, and life science research applications. Quanterix holds an exclusive license to an intellectual property portfolio covering the SiMoA technology from Tufts University. Founded in 2007, Quanterix is backed by leading life science investors including ARCH Venture Partners, Bain Capital Ventures, and Flagship Ventures. In 2008, Quanterix closed a second tranche of its Series A financing round, bringing in a total of $15 million, which was used to validate its platform and accelerate development of ultrasensitive assays targeting a variety of biological analytes. Quanterix is currently developing protein biomarker-based assays for cancer, chronic inflammatory disease, and cardiovascular disease. Quanterix is pursuing a number of unmet market opportunities in clinical diagnostics, drug development, and life science research and is starting collaborations to validate these applications.

Technology. The SiMoA™ technology is based on arrays of femtoliter-sized reaction vessels, each vessel sized to confine a single molecule of interest. Utilizing a proprietary set of assay chemistries and a relatively simple optical detection system, reaction vessels containing individual molecules can be efficiently interrogated. Arrays are formed by etching tens to hundreds of thousands of reaction vessels into the end of an optical fiber bundle. Each reaction vessel is isolated from neighboring vessels and, when incubated with dilute solutions, can be used to trap single molecules according to Poisson statistics. The optical fiber bundle carries light into and out of each reaction vessel allowing each well to function as an independent assay for a single molecule. Detection is performed by imaging the arrays using a proprietary instrument comprised of a light source, optics, digital camera, and automated handling system. Software is then used to analyze the images generated to determine the behavior of each individual molecule.

Applications. The first application that Quanterix is pursuing with the SiMoA™ technology is the detection and quantification of proteins present in blood and other body fluids at very low, previously undetectable, concentrations. Many proteins thought to be potential diagnostic markers of human diseases, such as cancer, chronic inflammatory disease, and cardiovascular disease, circulate at concentrations well below the limits of detection of current protein detection technologies, such as ELISA. Ultra-sensitive methods for detecting proteins in blood are needed to bridge the gap between circulating concentrations and limits of detection. Utilizing SiMoA™, improvements in analytical sensitivity of more than 1000-fold over ELISA, have already been demonstrated for a number of serum proteins of interest to the medical community. Because analytes can be quantified at extremely low levels, it may also be possible to measure biomarkers in less invasive body fluids (e.g. urine, saliva) or very small sample volumes. Finally, in some applications, the sensitivity of the SiMoA™ technology may enable the detection of infectious pathogens in blood.

- 506 -

Page 509: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. On 22 Feb 2011, Quanterix signed an agreement with Novartis to evaluate its SiMoA, platform for diagnostic use, and will focus on an undisclosed neuron-specific protein target.

Quantum Dot Corporation

(a subsidiary of Life Technologies)26118 Research RoadHayward, CA 94545, USAWeb site: http://www.lifetechnologies.com/Tel: 510-887-8775Fax: 510-783-9729

Overview. Quantum Dot Corporation's (QDC) pioneering work is built around quantum dot (Qdot) particles, tiny crystals developed at Lawrence Berkeley National Laboratory, the Massachusetts Institute of Technology in the US and the University of Melbourne in Australia. These crystals enable powerful new approaches to genetic analysis, drug discovery, and clinical diagnostics. QDC holds exclusive rights to Qdot particles from these institutions. QDC markets and sells Qdot nanocrystal products worldwide, directly and through distributors. Qdot particles enable massively parallel yet simple and inexpensive solutions for a plethora of biological detection problems common to research, drug discovery, diagnostics, and genetic analysis. These problems include the need for high throughput, sensitive, easy-to-use, and low cost assays. In 2005, Invitrogen Corporation acquired QDC and it is now a part of Life Technologies.

Technology. Qdot particles are stable, water-soluble crystals, made of semiconductor material such as cadmium selenide. Each individual Qdot particle is nanoscopic (one billionth of a meter) in scale. Qdot particles light up when light is directed at them. They can be used in ways similar to dyes, but offer numerous advantages due to better optical properties. When a simple blue or ultraviolet light is shined on Qdot particles (lasers aren't necessary), they emit any particular color of choice. By contrast, multiple dyes (for multiple colors) typically require light from several lasers, which greatly increase the cost and complexity of assays. Qdot particles can be used to easily label and detect multiple markers at the same time. Laboratory-On-A-Bead (Qbeads) technology is a further extension of the Qdot technology. Qbead technology is based on the use of Qdot particles to create barcodes. These barcodes are created by tagging biologically relevant objects, such as cells or latex particles, with known combinations of different colored Qdot particles. The spectral barcodes enable very high levels of multiplexing for the rapidly emerging field of genetic analysis.

Applications. Qdot™ Assays. Quantum dots are molecular-scale optical beacons. Qdot nanocrystals behave like molecular LEDs (light emitting diodes) by "lighting up" biological binding events with a broad palette of applied colors. In addition to providing many more colors than currently available fluorophores, quantum dots possess many other very desirable optical properties. Qdot nanocrystals can be covalently linked to biomolecules using standard conjugation chemistry. This Qdot probe can then be used to detect its binding partner in a wide range of assays. Qdot applications include immunocytochemistry, Western/dot blotting, microarrays and FISH.

- 507 -

Page 510: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Qcell™ Assays. Virtually any whole-cell functional assay used in high-throughput screening can be encoded and multiplexed by Qcell technology including competition binding, reporter gene, calcium flux, membrane potential, and transporter assays. In addition, a wide variety of secondary assays can be encoded for screening a compound's effect on apoptosis, toxicity, cell migration, neurite outgrowth, receptor internalization, or protein translocation. Qcell technology can be used for studying the expression of membrane receptor proteins an important target class for drug development. This has proteomics and diagnostics applications.

- 508 -

Page 511: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Quest Diagnostics Inc

3 Giralda FarmsMadison, NJ 07940, USAWeb site: http://www.questdiagnostics.com/Tel: (800) 222-0446Chairman and CEO: Surya N. Mohapatra, PhD

Overview. Quest is the leading provider of routine medical testing including gene-based testing in the US. It offers the broadest access to diagnostic testing services through its national network of approximately 30 full-service laboratories. Through partnerships with pharmaceutical, biotechnology and information technology companies, Quest provides support to help speed the development of health care insights and new therapeutics such as personalized medicine. Quest acquisitions are: Clinical Diagnostic Services in 2001, Unilab Corp in 2002 for $860 million, LabOne Inc for $934 million in 2005, and Focus Diagnostics (see separate profile) for $185 million in 2005. In 2006, Quest paid $43 million to acquire Enterix Inc, developer of FDA-cleared InSure® fecal immunochemical test for colorectal cancer. In 2007, Quest acquired HemoCue, a Swedish POC company for $420 million. In March 2011, Quest acquired Celera for $671 million.

Products and services relevant to molecular diagnostics. Quest manufactures and markets diagnostic test kits and systems primarily for testing under the brand name of its subsidiary - Nichols Institute Diagnostics. These are sold to hospitals and clinical laboratories worldwide. The Nichols Advantage Specialty System is an automated chemiluminescence bench top system that runs specialty immunoassays. Quest provides gene-based testing for applications in functional genomics and proteomics. It has pioneered Spectral Karyotyping. Maternal screening for birth defects and patient evaluation for inherited disorders are examples of services provided in the genetics laboratory. Viral load and genotyping tests for patients suffering from HIV, HBV and HCV are available through Quest's nation-wide network of regional laboratories. Quest provides an improved version of its ultra-sensitive HEPTIMAX HCV load test using Roche' COBAS TaqMan platform. Quest's Lp-PLA2 (lipoprotein-associated phospholipase A2) identifies persons at risk of suffering a cardiovascular event, such as a heart attack if Lp-PLA2 levels are elevated.

The CF (cystic fibrosis) Portrait biochip, developed in collaboration with Thermo Electron, is used in conjunction with Quest ' DNA extraction and amplification methods.

Simplexa test uses 3M's Integrated Cycler and real-time RT-PCR to detect RNA of the H1N1 flu virus in nasal or specimens. It was approved by the FDA in 2010.

In 2008, Quest licensed Septin 9 biomarker from Epigenomics to develop a homebrew Septin 9 DNA-methylation test and market it for CRC as a supplement to colonoscopy and fecal occult blood tests. ColoVantage was approved by the New York state on 17 Mar 2011.

Collaborations. In 2002: (1) Quest and Celera formed collaboration for clinical use of laboratory tests based on biomarkers for cardiovascular disease and diabetes; (2) Nuvelo Inc licensed its MTHFR patent rights to Quest for commercializing MTHFR-based tests; and (3) Quest provided laboratory testing services for clinical trials of GlaxoSmithKline.

- 509 -

Page 512: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2004, Quest agreed to provide Digene Corp's DNA test as a primary tool to detect cervical cancer along with Pap smears rather than as a secondary test, and it made Monogram Inc its preferred provider of HIV phenotypic resistance testing. In 2005, Quest and Vermillion started to develop and commercialize novel proteomic diagnostic tests based on SELDI ProteinChip technology. In 2007, Vermillion and Quest started to jointly develop a blood-based test for the detection of peripheral artery disease as a continuation of the 2005 alliance. In 2007, Bio-Rad agreed to supply Quest with its BioPlex 2200 systems and autoimmune test reagents, as well as its HIV-1/HIV-2 PLUS O EIA assay for use in Quest reference laboratories in the US. In 2007, Quest licensed from Pathway Diagnostics the technology used in its co-receptor tropism HIV assay, SensiTrop test, to develop a validated molecular assay for co-receptor tropism in 2008.

- 510 -

Page 513: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

R&D Systems

614 McKinley Place NEMinneapolis, MN 55413, USAWeb site: http://www.rndsystems.com/Tel: (612) 379-2956Fax: (612) 379-6580E-mail: [email protected]: Kathy Backes ([email protected])

Overview. Research and Diagnostic (R&D) Systems was founded and incorporated in 1976 in Minneapolis, Minnesota and was acquired by TECHNE Corporation (http://www.techne-corp.com/) in 1985. R & D has two operating divisions: Hematology and Biotechnology. The Hematology Division develops and manufactures hematology controls, which are used in hospitals and clinical laboratories to check the accuracy of blood analysis instruments. The Biotechnology Division develops and manufactures biotechnology products including purified proteins (cytokines) and antibodies that are sold exclusively to the research market, and assay kits which are sold to the research and clinical diagnostic markets.

In 1991, R&D Systems purchased Amgen Inc's research reagent and diagnostic assay kit business. With this purchase, R&D Systems obtained Amgen's erythropoietin kit, its first ELISA assay kit for a cytokine that had been cleared by the FDA for clinical diagnostic use. In 1998, R&D Systems purchased Genzyme Corporation's research products business. This acquisition established R&D Systems as the world's leading supplier of research and diagnostic cytokine products. Today, the Biotechnology Division manufactures over 3,500 products that account for approximately 85% of TECHNE revenues.

Products. R&D products include proteins, antibodies (polyclonal, monoclonal, and labeled), immunoassays kits (human, mouse, rat, and porcine), mRNA quantitation kits, apoptosis detection kits, ELISpot kits, enzyme activity kits, cDNA expression arrays, cell enrichment columns, flow cytometry kits, probes, and primer pairs. R&D Systems has developed a multiplexed assay that simultaneously measures multiple cytokines in a single cell culture supernatant sample. This product is expected to provide researchers a powerful tool to assess cytokine profiles in heterogeneous samples. Future developments are anticipated to include expansion of this profile as well as kits to measure multiple cytokines in serum or plasma.

Collaborations. In 2001, Luminex Corporation entered into a multi-year strategic partnership with R&D Systems. Under the agreement, R&D Systems has rights to develop and market reagents based on Luminex's proprietary LabMAP technology. R&D Systems initially will develop, manufacture and market its Fluorokine MAP line of multianalyte profiling kits for use with the Luminex 100 analyzer. Under the terms of the agreement, R&D Systems has worldwide nonexclusive rights to develop and distribute reagents based on Luminex's proprietary LabMAP technology. For these rights, Luminex has received an up-front payment and will receive royalties from the commercialization of R&D Systems products based on Luminex's technology.

- 511 -

Page 514: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Response Genetics Inc

1640 Marengo Street 6th FloorLos Angeles, CA 90033, USAWeb site: http://www.responsegenetics.com/Tel: (323) 224-3900Fax: (323) 224-3900President & CEO: Kathleen Danenberg ([email protected])

Overview. Response Genetics Inc (RGI) was founded in 1999 to leverage breakthrough, patented technology for the “extraction of genetic information from formalin-fixed, paraffin-embedded clinical trial samples.” its success in developing this technology allows it to deliver tangible benefits to pharmaceutical companies and to create new platforms to support the industry with more efficient, cost-effective analysis of clinical trial samples, leading to the development of more “personalized” patient therapies.

Technology. RGI has developed a powerful RT-PCR based gene expression assay. Using a validated and patented process, RGI is capable of performing gene expression analysis from paraffin embedded specimens. RGI's technology enables the practical use of gene expression diagnostics for drug target validation and patient candidate pre-selection. RGI has chosen to concentrate on mRNA rather than protein quantitation because previous studies by Kathleen Danenberg demonstrated that expression levels of the appropriate genes can provide effective tumor response determinants.

RGI provides a test for Excision-Repair Cross-Complementing 1 (ERCC-1) gene expression for platin-based chemotherapy resistance to selected clinical practice groups.

With a patented process that RGI researchers have developed and refined, it is now possible to isolate sufficient RNA from a single 7 mm2 area of a slide-mounted paraffin section to quantitate up to 30 genes. Laser-capture microdissection can be performed on these slide-mounted sections to quantitate genes in homogeneous populations of tumor or stromal cells from the same specimen. With this powerful capability, RGI can perform gene expression measurements in large-scale clinical trails required to implement the use of gene expressions as response determinants in chemotherapy.

RGI has extensively published and validated its formalin-fixed and paraffin-embedded extraction technology as to reproducibility, sensitivity, and exportability. The age of the specimen does not appreciably affect the yield of RNA presenting the possibility of determining gene expression and outcome correlations in archival sets of tumors specimens from clinical studies that have been completed for some time from which the patient survival outcomes should be known and documented.

GI has developed PCR-based genetics tests − ResponseDX: Lung™, ResponseDX: Colon™, ResponseDX: Gastric™ − to help physicians with therapeutic treatment decisions for patients with NSCLC, colorectal cancer and gastric cancer to help guide therapeutic treatment decisions in cancer patients.

Services relevant to molecular diagnostics. RGI provides contract research and clinical trial gene expression services from paraffin-embedded specimens to the pharmaceutical industry. RGI currently partners with major pharmaceutical, small, and medium-sized biotechnology companies around the world for various projects requiring its gene expression services from paraffin-embedded and frozen specimens.

- 512 -

Page 515: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations relevant to molecular diagnostics. In 2002, RGI entered into a pharmacogenomic research agreement with Taiho Pharmaceutical Company. RGI will use its technology to provide gene expression data to Taiho.

In 2002, RGI entered into a pharmacogenomic research agreement with Eli Lilly & Co. RGI will use its technology to provide gene expression data to Lilly from paraffin-preserved tumor tissue treated with Lilly compounds.

In 2008, RGI began performing the MAGE-A3 gene expression screening assay for GlaxoSmithKline (GSK)'s phase III clinical trial of the investigational MAGE-A3 antigen-specific cancer immunotherapeutic as adjuvant therapy in MAGE-A3 positive patients with stage IB, II or IIIA NSCLC. On 2 January 2009, RGI extended its agreement for two years to provide genetic testing services to GSK, which will use the services in conjunction with developing cancer treatments and pay $1.3 million up front.

On 6 January 2010, RGI signed a distribution and services agreement by which Genetic Technologies will become the exclusive distributor in Australia, Indonesia, Malaysia, the Philippines, Singapore and Thailand for its ResponseDX cancer tests.

- 513 -

Page 516: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ribomed Biotechnologies Inc

1989 Palomar Oaks Way, Suite BCarlsbad, CA 92011, USAWeb site: http://www.ribomed.com/ Tel: 760-448-1355E-mail: [email protected]: Dr. Michelle Hanna

Overview. Ribomed Biotechnologies Inc, originally founded as Designer Genes in 1999, is focused on the development of rapid, specific, and robust tests for early disease detection. Ribomed’s proprietary Abscription® (abortive transcription) process is an extremely versatile signal generation method for the rapid, isothermal detection of RNA, DNA, and protein targets as well as DNA signatures (SNPs and CpG methylation).

Technology. The RiboMaker™ Detection System is a proprietary, specific and sensitive signal-generation technology that utilizes the Company’s RiboLogs® and isothermal abscription (abortive transcription) process. RiboMaker® is a versatile platform for the production of thousands to millions of signals from a single target nucleic acid or protein, without the use of PCR or gel electrophoresis, making it highly amenable to automated technologies and high throughput screening.

In 2004, Ribomed received over $3 million in contracts to use its RiboMaker Detection System in a portable sensor for germs used in bio warfare. Funds for the project come from the Defense Advance Research Projects Agency under the new HISSS Program (Hand-held Isothermal Silver Standard Sensor). The program will fund development and production of a hand-held device to be used by military personnel for rapid detection of infectious organisms, including bacteria and viruses such as anthrax and smallpox. The organisms will be detected using abscription™.

Collaborations. The HISSS program is a scientific and engineering collaboration involving Ribomed and five organizations from outside Arizona. DARPA and the US Army Soldiers Chemical and Biological Command will be funding and overseeing the project. The device will be built by Northrop-Grumman and will utilize DNA amplification technologies developed by Ionian Technologies, and RNA and protein detection technologies developed by Ribomed.

- 514 -

Page 517: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Roche Diagnostics

Hoffmann-La RocheGrenzacherstrasse 124CH-4002 Basel, SwitzerlandWeb site: http://www.roche-diagnostics.com/Tel: +41 (61) 688 88 88CEO: Jürgen SchwiezerPresident & CEO, Roche Molecular Diagnostics: Daniel O’Day

Overview. Roche Diagnostics is a division of Hoffmann-La Roche Ltd - a leading healthcare company with a uniquely broad spectrum of innovative solutions. Roche products and services address prevention, diagnosis, treatment and monitoring of diseases - the integrated healthcare approach. Roche is the largest company in molecular diagnostics. Roche Diagnostics has organized its activities in the following business units:

Roche Molecular Diagnostics (Pleasanton, California)

Roche Applied Science (Penzberg, Germany) develops, manufactures and oversees the commercialization of PCR nucleic acid amplification-based test kits.

Roche Centralized Diagnostics (Mannheim, Germany). LightCycler PCR for real-time PCR is a well-known product. LightCycler is used in B. anthracis detection kit (see Chapter 9). Distribution of BSE test is also carried to most parts of the world.

Roche Near Patient Testing (Graz, Austria)

Roche Diabetes Care (Mannheim, Germany)

Acquisitions. In 2003, Roche acquired IGEN for $1.42 billion, resolving the dispute about Roche's licensing of ORIGEN technology. In 2007, Roche acquired 454 Life Sciences from CuraGen for $155 million and the acquisition will solidify its access to future 454 sequencers and enable it to use them for IVD applications. In 2007, Roche acquired BioVeris Corporation for $600 million enabling it to expand its immunochemistry business from human diagnostics into market segments such as life science R & D, patient self-testing, veterinary diagnostics, drug discovery, drug development and clinical trials. Roche acquired NimbleGen for $273 in 2007. In 2008, Roche acquire Ventana, a tissue-based diagnostics firm, for $3.4 billion. The diagnostic sales increased in 2009 and were driven by RT-PCR platforms, blood screening products, and DNA sequencing and microarray products in its applied science business. On 11 March 2010, Roche bought from BioMicro Systems all of the products associated with the Roche NimbleGen microarray such as the 4-and-12-bay NimbleGen Hybridization Systems.

Products of Roche Molecular Diagnostics. It is recognized worldwide for its leadership in the field of DNA amplification technology. PCR is the basis for unprecedented advances in the diagnosis and monitoring of diseases such as AIDS and Hepatitis, and is used worldwide to ensure the safety of donated blood and blood products. RMS has made its patented PCR process the world’s leading genetic-based testing technology. Equipments launched in the US and tests approved by the FDA are:

The COBAS AMPLICOR Analyzer automates both amplification and detection of DNA and RNA targets in a single integrated system by combining 5 instruments into one (thermal cycler, automatic pipettor, incubator, washer

- 515 -

Page 518: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

and photometer). The latest model cobas 6000 analyzer series, which provides laboratories with an integrated clinical chemistry and immunoassay testing platform.

The AMPLICOR HIV-1 Test is an IVD using PCR technology for the detection of HIV-1 DNA in leukocyte preparations. PCR for HIV-1 detection has been shown to indicate the presence of virus before an individual's body has produced an antibody response. Roche is the only company working on proviral HIV detection.

The AMPLICOR HIV-1 MONITOR assays provide high levels of sensitivity, reliability, and specificity for quantitating and monitoring HIV-1 viral load levels. With sensitivity down to 50 copies/mL and a specificity of 99.9%, these assays are a highly accurate and reliable tool for monitoring HIV-1 antiretroviral therapy.

Automated COBAS AMPLICOR HIV-1 MONITOR streamlines the assay protocol and reduces the chance for technique-dependent error.

AMPLICOR MT Test to detect Mycobacterium tuberculosis in respiratory samples is commercially available in the US.

COBAS AmpliScreen HCV and HIV Assays are approved for screening blood donated for transfusion. COBAS AmpliPrep/COBAS TaqMan HCV test, approved by the FDA in October 2008, is fully automated and uses real-time PCR to quantify the amount of virus in an individual’s blood. In December 2008, the FDA approved Cobas TaqScreen MPX Test for screening for the presence of different types of HIV in donated blood plasma and tissue. The test detects HIV-1 Group M RNA, HIV-1 Group O RNA, HIV-2 RNA, HCV RNA and HBV DNA in human plasma.

In 2003, Roche launched a test for Severe Acute Respiratory Syndrome (SARS). Researchers will use this test to study epidemiology of SARS.

In 2003, FDA approved the first DNA-based laboratory tests for an inherited disorder the Factor V Leiden kit and the Factor II (prothrombin) G20210A kit.

In 2004, AmpliChip CYP450 microarray for identification of polymorphisms in CYP2D6 and CYP2C19 was approved by the FDA.

Chip-based tests introduced in 2004 include those for CF, genotyping of HPV linked to cervical cancer, risk of colon-rectal cancer and HIV genotyping. AmpliChip Leukemia detects all leukemias in one chip.

In 2005, Roche Applied Science launched Genome Sequencer 20 System and reagents from 454 Life Sciences, which will enable researchers to sequence up to 100 times faster than current commercial platforms at a fraction of the price.

Elecsys® proBNP is an automated immunoassay for diagnosis of congestive heart failure (CHF) by detecting the level of the NT-proBNP peptide.

Roche's Cobas TaqScreen test that can directly detect West Nile Virus in donated blood from asymptomatic donors was approved by the FDA in 2007.

COBAS TaqMan HBV Test extracts and then amplifies sections of viral DNA from human plasma or serum. It measures the viral load in a patient’s blood, which provides health care professionals with a highly sensitive method for gauging the progress of antiviral therapy in patients with chronic HBV infections. It was approved by the FDA in September 2008.

- 516 -

Page 519: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

The following are under review or approved by the FDA and some are available in the EU:

The COBAS AMPLICOR HCV Test was developed for use on the automated COBAS AMPLICOR Analyzer. This test detects HCV RNA in serum or plasma. It is capable of determining current infection as well as patient response to antiviral therapy.

AMPLICOR CT/NG Test detects Chlamydia trachomatis and Neisseria gonorrhea (NG) respectively in both male and female for urine and swab samples. NG urine for females and NG urethral swabs for asymptomatic males sample collection methods are not approved by the FDA.

In 2008, COBAS TaqMan CT Test v2.0, which simultaneously detects two targets within the C. trachomatis cryptic plasmid and genome target DNA, received CE mark certification in the EU.

The AMPLICOR CMV Test is a test using PCR for the detection of CMV DNA in clinical specimens. Amplicor HPV, will detect 13 high-risk HPV genotypes from clinical samples, while the other test, the Linear Array, will identify which of those 13 types are in a particular sample. FDA is reviewing these tests for clearance.

The COBAS AMPLICOR CMV MONITOR test is a standardized, automated and quantitative CMV molecular assay. With a sensitivity of 400 copies/mL and a linear range of 400-100,000 copies/ml this test becomes a useful tool for identifying immunodeficient patients at risk of CMV disease and monitor anti-CMV treatment. By eliminating many operator-dependant steps, the COBAS AMPLICOR Analyzer streamlines the assay protocol, reduces the chance for technique-dependent error, and improved productivity. This product is not available in the US.

In 2006, Roche received CE Mark certification for the cobas TaqScreen MPX Test, which allows the simultaneous detection of several viruses in donated blood. The test streamlines laboratory workflow and helps improve blood safety by enabling blood centers to replace three separate PCR-based nucleic acid tests (HIV-1, HBV and HCV) with one comprehensive test.

In 2005, Roche announced the availability of a new PCR-based reagent set designed to allow researchers detect the influenza A virus H5N1 in birds, which will run on the LightCycler® Instruments. The test, developed in collaboration with TIB MOLBIOL, enables identification of the Influenza A H5N1 subtype within hours compared to days with many other methods. Additionally, the protocol detects genetic material of the virus instead of proteins (antibodies) which are identified by many of the immunological tests currently used. On 14 May 2009, Roche offered a new detection kit, which runs on LightCycler systems, for the influenza A/H1N1 virus (swine flu) for use in life science research. Roche is currently filing to get approval of the local health authorities worldwide for use of the kit in emergency situations. The kit selectively identifies the new influenza virus. Compared with other detection kits, it has some advantages in regard to efficiency and handling.

In 2006, Roche’s LightCycler SeptiFast Test received CE Mark in the EU for rapid diagnosis of infections.

In 2008, Cobas AmpliPrep/Cobas TaqMan dual-target HIV-1 Test received the CE-IVD mark allowing it to be used for clinical use throughout the EU. The test simultaneously amplifies and detects 2 separate regions of the HIV-1genome, which enables reliable results even when mutations are present. The test also uses real-time PCR to quantify the amount of HIV-1RNA in a patient’s blood.

- 517 -

Page 520: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AmpliChip P53 is in development as a compüanion diagnostic for anticancer drugs.

Collaborations relevant to molecular diagnostics. Current Roche collaborations relevant to molecular diagnostics are:

PCR: Abbott, Applera, Bayer, Beckman Coulter, Bio-Rad, Exiqon, Innogenetics, Johnson & Johnson

ECL technology: BioVeris

HPV genotypes: Institute Pasteur, Paris

Research microarray: CombiMatrix

NT-proBNP biomarker IP: Medinowa

Proteomics: Millenium Pharmaceuticals

Clinical utility biomarkers: Partners HealthCare (Boston, MA)

Automated sample prep instrument and development of a customized integrated diagnostic system for HBV, HCV and HIV-1 based on PCR: QIAGEN

Collaborations that started in 2002 were:

With ExonHit Therapeutics to develop tests for BSE in living animals by combining Roche's PCR-workflow platform and DATAS™ ExonHit's proprietary qualitative gene profiling technology. The two companies will work together to identify RNA signatures in bovine blood that correlate to BSE infection.

RMS signed an agreement with MicroFluidic Systems Inc to develop microfluidics-based automated technologies for use in its PCR-based clinical diagnostics.

Licensing of melting curve analysis of gene fragments in PCR reactions from Evotec AG. Roche is applying this method in its LightCycler technology.

With IDEXX Laboratories Inc to develop PCR-based tests for veterinary pathogens.

In 2003. Affymetrix granted Roche access to its GeneChip brand technologies to develop and commercialize diagnostic products in a broad range of human disease areas. Roche started collaboration with Epigenomics to develop gene-based tests for detecting cancer in earliest stages. Innogenetics granted Roche a license to its IP for HCV genotyping.

Collaborations in 2004. Incyte licensed its Eberwine Linear RNA Amplification technology to Roche for development of diagnostics to identify gene expression patterns.

Collaborations in 2005. Roche Diagnostics started collaboration with Eli Lilly & Co to confirm biomarkers that may be used to identify patients most likely to respond to certain cancer therapies. Lilly and Roche Molecular Diagnostics will work with Response Genetics Inc, with whom both companies have an existing research technology relationship. RMS and Primagen formed collaboration to develop dry filter spot technology for HIV-1 viral load testing in the developing world. Specialty Labs and LabCorp signed agreements with Roche to begin offering the AmpliChip CYP450 assay.

- 518 -

Page 521: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2006, Protedyne, a Lab-automation company, integrated its benchtop robotic system called Radius with Roche’s LightCycler 480 real-time PCR system to create an automated high-throughput product that enables researchers to reproduce PCR assays.

In 2007, Ensemble Discovery started collaboration with Roche to develop a test using its DNA Programmed Chemistry technology for analyzing combinations of specific receptors to help select cancer patients that are most likely to respond to particular therapies.

In 2008, Roche licensed Ovation (whole-transcriptome RNA amplification method) from NuGen Technologies, which is included in its LightCycler RNA Pre-Amplification Kit. NuGen supplies components for the kit, which enables small and partially degraded RNA samples to be amplified into g of cDNA. The Kit will enable researchers to conduct whole-transcriptome gene expression analysis of challenging clinical samples.

In 2008, Roche started collaboration with National Jewish Health (NJH) of US for research on clinical testing and care for those with respiratory and environmental diseases. Roche will provide the technology and assays for testing indoor mold levels and NJH will test the platforms and protocols. NJH referral lab, the molecular diagnostics lab of Advanced Diagnostic Laboratories, will also implement testing to aid a Roche-led, research-focused health care group focusing on pharmaceuticals and diagnostics.

In 2009, Roche started collaboration to commercialize new applications for Ionian Technologies' NEAR Assay, a rapid isothermal nucleic acid amplification technology.

In 2010. Merck & Co started to use Roche's p53 AmpliChip to detect mutations in p53 gene and for cancer research. Roche started to collaborate with CapitalBio to further develop microarray technologies and complementary products for molecular diagnostics applications. The initial focus will be on enhancing and automating the Roche NimbleGen microarray workflow for preventive and personalized diagnostics. Roche obtained a sub-license from Genzyme to develop the EGFR assay, and will collaborate with OSI Pharmaceuticals to develop the companion diagnostic for customizing the use of Tarceva (erlotinib) for patients with advanced NSCLC.

- 519 -

Page 522: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Rubicon Genomics Inc

4370 Varsity Drive, Suite GAnn Arbor, MI 48108, USAWeb site: http://www.rubicongenomics.com/Tel: (734) 677-2890President and CEO: Fred G. Beyerlein ([email protected])Contact: Linda Thompson ([email protected])

Overview. Rubicon Genomics is a leader in the development of improved technologies for detecting the pattern of DNA methylation in cancer cells. The MethylPlex tests will initially focus on serum and urine samples, since these are universally available fluids that contain very small amounts of tumor DNA which is released into the bloodstream and subsequently excreted.

Technology/products. Rubicon has developed a superior test to non-invasively diagnose cancer and other diseases using its proprietary MethylPlex™ technology to amplify the exceedingly small amounts of abnormally-methylated DNA that are released by diseased tissue into serum and urine. MethylPlex has proven sensitivity and simplicity advantages over current competitive tests for methylated DNA tumor biomarkers. The increased technical sensitivity will enable earlier, more reliable non-invasive detection of disease as well as allow for more methylation biomarkers to be assayed in a single test, thus increasing both diagnostic sensitivity and specificity. The increased simplicity of MethylPlex enables inexpensive, robust tests utilizing currently existing diagnostic platforms. Achievement of these sensitivity and simplicity milestones make MethylPlex the first cancer diagnostic tool to meet the performance and cost criteria required for population screening.

Rubicon is currently discovering on custom microarrays that profile methylation of all human genes. This strategy is built on the belief that methylated DNA in serum and urine is a universal analyte for disease diagnosis and prognosis. Rubicon has protected MethylPlex and the other members of the OmniPlex family by international patents and patent filings.

Rubicon has commercialized GenomePlex and TransPlex research kits, which are based on the Company’s proprietary amplification technology and are used for whole genome and whole transcriptome amplification, respectively. In September 2005, Rubicon launched TransPlex™ whole transcriptome amplification kit for amplification of nanogram quantities of RNA from fresh and formalin-fixed tissue

In addition to these product sales, the Company operates a contract service for whole genome and whole transcriptome amplification using its proprietary technologies.

Collaborations. In 2005, Rubicon signed an agreement with the Genome Institute of Singapore to allow use Rubicon molecular diagnostics technology to recover genetic information from clinical serum samples for a large study of the immune response to vaccination against the hepatitis B virus.

In 2006, Rubicon has signed a license agreement with Sigma-Aldrich for the marketing of GenomePlex Whole Genome Amplification kits to service providers. Rubicon will retain all rights to the kits for molecular diagnostics, and will continue its existing service business.

- 520 -

Page 523: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2006, Rubicon signed an agreement with Asterand, which will supply tissue and biofluid samples from its biorepository and its worldwide network of clinical collaborators, and Rubicon will study the samples using its MethylPlex technology to discover methylated DNA biomarkers for cancer diagnosis and prognosis.

In 2006, Sigma-Aldrich agreed to develop and market Rubicon’s RNA-amplification product, Transplex whole transcriptome-amplification tool. Rubicon will retain all rights to the Transplex for use in its molecular diagnostics ventures.

Savyon Diagnostics Ltd

Ashdod's Science Park, 3 Habosem St. Ashdod 77610, IsraelWeb site: http://www.savyondiagnostics.com/Tel: 972-8-8562920Fax: 972-8-8563258E-mail: [email protected]: Dr. Martin J. LeeContact: Natan Vilfand, Vice President, Production ([email protected])

Overview. Savyon Diagnostics Ltd, established in 1984, specializes in the research, development, manufacturing and marketing of diagnostic kits for infectious and genetic diseases. Savyon acquires intellectual property both by in-house research and by in-licensing via an extensive network of commercial and academic collaborations. Export sales to research establishments, medical laboratories and clinicians are supported by an extensive worldwide network of distributors and account for over 80% of Savyon’s revenues. Savyon's accreditations include GLP/GMP, EN46001 and ISO 9001. The Company is CE certified for sale of its goods into the European Economic Union.

Responding to the growing demands for efficient and automated testing, Savyon focuses its technological personnel on research and development of advanced medical diagnostic products using biosensors, molecular biology and rapid testing technologies.

Technology. Pronto™ is a rapid accurate and user-friendly system for detecting SNPs in DNA sequences. This post amplification mutation detection system is based on the single nucleotide primer extension assay and the high specificity in which DNA polymerase incorporates nucleotides into the elongating strand. In the complete genotyping format of the Pronto™ system each mutation site is tested in two wells of the 96-well microtiter plate. Every sample is separately and internally controlled for each mutation tested. Results are clearly determined visually as well as analyzed by a standard ELISA reader.

Products. Savyon Diagnostics’ DNA Extraction kit procedure, features a short and easy method for extracting DNA from whole blood. The kit yields genomic DNA, ready for direct use in DNA amplification reactions. It offers a one-tube based procedure, making use of elementary lab equipment.

Infectious disease. HSV2 are competition based ELISA assays for semi-quantitative specific determination of HSV1 or HSV2 antibodies in human serum. Studies performed have shown no cross reaction with VZV. SeroHSV IgM is a qualitative assay for specific detection of IgM antibodies to HSV1 and/or HSV2 in human serum. SeroHSV IgG is a semi-quantitative assay for

- 521 -

Page 524: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

specific determination of IgG antibodies to HSV1 and/or HSV2 levels in human serum.

Genetic testing. Savyon provides genetic screening for the following diseases: CF, Gaucher, Fanconi anemia C, Canavan, Bloom syndrome, familial dysautonomia, mucolipidosis type IV, Tay Sachs, and Niemann-Pick.

Pronto™ ApoE test is used for testing alleles 2, 3 and 4 in Alzheimer disease.

Savyon provides predisposition testing for Factor V, MTHFR, prothrombin (Factor II), hemochromatosis, breast cancer and colorectal cancer.

Collaborations. In 2002, Savyon and ProChon Biotech started collaboration for the development and manufacture of a genetic kit for diagnosis of mutations associated with bladder cancer. Savyon will be responsible for prototype kit development and manufacturing, and ProChon will be responsible for clinical development and retain worldwide exclusive rights for commercialization of the kit.

- 522 -

Page 525: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Seegene Inc

Head offfice: 8, 9F, Taewon Bldg., 65-5, Bangyi-dong,Songpa-gu, Seoul 138-050, KoreaUS Office: 9700 Great Seneca Hwy, Rockville, MD 20850Web site: http://www.seegene.com/US Tel: +301-762-9066; Fax: +301-762-9088Korea Tel: + 82-2-2240-4080CEO: Dr. Cheon Jong-Yoon

Overview. Seegene Inc, established in 2000 in Korea, is a biotechnology company that specializes in gene discovery, gene function analysis, and diagnosis of various diseases, including cancer and infections. Its innovative DSO™ technology has proven to yield unparalleled levels of sensitivity and specificity in PCR. It is engaged in developing core research technologies used in genomic research. Currently, it provides its products and services for gene discovery and gene expression analysis worldwide through two American branch offices and over 20 world-wide distributors. Seegene went public in September 2010.

Technology/products/applications. Seegene has developed DPO™, a novel oligo platform for PCR, which has superior performance in specificity, sensitivity and accuracy to any other conventional PCR/hybridization method. DPO-PCR allows only target-specific amplification under extreme stringent PCR conditions so that the results are remarkable in terms of PCR specificity, sensitivity and accuracy. Seeplex®, based on DPO™, is a breakthrough multiplexing PCR technology that enables a new standard in simultaneous multi-pathogen detection. The tests deliver maximum specificity and sensitivity for STDs, respiratory viruses, human papillomavirus, sepsis, and pneumonia.

In 2008, Seegene was awarded the patent (WO/2008/143367) by the World Intellectual Property Organization to cover a novel method for ApoE haplotyping using multiplex PCR. It can identify an individual's risks for a broad range of disorders, such as Alzheimer's disease and coronary artery diseases, or genetic mutations known to cause various cancers. In 2009, Seegene was awarded patent in the US and EU for Annealing Control Primer (ACP), which is a novel primer designed to improve the specificity of PCR.

Seegene's READ™ (REal Amplicon Detection) PCR combines the advantages of multiplex and nested real-time PCR, accelerates test processing by 400%, and increases specificity and sensitivity of pathogen detection 10- to 100-fold over current technologies. Anyplex™ system using READ™ technology can be applied to various real-time PCR instruments for multiplex tests and provides clear and reliable results. Series of Magicplex™ tests based on READ technology include the following:

TB/MDR detects M. tuberculosis and screens multidrug-resistant tuberculosis (MDR-TB) on real-time PCR.

Magicplex™ RV Panel real-time PCR test detects 29 pathogens for respiratory infections including influenza.

Magicplex™ Sepsis real-time PCR test screens for more than 90 pathogens which cover over 90% of sepsis-causing pathogens as well as 3 drug resistance biomarkers (mecA, vanA and vanB) from whole blood samples.

Collaborations. In 2008, Seegene and Shimadzu started collaboration to develop molecular diagnostics tests that will run on Shimadzu’s MultiNA

- 523 -

Page 526: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

high-speed electrophoresis system. MultiNA platform, which is indicated for research use only, uses microchip technology to perform fully automated, high-speed electrophoresis separation, fluorescence detection, and high-sensitivity analysis.

In March 2011, Molzym started to provide its MolYsis microbial DNA-enrichment technology on the front end of Seegene's Magicplex Sepsis test.

On 7 April 2011, Seegene and Samsung Medical Center started collaboration to develop new molecular diagnostics tests directed at cancer by combining Seegene's multiplex PCR and real-time PCR technology to detect genetic mutations suggestive of certain cancers with Samsung's clinical and disease pathology expertise. Samsung will provide the first test sites for the diagnostic products. Initial indications of interest are NSCLC, CRC, pancreatic cancer, and cholangiocarcinoma. This launches Seegene into the personalized medicine space, as it will develop new tests for drug resistance and SNPs. Clinicians will be able to use tests to profile patients to predict if they are likely to respond to cancer therapies and whether the cancer will recur or has metastasized.

- 524 -

Page 527: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Sensigen LLC

2900 Huron Parkway, Suite 1Ann Arbor, MI 48105, USAWeb site: http://www.sensigen.com/Tel: (734) 213-7600Fax: (734) 213 7612Email: [email protected] and Chief Executive Officer: Shawn M. Marcell

Overview. SensiGen LLC is a biotechnology company focused on gene-based molecular diagnostics. Its mission is to develop and commercialize nucleic acid tests that detect serious diseases earlier, monitor diseases more effectively, and lower overall healthcare costs. The Company has a late stage pipeline of high value diagnostic tests for cervical cancer, head and neck cancer, chronic kidney disease and lupus, all of which address very large markets with significant unmet needs.

Technology/products. SensiGen has developed a new type of gene-based molecular diagnostic testing technology, called AttoSense™ and EpiSense™, which have revolutionized the art of molecular level detection. These approaches combine real-competitive PCR (rc-PCR) with MALDI-TOF MS, collectively called PCR-MS, to enable unique, multiplex assays that can reliably and accurately detect as few as one to three target sequences in any biological sample.

SensiGen assays run on the proprietary MassARRAY® PCR-MS system developed by Sequenom Inc, and licensed exclusively by SensiGen. The MassARRAY® system is a highly automated, widely established PCR-MS platform capable of identifying more than 30 target sequences in a single reaction and with capacity to process nearly 2,000 samples in a single run.

The "attomolar" sensitivity levels of SensiGen's assays represent an unprecedented 2+ orders of magnitude improvement over the current state of the art. Moreover, SensiGen assays can work with any biological medium (blood, urine, tissue, etc.) and readily deliver genotype specific, fully quantitative results, in absolute or relative terms (e.g. “viral load”) as opposed to returning only “positive” or “negative” results in an aggregate sense.

SensiGen assays currently in development include:

AttoSense™ HPV-G is a 16-plex genotype-specific assay for the qualitative determination of all high risk HPV subtypes in cervical samples.

AttoSense™ HPV-Q is a 16-plex genotype-specific assay for the quantitative determination of high risk HPV subtypes, including viral load calculation, in cervical, tissue, urine, and blood samples.

AttoSense™ Kidney Test is a quantitative multiplex assay for the mRNA of Nephrin and other kidney related genes in urine.

EpiSense™ Lupus is a quantitative methylation-specific assay for the determination of epigenetic changes in lupus-associated biomarkers.

Collaborations. In 2008, SEQUENOM and Sensigen expanded their global alliance to develop and market advanced diagnostic tests and systems to commercial laboratories worldwide. In January 2009, SEQUENOM agreed to

- 525 -

Page 528: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

acquire the complete AttoSense™ portfolio of tests along with certain other assets from SensiGen.

- 526 -

Page 529: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SEQUENOM Inc

3595 John Hopkins CourtSan Diego, CA 92121, USAWeb site: http://www.sequenom.com/Tel: (858) 202-9000; Fax: (858) 202-9001CEO: Harry F. Hixson Jr PhD

Overview. SEQUENOM Inc is a leading high performance, DNA analysis company organized into two distinct business units: Genetic Systems and Pharmaceuticals. The Genetic Systems unit is dedicated to the sales and support of SEQUENOM's MassARRAY hardware, consumable and software products, and the continual expansion of platform applications. The Pharmaceuticals unit focuses on disease gene discovery, target identification, functional validation and diagnostic/therapeutic product development. SEQUENOM's acquisitions include Gemini Genomics, Axiom Biotechnologies Inc, and Center for Molecular Medicine, a CLIA certified clinical diagnostics laboratory. In 2008, SEQUENOM completed the acquisition of the Center for Molecular Medicine, a CLIA-certified clinical diagnostics lab based in Grand Rapids, Michigan, for $4 million. It is renamed Sequenom Center for Molecular Medicine. In 2009, SEQUENOM purchased SensiGen’s AttoSense™ portfolio of tests for $8.7 million including an up-front fee and future milestone payments.

Technologies/products. The MassARRAY system combines proprietary enzymatic reactions, bioinformatics, and a miniaturized chip-based format using the accuracy of mass spectrometry. The system delivers a highly accurate, cost-effective technology capable of high-throughput SNP discovery and analysis. MassARRAY platform can now be used for virtually any type of high-performance DNA analysis. SEQUENOM has a high-performance SNP discovery application for its MassARRAY platform. SNP discovery application enables users to identify previously unknown SNPs, with greater accuracy and speed than competing technologies. This is the first of several potential commercial applications for SEQUENOM's Re-Sequencing technology, including DNA methylation analysis, bacterial and viral typing, mutation analysis and species identification. SEQUENOM has developed a method for rapid large-scale bacterial identification, which can be used to determine the genetic barcode of any bacterial specimen. It is based on a combination of DNA amplification, base-specific cleavage and MALDI-TOF MS. MassARRAY® technique can detect human papillomavirus with 1,000-fold more sensitivity than the current standard method while maintaining specificity.

SEQUENOM has developed a unique approach to identify disease genes based on its large proprietary DNA bank of over 15,000 healthy people (Chapter 8). It has identified novel genetic markers in four genes for susceptibility to breast cancer and anticipates similar discoveries in diabetes, osteoporosis and lung cancer.

SEQUENOM’s new iPLEX Assay is used for SNP genotyping. The most significant difference relative to the existing hME genotyping assay is that all reactions for the iPLEX assay are terminated after a single base extension, allowing the use of a universal termination mixture. It is a low-cost high plexed assay that can be designed for >95% of all confirmed SNPs. In 2006, SEQUENOM launched its latest generation multiplex genotyping product, the iPLEX Gold assay. This assay enables a typical fine mapping genotyping study for about 3.5 cents per data point by providing routine multiplexing at 36 times per reaction and, depending upon the complexity of the specific

- 527 -

Page 530: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

assay, up to 40 times per reaction. This represents customer savings of 25% per study compared to the original iPLEX assay and improves project efficiency.

In 2007, Sequenom, supported by a NIH 3-year award aiming at a $1000 genome, started to develop a third-generation single molecule nucleic acid analysis technology licensed from Harvard University that covers a readout system for single DNA molecules based on simultaneous optical probing of multiple nanopores.

SEQUENOM is developing SEQureDx, a sequencing-based digital PCR solution, for its genomic analysis business, cancer research and diagnostics. It can detect fetal aneuploidy, including Down syndrome from maternal blood. Launch is expected by end of 2011.

Assays from SensiGen are: AttoSense HPV-G and HPV-Q for cervical cancer, AttoSense HPV-C for head & neck cancer, AttoSense Kidney Test, and EpiSense Lupus Panel. SensiGene™ cystic fibrosis carrier screening test was launched in 2009. Based on MassARRAY platform, it is designed to detect circulating cell-free fetal DNA from maternal blood. The test enables direct and label-free analysis of nucleic acids to screens for 103 mutations and 5 variants, including the 23 mutations recommended by the ACMG. In Feb 2010, Sequenom Center for Molecular Medicine launched SensiGene Fetal RHD Genotyping test, which examines multiple regions of the gene that are known to be the most common genetic basis of RhD -ive phenotypes. It interrogates 4 targets within 3 exons located on the RHD gene on chromosome 1 and incorporates male-specific targets on the Y chromosome.

In December 2010, results from an equivalency study of trisomy 21 test using the HiSeq 2000 met pre-specified requirements that enable the start of validation study in Jan 2011.

Collaborations. The following collaborations started in 2004:

With the Health Protection Agency UK to apply MassARRAY technology in the genetic identification and differentiation of microbes, including major human pathogens such as N. meningitides. The goal is to discover and develop robust genetic biomarkers that differentiate pathogenic from nonpathogenic strains.

With LGC of UK enable LGC to use the validated panel of SNP assays on its MassARRAY platform to provide paternity and forensic testing.

To provide TGen access to its candidate gene portfolio of targets associated with an individual's predisposition for skin cancer. TGen will further validate these candidate genes against its expression databases with regard to their potential use as diagnostic markers for skin cancer risk and the clinical prognosis of skin cancer patients. Products developed from this study will be jointly commercialized.

With Siemens Healthcare Diagnostics to explore the requirements for next generation molecular diagnostics platforms.

In 2005, SEQUENOM acquired rights to IP from Isis Innovation for noninvasive prenatal genetic testing of fetal nucleic acids derived from plasma or serum in cystic fibrosis, hemoglobinopathies, and chromosomal aneuploidies on any platform, including MS and real time PCR. The rights are valid in certain countries including the US and UK.

In 2007, QIAGEN and SEQUENOM started collaboration to develop a gold standard preanalytical solution for small molecule (fetal) DNA enrichment for prenatal diagnostics. SEQUENOM will retain exclusive distribution rights to

- 528 -

Page 531: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

the specific technology for enriching short nucleic acids developed under this collaboration.

In 2008, SEQUENOM secured exclusive rights to fundamental patents USPTO Nos. 6,143,496 and 6,391,559 for digital PCR technologies and methods from Genomic Nanosystems for use in noninvasive prenatal diagnostics. Sequenom also secured the exclusive right to use digital PCR methods in conjunction with MS for any commercial, diagnostic or research purpose, excluding second generation sequencing.

In 2009, SEQUENOM signed an exclusive sales agency agreement with GeneWorks Pty Ltd, which will assist in expanding its marketing presence in Australia. GeneWorks manufactures high quality oligonucleotides and offers a range of genetic analysis services.

On 5 April 2011, New England Biolabs (NEB) and Sequenom signed a licensing and co-marketing agreement for the commercialization of tools for epigenetics research as the basis for EpiMark Methylated DNA Enrichment Kit from NEB. NEB will be Sequenom's first supplier of choice if the technology is used for prenatal diagnostic purposes.

- 529 -

Page 532: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SeraCare Life Sciences

37 Birch StreetMilford, MA 01757, USAWeb site: http://www.seracare.comTel: 508-244-6400Fax: 508-634-3394President and CEO: Susan L. N. Vogt

Overview. SeraCare Life Sciences Inc is a manufacturer and supplier of biological materials and services essential for the use and manufacture of diagnostic tests and the discovery, development and commercial production of pharmaceuticals. The Company's offerings include plasma-based therapeutic products, diagnostic products and reagents, cell culture products, specialty plasmas, in vitro stabilizers for use in the drug discovery and development processes. In 2005, SeraCare acquired its' Celliance subsidiary for $3.7 million in cash and the deal was finalized in 2006. Celliance, which acquired gene-expression technology from Innovata in 2005, primarily offers products for cell culture and diagnostic applications. The acquisition is aimed at increasing SeraCare's footprint in molecular diagnostic reagents, diagnostic intermediates, and substrates. In May 2007, BioServe acquired Genomics Collaborative from SeraCare Life Sciences. In June 2007, SeraCare entered into a 3-year Credit and Security Agreement with Merrill Lynch Capital as a lender and as the Administrative Agent, pursuant to which a $10 million revolving loan facility was made available to the Company. This is a part of SeraCare’s joint plan of reorganization which became effective and let SeraCare emerge from its Chapter 11 bankruptcy proceeding.

Molecular diagnostics. SeraCare’s divisions relevant to molecular diagnostics include:

BBI Diagnostics (http://www.bbii.com) is an ISO 13485 certified manufacturer and supplier providing a comprehensive line of quality control products used in infectious disease testing, (HIV, Hepatitis, West Nile Virus, ToRCH, STD's, etc).

SeraCare Diagnostics (http://www.seracare.com/scdx/diagnostics.htm) is a leader in the sourcing, production, and distribution of high quality, plasma-based enabling tools for scientists engaged in diagnostics test development and production. SeraCare pioneered a system that provides traceable control of collection, processing, and delivery of animal and human serum and plasma resulting in dependable, quality products.

- 530 -

Page 533: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Serigene

Pennsylvania Biotechnology Center3805 Doylestown, PA 18902, USAWeb site: http://www.serigene.com/Email: [email protected]: William F. Soriano, Executive VP, Commercialization and Marketing

Overview. Serigene was founded to introduce a rigorous and cutting edge standard in field-testing to the diagnostic community. Serigene system is an office and field-based integrated rapid POC diagnostic system accepting samples such as a drop of blood, sputum (or cheek swab). Serigene applies its technology to provide hands free sample processing, analysis and initial result interpretation.

Technology. Serigene has developed a proprietary POC integrated testing technology  consisting of a Real Time PCR reader (RT-reader) with a Serigene proprietary cartridge.  The Serigene cartridge has significant advantage over alternatives in terms of flexibility, testing volumes and detection speed:  

Multiple independent measurements to detect a panel of pathogens or cancer biomarkers

Faster detection (less than 30 min) enables earlier intervention

Handles complex sample types

- 531 -

Page 534: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Siemens Healthcare Diagnostics

1717 Deerfield RoadDeerfield, IL 60015-0778, USAWeb site: http://diagnostics.siemens.com/Tel: 847-267-5300Chief Executive Officer: Donal Quinn

Overview. Siemens AG acquired Dade Behring, Bayer Diagnostics and Diagnostic Products Corp to form Siemens Healthcare Diagnostics (SHD) the largest diagnostic company. Its products and services blend science, technology and practicality to provide healthcare professionals with the vital information for delivery of personalized healthcare to patients. SHD has bridged the gap between in vivo diagnosis and IVD to become the first full service diagnostics company. By bringing together medical imaging, laboratory diagnostics and healthcare information technology, SHD offers a unique set of solutions that provide improved clinical, operational and financial outcomes.

Technology/products/services. SHD offers immunodiagnostics, genetic testing, POC testing, clinical chemistry, lab automation, hematology (blood cell diagnostics), and beyond. Selected products are listed here.

Bayer Nucleic Acid Diagnostics. The branched DNA (bDNA) technology is for quantitative HIV viral load testing HIV-1 RNA 3.0 test has a dynamic range of 50-500,000 copies/mL. This line includes VERSANT HIV-1 RNA Assays (bDNA), HCV RNA Qualitative Test.

Bayer Immuno 1 Immunoassay Analyzer. This is a fully automated, random access immunoassay instrument with over 50 assays available worldwide.

The QuantiGene HV Kit. This is for research use only to enable rapid, in-house high volume screening of compounds by directly measuring cellular mRNA expression. The assay is unique in that no isolation of mRNA is required.

ADVIA® Centaur system. This fully automated system enables up to 240 tests an hour and offers a wide range of assays for conditions including infectious diseases, allergies, cancer, cardiovascular diseases and metabolic disorders.

On 18 February 2008, VERSANT™ 440 Molecular System was approved by FDA for use with VERSANT HCV RNA assay for management of HCV patients undergoing treatment.

Biomarkers. Siemens Healthcare Molecular Imaging Biomarker Research facility will be dedicated exclusively to the development of molecular imaging biomarkers, which will become in vivo diagnostic tools for identifying diseases at their earliest stages. The facility will be dedicated to the discovery of new imaging agents and their clinical development, with the goal of bringing several new agents to the market over the next 5-10 years. R & D efforts will focus largely on oncology and neurology and also include other areas such as inflammation and microfluidics/nanotechnology research. It is developing molecular imaging tracers for cancer, hypoxia (to aid the planning of radiation therapy), angiogenesis (to aid chemotherapy), and cardiovascular disease in collaborations.

Collaborations. In 2007, Bio-Rad Laboratories, signed a marketing agreement with SHD to provide its quality control products and Unity™ QC data management solutions for use on SHD's ADVIA® Chemistry and ADVIA

- 532 -

Page 535: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Centaur® Immunoassay Systems. In 2007, SHD became a part of 6-year Innovation Alliance Molecular Imaging with Bayer-Schering Pharma, Boehringer Ingelheim, Carl Zeiss, Karl Storz, and the German government. In February 2008, SHD signed a 5-year agreement with the Mayo Clinic for use of its Versant and Trugene products to assess human HIV, HCV and HBV viral load, genotyping, and drug resistance. In 2008, SHD and LabCorp signed a non-exclusive agreement to co-develop new clinical diagnostic tests in the areas of companion diagnostics, metabolic syndrome, oncology and diabetes that could make the biggest impact to patient care.

- 533 -

Page 536: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Sigma-Aldrich Corporation

3050 Spruce St.St. Louis, MO 63103, USAWeb site: http://www.sigma-aldrich.comTel: (314) 534-4900Fax: (314) 771 57 57President and CEO: Jai NagarkattiContact: Dave Smoller, President, Research Biotech Business Unit

Overview. Sigma-Aldrich is a leading $1.7 billion Life Science and High Technology company. Its biochemical and organic chemical products and kits are used in scientific and genomic research, biotechnology, pharmaceutical development, the diagnosis of disease and chemical manufacturing. Sigma-Aldrich operates in 35 countries and has 6,800 employees providing excellent service worldwide. Its Sigma division is involved in molecular diagnostics.

Technologies/products relevant to molecular diagnostics. In 2004, Sigma introduced the GenElute Five-Minute Plasmid Miniprep Kit, which is a plasmid DNA isolation method designed to help researchers achieve high-quality DNA for automated sequencing in less time. The procedure relies on two technologies developed at Sigma. The first is a patent-pending, novel lysis chemistry that enables DNA purification directly from an overnight culture. The standard miniprep steps of pelleting cells and neutralizing and clearing the lysate have been eliminated. The second is a unique DNA binding column, specially designed to isolate plasmid DNA directly from bacterial growth media. The combination of these discoveries has resulted in an ultra- streamlined procedure that does not compromise DNA quality.

In 2007, Sigma launched the GenomePlex Tissue Whole Genome Amplification (WGA) Kit. This kit is the latest addition to the GenomePlex product line and includes all of the reagents needed for extraction and whole genome amplification from as little as 0.1 mg of fresh, frozen or formalin-fixed paraffin-embedded tissue. The WGA Kit is based on the proprietary amplification method of random fragmentation of the genome and conversion of the resulting small fragments to PCR-amplifiable OmniPlex library molecules flanked by universal priming sites. The OmniPlex® library is then PCR amplified using universal oligonucleotide primers and a limited number of cycles. WGA incorporates an optimized tissue lysis and extraction procedure, which eliminates the need for deparaffinization or DNA purification. The WGA can be used for QPCR, microsatellite analysis, SNP analysis, Comparative Genomic Hybridization, microarrays, and other genotyping analysis.

Collaboration relevant to molecular diagnostics. In 2004, Sigma signed a licensing agreement with Rubicon Genomics to develop and commercialize the GenomePlex WGA technology. In 2006, Sigma agreed to develop and market Rubicon Genomics’ RNA-amplification product, Transplex whole transcriptome-amplification tool, while Rubicon retains all rights to the Transplex for use in its molecular diagnostics.

In 2009, Roche NimbleGen and Sigma-Aldrich started collaboration by aligning their two complementary technologies, respectively ChIP-chip high-density microarrays and GenomePlex. These enable researchers to study the entire genome for epigenetic interactions between DNA and DNA-binding proteins to determine regions of the genome that are transcriptionally active or repressed as well as the mechanisms that regulate these processes. The two companies will provide technical support to researchers integrating the two technologies, as well as co-market their complementary products.

- 534 -

Page 537: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In August 2010, Sigma-Aldrich started a 5-year project partnership with Boston University, and the NIH's National Heart, Lung & Blood Institute to develop methods to measure biomarkers for atherosclerosis cardiovascular disease (CVD) in plasma samples from 7,000 participants in the Framingham Heart Study. Sigma-Aldrich will develop antibody reagents for each identified target biomarker and incorporate the reagents into a multiplexed, high-throughput platform to measure proteins of interest.

Signal Diagnostics

2700 West Homestead Road, Suite 50Park City, UT 84098, USAWeb site: http://www.dynamicfluxamplification.com/Home_Page.htmlTel: (801) 580-0490Fax: (800) 808-0490CEO: Brian Caplin ([email protected])

Overview. Signal Diagnostics, founded in 2008, is leveraging amplification technology, Dynamic Flux Amplification (DFA), which offers advantages over PCR. DFA technology is a method for amplifying DNA and RNA, and was originally developed at a company called Fluoresentric, which spun out Signal. The technology was initially targeted for commercialization in developing countries where health facilities may not be able to afford PCR systems. Whereas a PCR platform costs more than $10,000 and can reach into the hundreds of thousands of dollars, Signal's DFA technology can be run on a $1,000 thermocycler. The first test directed at human disease built on DFA is for tuberculosis screening, a disease which by some estimates afflicts only about 5 to 10% of the population in the US but as much as 80% of some nations in Asia and Africa but the revenues currently generated in these countries are not adequate to support the development of these tests at a US company. The company is expanding applications to detection of other microorganisms.

Technology. DFA is unique to the biochemistry world, in that it is capable of generating highly specific and highly sensitive amplified nucleic acids, and the results can be scored by any desired detection method: gel, endpoint fluorescence, immuno-assay, and even real-time PCR based detection. The other patent pending technique involves the implementation of HRM (high resolution melting) to generate drug resistance profiles for a variety of human diseases. The technology has applications throughout the molecular biology and biochemistry community.

Products. DFA has applications in detection of the following microorganisms:

Bordetella bronchioseptica (Kennel cough)

Brettanomyces (Wine spoilage)

Mycobacterium tuberculosis (TB, tuberculosis). TB-Rx® kit enables characterization of the drug resistance profile of any TB infection in less than 1 day

Mycobacterium bovis (Bovine TB)

Salmonella B (salmonellosis, food poisoning)

Services. These are as follows:

- 535 -

Page 538: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Dynamic Flux Amplification: detection using real-time, gel, or ELISA plate formats

Standard real-time PCR: detection using real-time instruments

Conventional PCR: detection using gel or ELISA plate formats

The company offers the following susceptibility screening methods:

High resolution melting (HRM) curve: amplicon melt analysis

Real-time PCR probe: Melting probes, and 5' nuclease probes

- 536 -

Page 539: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Singulex Inc

4041 Forest park AvenueSt. Louis, MO 63108, USAWeb site: http://www.singulex.com/contact.htmTel: 314-6331896Fax: 314-615 6311E-mail: [email protected] and Chief Executive Officer: Philippe J. Goix, PhD

Overview. Singulex is a molecular tools and diagnostics company. It intends to sell equipment, reagents, related software and supplies, and contract research services, as well as technology licenses for integration with other systems and applications. Singulex is currently privately held and venture capital-funded.

Technology. The technology is a combination of known techniques; capillary and electrophoretic flow, and lasers for molecular detection. The proprietary methods for high-sensitivity molecular detection consist of various methods and materials for laser-stimulated fluorescence, modern dye chemistry, and photon counting. The capability of Direct Molecular Detection to measure a few zeptomoles (10-21) of a specific segment of DNA against a large background of other DNA has already been demonstrated.

In practice, Direct Molecular Detection can be used to detect single copies of DNA without requiring amplification techniques, and can measure discreet numbers of interacting events with high precision and accuracy. In general, Singulex’s Direct Molecular Detection is distinguished from other techniques by its sensitivity (single molecule), its directness (no amplification required), and its selectivity in a high background of similar molecules. A sample to be analyzed may be obtained from air, water, surfaces, or tissues. No polymerases, enzymes, or amplification processes are necessary. Sample preparation times and complexity are minimal.

Singulex Direct Molecular Detection enables simultaneous quantitation and differentiation of multiple molecular species of nucleic acids or proteins. It can be used to detect nucleic acid hybridization at the single-molecule level, and it has continuous flow capabilities that may have applications in the measurement of affinities, transient interactions, and biochemical pathways. With the incorporation of certain proprietary reagents developed by Singulex, the instrumentation provides an open assay system that can be customized by end-users for individual needs using readily available and inexpensive commercial reagents.

Applications. There are numerous potential applications of Singulex’s instrumentation, whether used as a stand-alone instrument or as part of an integrated system or workstation platform. Target applications include detection of single-molecule binding events, and very sensitive quantitation of biological materials, such as gene transcripts, viruses, or protein complexes. There are significant potential uses for this ultrasensitive instrumentation in areas such as cancer and pathogen research and diagnostics, bioterror agent detection and analysis, drug research and development, and many other possibilities where low-level detection and measurement is of interest.

Collaborations. In November 2007, Singulex started collaboration with researchers at Wyeth Research to develop immunoassays on the company's Erenna™ system. Singulex has begun optimizing assays that will allow Wyeth to accurately and precisely measure specific biomarkers in human blood.

- 537 -

Page 540: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Singulex also announced collaboration with researchers at Washington University School of Medicine to increase the clinical utility of both validated and recently discovered biomarkers in human disease. Singulex announced the company will receive a $900,000 phase I/II Fast Track SBIR contract from the NCI to create biomarker assays to help predict patient response and therapeutic efficacy of cancer therapies in development. In March 2008, Singulex started collaboration with Novartis Pharma AG to give Novartis access to its advanced biomarker detection technology through an Erenna™ Technology Access Program.

Sirius Genomics Inc

1125 Howe Street, Suite 603Vancouver, BC V6Z 2K8, CanadaWeb site: http://www.siriusgenomics.com/Tel: 604-484-7195Fax: 604-484-7190President and Chief Executive Officer: Bradley Popovich, MSc, PhD, FACMG

Overview. Sirius Genomics is a private biotechnology company, which is developing DNA-based diagnostic and pharmacogenetic tests for critical care by correlating genes to phenotypes Its product focus is currently concentrated on the development of such tests for sepsis, a systemic blood infection and to bring these products to the critical care market.

Products. The Company's first product is focused on sepsis and it has demonstrated that specific genotypes (or SNPs) can predict whether a patient will respond to certain sepsis treatments. Sirius believes that its test should be used by ICU and ER physicians dealing with sepsis patients, with the test results indicating the group of patients who will response most effectively to the drug treatment. In addition to the Company's first product, the Company's platform can also be applied to (i) previously failed drugs, (ii) drugs in clinical trials, and (iii) new indications for currently approved drugs, ensuring a robust product pipeline for Sirius.

Collaborations. In 2006, Luminex Molecular Diagnostics licensed from Sirius certain patents for biomarkers linked to drugs used to treat severe sepsis and will incorporate these markers into a diagnostic for use by critical care physicians.

On 9 Jan 2009, Sirius started to collaborate with United Kingdom Critical Care Genomics Group (UKCCG) to develop the company’s pharmacogenomic test for patient response to treatment of sepsis with Xigris (Eli Lilly), a recombinant actived Protein C. UKCCG group is conducting a large genomic association study looking at severe life-threatening infections and sepsis and the collaboration will enable Sirius to significantly advance the development of its diagnostic by accessing the comprehensive database that the UKCCG group has compiled.

- 538 -

Page 541: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SIRS-Lab GMBH

Winzerlaer Straße 2aJena 07745 GermanyWeb site: http://www.sirs-lab.de/Tel: +49 3641-508 430 Fax: +49 3641-508 432 Email: [email protected] Executive Officer: Barbara Staehelin

Overview. SIRS-Lab GmbH is an innovative biotechnology company that investigates the molecular background of acute inflammatory reactions using modern methods of genomic and proteomic research. The Company's vision is to develop new biomarkers for the early detection and monitoring of infections and sepsis and to be first in the utilization of these for clinical routine diagnostics. Several thousands candidate molecules have been identified and were included in the subsequent product development program.

Products/services. Apart from predefined biochips, SIRS offers its cooperation partners and customers the possibility to create biochips with their own probe selection for their experiments. Based on polynucleotide and cDNA data bases which have been tested and evaluated within extensive clinical studies, SIRS develops biochips for the individual questions of its customers. More than 6000 genes which are differentially expressed on different sepsis or SIRS stages have been identified through several microarray-based, multiple-parametric screenings over all known human genes/ESTs. The data from these experiments show that there are still numerous unknown molecules which are involved in the intracellular signal transduction after bacterial infection. These molecules also include several novel potential drug targets. SIRS-Lab intends to develop an integrated system, which will automatically process and evaluate biochip-analyses.

SIRS-Lab has introduced Looxster™ a new system for the specific enrichment of bacterial DNA to enable more sensitive pathogen detection.

SIQNATURE™ is the first transcriptome-based immune-monitoring test and tracks a specific biomarker message closest to its insult to ensure earliest information about the status of inflammation. It provides reliable monitoring of sepsis.

In March 2011, SIRS-Lab commenced a 1,000-patient clinical study in Germany to evaluate Vyoo, its microarray-based PCR test for causative agents of sepsis. Results from the study will support an application for regulatory approval in Europe.

Collaborations. In 2005, SIRS-Lab GmbH started to provide access to Biosite Inc for the evaluation and commercialization of selected biomarkers for sepsis as diagnostics. Biosite will make antibodies to those selected targets using its development process, combining immunization of mice and phage display to generate highly diverse libraries of Omniclonal® antibodies with high affinity and low cross-reactivity. The antibodies will be used to generate assays for the measurement of the selected biomarker targets in blood samples. Validated biomarkers will then be assessed for commercialization potential, with high-value markers added to Biosite's product development process.

In 2008, SIRS-Lab signed an EU-wide in-licensing agreement with DxS Ltd for the Scorpions Technology including an option for worldwide IVD

- 539 -

Page 542: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

utilization. With the selection of the PCR platform technology, SIRS-Lab completes the technical design of its sepsis prediction and monitoring test SIQNATURE.

In June 2010, AJ Innuscreen (subsidiary of Analytik Jena) agreed to provide SIRS-Lab a platform for the automated extraction of DNA in whole blood samples. In November 2010, SIRS-Lab started collaboration with Pfizer for sepsis diagnostics and treatment with focus on severe fungal blood stream infections and its pharmacoeconomic aspects.

- 540 -

Page 543: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SmartGene GmbH

Industriestrasse 16CH-6300 Zug, SwitzerlandWeb site: http://www.smartgene.ch/Tel: +41 (41) 711 15 81Fax: +41 (41) 711 15 83Email: [email protected]: David Ellis

Overview. SmartGene is a global biotechnology company committed to the development of state-of-the-art, informatics and data management solutions essential to the aggregation and utilization of information resulting from expansive growth in the arena of genomics. SmartGene leverages strong internal competencies in laboratory management, molecular biology, data analytics, bioinformatics, and clinical disease management. SmartGene’s multidisciplinary team with direct expertise and experience in the field of genetic data handling has developed a Web-based data support tool IDNS™ (Integrated Database Network System). IDNS™ applies the power of information technology to molecular biology providing a user defined, easy-to-use platform for genomic data handling.

Services relevant to molecular diagnostics. SmartGene’s clients are laboratories involved in molecular diagnostics or research and in DNA/RNA sequence analysis. Generating a huge amount of data for repeated analysis of one target, IDNS allows easy handling of those data, sequence analysis and ensures easy and rapid access. Examples of areas covered are:

HIV resistance sequence analysis

HCV genotyping and multicenter data collection: e.g. http://www.hcvnet.com/

Microbial identification: bacteria, mycobacteria, fungi, veterinary pathogens

Genetic diseases such as mitochondrial disorders

Epidemiological genotyping of microorganisms: MLST on meningococci

Oncology and predisposition testing

SmartGene provides services in all these fields that are proving to be an innovative and acts as a reliable partner to the laboratories involved with emphasis on:

The needs of each client in terms of sequence data management.

IDNS is adapted to the clinical and research topics of interest.

Provision to the research and clinical laboratories of gene sequence analysis in a routine or diagnostic manner with a searchable database structure.

Integration of data from various sources may eventually help the integration of molecular diagnosis into clinical practice and evolution of personalized medicine.

Collaborations. In 2007, SmartGene started collaboration with Laboratory Corporation of America Holdings which will utilize SmarGene’s technology to support more rapid and precise identification of bacterial and fungal pathogens.

- 541 -

Page 544: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Solexa Inc

(a subsidiary of Illumina)25861 Industrial Blvd.Hayward, CA 94545, USAWeb site: : http://www.illumina.com/Tel: (510) 670-9300Fax: (510) 670-9302

Overview. Solexa Inc was formed in 2005 by merger of Lynx Therapeutics Inc and Solexa Ltd of UK; the latter became a wholly-owned subsidiary and the corporate headquarters remained in California. Solexa is focused on the development and commercialization of a new platform for genetic analysis, based on Sequencing-by-Synthesis (SBS) and molecular arrays. The company's initial strategy is to focus on the well established research market, which includes DNA sequencing, gene expression and genotyping, all at full genome scale. The company's long-term goal is to reduce the cost of human re-sequencing to a few thousand dollars. To put this into perspective, this would potentially provide total genetic information on an individual for less than the cost of a CT scan. As Solexa's new platform drives down the cost of sequencing, these ultraprecise methods are expected to become mainstream. In 2006, Illumina acquired Solexa for $600 million. Solexa will continue its operations in California and UK.

Technology. Solexa's technology platform is expected to support many types of genetic analysis, including DNA sequencing, gene expression, genotyping and microRNA analysis. This integration is possible because all are compiled from their fundamental DNA sequences. This technology can potentially generate over a billion bases of DNA sequence from a single experiment with a single sample preparation.

The capability to inexpensively and rapidly sequence the complete DNA of individuals is expected to transform much of genetics research and, in the longer term, genetic diagnostics. This comprehensive genetic analysis is expected to reveal both disease susceptibility and pharmaceutical suitability as never before. It is particularly applicable to the understanding of cancer, as cancer mutations are much more broadly distributed across the genome than others and can occur in any of thousands of genes. The technology is also applicable to other species with potential markets from agriculture to infectious disease.

Since the amount of sequencing required for a genome-wide gene expression measurement is about 2,000 times lower than that required for genome-scale re-sequencing, a $100,000 human genome sequence cost can be approximately compared with a $50 genome-wide gene expression assay. As this technology obtains DNA sequence data from each cDNA molecule, it quantifies not just gene expression, but also relative transcript abundance. In December 2005, Solexa launched Genome Analysis System to sequence an entire human genome. The tool comprises the Solexa 1G Genetic Analyzer, the Solexa Cluster Station and associated reagents, consumables, and software, and is designed to generate more than 1 billion bases of sequence per run. Solexa will choose the DNA from a set of anonymous samples recently used in the International Haplotype Mapping Project and make the data publicly available. The sequence data was released at regular intervals in 2006 so that researchers can objectively assess the output of the Solexa Genome Analysis System in comparison with previously validated, high-quality genetic data already in the public domain. Solexa is expected to soon begin shipping a DNA sequencing machine that it claims will be able to

- 542 -

Page 545: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

determine the three billion DNA units in a person’s genome for about $100,000, about one-hundredth the cost of using older sequencers.

Prior to merger, Lynx technologies were based on Megaclone™, a unique and proprietary cloning procedure, which transforms a sample containing millions of DNA molecules into one made up of millions of micro-beads, each of which carries approximately 100,000 copies of one of the DNA molecules in the sample. Megaclone technology uses a proprietary library of approximately 16.7 million short synthetic DNA sequences, called tags, and their complementary anti-tags, to uniquely mark and process each DNA molecule in a sample. Each unique tag is a permanent identifier of the DNA molecule it is attached to, and all of the tagged molecules in a sample are amplified together to create multiple copies of the tagged molecules. Another proprietary process is used to generate five-micron diameter microbeads, each of which carries multiple copies of a short anti-tag DNA sequence complementary to one of the 16.7 million tags. The amplified tagged DNA molecules are then collected onto the micro-beads through hybridization of the tags to the complementary anti-tags. Each micro-bead carries on its surface enough complementary anti-tags to collect approximately 100,000 identical copies of the corresponding tagged DNA molecule. Megaclone™ technology is the foundation for applications, including MPSS™ (Massively Parallel Signature Sequencing analysis), which provides gene sequence information and high-resolution gene expression information, Megasort™ analysis, which provides focused sets of differentially expressed genes and potential gene targets, and Megatype™ analysis, which is expected to provide SNP disease- or trait-association information.

Megatype™ technology enables the comparison of collected genomes of two populations. It is designed to enable the detection and recovery of DNA fragments with the SNPs that distinguish these two populations. In contrast to other SNP validation methods that require thousands or millions of assays, only a single Megatype™ experiment should be required for SNP association with disease or other traits. It should provide a cost-effective approach to drug discovery and pharmacogenetics.

Recent collaboration relevant to molecular diagnostics. An agreement in 2003 provided Takara Bio Inc rights to Lynx technologies in Japan, Korea and China including Taiwan. Millennium has studied gene expression in specific blood cell populations using MPSS technology. Pfizer has applied MPSS™ technology to cell samples from normal subjects and patients to provide information on specific genes involved in disease progression.

- 543 -

Page 546: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SomaLogic

1775 38th StreetBoulder, Colorado 80301, USAWeb site: http://www.somalogic.com/Tel: (303) 545-2626Fax: (303) 545-2525CEO: Larry Gold, PhD ([email protected])

Overview. SomaLogic was established in 1999 to advance ten years of aptamer research in the in the post-genomic proteomics arena. SomaLogic is creating the technologies that will set the standard for proteomics: technologies that will allow the accurate measurement of protein levels; technologies that will allow physicians to diagnose patients and to recommend treatments with unprecedented accuracy based on the molecular signatures of disease; technologies that will allow researchers to identify novel therapeutic targets and develop new drugs faster. Building on SomaLogic's proprietary photoaptamer technology, the company's team of scientists, clinical specialists, and business professionals is developing the foundation for the next revolution in medicine - a revolution in which diagnosis and therapeutic options will be based on an understanding of the individual's needs at a level not previously possible. On 6 May 2005, Quest Diagnostics made a $15 million equity investment in SomaLogic.

Technology. SomaLogic is integrating a unique set of technologies to create a new standard for understanding disease and its treatment. At the heart of this effort are photoaptamers - highly sensitive and specific capture agents that allow the precise detection of vanishingly small amounts of proteins. Photoaptamers are developed using the PhotoSELEX process and are placed on Aptamer Arrays so that massive numbers of proteins - ultimately, tens of thousands - can be measured simultaneously. SomaLogic's Bioinformatics tools are used in conjunction with samples from patients with and without various diseases to identify the protein signatures associated with disease, likely response to therapeutics, or other clinically meaningful endpoints. These signatures are the foundation for SomaLogic's products and services designed to meet the needs of both researchers and clinicians.

Collaborations. In 2001, SomaLogic signed a multi-year collaboration agreement with Celera Genomics. The agreement provides Celera early access to aptamers and aptamer arrays developed through SomaLogic's proprietary SELEX process. It also provides SomaLogic access to sequencing and proteins for developing aptamers.

In 2003, SomaLogic and Merial Limited, an animal biotechnology company, entered into a research collaboration to develop aptamer-based diagnostics for bovine spongiform encephalopathy.

In 2005, Quest Diagnostics signed an agreement to develop new diagnostic tests based on SomaLogic’s proprietary aptamer array platform.

- 544 -

Page 547: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Source MDx

2500 Central Ave, Suite H2Boulder, CO 80301, USAWeb site: http://www.sourcemdx.com/ Tel: (303) 385-2700Fax: (303) 385-2750Chief Executive Officer: Karl Wassmann

Overview. Source MDx is developing and commercializing prognostic, predictive and early detection molecular diagnostics. The Company is developing molecular diagnostics in collaboration with leading academic medical centers for various cancers, including prostate, lung and melanoma, as well as certain inflammatory and autoimmune diseases. Source MDx's patented assays and tests measure RNA-transcript-based gene expression in whole blood using quantitative PCR, optimized for clinical use in a commercial setting.

Technology. Source MDx has developed an integrated molecular diagnostic system that measures the vital signs of the cell. This system consists of three core elements including:

1. Precision Profiles™: Quantitative PCR assays optimized for precision and calibration (through matched amplification efficiencies) measuring cellular responses in a variety of preclinical and clinical settings.

2. Normal reference ranges: Target specific gene expression ranges established from healthy human subjects or relevant clinical subpopulations allowing for comparisons to normal and treat-to-normal strategies, consistent with the accepted paradigm of medicine in the prognosis, treatment and monitoring of disease.

3. Sophisticated statistical approaches: Latent class and proprietary enumeration methods establishing multigene models of clinical relevance and significance.

Applications. Source MDx has biomarkers in autoimmune diseases, infections, cancer, and cardiovascular diseases. The lead development programs, in collaboration with the Dana-Farber Cancer Institute, includes a family of Precision Profile™ assays for prostate cancer designed to: (1) improve early diagnosis with a goal to reduce the need for biopsies, predict the aggressiveness of the cancer; and (2) better define prognosis and more effectively stratify patients for drug response.

Precision Profiles™ in ocular disease have been developed for multiple disease types including glaucoma and age-related macular degeneration. It has patented the use of gene expression biomarkers for identifying, monitoring, and treating multiple sclerosis.

Collaborations. Source MDx has been working in close collaboration with more than 30 major pharmaceutical and diagnostics firms to discover and patent biomarkers for monitoring patient health, disease status and response to therapy. The Company has a multi-year translational molecular medicine collaboration with Pfizer to develop and validate RNA-based pharmacodynamic and predictive biomarkers within Pfizer's cancer and inflammation therapeutic development programs.

Source MDx is working with academic centers to support clinical studies that will lead to the development and commercialization of FDA-approved tests for the detection, discrimination and prognosis of cancer, autoimmune,

- 545 -

Page 548: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

cardiovascular and infectious diseases. In 2008, Source MDx started collaboration with Brigham and Women’s Hospital (Boston, MA) to use expression profiling for study of RNA-based biomarkers for multiple sclerosis in the broader context of each patient’s genetics, protein biomarkers, family history, and clinical information. The aim is to find diagnostic biomarkers for active or stable disease, and response biomarkers for currently available therapies.

- 546 -

Page 549: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Specialty Laboratories Inc

27027 Tourney Road Valencia, CA 91355, USAWeb site: http://www.specialtylabs.com/Tel: (661) 799-6543Fax: (661) 799-6634 Email: [email protected] Executive Officer: David C. Weavil

Overview. Specialty Laboratories Inc (Specialty), founded in 1975, is a full-service, clinical reference laboratory serving more than 10,000 clients throughout the US. It is a leading research-driven laboratory, providing more than 3,500 esoteric tests to hospitals, laboratories and specialist physicians. Specialty focuses on cutting-edge research and development of new assays as well as refinement of existing diagnostic tests to produce assays with greater sensitivity, specificity, efficiency and clinical value for reliable and cost-effective patient assessment. Specialty has extensive collaborations with medical discovery companies to co-discover new tests, transforming research into incisive clinical tools for improved diagnosis and monitoring of disease. These co-discovery partnerships build on Specialty's track record of introducing assays characterized by exceptional analytical validation, clinical validation and the establishment of clinical utility.

Products. The company offers molecular diagnostic tests. Some examples are:

The Osteoporosis GenotypR/Col1A1 test detects predisposition to osteoporosis and increased risk of bone fracture.

The Cystic Fibrosis 70 GenotypR screens for 70 of the most clinically important mutations of the CF gene found in US population groups.

Collaborations. Specialty has an agreement with Sequenom for platform technologies. In 2000, Third Wave Technologies (TWT) Inc and Specialty entered into an agreement to for the development of new applications for TWT's proprietary Invader technology platform for use in routine clinical applications. In 2001, Specialty entered into agreements the following companies:

With Genzyme Molecular Oncology (GMO) for non-exclusive access to GMO's proprietary genetic markers for colon cancer.

With Axis-Shield plc (Dundee, Scotland) for exclusive US rights to GenotypR/ Col1A1 test, utilizing the patent of Gemini Genomics plc (merged with Sequenom in 2001) on the type 1 collagen gene.

In 2002, a diagnostic discovery program was announced between Zyomyx Inc and Specialty. Zyomyx announced the landmark delivery of its Protein Profiling Biochip system to Specialty. The companies will also collaborate on the design of assay standards and controls, and Specialty will evaluate the suitability of the platform for its use in clinical laboratory testing.

Specialty collaborates with Tm Bioscience Corporation for development of the CF test.

In 2006, Specialty agreed to use Celera Genomics' genetic data to develop a test to predict the risk for patients with HCV of developing liver cirrhosis. Specialty will pay Celera an upfront fee after it has validated a test, and it

- 547 -

Page 550: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

will pay Celera royalties on net sales in the US. Currently, there is an unmet medical need for a predictive method to determine which patients with chronic HCV are likely to develop progression to cirrhosis.

- 548 -

Page 551: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SpectraGenetics LLC

Sidney Street, Suite 255 Pittsburgh, PA 15203, USAWeb site: http://www.spectragenetics.com/Tel: (412) 488-9350Fax: (412) 488-9355E-mail: [email protected]: Cheryl Telmer, PhD Contact: Mary Anne Jarvik, Vice President ([email protected])

Overview. SpectraGenetics LLC is a molecular diagnostics spinoff from Sequel Genetics, a privately held company, which will concentrate on proteomics. The Company is focusing on cancer genotyping using Peptide Mass Signature Genotyping (PMSG). SpectraGenetics LLC is dedicated to developing and commercializing proprietary technologies that will aid physicians in choosing cancer treatments and in monitoring disease status after treatment. The company's customers will fall into three categories: academic researchers, hospitals and medical centers, and oncologists. Funds that have been awarded to the company from federal and state grant programs will sustain research and development operations through at least mid-2005. In its first years, company growth will be fueled by (1) additional grant support, (2) contract research projects and (3) fee-for-service genotyping for customers in the academic community. In later years the company expects to provide technology and services directly to physians and hospitals.

Technologies. PMSG is a proprietary methodology for high throughput genotyping, which can scan complete genes and long segments of DNA for mutations and polymorphisms. Its low cost enables large-scale association studies, population-based genotyping, and DNA diagnostics. PMSG employs protein expression systems to convert DNA sequences into recombinant, tagged peptides to be purified and analyzed using high performance MALDI-TOF mass spectrometry. The observed mass signatures of the peptides are interpreted using proprietary computational tools to reveal and report any differences in the source DNA sequence relative to the natural reference sequence very rapidly, with accuracy approaching 100%.

SpectraGenetics is focusing on cancer genotyping. Currently, PMSG is being used to analyze TP53 of genomic DNA from small cell carcinomas of the head and neck. It is planned to analyze DNA isolated from lung, colon and pancreas in the near future.

Collaborations. SpectraGenetics has active collaborations with research pathologists and oncologists at the Hillman Cancer Center and the University of Pittsburgh Medical Center.

- 549 -

Page 552: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Spectral Diagnostics Inc

135-2, The West Mall Toronto, Ontario, Canada M9C 1C2Web site: http://www.spectraldx.com/Tel: (416) 626-3233Fax: (416) 626-2739E-mail: [email protected] & Chief Executive Officer: Dr. Paul Walker MD, PhD, FRCSC

Overview. Spectral Diagnostics Inc (SDI) is a developer of innovative technologies for comprehensive disease management. Spectral provides accurate and timely information to the clinician enabling the early initiation of appropriate and targeted therapy. Current products are rapid format tests measuring markers of myocardial infarction (Cardiac STATus test). The Cardiac STATus tests and the Endotoxin Activity Assay (EAA) are manufactured by Spectral. IDx Inc, a private corporation owned by SDI and a group of investors led by the Canadian Medical Discoveries Fund, is a research company focused on new product development.

In December 2009, Spectral along with BioMS Medical Corp and a syndicate of investors invested $14 million to advance Toraymyxin™, a treatment for severe sepsis, towards regulatory approval and commercialization in the US. Spectral obtained exclusive rights for the Toraymyxin™ device in the US from Toray Industries Inc of Japan, in March 2009 and anticipates initiating a pivotal US clinical trial in the first half of 2010 combining EAA diagnosis and treatment of infection.

Technologies. Spectral's primary research has been focused on the development of immunoassays for cardiac and other disease related markers. The process can be divided into three stages: generation of antigens and antibodies, assay development and clinical studies. Spectral realizes that the generation of superior reagents is the key to developing high quality clinical diagnostic products.

Spectral also has an excellent in house antibody generation and assay development team. Over 90% of the antibodies used in its commercial kits are generated in house. Spectral uses two platforms to evaluate antibodies and recombinant proteins. The first is a Biacore Biosensor, which aids in the identification and pairing selection of high affinity monoclonal antibodies. This biosensor also assists in the comparative analysis of recombinant proteins and there native counterparts. The latex homogenous assay system rounds out the platforms for reagent analysis. This system allows quick evaluation of reagents in a clinical analyzer format.

Products relevant to molecular diagnostics. The Spectral Cardiac STATus tests are simple, hand held cardiac marker panel tests, which support the ACC/AHA guidelines and recommendation for diagnosis of MI. These clinically proven products quickly and accurately determine elevations of multiple cardiac markers - enabling health care providers to easily assess and diagnose chest pain at the decision point, providing critical diagnostic information within minutes.

Cardiac STATus Cardiac Panel Troponin I/CK-MB/Myoglobin

Cardiac STATus Troponin I Test Kit

Cardiac STATus CK-MB/Myoglobin Test Kit

- 550 -

Page 553: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

New products include EAA rapid diagnostics for infection. In 2002, Spectral received approval from Health Canada's Therapeutic Products Directorate for the manufacture and marketing of EAA. In 2003, the FDA cleared this test in the US.

In 2003, Spectral signed a licensing agreement with the US Centers for Disease Control in Atlanta to develop a rapid POC test for West Nile Virus infection.

Collaborations. In 2002, Spectral signed a supply agreement with Allegiance Healthcare (McGaw Park, Illinois). Allegiance will distribute Spectral's rapid diagnostic products, including the Cardiac STATus line to health-care providers in the US.

In 2005, Spectral and IDx started collaboration to develop a rapid Test for West Nile virus infection.

The following agreements were signed in 2007:

Spectral signed an agreement with Fisher Healthcare, a division of Thermo Fisher Scientific Inc, for the distribution of its RapidWN™ West Nile Virus Test in the US.

Spectral launched EAA™ Endotoxin Activity Assay, a rapid diagnostic product for sepsis, in Germany through A. Menarini Diagnostics, a division of the Italian Menarini Group.

Spectral entered into an exclusive distribution agreement in Japan with Toray Medical Co for its EAA™ diagnostic system.

Spectral signed a non-exclusive license and supply agreement with Bio-Rad Pasteur to provide it with its leading single chain Troponin I reagents.

- 551 -

Page 554: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Spectral Genomics Inc

A subsidiary of PerkinElmer Life Sciences IncWeb site: http://las.perkinelmer.com/

Overview. Spectral Genomics Inc, founded by scientists from Baylor College of Medicine (Houston, TX), is the leader in molecular karyotyping. It applies unique, proprietary Technology for the Genome® to invent and develop its Spectral Chip™ and Constitutional Chip™, bacterial artificial chromosome (BAC) clone, array products. In 2006, Spectral Genomics was acquired by PerkinElmer Life Sciences Inc.

Technology. Spectral Genomics’ technology enables the manufacture of sensitive, reproducible and robust BAC clone arrays that are easily hybridized and make use of a patented breakthrough in the chemistry for attachment of DNA to chip substrates. Spectral DNA arrays display high sensitivity with low background, facilitating image analysis for the qualitative analysis of hybridization. DNA is analyzed directly by hybridization. No amplification of sample DNA is required prior to hybridization with the array spots. Further, unlike conventional metaphase spread techniques for karyotyping, no harvesting is required before analysis of chromosomal abnormalities. The use of Spectral Chips for molecular karyotyping expands the resolution of genomic analysis by at least an order of magnitude. The molecular approach uses an array of BAC clones representing each of the chromosomes in the genome for CGH.

Applications/services. These include research in prenatal, postnatal and somatic cell genome analysis. Spectral’s customers have access to advanced genomic analysis software, SpectralWare™, that takes data from a variety of array scanners and displays chromosomal deletions and amplifications in a unique graphic presentation for rapid interpretation of results. SpectralWare™, in combination with Spectral Chip™ arrays, is the only commercially available, automated method to generate a genome-wide molecular karyotype profile in a single experiment. The Company delivers its Spectral Genomic ProfilingSM service and the customers use this to survey the entire human genome at high resolution, yielding abundant, reproducible data on the genomic loci of disease, reporting chromosomal, amplifications, deletions and rearrangements. Spectral Genomics’ products are being used in leading research laboratories worldwide. The Company envisions expanding its role into diagnostics as it leads the future of whole genome analysis. Applications of Spectral Chips include the following: (1) diagnosis of prenatal genetic defects; (2) post-natal evaluation of genetic disease; (3) study of somatic cell genomes in cancer; (4) evaluation of effective drug treatments in oncology; (5) pharmacogenomics; (6) toxicology; (7) comparative genomics; and (8) provide a link from the loci of features in the whole genome to gene expression arrays, proteomics and the discovery of protein biomarkers.

The Constitutional Chip ™ 2.0 for CGH is for high resolution, sensitive, reproducible detection of chromosomal abnormalities. It contains 434 BAC clones associated with constitutional syndromes. The chip also includes calibration control spots for standardization. Among the clones are those that provide coverage for disorders such as trisomy 13, 18, and 21, Wolf Hirshorn Syndrome, DiGeorge Syndrome and Cri du Chat Syndrome.

- 552 -

Page 555: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SQI Diagnostics Systems

36 Meteor DriveToronto, Ontario, M9W 1A4 CanadaWeb site: http://www.sqidiagnostics.comTel: (416) 674-9500Fax: (416) 674-9300Email: [email protected] and Chief Executive Officer: Claude Ricks

Overview. SQI Diagnostics Systems (SQI) provides laboratories the ability to simultaneously analyze multiple biomarkers, deliver accurate and quantitative patient results in less time, significantly reduce labor and increase profits. The company is focused on improving the confidence and profitability of laboratory diagnostic testing. SQiDworks Diagnostics Platform and its IgXPLEX RA Assay provide clinical laboratories with the ability to simultaneously measure multiple biomarkers in a single test that delivers accurate patient results in less time, using less labor.

Technology/products. SQiDworks™ Diagnostic Platform is a fully-automated fluidics workstation, scanner and analytical device used to process IgXplex™ microarray tests. SQI’s microarray technology has unlocked 5 keys that had not been possible previously with microarray multiplexed technologies:

1. Separating and quantifying the detection events for both antigens and each class of antibody within the same test well.

2. High signal-to-noise ratios enabling diagnostic grade precision and accuracy.

3. High speed spot printing that covalently binds capture spots to glass substrates generating reproducible arrays of test spots every well, every plate, every patient.

4. Multiple levels of quality control built in to evaluate every well for completeness and precision.

5. Automated assay processing and algorithms lead to a complete and traceable result every time.

SQI microarrays are unique in that they exist in a 2D planar environment. This, along with itsr proprietary technology, avoids potential cross reactivity that IVD 3D bead technologies may encounter. Avoidance of potential analyte compatibility issues opens the door to a large number of highly desirable test panels. SQI technology affords freedom from most of these obstacles and offers the promise of confidence, profit and growth to all leading clinical laboratories.

QuantiSpot™ microarray assay uses 96-well microtiter standard plate format. SQiDworks™ Diagnostics Platform is designed to run up to 3 individual plates in a batch, allowing processing and analysis of up to a total of 228 patient samples per run in approximately 4h (results of first plate in ~3h). When combined with the multiplexing benefits of these assays, the total number of analyzed microarray test spots for a 4-plex QuantiSpot plate rheumatoid arthritis (RA) assay is 912 tests. In 2009, the FDA cleared SQiDworks™ and multiplexed IgXPLEX™ RA assay for marketing in the US, which provides clinical laboratories with the ability to simultaneously measure multiple biomarkers in a single test that delivers accurate results in less time, using less labor.

- 553 -

Page 556: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In April 2011 IgXPlex Celiac Panel, a quantitative 4-plex test that runs on SQI's automated SQiDworks diagnostics platform, was approved by Health Canada. The second-generation test measures and reports 4 analytes simultaneously – anti-gliadin IgA; anti-gliadin IgG; anti-tissue transglutaminase; and anti-tissue transglutaminase IgG. It follows previous approval of IgX Plex Celiac microarray test kit. SQI plans to bring its second-generation quantitative products to the US market and to launch its quantitative RA and celiac multiplexed assays and SQiDworks platform in Europe in the 2H 2011.

VDPlus-Plex™ Assays have the unique ability to multiplex diagnostic biomarkers simultaneously with therapeutic and drug efficacy biomarkers for therapeutic monitoring of patients. IVDPlus-Plex™ Assays are currently under development and hold the promise of creating panels of multiple purpose biomarkers that include a wide range of combinations. These may include panels with indicators for risk assessment, diagnosis, prognosis, disease progression, personalizing treatment to match the disease state and drug safety confirmation. IVDPlus-Plex™ Assays have the potential to be a standard tool used to deliver the next generation of personalized medicine.

Autoimmune panels currently under development include the following:

Autoimmune Thyroid Panel 3-plex: anti-thyroid peroxidase, anti-thyroglobulin, and anti-thyrotropin receptor IgGs.

Anti-Phospholipid Syndrome Panel 9-plex: anti-2 glycoprotein 1 (IgG, IgA, IgM); anti-cardiolipin (IgG, IgA, IgM) and anti-phosphotidylserine (IgG, IgA, IgM).

Crohn's Panel 6-plex: anti-myleloperoxidase (IgG, IgA), anti-Saccharomyces Cerevisiae (IgG, IgA), and anti-serine proteinase 3 (IgG,IgA).

Autoimmune Hepatitis 5-plex: anti-F-actin IgG, anti-cytochrome P450 2D6 IgG, anti-M2 pyruvate dehydrogenase (IgG, IgM), and anti-serine proteinase 3 (IgG).

Autoimmune Vasculitis 8-plex: anti-serine proteinase 3 (IgG, IgA), anti-myeloperoxidase (IgG, IgA), anti-complement C1Q (IgG, IgA) and anti-collagen IV (IgG, IgA). Ready for regulatory review.

Lupus 12-plex: anti-dsDNA IgG, anti-SS-A/Ro-52 IgG, and anti-SS-A/Ro-60 IgG

Collaborations. In April 2010, SQI signed a development agreement with Silliker Inc for the commercialization of a botulism toxin panel that will run on its SQiDman™ analytical system. IgXplex BOTX panel, when cleared for marketing, will be used to aid in the diagnosis of botulism infection in the food chain by detecting and measuring a group of botulinum toxins and has the potential to replace current methods for diagnosis of food-borne botulism, which involves time consuming and expensive animal testing.

In June 2010, Gamma-Dynacare Medical Laboratories, one of Canada’s largest providers of laboratory services, agreed to put into operation SQI’s SQiDworks™ platform, and to purchase SQI’s multiplexed IgXPLEX™ RA consumables to meet its commercial needs.

On 14 April 2011, SQI signed a clinical validation agreement with University of North Carolina Kidney Center (Chapel Hill, NC) to evaluate its multiplexed, automated approach for biomarker detection in vasculitis.

- 554 -

Page 557: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 555 -

Page 558: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Strategic Diagnostics Inc

111 Pencader DriveNewark DE 19702-3322. USAWeb site: http://www.sdix.com/Tel: (302) 456-6789 Fax: (302) 456-6782President & CEO: Francis M. DiNuzzo VP Research & Development and CSO: Klaus Lindpaintner MD Contact: Dr. M. Walid Qoronfleh, Executive Director, Life Sciences Business

Overview. Strategic Diagnostics Inc (SDIX) is a biotechnology company dedicated to bringing innovative solutions to analytical testing problems through immunotechnology. SDI is a leading developer and manufacturer of immunoassay-based test kits for both field testing and laboratory use. These products are used extensively for contaminated waste site assessment and remediation, water quality management, food labeling and transgenic crop seed production. SDIX is a major developer and producer of antibodies and immunoreagents for a broad range of applications. The company is applying this extensive technical expertise to the rapidly growing agricultural markets for crop disease management and food safety as well as to medical and industrial problems. This technological base, along with strong sales, marketing and manufacturing, positions SDIX to continue to provide new products and services to effectively solve customers current and future analytical problems.

Technology/products. On 12 Jan 2011, SDIX’s RapidChek® SELECT™ Salmonella Enteritidis test system was reviewed by the FDA and determined to be equivalent in accuracy, precision and sensitivity to their current standard methods for poultry house environmental drag swabs and pooled egg testing. For pooled egg testing, SDIX’s method is considered by FDA as equivalent to its standard test without a 96 h hold period, thus delivering results with a substantial time and cost advantage.

Genomic Antibody Technology (GAT) is a new way to think about immunogens. Using GAT, the immunogen is expressed in vivo and is immediately presented to the immune system. GAT requires only the amino acid sequence of a target protein and the need for peptides, recombinant proteins or protein purified from native sources is eliminated. GAT can be used to develop biomarker-based tests for cancer.

Collaborations. SDIX collaborates with the University of Delaware and the Helen F. Graham Cancer Center to develop protein biomarkers that could be used to detect metastasis in prostate cancer patients. SDIX will develop antibodies that identify protein molecule fragments that break away from primary tumors when cancer is spreading. Diagnostic tests using these antibodies could help to determine the stage and the severity of the cancer, as well as effective treatment options specifically for cancer metastases.

In 2007, SDIX reported progress in collaborating with the Kleberg Center for Molecular Markers at the University of Texas MD Anderson Cancer Center, which is testing SDIX's GAT platform in oncology biomarker discovery research.

- 556 -

Page 559: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

SYN X Pharma Inc

(a subsidiary of Nanogen Inc)1 Marmac DriveToronto M9W 1E7 Ontario, CanadaWeb site: http://www.nanogen.com/

Overview. SYN X Pharma leverages its Proteomics Discovery Platform (PDP™) to discover disease associated biomarkers, which are used in the development of new therapeutics and highly specialized antibody based diagnostics. SYN X's research focuses on: (1) discovering, sequencing and characterizing disease related biomarkers specific to CNS diseases, diabetes and cardiovascular diseases; (2) development and validation of diagnostic and prognostic tests; and (3) development of novel therapeutic targets.

In 2004, Nanogen Inc acquired SYN X. The acquisition provides Nanogen with a pipeline of complementary products in order to expand its market share in the IVD market and augments its technology platform for developing advanced diagnostic products. In June 2009, Nanogen itself was acquired by ELITech Group.

Technology relevant to molecular diagnostics. The PDP™ combines electrophoresis (1 and 2-D standard gel techniques) with orthogonal chromatography to separate proteins. SELDI-TOF, ESI-Ion-trap and MALDI-Qq-TOF are utilized to identify those proteins that are disease-specific. Initially, these biomarkers can be used as diagnostic indicators for early diagnosis of a disease. Extensive bioinformatics on newly discovered biomarkers is conducted across a variety of public and private databases to provide information about disease mechanisms and cede drug target candidates. Upon validation of a biomarker, recombinant proteins are expressed and antibodies are developed (monoclonal, polyclonal and single chain recombinant proteins) for the creation of in vitro diagnostics and cell-based models to validate potential drug targets. SYN X is working in collaboration with a number of leading institutions to further research in the areas of traumatic brain injury and Alzheimer's disease (AD). SYN X’s proprietary technology measures, in whole blood, a biochemical marker called glutamine synthetase that is released by brain cells in the AD process.

Products. SYN X's diagnostic product line is marketed under the Nexus Dx™ brand name. Point-of-Care diagnostic tests for myocardial infarction are available in Europe and for congestive heart failure in Europe and Canada. ELISA diagnostic kits available for CNS include S-100 ELISA Test Kit, NSE (Neuron-Specific Enolase) ELISA Test Kit, and MBP ELISA (Myelin Basic Protein) Test Kit.

- 557 -

Page 560: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Sysmex Corporation AG

1-5-1,Wakinohama-kaigandori,Chuo-ku,Kobe,Hyogo 651-0073, JapanWeb site: http://www.sysmex.co.jp/en/Tel: (81) 78-265-0500President & CEO: Hisashi Ietsugu

Overview. Sysmex is remained focused on the diagnostics of human blood, urine, and cells based on its original technology. It provides healthcare professionals worldwide with a broad range of products and solutions, including instruments, reagents, software, and after-sales support for diagnostics. As the only Asian company among the top 10 players in the global diagnostics market, it is expanding its sales and support network established in Japan on to other countries. Sysmex BMA Laboratory is a research facility at the Business Support Center for Biomedical Research Activities in Kobe to promote exploratory research in advanced medicine and accelerate R&D for business applications of the findings of such research. Research is conducted on new diagnostic technologies based on nanotechnology, and bioinformatics, with a focus on cancer diagnostics. In January 2010, Sysmex established a subsidiary, Sysmex Espana SL in Barcelona, Spain.

Technologie/products. The cell cycle profiling (C2P) technology analyzes the expression and activity of cell cycle-related proteins to characterize the cancer cell. Using this technology, Sysmex is pursuing the development of prediction systems for cancer recurrence and anticancer drug sensitivity. Such tests would become valuable for providing optimal treatment for each patient, i.e. personalized medicine.

Disease simulation is a technique for mathematical modeling to reproduce a patient's internal condition on a computer and incorporates a number of parameters that reflect the characteristics of the patient's pathological state. Computer simulation of the patient's condition is enabled by estimating these parameters through various clinical tests. Application of this technology is expected to provide an accurate understanding of the patient's clinical condition to enable personalized disease management.

One-step Nucleic Acid Amplification (OSNA) is a technology for rapidly amplifying mRNA without extracting it from living tissue and purifying it. OSNA enables 30-minute genetic testing as compared to severa hours for conventional methods. Sysmex is applying this technology in research and development of a rapid test for lymph node metastasis, which is important for making treatment decisions. OSNA enables high-sensitivity detection of cancer cells in lymph nodes within a limited time, such as during a surgical procedure. OSNA RD-100i is a device with IVD-CE mark and is available in Europe.

Sysmex BMA Laboratory is pursuing research on the development of protein chips that can measure the expression and activity of proteins based on the simultaneous, multi-protein analysis technology and also predict the effect of anticancer drugs. The laboratory aims at the development of new cancer diagnosis technologies through collaborations.

Collaborations. In 2007, Sysmex and bioMérieux signed an agreement for distribution of UF-1000i urinalysis system in microbiology laboratories.

In January 2009, Sysmex signed an agreement with Epigenomics to assess the suitability of its molecular diagnostics instrumentation for the detection

- 558 -

Page 561: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

of DNA methylation biomarkers of colorectal cancer (CRC) in blood. As a benchmark for the development of its assay system, Sysmex will use Epigenomics' mSEPT9 Methylation Detection Assay commercially available as a research use only product. If successful, Sysmex intends to develop and commercialize initially in Japan a blood test for the early detection of CRC based on Epigenomics' SEPT9 DNA Methylation Biomarker (mSEPT9).

- 559 -

Page 562: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Takara Bio Inc

Seta 3-4-1, Otsu, Shiga 520-2193, Japan Web site: http://www.takara-bio.com/Tel: +81 (77) 543-7247 Fax: +81 (77) 543-9254E-mail: [email protected]: Koichi Nakao

Overview. Takara Bio, the biomedical group of Takara Shuzo Co, has been very active in developing a variety of biotechnology products. It was the first Japanese company to manufacture and market restriction enzymes in 1983. Takara was the first company in Japan to promote DNA chip technology, which is used in gene expression analysis. In 2005, Takara acquired the Clontech unit of BD Biosciences for $60 million.

Technologies/products. ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic Acids) method provides an alternative procedure to detect a very small amount of target DNA in a sample with efficiency equivalent to or higher than PCR method (Chapter 2). ICAN diagnostic products include reagents to detect Mycobacterium tuberculosis, Chlamydia, and Neisseria gonorrhoeae. RR121A is a one shot PCR screening & detection kit for simple detection of invA gene from Salmonella sp.

In 2001, Takara announced the development of a method called UCAN to detect SNPs (Chapter 5). This is a rapid method to detect mutations and to analyze expression of the genes using specific probes for amplified DNA. This method can serve as a virtual phenotype examination to predict rapidly the phenotypes in advance, and can facilitate drug discovery and clinical trials. In case of antibiotics, mutations in genes for drug resistance are examined by using cells from patients. For cancer cells, mutational analysis and gene expression analysis are performed in genes responsible for resistance to anti-cancer drugs in patients with various types of cancers.

Takara has expanded into the field of genomic analysis through its partnership with Affymetrix, and has become the first company in Japan to commence manufacturing and marketing of DNA chips and chip-analysis equipment using ICAN technology. Takara, in collaboration with Mirus (Madison, WI), has successfully developed the 'Takara-Hubble Slide' a high-sensitivity glass slide for DNA microarray that can immobilize DNA fragments by means of covalent bond.

Collaborations. The following collaborations started in 2002:

ID Biomedical Corporation granted Takara a worldwide non-exclusive license to its genomics platform, Cycling Probe Technology.

Tepnel signed its first distribution agreement with Takara for its T1000 Automated DNA Purification System.

Takara and Nanosphere Inc signed an agreement for the development and distribution of sensitive, selective and portable detection systems that combine Nanosphere's nanoparticle DNA probe technology with Takara's ICAN technology.

In 2007, Takara granted Transgenomic Inc a worldwide nonexclusive license to make, use and sell LA-PCR related products. Including Transgenomic, the company has 19 licensees of its LA-PCR technology worldwide.

- 560 -

Page 563: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Targeted Diagnostics & Therapeutics Inc

1045 Andrew DriveWest Chester, PA 19380, USAWeb site: http://www.tdtinc.com/Tel: (610) 431-0800Fax: (610) 431-0805E-mail: [email protected] and Chief Executive Officer: Harry Arena

Overview. Targeted Diagnostics & Therapeutics Inc (TDT) is a biotechnology company with a substantial intellectual property portfolio and research commitment in the area of discovery and development of molecular-based technologies for the targeted detection and treatment of cancer, infectious diseases, and gastrointestinal disorders. Since it’s inception in 1994, TDT has been successful in developing highly specific novel diagnostic markers and therapeutic targets for gastrointestinal malignancies including colon, rectal, gastric, pancreatic and esophageal cancer. In addition to the technology for therapeutics targeted to colorectal cancer being licensed to Millennium, TDT is pursuing preclinical testing in animal models of targeted imaging agents for metastatic colorectal cancer. Also, a highly sensitive and specific molecular marker is currently undergoing Phase I human clinical testing for staging patients with colorectal cancer, and for detecting recurrent cancer in the blood of patients undergoing postoperative surveillance for this disease.

Technology. TDT has discovered a unique cell surface receptor, guanylyl cyclase C (GCC) that is found on colorectal cancer cells and not on any normal cell outside the intestine. It provides a superior mechanism for detecting the presence of colorectal cancer cells because it relies on ultrasensitive messenger RNA-based amplification technology rather than other less sensitive and variable detection systems, such as the human eye.

Products relevant to molecular diagnostics. The Company has developed two tests for colorectal cancer that are available to physicians for their patients: (1) GCC Lymph Node Test to accurately stage patients for optimum post-surgical management; and (2) GCC Blood Test to monitor for recurrent disease. These tests represent an improvement in sensitivity and specificity over the current standard method, histopathology. GCC technology may also be employed as a sensitive and specific diagnostic marker and as a therapeutic target for cancers of the stomach and esophagus.

TDT has developed a blood test using GCC as a marker, which represents an improvement over CEA determinations for detecting circulating metastatic colorectal cancer cells. The test can detect 1 cancer cell among 10,000,000 normal blood cells.

Collaborations. In 2001, Millennium Pharmaceuticals, Inc. (Nasdaq: MLNM) announced that TDT has granted Millennium a license to TDT's intellectual property surrounding guanylyl cyclase C (GC-C), a protein uniquely expressed on the cell surface of colorectal tumors, and its related ST ligand for use in colorectal cancer therapeutics. Millennium intends to utilize these advanced components to develop both toxin and antibody-based therapeutics directed against colorectal cancer. Due to the utility demonstrated in preclinical work, Millennium believes there is potential to create highly specific therapies that may offer significantly improved efficacy and safety in the fight against metastatic colorectal cancer

In 2001, TDT granted Millennium a license to its intellectual property surrounding guanylyl cyclase C, a protein uniquely expressed on the cell

- 561 -

Page 564: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

surface of colorectal tumors, and its related ST ligand for use in colorectal cancer therapeutics. Millennium intends to utilize these advanced components to develop both toxin and antibody-based therapeutics directed against colorectal cancer.

- 562 -

Page 565: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Target Discovery Inc

4030 Fabian WayPalo Alto, CA 94303, USAWeb Site: http://www.targetdiscovery.comTel: 650-812-8100Fax: 650-812-8130E-mail: [email protected] Executive Officer: Jeffrey N. Peterson

Overview. Target Discovery Inc (TDI)’s next generation clinical diagnostics utilize new technologies to uniquely discriminate the specific isoform modifications of protein biomarkers. These Isonostics™ products transform the effectiveness of disease diagnosis, patient profiling in clinical trials, and therapy optimization, bringing personalized medicine from concept to reality.

TDI’s core business focus in isoform-specific cancer diagnostics is now ready for commercial implementation. It is attracting $30 million in venture and strategic funding, to develop and commercialize 10 Cancer Isonostics™ assays with breakthrough relevance for diagnostics and personalized medicine. TDI is also selectively engaging in product, service and licensing offerings of technologies outside of its core Cancer Isonostics™ focus

Technology/applications. TDI’s internal programs focus on the development of isoform-specific cancer diagnostics. Through collaborative partnerships, it also customizes the application of its discovery and clinical platforms to other disease areas and broader challenges in life sciences R&D.

Isotope-Differentiated Binding Energy Shift Tags (IDBEST™). Isoform diagnostics are enabled through TDI’s unique immuno-affinity capillary electrophoresis technology. While developing initial diagnostics based upon known isoform biomarkers, TDI’s patented “mass defect” and stable isotope technologies provide a unique discovery engine that reaches beyond current boundaries to identify and validate new biomarkers for an expanding pipeline of isoform diagnostics.

TDI’s technology innovations are forging missing links in the evolutionary pathway “From Omics To Knowmics™," using hypothesis-driven science to advance biological discovery and understanding, and ultimately to contribute to improved healthcare and QOL.

Collaborations. In 2006, TDI started collaboration with researchers at M. D. Anderson Cancer Center (Houston, Texas) to develop a new generation of cancer diagnostic assays. The initially focus is on breast cancer, followed by other cancers with serious unmet diagnostic needs. Scientists at TDI will use IDBEST™ technology to validate clinical protein biomarkers at the isoform level, using retrospective patient samples provided by M. D. Anderson Cancer Center. TDI will then integrate selected protein isoform biomarkers into its proprietary Isonostics™ technology, to develop clinical assays to assist clinicians in differentiating between invasive and non-invasive forms of breast cancer.

In 2006, TDI also started collaboration with with the Virginia Prostate Center at Eastern Virginia Medical School in Virginia to develop clinical assays, which will provide critical information on tumor aggressiveness and help to guide clinicians and their prostate cancer patients toward an appropriate course of treatment. The first phase of the study involves validating protein isoform biomarkers using Target Discovery’s patented mass defect

- 563 -

Page 566: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

technology. TDI will then integrate validated protein isoform biomarkers into its proprietary Isonostics™ clinical platform.

- 564 -

Page 567: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Tecan Group Ltd

Seestrasse 103CH-8708 Männedorf, SwitzerlandWeb site: http://www.tecan.com/Tel: +411-922 88 88Fax: +411-922 88 89Email: [email protected]: Thomas Bachmann

Overview. Tecan is a leading player in the fast growing life sciences supply industry that specializes in the development, manufacturing, and distribution of enabling solutions for the discovery of pharmaceutical substances, as well as for genomics, proteomics, and diagnostics. The company has manufacturing, research and development sites in both North America and Europe and maintains a sales and service network in 52 countries.

Technologies/ products. Tecan’s diagnostic product portfolio ranges from pre-analytic workstations (for sample preparation and processing), liquid handling instruments, detection devices, microtiter plate readers and washers up to fully integrated microtiter plate processors. Selected products relevant to molecular diagnostics:

Tecan profiBlot II S and the profiBlot II N are fully automated Western Blot analyzers for the confirmation of infectious diseases such as HIV, HTLV and HCV. Tecan profiBlot II T offers fully automated processing of sensitive temperature-controlled assays such as reverse hybridization assays for forensic applications.

GENESIS RMP is a fully automated Robotic Microplate Processor that offers both high throughput and wide flexibility to laboratories that need to automate ELISA assays.

The MiniSwift is a fully automated system, ideal for use in medium throughput blood banks and laboratories performing various ELISAs. It can handle up to 180,000 tests per year through automatic scheduling and parallel processing of plates and is capable of processing up to four assays on four plates simultaneously.

LabCD System is a complete microfluidic analysis system on a compact disc for ADME and toxicity studies in drug development, as well for molecular diagnostics.

The Tecan Genesis RSP, in combination with the Qiagen QIAamp 96 viral RNA Biorobot kit, provides a rapid and validated system for extraction of RNA viruses. It facilitates the extraction of viral RNA, which is a laborious manual process for clinical laboratories, blood banks and blood transfusion centres detecting RNA viruses such as HIV HCV.

Freedom EVO, a laboratory automation platform delivers a range of applications in genomics, drug discovery, proteomics and clinical diagnostics.

Recent collaborations relevant to molecular diagnostics. In 2004. Tecan and Pierce started collaboration to use Tecan’s Ultra Evolution Detection Platform for high-throughput fluorescence lifetime measurements and Pierce’s HTS assay technologies. In Tecan and CIS bio international started collaboration: HTRF® fluorescence assays now readily available on Tecan’s microplate readers. Tecan® and Invitrogen (now Life Technologies) signed an agreement to jointly develop and promote applications of Invitrogen

- 565 -

Page 568: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

research kits on Tecan instruments. Tecan and Promega signed an agreement to jointly develop, promote and market genomic DNA purification applications on Tecan’s automated liquid handling platforms. Dynal Biotech agreed to co-develop its research kits (Dynabeads®) for use on Tecan’s Freedom EVO automated platform. In 2008, Tecan started collaboration with Life Technologies to validate the compatibility of Life Technologies’ reagents with Tecan’s microplate detection instruments. In November 2009, Tecan signed a global agreement with Hologic Inc to supply a fully automated solution based on EVO® liquid handling platform for Hologic’s Cervista® molecular diagnostics for HPV.

- 566 -

Page 569: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

TeleChem International Inc

NGS-ArrayIt Inc Division524 East Weddell Drive,Sunnyvale, CA 94089, USAWeb site: http://www.ngs-arrayit.com/Tel: 408-744-1331Fax: 408-744-1711Contact: Paul Haje ([email protected])

Overview. NGS-ArrayIt Inc, a division of TeleChem International, which provides Next Generation Screening® (NGS) technology enabling the identification of any amplified nucleic acid sequence from any organism. The main clinical application areas include population screening, disease screening, disease diagnosis, parentage testing, human leukocyte antigen (HLA) typing, blood typing, infectious disease diagnosis, forensics, and neonatal and adult screening. NGS technology can also be applied to a myriad of research areas including genetic studies in human, mouse, rat, higher plants, bacteria and viruses aimed at detecting specific sequences, or minor sequence variants including SNPs, mutations, insertions, deletions and insertion-deletion mutations. NGS also allows detection of bacterial and viral sequences as required for the diagnosis of infectious diseases caused by agents such as mycobacterium tuberculosis, cytomegalovirus (CMV), HIV, bacillus anthracis, and other pathogens. NGS represents the first technology platform amenable to cost-effective screening of the entire human population.

Technology. In NGS, specific genetic loci are amplified by use of the PCR, printed into a microarray, and hybridized with fluorescent synthetic oligonucleotides. The hybridized microarrays are then scanned for fluorescence emission to derive genotyping information. Normal, carrier and disease genotypes are distinguished easily because slight changes in primary DNA sequence alter hybridization efficiency. Altered hybridization efficiency leads to different fluorescent intensities in the scanned microarray image. Multi-color strategies involving cyanine3 and cyanine5 fluorescent labels can be used to improve the readability and precision of the assays. If performed correctly, the NGS method is 100% accurate. A microarray containing 25,000 individual printed features showcases the extraordinary quality of NGS ™ microarrays. The NGS differs from traditional microarray assays that use oligonucleotide capture probes to analyze one or two patient samples at a time. Instead of the patient samples floating in solution, amplified material from each patient is attached at a distinct location to the microarray substrate, allowing massively parallel analysis of multiple patients and multiple loci in a single test. The current printing capacity (>100,000 spots per microarray) enables screening of 10,000 patients at 10 different loci on one chip. NGS is the only platform that allows the cost-effectiveness screening of millions of patients per year. NGS technology can be scaled down to allow testing of tens or hundreds of samples per chip, rendering it ideal for hospitals and public health facilities that process a relatively small number of samples, but require testing on a daily basis. NGS technology is rapid, providing accurate genotyping information within 24-48 hours of receiving a patient sample.

- 567 -

Page 570: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Tepnel Life Sciences plc

Heron House, Oaks Business ParkCrewe Road, Wythenshawe, Manchester, M23 9HZ, UKWeb site: http://www.tepnel.com/Tel: +44 (0) 161 946 2200Fax: +44 (0) 161 946 2211E-mail: [email protected]: Benjamin Matzilevich

Overview. Tepnel Life Sciences is an international life sciences products and services group with two divisions: Molecular Diagnostics and Research Products & Services. The Company has laboratories, manufacturing and operations in the US, UK and France with over 200 employees. Its target markets are pharmaceutical, biotechnology, healthcare, hospitals, academic/research institutes, food manufacturers and regulatory authorities. It has pharmaceutical testing facility in Livingston, Scotland, which houses its protein analysis, chemistry, microbiology, bioanalysis and genomic testing laboratories. Tepnel is focused on cost-effective DNA analysis. In 2004, Tepnel completed its acquisition of certain assets of Orchid’s diagnostics unit for $4.3 million, which operates as Tepnel Lifecodes Corporation in the US and Tepnel Diagnostics Ltd in Europe. In 2006, Tepnel acquired the GenXTrak DNA extraction business from Whatman. In March 2008, Tepnel announced the completion of phase II construction and launch of biopharmaceutical and clinical genotyping services at its Livingston facility. In January 2009, an agreement was reached for Gen-Probe to acquire Tepnel for $132 million and enable it to enter the HLA testing for transplantation and genetic testing markets. The transaction will be completed by April 2009, pending share holders’ approval and other formalities.

Technologies. Tepnel 's key technologies are: DNA purification, DNA amplification and DNA detection. Its Solid Phase Amplification (SPA) is a technique for the geometric amplification of DNA immobilized onto a microbead. This utilizes micro-beads as solid phase for the manipulation of DNA and RNA and offers significant advantages over traditional methods. The T1000 Automated Purification System for plasmid purification processes 1-96 samples in approximately 2 hours with complete walk-away automation.

Products. The Nucleon range of Kits provide superior quality DNA purification.

BioKits Food Testing. The BioKits division of Tepnel BioSystems markets a range of food-related ELISA- e.g. Vitamins and DNA-based, e.g. detection of GM Foods, identification of meat species, testing kits as well as Hygicult agar dip slides and Cultura incubators. It also develops, manufactures and markets the well-established BioKits range of ELISA testing kits for additives, contaminants, allergens and toxins in food, and the FARAS range of ELISA kits for the testing of antibiotic residues in meat.

ELUCIGENE. This is a DNA-based diagnostic assay for the rapid prenatal detection of common chromosome abnormalities. In 2006, it was granted approval from the Medical Devices Bureau, Health Canada as human IVD. These kits have been enhanced with an advanced fluorescent format of the ARMS™ technology. They are specifically designed for high-volume laboratories, enabling users to quickly process a large number of samples, reducing reporting times and laboratory costs. The Elucigene range currently includes kits and reagents for:

Rapid aneuploidy testing

- 568 -

Page 571: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cystic fibrosis (CF) screening. CF-HT detects 30 of the most common causative mutations for CF.

Mutation screening of 13 genetic diseases common in the Ashkenazi Jews

Alpha-1-antitrypsin mutation detection

Predisposition testing for deep vein thrombosis

Gaucher Disease mutation detection

Familial hypercholesterolemia genetic screening

Elucigene QST*R kits are a range of rapid DNA diagnostic tests that use STR markers to detect the three most common viable autosomal trisomies: trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome) and trisomy 13 (Patau syndrome).

The LIFECODES HLA typing kits. These utilize the Luminex xMAP technology and a reverse SSO protocol where the amplified product is hybridized to a mix of beads each coupled with different SSO probes. They are used in transplant diagnostics for HLA DNA typing.

In 2007, Tepnel started to use ICSE 2007 as a platform to launch a new range of Molecular Services. The new service offering will include a GxP quality genotyping service aimed at the clinical/research market; two new services based on ELISA and 2D/3D gel electrophoresis technology.

In 2008, Tepnel expanded its molecular genetic services offering through the addition of Illumina’s iScan System, a next-generation scanner that provides researchers conducting genetic variation studies with significantly greater throughput and application diversity. Illumina’s iScan platform supports both human and non-human applications and is capable of generating up to 225 million genotypes per day.

Tepnel also has a variety of other platforms and techniques for SNP-based investigations and clinical applications. This breadth of service enables Tepnel to provide a complete solution from DNA extraction through to SNP genotyping and DNA sequencing, through to bioinformatics.

Collaboration. In 2002, Tepnel signed its first distribution agreement for its T1000 Automated DNA Purification System with Takara Biomedical Co. It covers the marketing of the T1000, associated consumables and Tepnel's Nucleon manual DNA purification products in Japan, China, Taiwan and South Korea.

In 2006, Tepnel signed a global agreement to provide DNA-extraction services for AstraZeneca.

In 2007, Tepnel agreed to an extension of the license with Luminex Corporation for access to the Luminex® xMAP® platform for incorporation into its innovative molecular diagnostics products.

In 2008, Tepnel signed an agreement to market and distribute its Elucigene QST*R products for prenatal detection of common chromosome abnormalities for use with SoftGenetics’ GeneMarker® genotyping software.

- 569 -

Page 572: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

TessArae LLC

46090 Lake Center Plaza, Suite 304Potomac Falls, VA 20165-5876, USAWeb site: http://www.tessarae.com/Tel: (703) 444-7188Email: [email protected] & CEO: Klaus Schafer MD, MPH,

Overview. TessArae® is a private company that designs and delivers the most cost-effective, highly multiplexed, targeted DNA sequencing diagnostics available. It provides solutions for two key markets: microbial detection and genetic testing.

Technology. TessArae GeneCipher™ performs targeted resequencing with turnaround times and costs that are dramatic improvements over Sanger sequencing. TessArae products are designed using the highest density, highest resolution microarrays available (Affymetrix® CustomSeq® resequencing microarrays). It has added new approaches for array design; highly multiplexed amplification reactions; a robust, highly sensitive, and specific assay; and proprietary analysis algorithms with associated confidence metrics to dramatically enhance simultaneous detection of hundreds of homozygous and heterozygous alleles. TessArae creates custom microarray designs to detect thousands of specific mutations in hundreds of genes (including SNP's, insertions and deletions), which are linked to genetic disease pathology; or to identify hundreds of pathogen strains and variants. It delivers this in a single test from a single sample. Because this massively multiplexed and parallel approach enables screening of genomic DNA for thousands of mutations or pathogens simultaneously, time-to-result and cost are reduced as compared to direct DNA sequencing.

Products. Microbial identification products are:

The TessArray RPM-Flu Array

The TessArray RPM-TEI Array

The TessArray RPM-HFV Array

Examples of custom products designed for specific clients are microarrays to test for:

Noonan syndrome

Periodic fevers syndrome

Charcot-Marie-Tooth neuropathy

Meningitis/encephalitis

- 570 -

Page 573: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Thermo Fisher Scientific

81 Wyman StreetWaltham, MA 02454, USAWeb site: http://www.thermo.com/President & CEO: Marc Casper

Overview. In 2006, Thermo Electron completed acquisition of Fisher Scientific, along with its subsidiary Seradyn, for $10.6 billion. The combined company, named Thermo Fisher Scientific Inc, has more than $9 billion in revenue and 30,000 employees. Thermo Fisher is the world leader in analytical instruments. Thermo's Life and Laboratory Sciences segment provides analytical instruments, scientific equipment, services and software solutions for life science, drug discovery, clinical, environmental and industrial laboratories. Thermo Fisher's Measurement and Control segment is dedicated to providing analytical instruments used in a variety of manufacturing processes and in-the-field applications, including those associated with safety and homeland security. Thermo Fisher is devoted to the creation of technologies and integrated solutions to help tackle the analytical challenges of the emerging field of proteomics. It is creating innovative laboratory solutions in protein separation science, automation, MS, and bioinformatics. In 2008, Thermo Fisher acquired antibody maker Affinity BioReagents. In April 2009, Thermo acquired Biolab, the leading provider of analytical instruments, life science consumables and laboratory equipment for scientific, environmental and healthcare markets in Australia and New Zealand, for approximately $120 million. In September 2009, Thermo acquired German diagnostics firm Brahms for €330 million ($471 million) in a deal that will complement its immnoassay test portfolio and expand its reagent manufacturing capabilities in Europe. Brahms' flagship product is the procalcitonin biomarker for diagnosis and treatment of sepsis marketed as Kryptor® PCT. In March 2009, Aushon acquired the protein array technologies and service capabilities of Thermo to add to its portfolio of microarray products and sell them under the SearchLight brand.

BRIMS. In 2004, Thermo launched a new initiative for protein biomarker discovery and development. Known as the Biomarker Research Initiatives in Mass Spectrometry (BRIMS) Center, this collaboration with investigators at Massachusetts General Hospital (Boston, MA) focuses on the development of MS-based technologies dedicated to the discovery of protein biomarkers. In 2005, researchers were using mass spectrometry to discover protein markers of cardiac disease. In 2007, the center shifted its focus from identifying proteins to validating biomarkers and developing clinically applicable assays in response to a growing quantitative approach to proteomics research.

Products relevant to molecular diagnostics. Thermo's protein identification method that combines liquid chromatography (Surveyor) with ion-trap Finnigan MS (LCQ Deca) can deliver the increased speed, sensitivity and structural information needed to advance the rapidly growing field of proteomics. TurboSEQUEST software enables the creation of indexed databases for rapid and accurate identification of proteins. It is based on a patented cross-correlation algorithm that matches the MS/MS spectra of digested peptides with computer-generated fragmentation spectra predicted from genomic and/ or protein sequence databases. ProMass Deconvolution 2.0 is an automated biomolecule deconvolution and reporting software package that is used to process ESI/LC/MS data or single ESI mass spectra acquired with the Thermo Electron Xcalibur data system. ProMass is ideal for the analysis of intact proteins and oligonucleotides and is optimized for high-throughput applications.

- 571 -

Page 574: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Thermo's novel LTQ Orbitrap™ hybrid mass spectrometer, new techniques for peptide fragmentation and software for data interpretation, all dramatically enhance and expand the potential for protein identification and quantification.

In 2008, Thermo Fisher integrated its Aria™ LX multiplexing technology with QuickQuan™ software. The combination enables users to increase the throughput of compounds processed in high-throughput LC-MS assays by a factor of four. This instrument accelerates the pace of drug discovery for pharmaceutical companies, streamlining the workflow by maximizing the productivity of a single MS detector.

Thermo has also introduced several new approaches to protein quantitation, such as Pulsed-Q Dissociation (PQD), a new fragmentation technique that eliminates the low mass cut-off for ion traps and allows quantitation with iTRAQ™ labeling reagents. iTRAQ is a stable isotope method for relative protein quantitation using MS.

In addition, BioWorks™ software has been extended to facilitate the use of all major protein quantitation techniques, namely SILAC (Stable Isotope Labeling with Amino Acids in Cell Culture), metabolic labeling, iTRAQ and ICAT (Isotope Coding Affinity Tagging). As a result, SEQUEST protein identifications can now easily be combined with quantitative data for an accurate view of protein expression levels.

LeadStream System for ADME/Tox. It is complete seamless system that includes preparation for LC/MS analysis, metabolite identification, metabolic stability, and purity determination.

In 2007, Thermo Fisher expanded BRIMS to include new technology and programs that involve clinical validation and clinical application assays. The program, initially focused on discovering protein biomarkers, particularly those related to cardiovascular disease. It will now use Thermo’s TSQ Quantum triple-quadrupole platform and its TurboFlow sample-prep technology to develop assays for peptides and protein-biomarker quantitation.

Copeptin, developed by Brahms as blood test based on a patented diagnostic biomarker for acute myocardial infarction is now available in Europe.

Acquisitions/collaborations relevant to molecular diagnostics. In 2006. Thermo acquired Athena Diagnostics, a leading developer and provider of proprietary molecular diagnostic and immunodiagnostic tests and services, from Behrman Capital for $283 million. Athena has an extensive portfolio of proprietary neurologic, nephrologic and endocrine diagnostic tests targeting such diseases as neurogenetic and neuromuscular disorders as well as obesity, kidney disease and diabetes. Athena provides Thermo with a portfolio of genetic and other biomarkers as well as tests to identify those biomarkers. Athena's strong IP will make Thermo a technology leader in providing personalized, gene-based tests and sophisticated tools and services for molecular biology. Fisher will be well positioned to capitalize on advances in gene-based therapies that drive demand for genetic testing. Simultaneous with its acquisition of Athena, Thermo entered into an agreement to purchase 9% of Nanogen Inc for $15 million in cash. Fisher and Nanogen will collaborate to expand the use of Athena's proprietary markers and tests. Applied Biosystems (now part of Life Technologies Corp) granted Thermo licenses to allow its subsidiary, ABgene, to offer several PCR and real-time PCR products. Nanogen and Thermo’s Athena Diagnostics subsidiary agreed to manufacture and market products based on Athena's biomarkers for research and for IVD use. Athena has biomarkers in neurology and endocrinology that it has incorporated into its testing service, several of

- 572 -

Page 575: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

which could be incorporated into assays for use on Nanogen's NanoChip 400 microarray.

In 2008, Fisher’ BRIMS started collaboration with Toronto’s University Health Network, to use its LTQ Orbitrap and Quantum Ultra MS systems to discover biomarker proteins in the secreted fluids of cancer cell lines. This will accelerate validation of biomarkers and could lead to a reliable blood test for cancers, including breast and colon cancer.

In December 2009, Thermo started collaboration between its Biomarker Research Initiatives in Mass Spectrometry (BRIMS) Center and Expression Pathology Inc (EPI), to apply its quantitative protein analysis using MS and EPI's Director® laser microdissection and Liquid Tissue® sample processing technologies to accurately measure cancer-related proteins in FFPE tissue.

In January 2010, Thermo acquired Finland-based Finnzymes, which makes reagents, consumables, kits, and instruments for molecular biology applications. This will strengthen Thermo's diagnostic product offering.

- 573 -

Page 576: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Thorne Diagnostics

100 Cummings Center, Suite 465E Beverly, MA 01915, USAWeb site: http://www.thornediagnostics.com/Tel: (978) 921-2050Fax: (978) 921-0250Email: [email protected] & CEO: Harry McCoy ([email protected])

Overview. Thorne Diagnostics Inc (TDI) is a private DNA technology company with a focus on developing products that can fundamentally improve drug discovery and the practice of medicine. It is developing a portfolio of technologies for the detection and quantification of proteins and nucleic acids, with companion electronic automation for the location, detection and analysis of rare cells in clinical samples (rare events).

Technology/ applications relevant to molecular diagnostics. Single-temperature (isothermal) detection platform, RAM (Ramification Amplification Method), its companion technology, HSAM (Hybridization Signal Amplification Method), and self-assembling nucleic acid constructs represent the next generation of technology after PCR (see Chapter 2).

In the clinic of the future, where "labs on a chip," microarrays and microfluidics can require small sample size, this technology will offer critical advantages. These proprietary techniques provide reliable and repeatable DNA analysis, whether the sample holds one cell or thousands. Earliest detection of cancer recurrence is one application where rare event analysis offers a medical breakthrough.

The ease of use, low cost and accuracy of its products gives TDI a signal opportunity to forge a leadership position in clinical research, drug development, earliest disease diagnosis and thus effective patient treatment. With the opportunity for TDI's complete automation and single step processing, DNA analysis can become a practical reality in a broad range of applications, including proteomics, genomics, SNP detection and diagnostics.

TDI developed a gel-based single-cell analysis system that allows the laboratory to detect SNPs, analyze genomic expression, and identify proteomic differences in a single cell with the aid of RAM/HSAM technology. This system allows rapid, high throughput analysis and miniaturization of devices and instruments with a significant reduction in assay cost.

Collaborations. In 2001, Mount Sinai School of Medicine (MSSM, New York, NY) and HT announced a research licensing agreement involving ongoing efforts at MSSM that are expected to lead to additional advances in the cutting edge of nucleic acid technologies. David Zhang, MD, PhD, Director of the Molecular Pathology Laboratory at MSSM, is the inventor of HT's current core technologies of RAM/HSAM.

In 2002, TDI licensed Charles Cantor’s Self-Assembling Nucleic Acid Constructs from Boston University with wide-ranging applications including proteomics, genomics, diagnostics and drug delivery.

In 2002, TDI and Neogen Corporation announced an agreement to jointly develop the next generation of rapid bacterial food safety tests. Neogen will license RAM to develop rapid tests for dangerous foodborne bacteria, such as E. coli O157:H7, Salmonella and Listeria.

- 574 -

Page 577: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2005, TDI and CogniScent Inc started collaboration for development and marketing of CogniScent’s “Electronic Nose” as a biosensor and diagnostic device.

- 575 -

Page 578: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Tibotec-Virco

Intercity Business ParkGeneraal de Wittelaan L11B 32800 Mechelen, BelgiumWeb site: http://www.jnj.com/Tel: +32 (0)15 293 100Fax: +32 (0)15 286 349

Overview. Tibotec-Virco applies the latest techniques in pharmacogenomics and molecular biology to develop new drugs and individualized disease management products and services in HIV and other chronic viral diseases. The company was formed from the merger of Tibotec Group NV and Virco Group NV in 2001. A new Clinical Research and Medical Affairs facility was set up in Research Triangle Park, North Carolina, USA as a focus for the company's development of therapeutic drug monitoring services. Tibotec-Virco is a world leader in HIV resistance testing and has developed some of the most widely available and trusted diagnostics in the world. The company has developed the world's largest relational database of more than 100,000 genotypes and phenotypes. The current focus of the company's drug discovery and development activities is the clinical development of a number of HIV/AIDS drugs that are active against strains of HIV that have developed drug resistance. In 2002, Tibotec-Virco was acquired by Johnson & Johnson in a transaction valued at $320 million in cash and debt and became a wholly-owned subsidiary.

Technology/products relevant to molecular diagnostics. Antivirogram (see Chapter 5) is a phenotypic resistance assay, which measures actual viral replication in the presence of 15 antiretroviral drugs. The resistant behaviour of the virus may be the combined result of the effects of many different mutations and the complex interactions between them, including genetic changes that have not been identified yet. Thus, phenotypic assays are widely considered the "gold standard" for resistance monitoring in the laboratory. The Antivirogram provides a direct measure of resistance to HIV drugs with biological cut-offs (the break point between the virus being defined as susceptible or resistant). It is the only phenotypic test demonstrated in a prospective controlled trial to help the selection of active drugs leading to improved outcome for patients. The VirtualPhenotype is a new and unique approach to HIV resistance testing which combines and extends the best features of both genotyping and phenotyping. It takes genetic information from genotyping of the patient’s virus and uses the Virco database of genotypes and phenotypes to calculate a reliable and quantitative prediction of the sensitivity or resistance of that virus to each of the available antiretroviral drugs.

Services relevant to molecular diagnostics. Tibotec-Virco provides HIV genotyping, the VirtualPhenotype and the Antivirogram. Tibotec-Virco sells its resistance testing services under the name of Virco via Quest Diagnostics, Laboratory Corporation of America Holdings (LabCorp) and ARUP Laboratories in the USA, SRL in Japan, as well as directly to HIV/AIDS centers in Europe, Canada and Australia.

- 576 -

Page 579: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Transgenomic Inc

12325 Emmet StreetOmaha, NE 68164, USAWeb site: http://www.transgenomic.com/Tel: (402) 452-5400 Fax: (402) 452-5401E-mail: [email protected] and CEO: Craig Tuttle

Overview. Transgenomic Inc provides versatile and innovative products and services to the medical research and pharmaceutical markets worldwide. Transgenomic's WAVE® Systems are specifically designed for use in genetic variation detection. They have broad applicability to genetic research and molecular diagnostics. The high analytical sensitivity of the WAVE System makes it a uniquely enabling technology for the advancement of personalized medicine. To date there have been more than 1,475 systems have been installed in over 30 countries. Service offerings include the Transgenomic Molecular Laboratory, which provides reference laboratory services specializing in molecular diagnostics including mitochondrial disorders, oncology and hematology, molecular pathology and inherited diseases. Transgenomic Pharmacogenomic Services is a CRO for pharmacogenomic, translational research and clinical trials.

Technology/products. The WAVE System is designed to perform high-speed, automated analyses of DNA molecules to identify the type, location and frequency of DNA mutations, with a high degree of accuracy and consistency (see Chapter 2). WAVE System, unlike tools employing more conventional technologies, can detect these genetic mutations without previous knowledge of their existence or position. Transgenomic’s molecular diagnostic portfolio also includes tests for oncology and hematology.

SURVEYOR® Mutation Detection Kits and SURVEYOR Check-It Kit provide reagents and protocols for high sensitivity detection of K-RAS mutations in DNA in samples.

HANABI automated chromosome harvesting systems improve laboratory productivity with consistent quality compared to manual methods for cytogenetic analyses.

In 2008, Transgenomic licensed qPCR technology from the Clayton Foundation for Research (Houston, TX) that may be used to detect damage in mtDNA as a specific indicator of oxidative stress, which is a risk factor for cardiovascular disease.

In 2009, Transgenomics licensed COLD-PCR technology from Dana-Farber Cancer Institute (Boston, MA), which is effective in enriching for mutations in cancer-related genes in samples that cannot be detected by DNA sequencing. It will increase the sensitivity of WAVE DHPLC and Surveyor Nuclease products. Transgenomics considers it to be promising as a screening tool to detect early-stage cancer in blood samples. On 14 March 2011, Transgenomic extended the license with the Dana-Farber Cancer Institute to include Ice COLD-PCR technology for the enhanced detection of mutant DNA, and analysis of COLD-PCR products by pyrosequencing.

Collaborations. Several companies use the WAVE system. GenOdyssee Genetics operates the HTS platform of Transgenomic's WAVE Systems in Europe.

- 577 -

Page 580: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2003, Transgenomic started to provide mutation discovery services to Novartis for support of biomarker discovery efforts in the context of clinical trials by identifying genetic mutations that correlate with patients' response(s) to cancer therapeutics.

In 2004. Nanogen signed an agreement to allow Transgenomic to distribute NanoChip Molecular Biology Workstation in Western European countries. SpectruMedix granted Transgenomic the rights to market its Reveal Genetic Analysis Systems in Europe.

In 2006, Transgenomic gave NorDiag exclusive European commercial rights to use its Wave system in Genefec test for CRC and pancreatic cancer. It is available as a clinical diagnostic in Norway and Sweden.

In 2007, Transgenomic licensed its Wave technology to the Italian molecular diagnostic shop Fiuotecnica to develop and market a genetic assay panel for prediction of the risk of cardiovascular disease. Fiuotecnica will retain rights to market the panel in Italy and Transgenomic will obtain rights to market it in the rest of the world.

In 2008, Transgenomic signed a letter of intent to buy the rights to Power3 Medical Products’ neurodegenerative biomarkers, including NuroPro, a blood serum-based diagnostic for Alzheimer’s, Parkinson’s, and Lou Gehrig’s diseases. Transgenomic plans to offer NuroPro through its CLIA-certified molecular diagnostics lab.

In 2009, Transgenomic signed an agreement with Gene Solutions for an exclusive licensing option to a set of validated mutations found in Parkinson’s disease patients that can form the basis of a novel and accurate diagnostic test for the disease. Transgenomic’s technology will be evaluated and optimized to develop the test to evaluate and quantitate the presence of low level mtDNA variants.

In February 2010, Transgenomic licensed IP from IntegraGen that will enable it to develop and commercialize a genetic test for assessing the risk of autism in children who have older siblings diagnosed with an autism spectrum disorder. The test has been developed in the Company’s CAP-accredited and CLIA-certified laboratory.

- 578 -

Page 581: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

TrimGen Corporation

34 Loveton Circle #210Sparks, MD 21152, USAWeb site: http://www.trimgen.comTel: 410-472 1100Fax: 410-472 1303E-mail: [email protected]: Fei Xu, PhD, Scientist ([email protected])

Overview. Incorporated in 1999, TrimGen is a privately held company and subsidiary of Nihon Trim Co Ltd. TrimGen's mission is to design and develop cutting edge molecular diagnostic and research tools. Its products are developed for a broad spectrum of applications including medical research, drug development, genetic screening, diagnosis, and drug treatment monitoring. It provides over 100 molecular tests and test products for leukemia, cancer and infectious diseases. Its mission is to provide advanced genetic tests to transform traditional medicine into personalized medicine.

Technology/products. The Mutector procedure starts with the addition of a crude PCR product to the reaction well. There is no need to purify, or treat, the PCR product before using the Mutector™ kit. The PCR sample is captured by a specific primer that is covalently attached to the reaction wells. The Shifted Termination Assay (STA) reaction is performed in a buffer containing STA reagents and labeled nucleotides. After the STA reaction, the reaction wells are rinsed with a wash buffer and then mutations can be detected using a colorimetric reagent system.

Applications. Mutector technology provides a reliable, simple, fast and cost effective test with 1% sensitivity and sequencing-like accuracy. Mutector is easily set up at any size CLIA laboratory for large and small-scale tests. The company focuses on the development of sensitive and accurate tests for detection of the DNA mutations in the early stages of cancer, and the DNA mutations that affect cancer chemotherapy. It is more accurate than sequencing and is designed to eliminate false positives and false negatives.

The K-ras mutation panel includes 6 point mutations in the codons of 12,13 and 61, which are found in many types of cancer. Detection of the mutations will provide genetic evidence and valuable information for diagnosis and therapy.

In October 2007, TrimGen completed a clinical trial for its LightCycler Warfarin genotyping kit and submitted an application to the FDA for 510K approval.

In November 2007, TrimGen developed a single tube test assay for detection and differentiation of HSV (type 1 & 2) and Enterovirus (HSV/EnV) and it has been validated by over 250 clinical samples.

In January 2008, TrimGen released FusionArray™ and FusionCount™ for leukemia and lymphoma. FusionArray is a screening panel for the identification of fusion genes or fusion partners, and is a useful screening test for assessment of high risk patients. FusionCount is a quantitative assay to monitor the disease progress by determining the level of gene translocation in patients. The tests provide supportive genetic evidence and valuable information for management of diseases.

- 579 -

Page 582: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

TriPath Imaging Inc

780 Plantation Drive Burlington, NC 27215, USAWeb site: http://www.bd.com/Tel: (336) 222-9707 Fax: (336) 222-8819

Overview. TriPath Imaging Inc was formed by the merger of AutoCyte Inc and NeoPath Inc, and their joint acquisition of the intellectual property of Neuromedical Systems Inc. The combined resources of these three companies represent the leading edge of research, development, and commercialization of the newest technologies for detecting cervical cancer. Prior to the merger, AutoCyte developed, manufactured and marketed the AutoCyte PREP System; a proprietary automated liquid-based cytology sample preparation system that produces representative slides with a homogeneous, thin-layer of cervical cells. NeoPath provided visual intelligence technology to increase accuracy and productivity in medical testing. The AutoPap Primary Screening System utilizes proprietary visual intelligence technology to distinguish between normal Pap smears and those that have the highest likelihood of abnormality. NeoPath's core expertise is in the research, development and commercialization of imaging technologies to improve disease diagnosis and healthcare cost-effectiveness. TriPath Imaging is the only company to offer an automated solution for cervical cancer screening that integrates the collection, preparation, staining and computerized analysis of liquid-based, thin-layer preparations. TriPath Oncology Inc (Research Triangle Park, NC), a wholly-owned subsidiary of TriPath Imaging, develops molecular diagnostic and pharmacogenomic tests for malignant melanoma and cancer of the prostate, breast, ovary and cervix. In 2006, Becton, Dickinson and Company (BD) acquired 93.5% of the outstanding shares of TriPath, which it did not previously own, for $350 million.

Products relevant to molecular diagnostics. TriPath's ProEx C, a slide-based analyte specific reagent, is used for identification of aberrant S phase induction in the US market. An emerging class of markers, the Minichromosome Maintenance protein family of DNA licensing factors (MCM-2, MCM-6, MCM-7) and Topoisomerase II alpha show promise for the specific detection of CIN2+ cervical conditions using simple antibody-based immunochemistry formats.

In 2001, TriPath Imaging was selected by BD to develop and commercialize molecular diagnostics and pharmacogenomic tests for cancer as part of the ongoing strategic alliance of BD and Millennium Pharmaceutical. Development and commercialization of this collaboration is done through TriPath Oncology. The products are based upon the genomic discovery research, conducted at Millennium, under its existing research and development agreement with BD. The goal of this program is to develop tests designed to provide individualized diagnostic and prognostic information, assist in treatment selection for patients with cancer, and improve the prediction of patient health care outcomes. The program leverages BD's genomics-based research collaboration with Millennium, BD's expertise in assay development, diagnostic platforms and marketing, and TriPath Imaging's advanced proprietary software and imaging technology. TriPath Imaging has already installed its proprietary interactive system to aid in the development and support of the genomics-based marker discovery program at Millennium's research laboratory in Cambridge, Massachusetts. The first

- 580 -

Page 583: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

resulting test was based on the detection of expression of Melastatin, a gene identified to help determine the risk of metastatic melanoma.

- 581 -

Page 584: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Tyrian Diagnostics

Unit 1, 35-41 Waterloo Rd North Ryde NSW 2113, AustraliaPostal address: Locked Bag 2073, North Ryde NSW 1670, AustraliaWeb site: http://www.tyriandx.com/Tel: 61-2-9889-1830Fax: 61-2-9889-1805Email: [email protected]: Jenny Harry, BSc, PhD

Overview. Tyrian Diagnostics (formerly Tyrian Diagnostics Limited) a privately held Australian drug discovery and biotechnology company, was launched in 1999 and changed its name on 14 November 2008 in order to reflect its shift toward a biomarker-based diagnostics business. It has the capacity to conduct large scale proteomics projects. Tyrian Diagnostics is a leading innovator in the development of proteomics instrumentation and consumables and is also pioneering bioinformatic aspects of proteomics. By combining its innovative technology and informatics, it has a leading proteomics discovery platform. On 21 August 2008, Tyrian Diagnostics ceased active efforts to develop and commericalize a therapeutic compound portfolio acquired through the merger with Eukarion and is dedicated to harnessing its expertise in biomarker discovery and development to produce a pipeline of diagnostic products based on its proprietary platform. On 25 August 2008, the company closed a private placement of AU$2.5 million (US$2.2 million) and will use the money to maintain development timelines for its two lead programs including a rapid point-of-care test for tuberculosis.

Technologies/products. Tyrian is recognized as a world innovator in the development of proteomic technologies and now has focus on biomarker-based diagnostics.

DiagnostIQ™ utilizes an antibody/antigen printed membrane, a unique pre-filter device and an incubation chamber in a vertical flow through format to create a sensitive and quantitative, rapid, multi-analyte test. The patented technology provides the potential for point-of-care testing that is simple and quick to use, gives rapid and accurate results, and is suitable for use with crude samples such as whole blood, sputum, or saliva. The rapid diagnostic test format can be used with a portable digital reader when quantitative test results are required. The test format has been validated with the commercial release of the Wheatrite® test and is in development for clinical applications. DiagnostIQ™ has the potential to be used as a diagnostic platform for virtually any analyte for which antibodies or antigens are available. Tyrian intends to out-license DiagnostIQ™.

Tyrian aim is to develop a cost effective antigen-based diagnostic test for active tuberculosis (TB) infection which can be used at the point-of-care. Using proprietary proteomic technologies, Tyrian has identified proteins from M. tuberculosis circulating in blood and/or sputum in people diagnosed with TB. A subset of these proteins has been used in the development of a diagnostic test that would detect M. tuberculosis proteins in people suspected of having TB. Unlike diagnostic tests that rely on detecting a human immune response to disease, detection of M. tuberculosis proteins should not be compromised by the presence of HIV. The programme has in part been funded by a R&D START grant from the Australian government and funding from the Foundation for Innovative New Diagnostics.

Tyrian’s strategy for biomarker discovery centers around the following:

- 582 -

Page 585: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Employing multiple strategies for biomarker discovery, including tailoring to a particular biological problem

Analysis of highest quality clinical samples rather than relying on model systems

Expertise in the processing and analysis of body fluids including sputum, saliva, blood, semen and cerebrospinal fluid

Robust experimental design and statistical validation to ensure identification of disease-relevant biomarkers

Diagnostics are being developed for the following conditions:

Cystic fibrosis (CF). Tyrian has developed IP in the proteomic analysis of sputum which has facilitated detection of human and pathogenic proteins, which have potential for diagnosis of respiratory infections associated with CF and other respiratory diseases.

Prostate cancer. Tyrian has employed proteomic and glycoproteomic techniques to characterise a novel marker, human carcinoma antigen (HCA), for prostate cancer.

Huntington’s disease. Tyrian has developed IP in the proteomic analysis of blood and cerebrospinal fluid that has allowed identification of proteins and protein pathways that show altered expression in neurodegenerative disease.

Collaborations. Tyrian collaborates with a high quality network of thought leaders and clinical collaborators in Australia, USA, Africa, Asia and Europe for biomarker discovery.

In 2004, Tyrian and the High Q Foundation expanded a biomarker discovery program for Huntington's disease for monitoring the onset and progression of the disease and provide insights into the efficacy of existing and future treatments.

In 2006, Tyrian and the Foundation for Innovative Diagnostics of Geneva, Switzerland, agreed to co-develop biomarkers for diagnosis of tuberculosis. In 2007, Tyrian signed an agreement with BD for the co-development of TB diagnostic products. Following successful completion of a feasibility study specified under this agreement, BD Bioscience has the option to proceed with product development and marketing of the test.

- 583 -

Page 586: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

US Genomics

12 Gill Street, Suite 4700Woburn, MA 01801, USAWeb site: http://www.usgenomics.com/ Tel: (781) 937-5550Fax: (781) 938-0060CEO: John Canepa

Overview. US Genomics (USG) is a leading marketer and developer of technologies that allow genetics, functional genomics, and diagnostics to be performed at the single molecule level. The company’s technology platform can directly analyze individual molecules of DNA, RNA, and proteins without the need for amplification and combines advances in microfluidics, optical engineering, and novel labeling strategies. The technology has life sciences applications in the areas of research, biodefense, drug discovery and development, and diagnostics. USG is the pioneer of Single Molecule Biology instruments and assays, which are critical for breakthrough therapies and more accurate diagnostics for the healthcare industry, where such advances depend on understanding how cellular material functions and interacts at the molecular level.

Technology relevant to molecular diagnostics. Trilogy™ technology (see Chapter 2) is particularly valuable to researchers for molecules that are difficult or impossible to amplify, such as miRNAs, siRNAs, and proteins. In 2004, USG launched its Direct™ miRNA reagents and kits to detect known human and mouse miRNAs using the company’s Trilogy™ Single Molecule Analyzer platform. The Trilogy™ platform directly detects and quantifies individual molecules of miRNAs, as well as DNA, RNA, and proteins, without the need for amplification. The direct detection technology integrates high-acuity optics, fluorescence detection, and microfluidics, The newly available Direct™ miRNA kits enable researchers to screen their samples quickly and efficiently against a panel of known miRNAs, and to validate and characterize specific miRNAs of interest.

In 2005, USG was awarded a phase II contract by the US Department of Homeland Security Advanced Research Project Agency (HSARPA) to continue development of the Company's sophisticated biological sensor for biodefense applications. Under the 18-month, $16.2 million contract, funded by HSARPA's Bioagent Autonomous Networked Detectors (BAND) program, USG will complete technology and prototype development of its system for the detection and identification of airborne pathogens using its DNA mapping technology, which uses a universal reagent set to produce a “genomic signature” for each DNA sample. The test is sensitive with extremely low rates of false positives. The platform does not use pathogen-specific reagents and needs no amplification. In 2007, USG was awarded a $8.6 million one-year SIBIR grant to continue development. In July 2008, USG was awarded a $9.1 million contract by the US Department of Homeland Security Science and Technology Directorate. The phase IIIX contract under the Bioagent Autonomous Networked Detectors program will enable USG to continue development, testing and optimization of the company's sophisticated biological sensor for the detection of airborne pathogens using single molecule DNA mapping technology.

Collaborations relevant to molecular diagnostics. In 2004, Exiqon signed a license agreement to incorporate its LNA™ chemistries into reagent kits for the USG's Trilogy™ platform. In 2006, USG agreed to work with

- 584 -

Page 587: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Northrop Grumman to develop and market its biodetection technology for the Department of Homeland Security.

The Direct™ miRNA reagents extend the research capabilities of the USG’s Trilogy™ platform, for which it currently has more than 30 scientific collaborations in place with diagnostic, pharmaceutical, and biotech companies and scientific opinion. USG has installed its Trilogy™ Single Molecule Analyzer at four leading scientific laboratories: (1) the Massachusetts Institute of Technology Center for Cancer Research; (2) Massachusetts General Hospital Center for Human Genetic Research; (3) the University of Massachusetts Medical School; and (4) Rockefeller University. In 2008, USG started collaboration with BD Biosciences to develop a molecular diagnostic test for infectious disease.

- 585 -

Page 588: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Variom Biotechnology AG

Robert-Koch-Platz 11D–10115 Berlin, GermanyWeb site: http://www.variom.com/Tel: +49 30 240 834-0 Fax: +49 30 240 834-15CEO: Philipp von Schönfels

Overview. Variom Biotechnology AG is a fast growing, venture-backed biotechnology company that develops and manufactures novel nucleic acid-based test systems for research and diagnostic applications. Variom currently employs 12 people.

Technologies. Using its proprietary photochemical production method, detection oligonucleotides are attached to polystyrene carrier materials, provide the surface on which the Solid-Phase Oligonucleotide Ligation Assay (SPOLA) takes place. Applied to planar arrays, bead arrays or VARIOM’s current platform, the SPOLA is reliable and has greater than 99% accuracy due to the dependence on two hybridization reactions and a ligation step. It can detect not only SNPs but small insertions, deletions and substitutions.

Products & services. VARIOM offer a range of preconfigured kits and a custom kit development service using its current platform, the industry standard 96-well plate. Additionally it offers its expertise in the immobilization of nucleic acids and the application of SPOLA to new carrier platforms.

VARIOM has developed a wide range of kits for the testing of clinically relevant mutations. These tests are for research use only and are not certified for diagnostic use.

- 586 -

Page 589: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ventana Medical Systems Inc

A member of Roche Group1910 E. Innovation Park Dr.Tucson, AZ 85737, USAWeb site: http://www.ventanamed.com/Tel: (520) 887-2155Fax: (520) 887-2558

Overview. Ventana Medical Systems develops, manufactures and markets instrument/reagent systems that automate tissue preparation and slide staining in clinical histology and drug discovery laboratories. Its clinical systems are important tools used in the diagnosis and treatment of cancer and infectious diseases. Ventana is a leader in automated immunohistochemistry and in situ hybridization. In 2002, Ventana acquired Beckman Coulter's HPV business and all corresponding assets. The Company is publicly traded and has six subsidiaries, including Ventana Medical Systems GmbH, Ventana Medical Systems Japan K.K., Ventana Medical Systems Pty Ltd, Ventana Medical Systems SA, BioTek Solutions Inc and BioTechnology Tools Inc. In January 2008, Roche acquired Ventana for approximately $3.4 billion. Ventana has a systems biology approach to tissue diagnostics, cytogenetics, biomarkers and personalized medicine.

Technology/products. Platforms: DISCOVERY® XT system, NexES® Special Stainer, BenchMark® XT system, VIAS™ (Ventana Image Analysis System), and SYMPHONY® system. It has automated DNA probes for ISH and immunofluorescence markers.

In 2001, Ventana launched a menu of RNA/DNA tests for breast cancer and hard-to-determine viral conditions. The new products utilize nucleic acid probe technology such as a FISH, useful in the confirmation of HER-2/neu gene amplification in breast tumors and other malignancies. Ventana's recently FDA-approved PATHWAY HER-2/neu (CB11), serves as an initial screen for the protein, and the INFORM HER-2/neu DNA test can be used to confirm those patients who fall into the indeterminate area. Using these tests will enable breast cancer patients to begin the most appropriate treatment quickly. The company has also introduced probes to detect the presence of CMV and EBV in cytologic or histologic specimens, which help in detecting dormant viruses, to avoid inadvertently transplanting infected organs, and to determine whether viruses have passed from one person to another, as in a mother accidentally infecting a fetus. Ventana is developing silver in situ hybridization (SISH) for HER2, which has advantages over FISH assays. Five-color multiplexed cell labeling with QD-IHC and haptens is used for diagnosing infilterating ductal cell breast carcinoma.

INFORM® Human Papillomavirus ASR high risk/low risk probes correlate Pap smear results with histology, clinical follow-up and HPV detection.

Pathway® c-KIT is a FDA-approved PMA rabbit MAb assay is for the qualitative detection of the c-KIT protein in gastrointestinal stromal tumors as an aid in the selection of patients who may qualify for Novartis’ Gleevec® therapy.

Ventana Image Analysis System (VIAS™) is approved for use with tissues stained for HER-2/neu and Estrogen and Progesterone Receptor assays.

Ventana is using quantum dots (QDs), licensed from Quantum Dot Corporation (now part of Life Technologies) for next-generation rapid, quantitative, and multiplexed assays.

- 587 -

Page 590: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations relevant to molecular diagnostics. In 2002, Ventana licensed MDI' In-Cell HPV assay, a biomolecular assay for the detection of E6 and E7 proteins, to be performed and fully automated on the InPath Slide Based Test platform. Ventana also acquired Beckman Coulter's HPV business. In 2004, Ventana signed a 5-year contract for rights to sell and distribute a Ventana-branded version of TriPath Imaging’s interactive histology imaging system. In 2005, Ventana signed a multi-year agreement to place Ventana’s BenchMark® XT advanced tissue staining systems in the Laboratory Corporation of America’s laboratories nationwide.

- 588 -

Page 591: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Veridex LLC

33 Technology DriveP.O. Box 4920Warren, NJ 07059, USAWeb site: http://www.veridex.com/Tel: 585-453-3240Fax: 585-453-3344

Overview. Veridex, LLC, a Johnson & Johnson company, is an organization dedicated to providing physicians and patients with high-value in vitro diagnostic oncology products. Veridex’s products will significantly benefit patients through earlier disease detection, and will enable personalized medicine strategies to improve patient management and outcomes.

Technology/products. The company is currently developing two complementary product lines. Products under the CellSearch™ brand are based on technology that identifies, enumerates and characterizes circulating tumor cells. Products under the GeneSearch™ brand are based on molecular technology for gene expression profiling.

CellSearch™ Epithelial Cell Kit. It contains ready-to-use reagents and supplies for the immunomagnetic selection, identification and enumeration of circulating tumor cells in peripheral blood. It is specifically designed for use with the CellTracks® AutoPrep System and the CellSpotter® Analyzer..

GeneSearch™. Veridex plans to offer diagnostic assays across all major cancers through its GeneSearch™ family of products. In 2007, the FDA cleared GeneSearch™ Breast Sentinel Lymph Node Intra-operative assay. This RT-PCR breast cancer assay on tissue extracted from a sentinel lymph node biopsy detects genes indicating metastasis of breast cells in the lymph node.

Collaborations. In 2004, Veridex LLC licensed Affymetrix GeneChip technology to make and market in vitro cancer diagnostic tools.

- 589 -

Page 592: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Veredus Laboratories Pte Ltd

83 Science Park Drive, #04-02,The Curie, Singapore Science Park 1Singapore 118258Web site: http://www.vereduslabs.com/Tel: +65 6496-8600 Fax: +65 6779-2680Email: [email protected]

Overview. Veredus Laboratories is a privately held life sciences company that develops, commercializes and manufactures diagnostic tools for worldwide marketing. It offers highly sensitive and user-friendly molecular diagnostic tools that include gel-based detection kits and the latest cutting edge Lab-on-Chip technology. These diagnostic tools can be used in field conditions as well as in clinical laboratories and hospitals. It aims to be the worldwide leader in the rapid and efficient development of high quality diagnostic kits products, using the latest diagnostic methods.

Technology. VereID Biosystem combines molecular biology, microfluidics and microelectronics to bring the future of diagnostics and surveillance now. It integrates two powerful molecular biological technologies: PCR and microarray and includes the following components:

Temperature control system

Optical reader

Biosystem software

Bar code reader

Products. VereChip™ combines the high sensitivity and specificity of the PCR with the powerful identification capability of the microarray into a single chip to create a test that provides answers to multiple questions within the shortest possible time. Several applications may be developed on this novel Lab-on-Chip. It is highly customisable and may be tailored to suit the customer's specific needs. Some of the applications developed for this chip includes VereFlu™ (see Chapter 6) and VereThreat™ (see Chapter 9) with many more applications in the pipeline.

Other than VereID™ Biosystem, diagnostics kits have been developed to meet the needs of consumers including PCR detection kits, rapid tests and ELISA.

- 590 -

Page 593: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Vermillion Inc

47350 Fremont Blvd.Fremont, California 94538, USAWeb site: http://www.vermillion.com/Tel: 510-226-2800Fax: 510-226-2801President & CEO: Gail Page

Overview. Vermillion (formerly Ciphergen Biosystems) develops, manufactures, sells, and services ProteinChip Systems and related products. It is a leader in biomarker discovery, assay development and characterization with offices in the UK, Denmark, France, Germany, Switzerland and Japan. Its Biomarker Discovery Center (Palo Alto, CA) is dedicated to proteomics research including differential protein expression, protein characterization, assay development and validation and protein interaction studies using ProteinChip System. Its Process Proteomics Center is located near Boston, MA.

Technology. ProteinChip System uses patented SELDI (Surface-Enhanced Laser Desorption/Ionization) to rapidly separate, detect and analyze proteins at the femtomole level directly from biological samples. ProteinChip can replace and complement a wide range of traditional analytical methods, which are not only more time consuming but require specialized scientific expertise. ProteinChip Arrays contain chemically or biochemically treated surfaces for specific interaction with proteins of interest. ProteinChip Reader quantitatively detects this protein mass profile. The power of the system is the integration of on-chip capture, protein discovery, protein purification, quantitative detection, protein identification and secondary characterization from small samples allowing rapid analysis and assay development on a single platform. Combination of ProteinChip System with BioSepra's protein chromatography products, creates a major advance in protein purification. Vermillion has launched Interaction Discovery Mapping platform complementing its Expression Difference Mapping capability for biomarker discovery, rapid protein interaction studies and clinical proteomics applications. Biomarker Patterns™ Software 5, for elucidation of clinically relevant protein patterns, was released Salford Systems.

In 2005, Vermillion was granted US Patent 6,844,165, directed to the detection of multiple diagnostic markers by SELDI-TOF-MS for the diagnosis of disease. Multi-marker assays using Vermillion’s patented SELDI ProteinChip® System are the basis for the clinical diagnostic tests that Vermillion Diagnostics is currently developing for commercialization. Vermillion has several issued US patents that cover aspects of its integrated Pattern Track™ biomarker discovery, validation and assay process. SELDI-based Pattern Track™ biomarker discovery can be used with multivariate bioinformatics tools to create multi-marker assays that could help classify four different types of cancers, including breast, ovarian, colon, and prostate. In 2008, Vermillion was issued a US patent for the discovery of novel forms of brain natriuretic peptide (BNP), which could improve upon the current standard of care in diagnosing and treating cardiovascular disease. The patent covers the measurement of these new modifications of BNP by a variety of methods, including SELDI MS, which was used to discover these specific forms.

Equalizer™ Beads employs novel bead-based libraries of combinatorial ligands. Selective absorption of proteins on these beads can reduce the concentration differences between proteins in serum and enables detection

- 591 -

Page 594: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

of low-abundance proteins. This method is rapid, requires only microliters of sample, is applicable to a wide variety of biological fluids and is amenable to automation to facilitate biomarker discovery. Deep Proteome™ Research Services provide Equalizer™ protein biomarker discovery technology to scientists.

FDA-approved OVA1™ can stratify women with pelvic masses into high-risk and low-risk categories to help determine if they should be referred to a specialist prior to surgery. OVA1™ is now available through Quest Diagnostics. Vermillion has two other tests in clinical studies: a test for thrombotic thrombocytopenic purpura (in collaboration with Ohio State University), and a test for peripheral arterial disease.

Collaborations. In 2003. Vermillion expanded its collaboration with Pfizer to discover serum protein biomarkers for early detection of chronic obstructive pulmonary disease. Toronto Medical Laboratories acquired Vermillion's AutoBiomarker ProteinChip System to pursue targeted assay development projects aimed at identifying new protein biomarkers that can be converted into commercial diagnostic tests. Vermillion and Biosite started collaboration for discovery of differentially expressed protein biomarkers. Vermillion established diagnostic biomarker discovery collaboration with bioMerieux to improve the diagnosis and management of colon cancer using Vermillion's ProteinChip technology. The following collaborations started in 2005:

Agreement with Bayer t0 identify biomarkers and develop an assay that may be used in a clinical trial in cancer. Vermillion will analyze patient samples from phase II trials at its Pharmaceutical Biomarker Discovery Center® laboratory (Malvern, PA) using SELDI-TOF-MS platform and a novel method for enriching low abundance proteins in biological fluids. Statistical analysis of the data will identify biomarkers predictive of response to a Bayer compound in development.

A 3-year alliance with Quest Diagnostics to develop and commercialize proteomic diagnostic tests, including an ovarian cancer test, based on SELDI ProteinChip® technology. Quest purchased a 17% stake in the company as part of the agreement.

An agreement with UCL BioMedica Plc to validate and discover new biomarkers for breast and ovarian cancer.

With University of Texas Medical Branch (UTMB) at Galveston started to discover, validate, and characterize new liver disease biomarkers. Vermillion will provide UTMB with proteomic technologies, including Deep Proteome, Pattern Track Process, and ProteinChip systems for application to clinical samples. Vermillion will have the first option to negotiate an exclusive license to discoveries made during the agreement and will be part of UTMB's ongoing research in liver disease.

To discover, validate, and identify biomarkers for a preclinical oncology drug efficacy study for Sanofi-Aventis at one of its Biomarker Discovery Center laboratories using PatternTrack Process and the ProteinChip System.

Bio-Rad Laboratories purchased Vermillion’s proteomics instrument business including SELDI ProteinChip arrays for approximately $20 million in cash, and made a $3 million equity investment in Vermillion. Bio-Rad will manufacture, sell, and market the SELDI technology to the life sciences marketplace for applications such as biomarker discovery, characterization, and validation. Vermillion will retain exclusive rights to the products for the diagnostics market, and will maintain a supply agreement with Bio-Rad to purchase SELDI instruments and consumables for the continued

- 592 -

Page 595: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

development of its diagnostics business. The companies will also collaborate to identify SELDI customers interested in partnering with Vermillion to commercialize biomarker discoveries.

In 2007, Vermillion and Quest started to develop a blood-based test for the detection of peripheral artery disease as a continuation of the 2005 alliance. Quest also agreed to loan Vermillion as much as $10 million for research expenses.

In 2008, Vermillion renewed a long-standing collaboration with Johns Hopkins University to develop biomarkers that can be potentially used as molecular diagnostics for cancer. Under the terms of the agreement, Vermillion will have access to exclusive commercial rights to any discoveries from the partnership. Vermillion will supply its technology platforms and fund research efforts, while Johns Hopkins will supply cancer serum samples along with the expertise of its physicians and scientists.

- 593 -

Page 596: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ViroMed Laboratories

(a subsidiary of Laboratory Corporation of America)6101 Blue Circle DriveMinnetonka, MN 55343, USAWeb site: http://www.viromed.com/Tel: (952) 563-3300Fax: (952) 563-3215E-mail: [email protected]: Myla Lai-Goldman, MD, Executive VP and Medical Director of LabCorp.

Overview. Established in 1982, ViroMed Laboratories began as a private, regional reference laboratory performing infectious disease testing with a focus on virology and a commitment to providing testing services of the highest quality. In 2001 ViroMed's clinical businesses (clinical diagnostics, clinical trials, and diagnostic products) were acquired by Laboratory Corporation of America® Holdings. As a part of LabCorp®, ViroMed continues to provide high-quality laboratory testing services and products with its customary focus on client requirements.

Technologies/services. ViroMed provides clinical diagnostic laboratory testing through its laboratories specializing in virology, molecular biology and serology. ViroMed has served as a testing center for antiviral drug resistance studies in influenza strains isolated globally. In addition to PCR-based assays, ViroMed also has the capabilities to detect respiratory pathogens using more traditional assays such as rapid and standard culture methods and antibody-based detection methods.

In 2005, ViroMed announced the availability of a real-time PCR test for the typing of influenza A strains, including the avian flu H5N1 strain. In addition to the influenza A typing assay, a real-time PCR test for three common respiratory pathogens, influenza A, influenza B and respiratory syncytial virus (RSV), is now offered. Both tests can be performed directly on respiratory samples or on culture viral isolates.

- 594 -

Page 597: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Visible Genetics

5 Crestridge Drive, Suite 200Suwanee, GA 3002, USAWeb site: http://www.hivresistanceweb.com/protected/testinfo/tables/visgen.shtmlTel: 678-318-2600Fax: 678-318-2910

Overview. Visible Genetics Inc (VGI), founded in 1993, was a leading international manufacturer of unique, high performance, automated DNA sequencing systems and tests for the analysis of genes linked to disease including HIV, hepatitis B, hepatitis C, other infectious diseases and cancer. VGI was a leader in the rapidly emerging field of pharmacogenomics as it individualized therapy based on patients' or infectious agents' genetic differences. VGI was granted over 40 US patents covering various aspects of the OpenGene System. VGI was acquired by Bayer Diagnostics in 2002 for $61.4 million. Although the company does not exist as an entitiy, the information is available on HIVRESISTANCEWEB.

Products/services. VGI has developed an automated, integrated DNA sequencing system - OpenGene. The system employs proprietary instrumentation and CLIP single-tube sequencing technology which effectively reduces the time and cost involved in identifying genetic information. The OpenGene System is used to run tests, such as the TRUGENE HIV-1 Genotyping Test, and to perform generic laboratory-developed DNA sequencing assays.

Approved by the US FDA, the TRUGENE HIV-1 Genotyping Test is the first standardized complete system available for HIV-1 genotyping for drug resistance. TRUGENE HIV-1 incorporates GuideLines rules-based interpretation software to generate the easy to interpret TRUGENE HIV-1 Resistance Report. These rules and algorithms are developed and updated by an international expert panel of HIV clinicians and researchers. This report incorporates interpretation of mutations by drug based on both in vitro phenotypic and in vivo virological response data.

- 595 -

Page 598: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

VisiGen Biotechnologies Inc

2575 West Bellfort, Suite 250Houston, Texas 77054, USA Web site: http://www.visigenbio.com/Tel: 713-665-9900Fax: 713-665-9901President and CEO: Susan H. Hardin, PhD ([email protected])

Overview. VisiGen, founded in 2000, is developing a radically new method of sequencing DNA that is projected to completely sequence a human genome in a day for the long-coveted target mark of $1000. In 2005, VisiGen was awarded a "$1,000 Genome" grant from The National Human Genome Research Institute (NHGRI), part of the NIH to advance the development of innovative sequencing technologies intended to reduce the cost of DNA sequencing and expand the use of genomics in biomedical research and health care. The ability to sequence an individual genome cost-effectively could enable health care professionals to tailor diagnosis, treatment, and prevention to each person's unique genetic profile. VisiGen was acquired by Life Technologies Corp for $20 million in October 2008.

Technology. VisiGen is engineering DNA polymerases and nucleoside triphosphates to function as direct molecular sensors of DNA base identity. Cutting-edge technologies, including single-molecule detection, fluorescent molecule chemistry, computational biochemistry, and genetic engineering of biomolecules, are combined to create this novel sequencing system. Cloning or amplification processes are not necessary with the VisiGen® method, and the original template is not destroyed. The massively parallel nature of this technology enables sequence acquisition at rates approaching 1 million bases per second per machine. The VisiGen® system eliminates sequencing reaction processing and electrophoresis, promising huge savings in time, labor, and cost per base.

VisiGen's technology can analyze a single molecule of DNA in real-time, which has the potential to drastically reduce the cost of sequencing while simultaneously significantly improving throughput over existing commercially available technologies. This solution could provide a quantum leap in scope and scale of research aimed at uncovering the genetic basis of common diseases, such as cancer, heart disease, and diabetes. Visigen’s technology is distinguished from other next generation sequencing technologies in that it exploits the natural process of DNA replication in a way that enhances accuracy without drastically impacting its efficiency.

In February 2008, VisiGen was awarded US Patent No. 7,329,492, "Methods for Real-time Single Molecule Sequence Determination,". European and Australian counterparts have also been issued. VisiGen's DNA sequencing machines will enable low cost comprehensive genome analysis such as one day, $1,000 human genome. VisiGen's patented technology is scalable. VisiGen's nanosequencing machines are designed to monitor massively parallel arrays to produce a DNA sequencing platform that will be capable of collecting DNA sequence data at the rate of 50 million bases per second or greater. VisiGen plans to offer a DNA sequencing service in late 2009 and to sell DNA sequencing machines and reagents 18 to 24 months later.

Applications. The VisiGen® system is being developed to identify pathogens and to enable comprehensive genome analysis. Parallel processing of samples in a microarray format may enable large genomes to be sequenced in less than a day. The VisiGen® sequencing system will become an enabling platform technology for single-molecule genetic analysis.

- 596 -

Page 599: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

VisiGen is developing instruments and patent-pending reagents to enable real-time DNA sequence determination. The patent-pending VisiGen® DNA Real-Time Sequencing Systems offer novel approaches to medical diagnostics and bioscience research. It allows direct detection of any gene sequence.

- 597 -

Page 600: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Warnex Inc

3885 Industriel BlvdLaval, Quebec, H7L 4S3 CanadaWeb site: http://www.warnex.ca/Tel: (450) 663-6724Fax: (450) 669-2784E-mail: [email protected] and CEO: Mark Busgang

Overview. Warnex is a biotechnology company devoted to protecting public health by providing advanced diagnostic products and science-based services to the food, pharmaceutical and healthcare sectors. On 9 May 2006, Warnex concluded the acquisition of all of the issued and outstanding shares of PRO-DNA Diagnostics, a laboratory that offers genetic testing, for $1.7 million.

Technology/products. Warnex’s DNA-based technology offers a versatile detection platform that produces accurate results rapidly, using Real-Time PCR technology combined with unique genetic markers and software. With a focus on pathogen detection in food, its development pipeline also includes applications in GMO testing and meat speciation, as well as in the detection of viruses, yeasts and moulds. The technology also has a traceability function through the use of Molecular Bar Codes.

The Warnex™ Rapid Pathogen Detection System assesses the presence of pathogenic contamination of a food product by specifically identifying the DNA signature of a pathogen. As the DNA signature of each pathogen is unique, this identification is highly specific and accurate. The system allows for the simultaneous detection of multiple pathogens and processing of samples within 3 to 48 hours, a significant improvement over traditional microbiology tests that currently require 5 to 7 days.

Services.Complementing the pathogen detection product opportunity, Warnex’s operating groups provide analytical, bioanalytical, and medical laboratory services and help fuel its research and development efforts.

Warnex Analytical Services provides traditional chemistry, microbiology, chromatography and stability testing, as well as method development and validation, to clients in the pharmaceutical and biotechnology industries.

Warnex Bioanalytical Services conducts bioavailability and bioequivalence studies for clinical trials, and performs contract R&D for clients in the pharmaceutical and biotechnology industries.

Warnex Medical Laboratories provides specialized medical laboratory testing, including the Prenatest® prenatal screening test for Down syndrome (trisomy 21), trisomy 18 and other chromosomal anomalies.

On 5 March 2008, Warnex Medical Laboratories division launched a new screening service for prostate cancer, the PCA3 assay. The Warnex PCA3 screening service for prostate cancer uses advanced PCR technology to detect mRNA from the prostate cancer gene 3. Warnex is the first laboratory to offer this service in Canada.

Collaborations. In 2006, AmeriSci Bio-Chem, a leading scientific service laboratory, agreed to offer real-time PCR pathogen testing services using the Warnex™ Rapid Pathogen Detection System.

- 598 -

Page 601: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

In 2006, JEM Analytical Laboratory Services, started to use Warnex™ Rapid Pathogen Detection System to offer real-time PCR pathogen testing services to its customers. JEM will use Warnex's food safety technology to test for Salmonella and Listeria.

In 2008, Warnex obtained a licence from Xenomics Inc to offer NPM1 testing in Canada as a laboratory service for the diagnosis, stratification and monitoring of patients with acute myeloid leukemia.

- 599 -

Page 602: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Whatman plc

GE Healthcare Bio-Sciences Corporation800 Centennial Avenue, Building 1Piscataway, NJ 08855, USAWeb site: http://www.whatman.com/Tel: (973) 245 8333Fax: (732) 885 6529E-mail: [email protected]: Li Li Lee, Product Manager ([email protected])

Overview. Whatman is an international leader in separations technology, which focuses its business on specific segments of the analytical and healthcare markets. Whatman designs and manufactures specialist membranes, filtration and chromatography media, and it has a generic technology for the isolation, transport, storage and purification of DNA. The company's products have wide-ranging applications in analytical, healthcare and bioscience markets. Its breakthrough protein array technology, coupled with unique innovations in capturing, archiving and purifying DNA at room temperature, enables it to provide novel solutions for the analytical, health care, and bioscience markets. Whatman was taken over by GE in 2008.

Products relevant to molecular diagnostics. Whatman has the facility to design and manufacture novel chromatography media to suit the most exacting process-scale requirements including an extensive range of cellulose and silica media to provide several options in large-scale separation and purification procedures. Applications range from the separation of biopolymers such as proteins, peptides and hormones to the purification of MAbs, vaccines, and pharmaceuticals.

The Whatman Biometra range of products offers innovative equipment for thermocycling and electrophoresis used in scientific and medical research, sequencing laboratories and the pharmaceutical industry. These products include a series of thermocycler instruments, hybridization ovens, gel electrophoresis systems and video documentation. The range of electrophoresis products has extensive application for protein and nucleic acid separation and analysis. The broad range of technologies for the collection, transportation, purification and analysis of nucleic acids and include the following:

GenFast Genomic DNA Purification System is designed for fast isolation and purification of DNA, which is suitable for direct use in routine applications including PCR genotyping, restriction digestion and RFLP analysis.

The GenSpin Purification Kit is designed to purify high quality, PCR-ready, single stranded DNA from whole blood and cultured cells in as little as 25 minutes.

FTA products provide end-users with an established range of effective tools and innovative solutions for the collection, purification and transportation of nucleic acids. When samples are applied to FTA-treated paper, cell lysis occurs and high molecular weight DNA is immobilized within the matrix.

The GenXTrak Purification Service provides a comprehensive contract service for the purification, quantification and normalization of DNA.

The multiplex protein biochip, CombiChip®, has received CE Registration for the detection of autoimmune diseases. This novel assay system was developed in partnership with Institut für Immunologie und Molekulargenetik GmbH,

- 600 -

Page 603: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

which specializes in autoimmune and other clinical diagnostic assays. Whatman/Schleicher & Schuell plans to make the CombiChip available to reference laboratories as a CE marked IVD kit.

Collaborations. In 2008, Whatman and VigeneTech launched custom software to analyze Whatman FAST Quant® samples. The customized OEM software from VigeneTech provides high quality image quantification and enhances the automation.

- 601 -

Page 604: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Xceed Molecular

1 Marmac DriveToronto, ON M9W 1E7 CanadaWeb site: http://www.xceedmolecular.com/Tel: 416-798-1625Fax: 416-798-8635E-mail: [email protected] Executive Officer: Michael L. CohenContact: David Deems ([email protected]) Overview. Xceed Molecular was founded as MetriGenix Corporation in 2003. Its patented Flow-Thru Chip® technology, a microporous silicon substrate for biological analysis, enables hybridizations that are four-times faster than conventional microarray formats. In 2004, it acquired GeneXP Biosciences, a Massachusetts-based company with complementary technology. In 2005, the company consolidated operations and focused its strategy on molecular diagnostics. The name change comes as the company transitions from development stage to a nimble, customer-focused business, with innovative products and services designed to translate biomarker-based tests from research into routine clinical use.

Technology/products. The Ziplex™ system is a multiplex test system that provides simple answers to complex questions with minimum hands-on time. It allows investigators to perform gene expression analysis more simply and cost-effectively, and with higher throughput than other platforms. The Ziplex™ system is designed to meet rigorous laboratory standards. It provides robust results reporting and provides clinical researchers high-value information for complex disease processes.

Signature Chips are TipChips that contain published genes of interest for common pathways or disease processes. They can be used to assess relationships of transcripts to each other for a defined set of conditions. When run on the Ziplex™ system, investigators can easily compare results across sample sets, experiments, and/or complex study design conditions. The Metabolic Signature Chip offers genes of interest for investigators exploring metabolic pathways. The Chip can be used to investigate differential expression associated with diseases of the metabolic system, such as obesity, muscle disorders, and other metabolic disorders

Array services. Xceed's low cost expression analysis system makes multiplexed gene expression profiling of many samples easy and affordable. Xceed’s Array Services enables researchers to accelerate their expression programs at an affordable cost while providing the quality of results and reliability they would demand of their own laboratory.

Collaborations. In 2007, Xceed launched its Strategic Collaborator program and signed its first member, the Center for Molecular Medicine. Xceed has already committed to several other institutions under its Strategic Collaborator program.

In 2008, Gen-Probe licensed Flow-Thru Chip technology from Xceed Molecular to develop next-generation multiplexed molecular diagnostics. Gen-Probe will pay up-front licensing and milestone fees and will purchase Xceed’s custom TipChips, Ziplex automated gene expression system, and other Xceed products.

- 602 -

Page 605: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

- 603 -

Page 606: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

XDx Inc

3260 Bayshore Blvd.Brisbane, CA 94005, USAWeb site: http://www.xdx.com/Tel: 415-287-2300Fax: 415-287-2456Email: [email protected]: Pierre Cassigneul

Overview. Founded in 2000, XDx is a molecular diagnostics company, which has applied microarray, real-time PCR and other bioinformatics technologies to develop a new way to monitor the immune system. This work is the basis for the XDx Reference Laboratory's first offering: AlloMap™ molecular expression testing targeting the post-cardiac transplantation patient management market. The lab received CLIA certification in 2004. XDx is launching AlloMap molecular expression testing at leading US cardiac transplant centers that participated in the validation trial.

Technology/applications relevant to personalized medicine. Using a 'genome-wide' approach, XDx developed a leukocyte gene library consisting of over 8000 genes known to be involved in immune responses. Select sequences representing these genes were incorporated into custom microarrays and used to examine gene expression in the Cardiac Allograft Rejection Gene Expression Observational (CARGO) study. Patient blood samples were obtained at the time of biopsy and the expression levels of these 8000 genes were ascertained and compared to the biopsy result. A subset of over 200 candidate genes showed promise as markers which discriminate rejection from quiescence. The next phase of the CARGO study used the more specific and sensitive real-time PCR technology to measure gene expression levels of more than 200 genes. These studies provided highly quantitative and reproducible measures of expression levels for each gene. The CARGO study resulted in the identification and validation of gene expression patterns in peripheral blood that correlate with acute rejection.

XDx is developing non-invasive, gene-expression tests for monitoring immune-mediated conditions. AlloMap molecular expression testing is a noninvasive assay that targets immune cells in the peripheral blood that cause and respond to cardiac rejection. By measuring patterns of activity of a number of genes, rejection can be diagnosed and predicted. In 2008, XDx received market clearance from FDA for AlloMap® test, which assays the RNA levels of 11 rejection biomarker genes and 9 control genes, for identification of heart transplant recipients who have a low probability of moderate/severe acute cellular rejection at the time of testing. On 8 Dec 2010, it was recommended by California Technology Assessment Forum. Advantages of this test are:

Distinguishes rejection from quiescence by detecting mobilization of the alloimmune response – not by assessing graft damage.

Delivers an objective score that is superior to variable and subjective pathology.

Permits noninvasive monitoring that is safe and convenient.

Enables reduction in the number of surveillance biopsies.

Identifies at-risk patients that biopsy misses.

- 604 -

Page 607: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations. In 2007, XDx signed an agreement with the University of Minnesota to license key IP assets related to the use of gene expression to assess the disease status of systemic lupus erythematosus (SLE) patients. In January 2009, XDx signed a pharmacogenomics pact with Bristol-Myers Squibb (BMS) to identify biomarkers that would be used for diagnostic purposes as well as to monitor the effectiveness of abatacept (Orencia) for SLE. BMS will make an upfront payment to XDx and additional milestone payments based on the achievement of specific R&D objectives. XDx also gets commercial rights to certain diagnostic applications that result from the collaboration.

- 605 -

Page 608: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Xenomics Inc

420 Lexington Avenue, Suite 1701New York, NY 10170, USAWeb site: http://www.xenomics.com/Tel: (212) 297-0808Fax: (212) 297-1888Contact: David Robbins PhD, Vice President of Product Development

Overview. Xenomics is a molecular diagnostics company that focuses on the development of DNA-based tests using transrenal DNA (Tr-DNA). Scientists from Xenomics were the first to report that fragments of DNA from normal cell death cross the kidney barrier and can be detected in urine. The Company believes that its technology will open significant new markets in the molecular diagnostics field. Xenomics has three issued US patents covering different applications of the technology for molecular diagnostics and genetic testing and a European patent for the Company's prenatal testing applications, and numerous pending patent applications. Xenomics is listed on the Frankfurt Stock Exchange under the symbol XE7.

Technology. Xenomics’ patented proprietary technology utilizes fragmented DNA material, Tr-DNA, which has crossed the kidney barrier and is available in urine to provide vital diagnostic information about conditions throughout the body. Tr-DNA tests are based upon a simple proprietary method of DNA isolation, followed by detection of DNA fragments bearing specific genetic markers using established molecular diagnostic techniques, which are readily applied to the detection of Tr-DNA markers isolated from urine specimens. Xenomics' technology can be applied to a broad range of applications.

Xenomics has developed a new technique for isolation of cell-free nucleic acids and demonstrated the presence in urine of miRNA specific for organs located outside of urinary system, e.g. brain-, heart-, liver-, tumor- or placenta-specific miRNAs. Concentrations of neuron-specific miRNA increases in urine of patients with acute and chronic neurological disorders and can be used as a biomarker of in vivo neuronal death.

Biomarker product development. Xenomics is developing molecular diagnostic assays for clinical use with regulatory approval. Proof-of-principle experiments have been completed for each of its four major applications: infectious disease testing; cancer detection and monitoring; organ transplant rejection; and prenatal genetic testing. miRNA tests are at the stage of design/optimization for stroke and Alzheimer' disease.

Acute myeloid leukemia (AML) assay. A new genetic biomarker indicates the presence of mutations in the nucleophosmin (NPM) gene, which is involved in numerous normal cell processes that malfunction as a result of the mutation. The presence or absence of the mutant NPM gene is important for diagnostic accuracy, prognosis and monitoring of the AML. Xenomics has obtained exclusive license for this new AML genetic biomarker, and has now developed a first generation test for the detection of the NPM gene mutations in bone marrow and blood cells. Its next goal is development of Tr-DNA-based test for AML, which could substitute a very invasive procedure of bone marrow biopsy.

Homebrew tests are available for HPV and gender detection. A test for detection of TB is in clinical studies.

Collaboration. In 2007, Ipsogen signed a co-exclusive license agreement with Xenomics, which enables it to develop, manufacture and commercialize

- 606 -

Page 609: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

research and diagnostic products based on the analysis of NPM1 mutations for the stratification and monitoring of patients with AML.

In 2007, Xenomics granted Asuragen Inc co-exclusive worldwide rights to incorporate NPM1 technology into Asuragen’s molecular diagnostic products. Asuragen will have the right to develop, manufacture and market products for the diagnosis, stratification and monitoring of patients with AML.

- 607 -

Page 610: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

ZS Genetics Inc

Danvers NH, USAWeb site: http://zsgenetics.com/ Tel: (603) 381-8840Email: [email protected] & President: William R. Glover IIIContact: Thomas Abert, VP Finance and Administration ([email protected])

Overview. ZS Genetics Inc (ZSG), founded in 2003, is a privately-held company that is developing a technology platform for directly creating detailed images of individual DNA or RNA molecules. It believes that its radically-different, patent-pending technology will have a major impact in the expression, sequencing and diagnostics markets. ZSG's patent-pending processes adapt existing, mature technologies to new applications. When used for Sequencing, its technology will complete whole genomes in days instead of months, for thousands of dollars instead of millions. Applied to expression, the ZSG technology offers scientists the ability to do research that was simply not possible before; measuring the activity of hundreds to thousands of genes in a single-cell, with single-molecule sensitivity. This new ability will allow researchers to compare normal cells vs. individual cancer cells, and should open the door to entirely new categories of drugs and diagnostics. ZSG is now commercializing its expression offering and will begin to provide interested scientists the opportunity to try the technology. Its sequencing application is planned for 2008. On 23 April 2008, ZSG became the seventh team to be accepted into the $10 million Archon X PRIZE for Genomics competition. To win the prize purse, teams must successfully sequence 100 human genomes within 10 days for less than $10,000 per genome. This accomplishment is a necessary step to create a new era of personalized, predictive and preventive medicine.

Technology. ZSG is developing the use of electron microscope for a fast and cost-effective way to sequence DNA. The technology it is developing uses iodine to label components with atomic weights otherwise too low to be seen by electron microscopes. ZSG’s methods will cut down the cost of performing sequencing of a genome because of the simplicity of the process, and because the imaging will allow researchers to sequence 5,000 to 10,000 base pairs at a time. ZSG uses heavier elements as labels such as iodated and brominated nucleotides, which are commercially available. Labels of a few or one atom are more precise than fluorescent labels. They are incorporated into the DNA in much the same way as fluorescent labels but are dramatically smaller and consequently easier to incorporate into very long molecules. Atomic label bias should be less than fluorescent labels and also result in greater experiment reproducibility. ZSG plans to use this technology for DNA sequencing and gene expression studies (see Chapter 2). As part of its long term plans, ZSG is now developing procedures and techniques to support highly sensitive, non-invasive, genetic diagnostic assays.

Collaborations. ZSG is collaborating with University of New Hampshire for the development of electron-microscope-based DNA sequencing.

- 608 -

Page 611: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Collaborations

Selected collaborations of companies in the area of molecular diagnostics are shown in Table 13-18. There are 689 collaborations and further details have been described in the profiles of the companies involved. These collaborations were analyzed in Chapter 11.

Table 13-18: Collaborations of companies in molecular diagnostics

Company 1 Company 2 Area of collaboration

20/20 GeneSystems Inc

Wako Pure Chemical Industries Ltd, Japan

To market 20/20 product for multiplex analysis of proteins separated on electrophoresis gels in the Far East

20/20 GeneSystems Inc

Novartis Pharmaceuticals

Access to 20/20’s P-FILM technology to identify protein expression and activation patterns in Novartis' tumor samples for tumor subtyping

20/20 GeneSystems Inc

Ortho-Clinical Diagnostics

20/20 Gene licensed IP related to its blood-based biomarker test for early-stage lung cancer to Ortho-Clinical Diagnostics

454 Life Sciences

Biotage AB 454 Life Sciences obtained an exclusive license for sole use of Pyrosequencing for whole genome applications

454 Life Sciences

Roche Diagnostics For the development, promotion, sale, and distribution of 454 Life Sciences’ nanotechnology-based Genome Sequencing

Abbott Laboratories

Celera Genomics To develop, manufacture and market a broad range of in vitro molecular diagnostic products for disease detection, disease progression monitoring and therapy selection

Abbott Laboratories

Luminex corporation

Abbott licensed supply and distribution rights to Luminex®'s proprietary biological testing technologies including bead-based MAP technology, for the development of assays and instruments

Abbott Laboratories

Promega Corporation

Promega will provide a sensitive/efficient system to purify and extract viral RNA from patient samples using Abbott's magnetic particle technology

Abbott Laboratories

BioGenex Laboratories

For distribution and marketing a system that will fully automate molecular diagnostic tests using Abbott's FISH technology

Abbott Laboratories

BioCurex Abbott licenced RECAF™ (receptor for alpha-fetoprotein technology) for use in the development of cancer diagnostics

Abbott Laboratories

Affymetrix Abbott licensed a number of patents of Affymetrix, which allows it to manufacture and sell comparative genomic hybridization microarrays, readers, and software for research and diagnostics

Abbott Laboratories

Epigenomics Abbott licensed Epigenomics' DNA methylation biomarker Septin 9, which the companies plan to develop into an IVD blood test for early detection of colorectal cancer

Abbott Pfizer Inc Abbott will develop a companion molecular diagnostic test that will determine a patient's genetic status and will be used in patient selection for clinical trials of Pfizer's PF-02341066 for NSCLC

Abbott GlaxoSmithKline (GSK)

Abbott will develop a and commercialize a PCR test for use on m2000™ as an aid in selecting patients who may benefit from GSK's Antigen-Specific Cancer Immunotherapeutic in melanoma

Abbott Hoffmann-La Roche Genentech Inc

For the use of PathVysion as an aid in the assessment of breast cancer patients for whom Herceptin treatment is considered

- 609 -

Page 612: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Abbott Leica Microsystems

Abbott's FISH probes targeting the HER2 gene locus will be used to develop the automated HER2 FISH test on Leica's BOND automated advanced staining platform

Accelr8 Technology

Xtrana To jointly develop an advanced quantitative nucleic acid-based analytic platform for point of care applications

Accelr8 Technology

NanoString Technologies Inc

NanoString acquired a license for using Accerl8’s OptiChem® coatings on its innovative molecular identification platform in preparation for commercial launch of its nCounter™ System

Accelr8 Technology

Becton Dickinson & Company

Becton Dickinson purchased an exclusive right to to develop Accelr8's BACcel® rapid diagnostic platform

AcroMetrix AccuTest Inc (Westford, MA)

To offer clinical laboratories a comprehensive set of proficiency testing programs for HIV resistance testing and HCV genotyping

AcroMetrix Nabi Biopharmaceuticals

To offer ViroSure quality control products for infectious disease testing to clinical laboratories and blood screening organizations

AdnaGen Innogenetics To develop and commercialize new multiplex tests in oncology that rely on circulating tumor cells in patients’ blood

AdvanDx Inc bioMérieux bioMérieux will distribute AdvanDx's PNA FISH™ diagnostic tests in the US for rapid identification of bloodstream pathogens

AdvanDx Inc Panagene AdvanDx will buy Panagene PNA probes for use in its PNA FISH

Affymetrix Hoffmann-La Roche

To combine PCR with GeneChip system for analyzing 56 important mutations in cystic fibrosis

Affymetrix Genzyme Molecular Oncology (GMO)

GMO has licensed certain high-density DNA array diagnostic and research rights related to the p53 gene to Affymetrix

Affymetrix Schering-Plough Research Institute

SPRI will gain access rights to Affymetrix' GeneChip® arrays, for use in monitoring gene expression for drug discovery

Affymetrix Arcturus Engineering Inc

Arcturus will use GeneChip technology to monitor gene expression and develop microgenomics array-based diagnostics

Affymetrix Roche Diagnostics Roche gaines access to GeneChip brand technologies to develop and commercialize diagnostic products for human diseases

Affymetrix bioMerieux Inc To develop tests in infectious disease and industrial testing using Affymetrix GeneChip brand probe arrays

Affymetrix Life Technologies Life Technologies reagents are used with Affymetrix GeneChip technology to offer a complete sample preparation system

Affymetrix Life Technologies Life Technologies’ epigenetics business, which is built upon Affymetrix NCode multispecies miRNA microarray platform

Affymetrix Aventis Aventis entered into an agreement with Affymetrix that provides it early access to GeneChip Human Genome U133A Arrays

Affymetrix Ipsogen Ipsogen became an authorized Service Provider for Affymetrix GeneChip system

Affymetrix Veridex LLC Veridex licensed Affymetrix GeneChip technology to make and market in vitro cancer diagnostic tools

Affymetrix PathWork Informatics

Affymetrix PathWork granted access to its microarray technology to develop and market in vitro diagnostics for cancer

Affymetrix Agencourt Bioscience Corporation

Agencourt will provide a nucleic acid purification product, Agencourt RNAClean, to be included in the reagent kit for Affymetrix' GeneChip® Array Station

- 610 -

Page 613: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Affymetrix Vita Genomics Vita Genomics will use Affymetrix microarray technology to develop and market IVD

Affymetrix Signature Genomic Laboratories

Signature licensed Affymetrix patents for its SignatureChip® microarray-based diagnostics for cytogenetic abnormalities

Affymetrix Epigenomics Affymetrix granted Epigenomics nonexclusive access to its microarray technology to develop microarray-based in vitro diagnostic tests for oncology

Affymetrix NimbleGen Systems Inc

NimbleGen licensed a number of Affymetrix patents covering the manufacture, use and sales of nucleic acid microarrays

Affymetrix Navigenics To offer personal genetics service online

Affymetrix Avesthagen Ltd Affymetrix’ microarray technology will be used for the AVESTAGENOME Project™, which will explore the genetic basis of longevity and create a genetic, genealogic and medical database of the Parsi-Zoroastrian population in India.

Affymetrix Asuragen Affymetrix agreed to market Asuragen’s in vitro transcription reagent kits for use with its GeneChip System 3000Dx

Affymetrix Medical Prognosis Institute

For use of Affy microarray platform to develop drug sensitivity prediction/prognostic tools for cancer

Agendia Molecular Profiling Institute

For distribution of MammaPrint® in the US

Agendia Medvet Science Medvet will distribute MammaPrint breast cancer gene prognosis test in Australia

Agendia Ferrer inCode/part of Gruppo Ferrer

Ferrer inCode sells Agendia’s MammaPrint and CupPrint tests in Spain, Germany, France, Italy, and Portugal

Agilent Laboratories

Caliper Technologies

DNA 500 LabChip kit for the automated analysis of DNA fragments to determine their size and concentration

Agilent Technologies

Paradigm Genetics Toxicogenomics: a Mouse Oligo Microarray Kit to conduct genome-wide profiling research for effects of toxic substances

Agilent Technologies

ExonHit Therapeutics

Agilent will market and sell nine different ExonHit human and mouse SpliceArrays as commercial products

Agilent Technologies

Life Technologies Agilent will co-market its SureSelect Target Enrichment System with Life Technologies SOLiD sequencing system

Agilent Technologies

Sage Science Co-marketing Agilent’s 2100 Bioanalyzer and Sage’s Pippin Prep DNA system for next-generation sequencing applications

Akonni Biosystems

Eppendorf To promote Akonni TruTip nucleic acid extraction kits configured for use with Eppendorf epMotion automated pipetting systems

Akubio UCB Pharma Akubio’s RAP∙id 4 system led to the development of analytical instrument at UCB, which measure molecular interactions

Almac Diagnostics

EiRx Therapeutics plc

Almac will measure and correlate gene expression changes in colorectal cancer using gene microarray technology

Almac Diagnostics

GeneGo Inc Almac will use GeneGo's MetaCore data mining suite in the development of microarray-based products for cancer diagnosis

Almac Diagnostics

Affymetrix Inc Almac uses Affymetrix’ microarray technology to develop cancer diagnostic products

AltheaDx BiPar Sciences Inc To provide pharmacogenomic support for BiPar’s drug development programs in oncology

AltheaDx Poniard Pharmaceuticals

Poniard selected AltheaDx's Express Pathway program to identify molecular signatures of platinum resistance

- 611 -

Page 614: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

AltheaDx Affymetrix AltheaDx offers Affymetrix technology as part of a complete biomarker discovery and development platform

AmeriPath Inc TriPath Oncology Inc

For the validation and clinical use of a novel gene expression assay for malignant melanoma

AMODIA Bioservice GmbH

DEMEDITEC Diagnostics GmbH

AMODIA products are distributed by DEMEDITEC

Anagnostics Invicon Diagnostic Concepts GmbH

Invicon offers Anagnostics’ products for sale in Germany

Antara Biosciences

Toshiba Corporation

Toshiba licensed key patents on DNA chips, DNA detection and analysis to Antara to develop IVD in the US

Applied Spectral Imaging (ASI)

Chemical Diversity Labs Inc (CDL)

CDL will test its proprietary drug candidate library against multiple receptor targets utilizing ASI's automated multiplex assay detection platform

Arcxis Biotechnolgies

Roche Diagnostics Roche will apply Arcxis’ technology for isolation and concentration of total RNA and genomic DNA to PCR™ and RT-PCR™ based diagnostic tests

Asuragen Inc Digene Digene will market and distribute cystic fibrosis screening products made by Asuragen

Asuragen Inc Merck & Co To develop a biomarker/pharmacogenomic test for cancer trials

Asuragen Inc Xenomics Inc Xenomics granted Asuragen rights to incorporate its NPM1 technology into Asuragen’s molecular diagnostic products

Asuragen Inc Biogen Idec Asuragen will use its RNA technologies to develop a companion diagnostic test to help select which patients will benefit from a cancer drug candidate that Biogen has in clinical development

Asuragen Inc Life Technologies To develop and commercialize an assay to simultaneously detect and quantify BCR/ABL1 fusion transcripts in leukemia patients

Asuragen Inc Biomedical Diagnostics (BMD)

BMD will distribute Asuragen's cancer assays in France

Athena diagnostics

BioStratum Inc BioStratum granted Athena a license to the gene encoding the nephrin protein, which can be used to develop a test for diagnosing congenital nephrotic syndrome of the Finnish type

BD Diagnostics Calypte Biomedical Corporation

To co-promote the Sentinel family of testing services for urine-based testing for sexually transmitted diseases

BD Diagnostics Zyomyx Inc BD will make available its antibody library to facilitate the development of Zyomyx' high-density protein biochips

BD Diagnostics Nanogen Nanogen gained access to Strand Displacement Amplification from BD for certain biochip applications

BD Diagnostics BioReference Labs BD will supply SCARA robotic automation platform of the Viper™ System for testing and diagnosis of sexually transmitted infections

BD Diagnostics Accelr8 Technology

BD will fund an 18-month milestone project for Accelr8’s rapid bacterial diagnostic system

BD Diagnostics Exiqon Exiqon licensed its LNA technology to BD for the development and marketing it on BD Max system of infectious disease

BD Diagnostics Bruker Daltonics Bruker will combine its MALDI Biotyper microbial identification system with BD's Phoenix Microbiology System

Beckman Coulter

Roche Diagnostics Beckman acquired an IVD product license to all real time PCR patents from Roche Diagnostics

- 612 -

Page 615: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Beckman Coulter

Promega Corporation

Automation of forensic DNA extraction by pairing Promega's DNA IQ System with Beckman Coulter's Biomek 2000 System

Beckman Coulter

Orchid Cellmark Beckman acquired Orchid's SNP genotyping instruments, bioinformatic software and related consumables business

Beckman Coulter

QIAGEN A manufacturing and supply agreement whereby Beckman will market two of QIAGEN’s automated sample preparation kits for use with its Vidiera NsP nucleic acid sample preparation platform

Beckman Coulter

GTx Inc Hybritech Inc (subsidiary of Beckman Coulter) will evaluate samples from Gtx' Phase IIb clinical trial program of Acapodene for the treatment of high grade prostatic intraepithelial neoplasia to determine its usefulness in research, development and evaluation of Beckman's assays for prostate disease

Beckman Coulter

PointCare Technologies Inc

Beckman obtained exclusive global sales and marketing rights for PointCARE™ system for monitoring drug therapy in HIV/AIDS

Beckman Coulter

Bio-Rad Laboratories

To develop new blood-based immunoassays for HIV and HBV

Beckman coulter

Affymetrix To co-develop products that will expand the list of Affymetrix-validated automated target preparation methods based on an Affymetrix-specific configuration of Beckman's Biomek FX Dual Arm Multichannel-Span 8 Liquid Handler

BG Medicine Novartis AG BG will use its systems biology approach to analyze samples of patients with cardiovascular disease to identify and characterize differences between normal and abnormal samples, leading to discovery of molecular markers to predict, diagnose and monitor the progression of disease

BG Medicine AstraZeneca BG will use its systems biology approach for detection of biomarkers for predictive toxicology

BG Medicine GlaxoSmithKline BG will use its sytems biology approach for elucidating disease pathways and for identifying protein and metabolite markers of disease states and drug response

BG Medicine Philips To develop next-generation molecular healthcare products for use in areas including molecular imaging and POC diagnostics

BG Medicine Life Technologies For research in molecular medicine

BioCurex Inverness Medical Innovations Inc

Inverness will have semi-exclusive global rights to commercialize products using the RECAF blood tests for cancer

BioHelix Quidel To co- develop assays for rapid detection of infectious pathogens in a handheld format using BioHelix's isothermal amplification

bioMerieux Affymetrix To develop new applications for the GeneChip array technology in the fields of bacterial identification and resistance testing

bioMerieux GlaxoSmithKline To develop and launch a predictive test, based on emerging biomarkers, to help clinicians select the most appropriate treatment for different segments of breast cancer patients

bioMerieux Cepheid For the development and commercialization of an innovative line of sepsis test products on the GeneXpert platform

bioMerieux Gen-Probe Gen-Probe has access to bioMerieux's Nuclisens EASYQ platform bioMerieux can access Gen-Probe's ribosomal RNA markers for microbial identification

bioMerieux Novel Diagnostics bioMérieux gained access to Novel Diagnostics' PlasmAcute acute phase antibody detection technology diagnosis of tuberculosis

- 613 -

Page 616: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

bioMérieux DiagnoSwiss bioMérieux licensed electrochemical microchips for development, manufacturing and marketing of in vitro diagnostics

bioMérieux ExonHit For the discovery and development of new blood diagnostics in the area of early cancer detection

bioMérieux EiRx Therapeutics To validate the diagnostic and therapeutic potential of their candidate tumor biomarkers

bioMérieux Ipsen Research in oncology diagnostics

bioMerieux Cepheid For the development and commercialization of an innovative line of sepsis test products on the GeneXpert platform

BioMerieux NuGen Technologies

A cross-license and supply agreement to share amplification technologies for expression analysis

BioMérieux ProteoSys Annexin 3 will be used to develop a urine-based, confirmatory diagnostic test for prostate cancer

BioMérieux Biocartis To co-develop assays on Biocartis' molecular diagnostics platform

BioNanomatrix Complete Genomics

Formed a joint venture to share a grant from NIST to develop technology to sequence a human genome in 8h for less than $100

Bio-Rad Caliper Life Sciences

To study the feasibility of developing a new microfluidics system

Bio-Rad Sysmex America Inc

To jointly market their complementary products, the Bio-Rad VARIANT II TURBO HST Testing System &the Sysmex HST-N™

Bio-Rad Innogenetics Innogenetics got a license from Bio-Rad that has exclusive rights in the field of HIV-2 and Bio-Rad will a nonexclusive license under Innogenetics patents in the field of HCV genotyping

Biorad Idaho Technologies Licensing agreement covering SYBR green in PCR reactions

Biosite Inc Vermillion Collaboration for discovery of novel antibody and protein target components for diagnostic assays

Biosite Inc Agenix Limited AGEN granted Biosite a license to D-dimer for test for excluding pulmonary embolism in Triage Profiler

Biosite Inc Incyte Corporation Biosite received option to license 50 additional diagnostic targets as well as proteins, and antibodies that bind to these

Biosite Inc Compugen Ltd Biosite licensed novel biomarkers discovered by Compugen to develop immunoassay-based diagnostic products

Biosite Inc SIRS-Lab GmbH Biosite gained access to selected biomarkers for sepsis discovered by SIRS for the evaluation and development of these as tests

Biotage AB Mosaic Technologies

A cross-license agreement that provides access to the companies' complementary DNA sequencing technologies

bioTheranostics Quest Diagnostics LabCorp America

bioTheranostics’s MCID technology to be used for developing diagnostic tests for CUP

bioTheranostics Agendia BV bioTheranostics’s MCID technology was used in Agendia’s CupPrint® test to identify the origin of a metastatic cancer from patients with cancer of unknown primary (CUP)

Caliper Agilent Technologies

Joint development of Agilent 2100 bioanalyzer and Caliper LabChip kits

Caliper Affymetrix To develop and provide automated target preparation instruments for the GeneChip Probe Array system, the new HTA system

- 614 -

Page 617: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Caliper Promega Corporation

Promega integrated all of its SV 96 Sample Preparation methods into Caliper Sciclone ALH 3000 Workstation

Caliper Life Technologies / Molecular Probes

To develop and distribute fluorescence labeling kits to work with Caliper’s in vivo imaging systems

Caliper Canon USA Inc Canon started to use Caliper’s LabChip microfluidics technology to develop future genetic diagnostic and screening solutions

Caliper DiscoveRx Corporation

DiscoveRx GPCR assays will be performed on Caliper LabChip® platforms to improve GPCR drug discovery

Caliper Taconic Farms Taconic will create new mouse models for in vivo imaging applications for use by Caliper’s IVIS instrument customers

Caliper NuGen To co-market their sample preparation products for next generation sequencing applications

Cangen Biotechnologies

Olympus To develop a hybrid DNA-based and protein-based diagnostic test for use in the early detection of lung cancer

Celera Genomics

Genzyme Molecular Oncology

SAGE technology

Celera Genomics

The SNP Consortium

To provide data for a genome-wide SNP-based linkage map for genetic analysis

Celera Genomics

Quest Diagnostics To establish the clinical utility of laboratory tests based on novel diagnostic markers for cardiovascular disease and diabetes

Celera Genomics

Bristol-Myers Squibb

To study genes that could be used to diagnose and treat cardiovascular disease and diabetes

Celera Genomics

Laboratory Corporation of America

To establish the clinical utility of tests based on diagnostic markers for Alzheimer's disease, and breast / prostate cancer

Celera Genomics

Luminex Corporation

Celera is granted rights to develop and distribute in-vitro molecular diagnostic products based on Luminex's proprietary xMAP technology, for use on the Luminex 100 System

Celera Genomics

Merck & Co To identify and validate genetic markers useful in the development of prognostic tests/therapeutics for certain cancers

Celera Genomics

Cepheid A patent license agreement relating to real-time thermal cycler instruments for research, diagnostics and other applications

Cenetron Diagnostics

Roche Diagnostics A five-year strategic alliance agreement in 2003 to establish Cenetron as a Molecular Center of Excellence sing Roche's patented PCR and other advanced genomic technologies

Cepheid Life Technologies A license agreement relating to real-time thermal cycler instruments for research, diagnostics and other applications

Cepheid Environmental Technologies Group

To develop biological-agent detection systems for defense applications based on Cepheid’s proprietary technologies

Cepheid Diagnostic Technology Pty Ltd

A multi-year exclusive distribution agreement to market the Cepheid Smart Cycler system in Australia and New Zealand

Cepheid DxS Cepheid licensed DxS' real-time PCR technology IVD

Cepheid Idaho Technology Inc

A settlement and cross-license agreement of IP of PCR

Cepheid Instrumentation Laboratory (IL)

To develop diagnostics for hemostasis applications based on Cepheid's GeneXpert technology, while IL will market them as part of its panel of hemostasis diagnostic assays

- 615 -

Page 618: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Cepheid Quantovir AB Cepheid licensed Quantovir HPV patents to develop a PCR-based test on its GeneXpert system to predict risk of cervical cancer

Cepheid Novartis Novartis will finance the development of Xpert BCR-ABL for leukemia and would have exclusive rights to distribute the test worldwide under a Cepheid/Novartis label

CombiMatrix VWR International Worldwide distribution agreement for DNA microarrays

CombiMatrix Molecular Diagnostics

Novavax In-process monitoring of production of avian flu vaccine to improve the process of synthetic vaccine production by tracking the genetic fidelity of the genes encoding the vaccine

CombiMatrix Molecular Diagnostics

Cell Sciences Cell Sciences will market CombiMatrix's CustomArrays and CatalogArrays in Singapore, Malaysia, Thailand, Philippines, Hong Kong, and Indonesia

CombiMatrix Molecular Diagnostics

Alpha Innotech Alpha Innotech agreed to integrate its AlphaScan laser scanner with CMD’s comparative genomic hybridization arrays for neonatal screening and biomarker discovery

CombiMatrix Clarient Inc To market and sell a novel genomics-based cancer test, HemeScan™, related to the treatment and care of CLL

Commonwealth Biotechnologies

Thermo Fisher Scientific

CBI will offer its premier platform technology services through Thermo Fisher

CompuCyte Asterand (Detroit, MI),

Asterand can include CompuCyte’s quantitative cytometric analysis of tissues and tissue microarrays as a part of its current research molecular pathology services

Compugen Ltd DiagnoCure Inc For the co-development and commercialization of molecular diagnostic tests for the detection of certain epithelial cancers

Compugen Ltd diaDexus To expand and accelerate diaDexus' ability to identify and validate diagnostic markers based on Compugen's bioinformatic analysis of genomic and proteomic databases

Correlogic Quest Diagnostics Laboratory Corp

Licensing agreements for the commercialization of Correlogic's ovarian cancer protein pattern blood test

Correlogic systems Inc

Advion BioSciences For the use of Advion's NanoMate System as a component of Correlogic's upcoming ovarian cancer clinical trials

Correlogic systems Inc

LabCorp Quest Diagnostics

OvaCheck test will be available to physicians in the US through this collaboration

Cytocell Labtech International Ltd

A partnership with for promotion of Cytocell’s DNA diagnostic FISH kits throughout the UK

CytoCore Invirion Inc Invirion's novel intra-cellular E6 & E7 detection of HPV based on fluorescence and additional non-fluorescence based applications

CytoCore DiagnoCure Inc To integrate DiagnoCure's ImmunoCyt/uCyt molecular assay for bladder cancer with CytoCore 's InPath Slide Based Test

CytoCore Ventana Medical Systems Inc

Ventana licensed CytoCore In-Cell HPV assay for detection of E6/ E7 proteins on its automated InPath Slide Based Test platform

Dako Aperio Technologies Inc

Dako has rights to market Aperio’s ultra-fast digital ScanScope™ slide scanner for the analytical imaging of its assays

Dako MTM Laboratories AG

Dako will gain exclusive, worldwide rights to MTM's CINtec technology for cervical cancer screening

Dako BioStratum An agreement for a cancer diagnostic antibody that may may lead to diagnostic test aimed at invasive cancers

Dako Corixa Corporation Dako was granted rights from to two markers, P504S and P501S, to develop diagnostics/ monitoring products for prostate cancer

- 616 -

Page 619: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Dako Epitomics Inc For commercial rights to rabbit MAbs currently developed by Epitomics for diagnostic use

Dako ViroNovative BV A licensing agreement for the development and sales of diagnostic products for the detection of human metapneumovirus infections

Dako General Data Company Inc

General Data will provide unique patient tissue sample identification/tracking system for anatomic pathology labs

Dako Bristol-Myers Squibb

To develop diagnostics as companions to cancer therapeutics

deCODE Genetics

Roche Diagnostics A broad new alliance in the field of DNA-based diagnostics.

deCODE Genetics

Pfizer To identify the role of genetics in the development of advanced forms of heart disease

deCODE Genetics

Merck & Co The two firms will work together to identify obesity drug targets

deCODE Genetics

Illumina Inc To co-develop and commercialize DNA-based diagnostic tests using Illumina’s platform for high-multiplex SNP genotyping to develop tests for gene variants deCODE has previously shown to have impact on the risk of common diseases

deCODE Genetics

Lab21 Lab21 will offer DeCode’s tests in the UK and in Ireland

diaDexus Quest Diagnostics Quest has a right of first negotiation to license diaDexus products for use in "homebrew" tests

diaDexus Quest Diagnostics diaDexus licensed Cathepsin K genomics-based diagnostic blood test for osteoporosis to Quest Diagnostics

diaDexus Quest Diagnostics diaDexus licensed its genomics-based diagnostic test for the non-invasive detection of colorectal cancer to Quest Diagnostics

diaDexus Agilent Technologies

To allow diaDexus access to Agilent's customizable microarray technology for gene expression

diaDexus Fujirebio Inc A research and license collaboration agreement to develop and sell cancer diagnostic tests in Japan

DiaGenic ASA SRL Laboratories Ltd

To market DiaGenic’s breast cancer test in India

DiaGenic ASA DNAVision DNA Vision will perform DiaGenic’s ADtect® test for Alzheimer’s

DiaGenic ASA Ferrer inCode Ferrer will distribution ADtect® in W. Europe and Latin America

DiagnoCure bioMerieux DiagnoCure has worldwide rights to use Boom and NASBA technologies for diagnostic tests for all cancers

DiagnoCure CLIA-certified US service laboratory

DiagnoCure secured rights to two molecular tests for colorectal cancer and an option to a CLIA-certified US service laboratory

Diagnostic Hybrids

Medvet Diagnostics

For marketing of Enzyme Linked Virus Inducible System

Diagnostic Hybrids (DHI)

BioWhittaker Inc DHI acquired the in vitro diagnostic cell culture product line of BioWhittaker

Diagnostic Products Corp (DPC)

Matritech Inc Marketing agreement to allow DPC tol develop and market an automated version of Matritech's NMP22 test kit for bladder cancer

Diagnostic Products Corp (DPC)

Compugen Ltd Compugen granted DPC a license to develop and commercialize cancer diagnostic assays based on two novel prostate-specific proteins

Diagnostic Products Corp

Thermo Electron Corporation

For the codevelopment of a new, high throughput clinical chemistry platform

- 617 -

Page 620: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Digene Abbott Laboratories

Digene re-acquired from Abbott the exclusive rights to distribute Digene's chlamydia and gonorrhea tests worldwide

Digene Roche Diagnostics For marketing and further development of HC 2 test for HSV

Digene Quest Laboratories Quest provides Digene's DNA test as a primary tool along with Pap smears to detect cervical cancer

Digene Expression Pathology

To identify cancer protein biomarkers in archived tissue

Digilab BioVisioN

Life Technologies To combine Digilab BioVisioN's technology in protein and peptide analysis with Applied Biosystem’s tools in biochromatography, MALDI-TOF MS, and informatics to improve precision and throughput for discovering clinically relevant proteins and peptides for the development of drugs/ diagnostics

Digilab BioVisioN

Roche Diagnostics Identification of a number of proteins as biomarkers in blood and CSF that may enable early diagnosis of Alzheimer's disease

Digilab BioVisioN

BioPhage KG Researching peptides for their potential in the diagnosis and treatment of diseases such as cancer, asthma or Alzheimer's

Digilab BioVisioN

AstraZeneca For the discovery of peptidic biomarkers of inflammatory disease

Digilab BioVisioN

Novartis Digilab BioVisioN will evaluate clinical samples provided by Novartis using DPD technology to find clinically relevant peptides

Digilab BioVisioN

Abbott To discover novel biomarkers for lung cancer in biological samples provided by Abbott

Digilab BioVisioN

Boehringer Ingelheim (BI)

To analyze the quantitative peptide content of BI’s biological samples using Peptidomics® Technologies for identification of new biomarkers by differences in peptide patterns

DxS Sangtec Molecular Diagnostics

Sangtec will gain access to Scorpions for the development of human in vitro clinical diagnostic kits

DxS AstraZeneca To commercialize Amplification Refractory Mutation System (ARMS™) DNA diagnostic technology

DxS Epigenomics AG A cross-licensing agreement: Epigenomics obtains rights to DxS' Scorpions® technology and DxS receives a license Epigenomics IP for use of Scorpions® for DNA methylation applications

DxS Amgen Lab21

Amgen and Lab21 launched DxS’ bowel cancer companion diagnostic for Amgen's Vectibix in Europe

DxS Roche Roche will distribute companion cancer diagnostics: TheraScreen K-RAS Mutation Test and TheraScreen EGFR 29 Mutation Test

DxS AltheaDx AltheaDx agreed to distribute DxS’ genetic assay for K-RAS mutations for use in clinical studies in the US

DxS Genzyme Genetics DxS gains rights to develop and sell diagnostic and research products that detect mutations in the EGFR gene for NSCLC

DxS AstraZeneca To develop a companion diagnostic for Iressa

DxS ImClone Systems To develop a companion diagnostic for Erbitux

DxS Pfizer Inc To develop a companion diagnostic test kit for Pfizer's PF-04948568, a vaccine in development for glioblastoma multiforme

ELITech Group Arkray Inc Arkray, specialized in diabetes testing and urinalysis, is integrated it into ELITech France

- 618 -

Page 621: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Enigma Diagnostics

Roche Molecular Systems

Enigma licensed two patents related to PCR technology to allow it to commercialize human and veterinary diagnostic tests

Enigma Diagnostics

Tecan Group Tecan will commercialize and deliver Enigma's ML instruments for the global market

Enzo Life Sciences

NEN (now a part of PerkinElmer)

NEN will distribute a broad range of Enzo's biochemical products and reagents to the global research market

Enzo Life Sciences

GlaxoSmithKline (GSK)

Use of Enzo’s proprietary RNA/DNA labeling, detection and amplification technology for GSK’s research and development

Enzo Life Sciences

GeneNews Enzo gained distribution rights for New York and New Jersey to GeneNews' ColonSentry™.

Epidauros Biotechnologie

Tm Bioscience Tm licensed Epidauros's patents on a specific biomarker related to the P450-CYP2D6 gene for its P450 Tag-It tests

Epidauros Biotechnologie

Genmark Diagnostics

Genmark licensed Epidauros’ patent application for a biomarker related to the cytochrome P450 2D6 to predict impaired enzymatic function as risk for adverse drug reactions

Epidauros Biotechnologie

Luminex Molecular Diagnostics, Nanogen, and Nanosphere

To allow the companies to use Epidauros' CYP2D6 IP as a predictive marker for responsiveness and adverse drug reactions

Epigenomics Roche Diagnostics To develop tests based on methylation markers for detecting cancers in their earliest stages

Epigenomics QIAGEN To develop a portfolio for DNA methylation analysis for preclinical research and to have full compatibility for use in IVD

Epigenomics AstraZeneca To identify and analyse potential DNA methylation biomarker candidates for AstraZeneca’s oncology program

Epigenomics Quest Diagnostics Quest will develop a molecular blood-based laboratory test for detection of colorectal cancer using Epigenomics’ DNA methylation biomarker Septin 9

Epigenomics Royal Philips Electronics

To jointly develop a fully automated instrument platform for diagnosing certain cancers based on DNA methylation biomarkers

Epigenomics Predictive Biosciences

Predictive will commercialize a molecular diagnostic based on DNA methylation biomarker mGSTP1 to help urologists and pathologists better diagnose and manage prostate cancer

EraGen Biosciences

Genome Therapeutics Corporation (Oscient Pharmaceuticals)

To deliver MasterCatalog with Pathogenome, a new database product for accelerated drug and diagnostic target discovery

EraGen Biosciences

Applied BioCode EraGen has access to Applied BioCode's barcoded magnetic bead technology to couple with its MultiCode-PLx assays for analyzing nucleic acid targets in infectious disease and genetic testing

EraGen Biosciences

The Blood Center of Southeastern Wisconsin Inc

To explore methods to reduce lengthy DNA testing from weeks to a day

EraGen Biosciences

Illumina EraGen licensed Illumina's BeadXpress platform to develop and commercialize clinical assays using its MultiCode-PLx technology

Exact Sciences Laboratory Corporation of America Holdings

An exclusive, long-term strategic partnership to commercialize PreGen-Plus for the early detection of colorectal cancer

- 619 -

Page 622: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Exact Sciences NorDiag NorDiag will use EXACT's long-DNA biomarker technology to identify abnormal apoptosis at the molecular level, in its colorectal cancer-screening tests in Europe, Japan, and Australia

Exact Sciences Hologic Exact licensed Hologic's Invader plus and real-time Invader detection chemistries for colorectal screening applications

Exiqon A/S Proligo LLC To supply LNA containing oligonucleotides for research

Exiqon A/S Genisphere Inc Provides Genisphere with the rights to use LNA oligonucleotides in its 3DNA Submicro of expression microarray detection kits

Exiqon A/S Link Technologies Allowing Link to market and sell LNA-phosphoramidites for the genomics research market in Europe

Exiqon A/S Roche Joint marketing of Roche real-time assays and Exiqon's miRCURY LNA™ Universal RT microRNA qPCR system

ExonHit Therapeutics

Genmab A/S Selection of novel splice variants, identified as part of a pilot study using ExonHit’s genome-wide SpliceArray™ technology, and have the potential to be therapeutic targets for breast cancer

Exosome Diagnostics Inc

DxS Ltd Development of blood based companion diagnostics for key cancer gene mutations, such as KRAS, BRAF and EGFR

Fluidigm OncoMed Pharmaceuticals

To use Fluidigm's microfluidic tools such as BioMark™ in combination with OncoMed's Dynamic Array™ for analysis of tumor cell heterogeneity, including cancer stem cells

Fluidigm Novartis Vaccines and Diagnostics

Fluidigm will develop for Novartis a non-invasive prenatal diagnostics test for fetal aneuploidies based on its dPCR system

Fujirebio Inc Ribozyme Pharmaceuticals Inc (now SIRNA)

To develop and commercialize ribozyme-based clinical diagnostic products. Fujirebio will fund research for clinical diagnostic targets in the field of human viral diseases and cancer

Fujirebio Inc Randox Ltd To develop cancer diagnostics assays based on Fujirebio antibodies and Randox's automated Biochip Array technology

GATC Biotech Gene In Corporation Ltd

To develop a comprehensive DNA microarray-based diagnostic test able to detect both bacterial and fungal infections

GE Healthcare Roche Patients with Alzheimer's disease in clinical trials taking a Roche anti-amyloid drug candidate will be monitored for drug response using GE's PET imaging technology, which measures levels of A

GE Healthcare Translational Genomics Research Institute (TGen)

TGen will apply GE’s cell imaging systems, IN Cell Analyzer 1000 and 3000, to cancer research

GE Healthcare NorDiag GE licensed certain of its patents for biomagnetic nucleic-acid isolation to NorDiag

GE Healthcare Eli Lilly Develop IVD tests to predict response to targeted cancer therapies

GE Healthcare CardioDx To co-develop diagnostic technologies for the care and management of patients with cardiovascular disease

Genaco Luminex Corporation

Genaco will commercialize reagent kits for the Chinese in vitro diagnostics market based on the Luminex LabMAP platform

Gene Express Inc

VWR International Inc

VWR to resell and distribute the Gene Express SEM Center services to biotechnology and pharmaceutical companies as well as clinical research organizations in 15 European countries

- 620 -

Page 623: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gene Express Inc

Pfizer, Eli Lilly, Wyeth and Amgen

Commercialization and use of Gene Express’ StaRT-PCR™ technology

Gene Link Inc America HealthScreen will gather cheek cells using DNA mouth swab kits and store the samples for decades

Gene Logic Affymetrix Inc Gene Logic buys Affymetrix's GeneChip microarrays, which forms the basis for a data content generated in the GeneExpress Suite

Gene Logic Aventis Aventis gained access to a customized selection of biosamples from the GeneExpress Suite

GeneNews Centocor Centcor gains access to research from GeneNews' osteoarthritis genomic biomarker program

GeneNews Eli Lilly & Co Lilly gains access to GeneNews' osteoarthritis genomic biomarkers

GeneScan AG Oasis Biosciences Inc

Oasis SNP technology to be integrated with GeneScan's biochips

Genetic Technologies

Myriad Genetics Cross-licensing of certain technologies related to the identification of non- coding DNA alterations

Genetic Technologies

Nanogen Inc GTG granted a license to Nanogen for applications of its technologies in genetic research and human diagnostics

Genetic Technologies

Biotage AB A cross-license agreement relating to intellectual property surrounding the identification of non-coding DNA alterations developed by GTGand sequencing by synthesis technology developed Biotage

Genetic Technologies

ARUP (Salt Lake City, Utah)

GTG granted a license to its non-coding patents to ARUP

Genetic Technologies

Inguran LP (Navasota, Texas)

GTG granted a license to its non-coding patents to Inguran to provide various genetic testing services for genetic markers of interest, paternity, and disease susceptibility on livestock

Genetic Technologies

GenoSense (Vienna, Austria)

GenoSense will use GTG’s non-coding DNA patents in anti-aging diagnostics and preventive testing services

Genetic Technologies

Orchid Biosciences Cross-licensing agreement giving GTG intellectual property rights to Orchid’s DNA tests including forensic tests

GenOdyssee Transgenomic Inc Genetic polymorphism discovery using WAVE

GenOdyssee UroGene To discover novel diagnostic and therapeutic targets on the genome the management of prostate cancer

Genmark Diagnostics

Roche Diagnostics Genmark granted license to Roche of its proprietary tube technology used in the Opti GENE device

Genmark Diagnostics

QIAGEN Genmark adapted QIAGEN’s QIAplex to develop a respiratory viral test for use on its eSensor molecular diagnostics system

GenoMed BioCollections Worldwide Inc (Miami, Florida)

BioCollections collects samples for genotyping by GenoMed from African American and Hispanic patients with a variety of common diseases

Genomic Health Inc

Incyte Genomic Health has access to certain genomic intellectual property, rights to manufacturing technology, access to Incyte genes and exclusive rights to certain intellectual property

Genomic Health Inc

Pfizer To develop a genomic test to estimate the risk of recurrence following surgery for patients with stage I-III renal carcinoma

Gen-Probe DiagnoCure To develop and market a urine test to detect a specific genetic marker for prostate cancer

Gen-Probe Tosoh Cross-licensed intellectual property covering certain nucleic acid testing technologies

Gen-Probe AdnaGen Gen-Probe licensed technology from AdnaGen that may help increase the accuracy of molecular diagnostic tests for cancer

- 621 -

Page 624: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Gen-Probe Corixa Corporation Gen-Probe licensed from Corixa the rights to develop molecular diagnostic tests for genetic markers for various cancers

Gen-Probe AdnaGen Gen-Probe licensed technology from AdnaGen for molecular diagnostic tests for prostate and bladder cancers

Gen-Probe Millipore To develop and commercialize NAT products for rapid microbiological monitoring in the biopharmaceutical industries

Gen-Probe Xceed Molecular Gen-Probe licensed Flow-Thru Chip technology from Xceed to develop next-generation multiplexed molecular diagnostics

Gen-Probe Novartis Blood screening and pharmacogenomics

Genzyme Genetics

Genzyme Molecular Oncology (GMO)

Genzyme Genetics purchased rights to cancer diagnostics including dozens of proprietary cancer markers, from GMO

Genzyme Genetics

Ipsogen Genzyme licensed WT1 gene to Ipsogen as biomarker in acute leukemia

Health Discovey Corp (HDC)

Clarient HDC’s gene-based molecular diagnostic test for prostate cancer is licensed exclusively to Clarient

High Througput Genomics (HTG)

Celgene Corporation

HTG will supply Celgene’s target and drug discovery platform with its Omix Imager and ArrayPlate Kits

High Througput Genomics (HTG)

Johnson & Johnson Johnson & Johnson Pharmaceutical Research & Development uses HTG's ArrayPlate for gene profiling for its drug discovery

High Througput Genomics (HTG)

ProSkelia ProSkelia incorporated HTG’s ArrayPlate high throughput screening technology into one of its drug discovery programs

High Througput Genomics (HTG)

Merck & C0 Licensing and supply agreement for HTG’s ArrayPlate qNPA™

High Througput Genomics (HTG)

Roche NimbleGen Roche will provide HTG with high density, multiplex DNA microarray slides for advanced gene expression analysis

High Througput Genomics (HTG)

Takeda Pharmaceutical Co

Licensing and supply agreement for HTG’s ArrayPlate qNPA™

Hitachi High-Technologies

Roche Diagnostics Hitachi clinical chemistry systems are marketed and distributed by Roche Diagnostics except for Japan, Korea, and China

Hitachi High-Technologies

Waters Corporation

To develop a software interface for Hitachi’s Liquid Chromatograph Instruments 'LaChrom Elite' Control for Waters® Chromatographic Data Station Software Empower 2

Human Genetic Signatures (HGH)

ProGenTech To develop a line of molecular diagnostic assays for hospital-acquired infections

ICx Technologies

Siemens Healthcare Diagnostics

A development and license option agreement for biosensors.

Ikonisys Inc Bracco Group (Italy)

Ikonisys has granted Bracco a license to use and market its non-invasive test for the detection of Down's syndrome

Ikonisys Inc Abbott Laboratories

Ikonisys obtained a worldwide license under Abbott patents for the manufacture and sale of DNA probes in conjunction with Chromotest for prenatal diagnosis of chromosomal abnormalities

- 622 -

Page 625: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Ikonisys Inc Cancer Research Technology Ltd

Grants Ikonisys a worldwide exclusive option to commercialize MAbs and other reagents specific for the detection of circulating tumor cells in conjunction with robotic microscopy

Illumina Life Technologies To develop and market a high-throughput, integrated system for SNP genotyping applications

Illumina GlaxoSmithKline (GSK)

Illumina will provide SNP genotyping services on a sample collection provided by GSK

Illumina Placer LLC For SNP genotyping on a sample collection provided by Placer

Illumina Genomas To study the metabolic syndrome using BeadStation 500GX for discovery of biomarkers.

Illumina Galileo Genomics Galileo uses BeadStation 500GX genotyping systems for fine mapping candidate regions in disease gene discovery programs

Illumina Genizon BioSciences

Genizon will use Illumina's whole-genome genotyping platform for its disease-association research program

Illumina Johnson & Johnson (J & J)

Illumina will develop a custom SNP multi-sample Sentrix BeadChip for J & J Pharmaceutical Research & Development

Ilumina ReaMetrix To develop molecular diagnostic panels using Illumina’s VeraCode technology and reagents while ReaMetrix will develop, validate, and market the panels based on Illumina's BeadXpress platform

Illumina Sage Science Inc Co-marketing of Sage Pippin Prep system with Illumina's next-generation sequencers

Immunicon Corporation

Kreatech Diagnostics

Immunicon will use its technologies in conjunction with Kreatech’s Universal Linkage System

Immunicon Corporation

Veridex (a Johnson & Johnson company)

A joint venture will market exclusively any cellular diagnostic products developed in the cancer field by Immunicon

Immunicon Corporation

Streck Laboratories Inc

Use of Immunicon's cell isolation and analysis technology with Streck's cell preservation technology

Immunicon Corporation

IMPATH Inc IMPATH will use Immunicon’s proprietary cellular analysis technology for the analysis circulating tumor cells in blood

Immunicon Corporation

R&D Systems Inc R&D will use Immunicon's magnetic nanoparticle cell isolation technology in conjunction with its reagents to develop products for life science research

Immunicon Corporation

AstraZeneca Immunicon will develop methods to identify/quantify circulating cells in blood as biomarkers for targeted therapies for cancer

Immunicon Corporation

Merck Serono A laboratory service and assay development agreements for biomarker assays based on CTCs for an early clinical drug study

Incyte Corporation

PerkinElmer Life Sciences

PerkinElmer has access to Incyte's cDNA clones from LifeSeq® database for commercialization of microarrays

Incyte Corporation

Amersham Biosciences

Incyte's pre-assembled sets of human and mouse clones is offered in a format customized for Amersham's suite of integrated, gene expression microarray products

Incyte Corporation

SEQUENOM To create high-quality validated SNP assays for use in genetic research

Incyte Corporation

Roche Diagnostics Incyte licensed a its Linear RNA Amplification technology to Roche for development of diagnostics that identify gene expression patterns

Innogenetics Roche Diagnostics To develop and market a new range of rapid microbiology tests with Innogenetics spacer technology and Roche's PCR platforms

- 623 -

Page 626: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Innogenetics Roche Diagnostics Innogenetics granted Roche a license to its intellectual property for HCV genotyping

Innogenetics GlaxoSmithKline (GSK)

GSK Biologicals was granted a license to use Innogenetics’ SPF10 technology in clinical and epidemiological HPV vaccine studies

Interleukin Genetics

Oscient Pharmaceuticals)

A commercial research program to provide DNA sequencing information including SNP detection

Interleukin Genetics

Alticor Inc Interleukin will sell to Alticor two direct to consumer DNA-based risk assessment tests

Interleukin Genetics

Access Business Group

Encompasses four main areas; osteoporosis, cardiovascular disease, nutrigenomics, and dermagenomics

Interleukin Genetics

OralDNA Labs Interleukin licensed OralDNA the rights to sell its PST test for IL-1 gene variations that identify an individual's predisposition for inflammation and risk for more severe periodontal disease

Investigen Cartagen Molecular Systems Inc

Investigen granted Cartagen a license to manufacture and distribute its new proprietary DNA separation technology

Ionian Technologies

Micromass/Waters Corporation

Ionian is working with Micromass to develop mass spectrometry techniques that complement its nucleic acid technologies

Ipsogen bioMérieux bioMérieux will devise a companion assay using its NASBA® technology on its NucliSENS EasyQ® molecular diagnostics platform to determine the patients best suited to benefit from Ipsogen's STS inhibitor treatment for breast cancer

Ipsogen AstraZeneca To evaluate molecular services in cancer research and provide AstraZeneca with JAK2-based products for initial evaluation

Ipsogen Quest Diagnostics Ipsogen licensed JAK2 V617F mutation to Quest for use in Quest Diagnostic's laboratory developed tests

IVS Technologies

ARUP Laboratories ARUP sublicensed IVS' US patents for diagnostic molecular testing of the immunoglobulin and T-cell receptor genes

KREATECH Immunicon Use of Immunicon’s technologies with Kreatech’s ULS™

KREATECH Qiagen KREATECH will market Qiagen's Repli-g whole-gnome amplification kits worldwide in combination with its ULS

KREATECH PanPath BV ( The Netherlands)

Extended their License & Product Supply Agreement to commercialize novel DNA probe assays to diagnose cancer

KREATECH Master Diagnostica (Spain)

For commercialization of DNA probe assays for diagnosis of sarcoma by labeling them with KREATECH's ULS technology

KREATECH Fermentas International

A marketing agreement for ULS®-technology to label nucleic acids

KREATECH Phalanx Biotech Phalanx will market its miRNA OneArrays with Kreatech's ULS miRNA Labeling Kit

LabCorp of America

Myriad Genetics An exclusive sales and distribution partnership to offer Myriad's predisposition testing to US physicians

LabCorp of America

Seryx LabCorp licensed Seryx's Signature Genetics CYP450 interpretation service

LabCorp of America

ARCA Discovery LabCorp will develop a genetic test that can identify patients most likely to benefit from ARCA’s drug bucindolol

LabCorp of America

CancerGuide Diagnostics

To co-develop and commercialize molecular diagnostic tests for cancer with as part of a multi-year licensing deal

- 624 -

Page 627: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

LabCorp of America

Vanda Pharmaceuticals

LabCorp will develop and distribute companion diagnostic tests for iloperidone, a schizophrenia drug made by Vanda

LGC Genmark Diagnostics

Gemark will use LCG's HyBeacons in medical genetic test applications for inherited genetic traits

LI-COR Perkin Elmer To create a new system for DNA sequencing and genotyping

Life Technologies

Genzyme Molecular Oncology (GMO)

Life Technologies will provide a reagent kit to facilitate the use of GMO's SAGE technology

Life Technologies

Zyomyx Life Technologies has licensed protein biochip patents from Zyomyx

Life Technologies

Exelixis Inc Life Technologies will provide HTP screening assays for drug discovery in single live cells

Life Technologies

Illumina Inc To leverage their respective strengths in nucleic acid synthesis and distribution to deliver oligonucleotides to the life sciences market

Life Technologies

Prodesse Inc Prodesse licensed Life Technologies' LUX technology for diagnostics

Life Technologies

Oxford Gene Technology (OGT)

Life Technologies licenced OGT’s “Southern array patents”, covering the manufacture and marketing of oligonucleotide microarrays

Life Technologies

Luminex Corporation'

License and supply agreement for multiplexed analyte detection technology, providing Life Technologies with access to Luminex's next-generation multiplex detection platforms

Life Technologies

Genisphere Inc Life Technologies’ NCode, fluorescent miRNA microarray labeling kits, combine its Alexa Fluor® fluorescent dyes with Genisphere's 3DNA dendrimer signal amplification technology

Life Technologies

Active Motif To explore the use of field programmable gate array technology for analyzing next-generation sequencing data using Active Motif’s TimeLogic's biocomputing systems

Life Technologies

Qiagen, New England Biolabs, Kirkegaard & Perry Laboratories

Life Technologies licensed its patents covering the random prime amplification of nucleic acids

Life Technologies

Biocare Medical LLC

US distribution of Life Technologies’ SPOT-Light® HER2 CISH Kit as an aid in the assessment of breast cancer patients for whom trastuzumab (Herceptin) treatment is being considered

Life Technologies

Diazyme Laboratories (a Division of General Atomics)

A license and supply agreement for allowing Diazyme to develop and market worldwide two PNA-based specific SNP kits to test for human blood coagulation disorders.

Life Technologies

Human Genetic Signatures Pty

A development and license option agreement that will focus on epigenetics and personalized medicines using PNA technology

Life Technologies

Gene Therapy Systems

For the sale of GeneGrip life science research products that incorporate PNA technology

Life Technologies

Eppendorf AG A royalty-bearing license under a real-time thermal cycler patent rights to Eppendorf , which will have the right to manufacture and sell real-time thermal cyclers in the research and applied fields

Life Technologies

ABgene / Thermo Fisher Scientific

Thermo Fisher was granted licenses to allow its subsidiary, ABgene, to offer several PCR and real-time PCR products

- 625 -

Page 628: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Life Technologies

Geospiza GeneMapper® and SeqScape® integrated with Geospiza's Finch® Suite data management system to automate the information technology infrastructure for data analysis

Life Technologies

Nanosys Inc Cross-licensing agreement to share IP related to use of quantum dots to develop products for preventing counterfeiting of pharmaceutical and diagnostic products

Life Technologies

TrimGen LTC will sell TrimGen assays for detecting KRAS and BRAF mutations in cancer

Life Technologies

Gen-Probe Life Technologies agreed to commercialize Gen-Probe's Elucigene QST® aneuploidy test kits in several countries except US

LightUp Technologies

Life Technologies LightUp Technologies obtained a non-exclusive license to PNA Technology

LightUp Technologies

Boule Diagnostics International

Boule will produce LightUp Technologies’ first diagnostic kit for quantitative identification of the cytomegalovirus

LightUp Technologies

DakoCytomation AS

Introduction of ReSSQ™ EBV Assay, a nucleic acid test for detection and quantification of Epstein-Barr virus

Luminex Corporation

ViraCor Laboratories

Viracor will offer the Luminex xTAG RVP test to detect respiratoryy viruses

Luminex Corporation

Advanced Liquid Logic (ALL)

To co-develop new analytic systems combining Luminex xMAP technology with ALL's digital microfluidics

Matritech Inc Bruker Daltonics To develop an automated mass spectrometry system for Matritech's proteomics-based cancer tests

Matritech Inc Mitsubishi Kagaku Medical Inc

For the use of NMP66 breast cancer test in Japan

Matritech Inc Cytogen Corporation

Marketing of NMP22 BladderChek to physicians in the US

Meridian Eiken Chemical Meridian licensed the LAMP technology from Eiken

Microfluidic Systems Inc (MFSI)

Life Technologies Hamilton Sundstrand

For the continued development and production of MFSI's Bioagent Autonomous Networked Detector to improve the detection of airborne pathogens

Millipore Roka Bioscience Inc

For developing microbial detection systems to ensure the purity of biopharmaceutical products

Miraculins Inc Diagnos Inc Use of artificial intelligence and advanced knowledge extraction techniques for development of Miraculins’ cancer diagnostics

Mitsubishi Chemical Medience Corp

Hitachi Software Engineering Co

To develop DNA chips that can be used for diagnosis of septicemia at medical facilities

Molecular Partners AG

Cambridge Antibody Technology (CAT)

A cross-license agreement, under which CAT obtains access to DRPs technology and Molecular Partners gains rights to CAT’s intellectual property in ribosome display of protein products

Molecular Probes Inc

LightUp Technologies AB

LightUp will launch DNA analysis products using fluorescence-based technology licensed from Molecular Probes

MonogramBiosciences

Abbott, Bristol-Myers Squibb, Quest, Roche DuPont, Gilead Sciences, Merck & Co

Retrospective and prospective studies on HIV therapy and resistance employing ViroLogic's PhenoSense HIV resistance test. Also used in drug discovery and development programs.

Monogram Biosciences

Procter & Gamble (P&G)

P&G will gain access to Monogram's proprietary eTag Assay System for use in biopharmaceutical research and development

Monogram Biosciences

GlaxoSmithKline GlaxoSmithKline gained access to Monogram's eTag Assay System for multiplexed gene expression profiling studies.

- 626 -

Page 629: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Monogram Biosciences

Pfizer Inc Pfizer scientists will gain access to Monogram 's proprietary eTag Assay System for use in their pharmaceutical discovery research

Monogram Biosciences

Vertex Vertex will use Monogram 's eTag™ Assay System for use in their R & D and multiplexed gene expression studies

Monogram Biosciences

Genentech Monogram has developed assays for measurement of specific receptor binding and signaling events

Monogram Biosciences

GE Healthcare GE Healthcare will sell and support the MegaBACE™, its automated high-throughput DNA analysis system, for use with Monogram eTag™ assay chemistries

Monogram Biosciences

R&D Systems An antibody supply agreement for the use and resale of R&D Systems ' reagents with Monogram’s eTag™ Assay System

MonogramBiosciences

Merck KGaA Monogram will conduct a cancer biomarker study using eTag™ assays with application to Erbitux® (cetuximab)

MonogramBiosciences

Avexa Ltd Monogram will be the exclusive provider of Avexa HIV resistance and tropism testing technology in support of Avexa's drug discovery and development programs

MTM Laboratories

GlaxoSmithKline Merck (Darmstadt)

Use of MTM Laboratories' services in molecular oncology

Myriad Genetics

Abbott Laboratories

Pharmacogenetics alliance in which Abbott will fund the research, while Myriad will use its technology and mutation screening software to analyze samples from different populations

Myriad Genetics

Genetic Technologies Ltd

Cross-licensing of technologies for identification of non-coding DNA alterations and the assessment of inherited human diseases

Myriad Genetics

Chemicon International Inc

For the research use of several of Myriad's tumor suppressor and breast cancer susceptibility proteins and antibodies

Myriad Genetics

Melanoma Diagnostics

Myriad acquired technology from for the diagnosis and prognosis of malignant melanoma using genetic markers

Nanogen Transgenomic Inc Transgenomic will distribute NanoChip Molecular Biology Workstation in Western European countries

Nanogen Inc BD Biosciences Nanogen has gained access to Strand Displacement Amplification for biochip applications from BD Biosciences

Nanogen Inc Celera e Celera will use Nanogen’s MGB technology for developing IVD products for cardiovascular diseases and cancer

Nanogen Inc KnowledGENE.com Inc

Research collaboration to develop and low cost genetic tests using Nanogen's NanoChip Molecular Biology Workstation.

Nanogen Inc DNAPrint genomics Inc

DNAPrint will use NanoChip Molecular Biology Workstation to develop NanoChip versions of its complex genomics tests

Nanogen Inc Athena Diagnostics Nanogen obtains a license for using ApoE isoforms for diagnosis of Alzheimer's disease

Nanogen Inc Prodesse Inc To integrate Prodesse's multiplex amplification technology with the NanoChip platform to detect infectious disease agents

Nanogen Inc Princeton Biomeditech (PBM)

Nanogen signed a manufacturing and distribution agreement with PBM to develop a POC IVD assay that detects NT-proBNP

Nanogen Inc Pathway Diagnostics

Nanogen will develop diagnostic products that detect genetic variations associated with responses to antidepressant and antipsychotic therapeutics and could be used to select the most appropriate drug and dosage

- 627 -

Page 630: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Nanogen Inc Jurilab To identify/ validate new prognostic markers for type 2 diabetes

Nanogen Inc American Bio Medica Corporation (ABMC)

Nanogen will market ABMC’s rapid drugs of abuse immunoassays

Nanogen Inc Epidauros Nanogen will use Epidauros' CYP2D6 IP as a predictive marker for responsiveness and adverse drug reactions

Nanogen Inc Thermo Fisher Scientific

Thermo Fisher Scientific became the exclusive provider of certain Nanogen products that are used for gene expression experiments

Nanogen Inc HX Diagnostics To develop a single POC diagnostic based on Nanogen’s fluID test to detect multiple subtypes of influenza, including avian influenza

Nanogen Inc Gene Synthesis Gene Synthesis gained rights to use Nanogen's technology in making oligos for molecular diagnostic applications

Nanogen Inc Quest Diagnostics Quest will use Nanogen MGB Probe technology for development of in human in vitro diagnostic testing that it will market

NanoLogix Inc ERBC Holdings Ltd (Berlin, Germany)

Infectech technology for early identification of infectious organisms and its development for bioterrorism defense will be evaluated and modified for manufacturing and marketing

Nanosphere Takara Bio Inc To develop of sensitive, selective and portable detection systems, combining Nanosphere's nanoparticle DNA probe technology with Takara's ICAN isothermal gene amplification technology

Nanosphere Applied NeuroSolutions Inc

Development of diagnostic tests for Alzheimer's disease

Nanosphere Epidauros Biotechnologies

Nanosphere will use Epidauros' CYP2D6 IP as a predictive biomarker for responsiveness and adverse drug reactions

NanoString Precision System Science

To develop an automated fluidics handling tool and to distribute it with NanoString's nCounter platform

NanoString Applied Precision To co-develop a high-speed fluorescent imager for gene expression by creating an imager that will be incorporated into nCounter System and also will be coupled with a fluid-handling instrument

Newfound Genomics

Clinical Data Newfound granted a sub-license to Clinical Data for a test to diagnose arrhythmogenic right ventricular cardiomyopathy

NewGene Ltd Roche NimbleGen NewGene is Service Provider for NimbleGen Sequence Capture Arrays with sequencing on 454’s Genome Sequencer FLX System

NorDiag Manipal AcuNova Ltd, India

For marketing and distribution of NorDiag' GeneOpsy test to detect genetic mutations relevant to colorectal cancer in biopsy

Novartis Diagnostics

Gen-Probe Further development of Gen-Probe's TMA technology by Novartis for NAT innovation

Novartis Diagnostics

Smiths Detection To develop and commercialize Smiths Detection's Bio-Seeq PCR-based instrument and infectious disease diagnostic tests

Novartis Diagnostics

Foundation Medicine

To develop, enhance, and optimize Foundation Medicine’s cancer genome panel test

Novel Diagnostics

Roche Diagnostics Scandinavia

A non exclusive distribution agreement where Roche will lease instruments and purchase kits from NorDiag for resale to their customers in the field of sexually transmitted diseases

- 628 -

Page 631: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Novel Diagnostics

EXACT Sciences To advance the development and commercialization of colorectal cancer screening technologies outside the US and Canada

NuGen Technologies Inc

Kreatech NuGen integrated Kreatech’s ULS into its FL-Ovation cDNA fluorescent module to provide a sample-preparation for gene expression analysis performed with Agilent's DNA microarrays

OncoMethylome Sciences (OMS)

Exact Sciences Exact obtained worldwide rights to up to two OMS' DNA methylation biomarkers for use in stool-based detection of CRC

OncoMethylome Sciences (OMS)

Chemicon International Inc

OMS licensed Chemicon’s Amplifluor® technology to develop assays for detection of DNA methylation patterns

OncoMethylome Sciences (OMS)

Schering-Plough Schering-Plough will use OMS’ pharmacogenomic assay to study DNA methylation status in glioblastoma multiforme patients

OncoMethylome Sciences (OMS)

Laboratory Corporation of America (LabCorp)

OMS will supply reagents to LabCorp for detecting methylation of the Vimentin DNA biomarker with methylation-specific PCR as a basis for a stool-based test for colorectal cancer

OncoMethylome Sciences (OMS)

SelfScreen BV To develop a diagnostic aimed at women who have tested positive for human papillomavirus

OncoMethylome Sciences (OMS)

Roche OMS' MGMT assay will be used in a phase III clinical trial to determine the clinical utility of Roche's Avastin in glioblastoma

Onconome Inc GTx Inc For the development of a commercial blood or urine test, which could detect high grade prostatic intraepithelial neoplasia

Onconome Inc Unipath LLC To offer Early Prostate Cancer Antigentest for use on prostate biopsy tissues that appear negative using current technology

Oncotech Inc Innocell Corporation

Oncotech granted the rights to market its cancer diagnostic services in South Korea to Innocell

OpGen Inc M&S Instruments Inc

An exclusive distribution agreement of OpGen products in Japan

OpGen Inc Micronics Inc andStratos Product Development

The 2 companies each bring unique capabilities to the innovation of cost-effective, high-throughput instruments and disposables employing OpGen's Optical Mapping technology platform for marketing of these systems worldwide for genome analysis

Orchid Cellmark

DNAPrint genomics

SNP and haplotype determinations and multivariate associations with complex human traits and diseases

Orchid Cellmark

Exelixis Inc Exelixis will apply Orchid's SNP-IT single base primer extension technology to Affymetrix' GenFlex Tag Arrays

Orchid Cellmark

Ellipsis Biotherapeutics Corporation

To conduct high throughput SNP genotyping and to construct high-density chromosome maps using clinical samples provided by Ellipsis.

Orchid Cellmark

Cybergenetics Orchid Cellmark licensed Cybergenetics' TrueAllele software for forensics applications to fully automate routine DNA analysis

Ortho Clinical Diagnostics

DxS Ltd Ortho Clinical Diagnostics has licensed DxS' nucleic acid detection technology, 'Scorpions,' for use in novel molecular assays

Ortho Clinical Diagnostics

Roche Diagnostics OCD was granted a license for the development and marketing of immunoassays that detect NT-proBNP a marker of congestive heart failure

Ortho Clinical Diagnostics

Compugen Ltd For the development and commercialization of immunoassay diagnostic biomarkers

Oxford Gene Technology

Incyte Genomics In the area of gene expression

- 629 -

Page 632: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Oxford Gene Technology

Agilent Technologies

Bulk manufacture of arrays using ink jet printing technology

Oxonica Avalon Instruments

Oxonica will develop RamanSpec plate reader with the SERS-Beads configuration

Oxonica Becton Dickinson &Co

BD will apply Oxonica’s Nanoplex™ technology in diagnostics

Pacific Biosciences

LI-COR Biosciences

PacBio acquired “sequencing by incorporation” technology from LI-COR, which generally identifies nucleotides in a DNA sequence based upon synthesis of a complementary DNA strand

Pacific Biosciences

Gen-Probe Co-development of integrated diagnostic systems based on Gen-Probe's expertise and PacBio's single molecule real time platform

Pathwork Diagnostics

Novartis For discovery of cancer biomarkers.

PerkinElmer Life Sciences

Waters Corporation

Long-term collaboration with a reagent/software/MS-LC platform to deliver advanced newborn screening solutions

PeS Diagnosesysteme

Siemens Medical Solutions Diagnostics

POC immunoassay for rapid diagnosis of myocardial infarction

PharmaSeq Sarnoff Corporation

To develop microtransponder chip

Phase 2 Discovery

Biosite Inc Biosite received a license biomarker, C-tau, to evaluate it for use in diagnostic tests for stroke and brain injury

Power3 Medical

Biosite Inc Power3 will provide Biosite access to its protein biomarker antibody targets for the development of diagnostic tests

Power3 Medical

NeoGenomics A joint venture to create a CRO to sell Power3’s protein biomarker-based diagnostics

Predicant Biosciences

Caliper Life Sciences

Licensed Caliper’s microfluidics technology for use with Predicant technology for the analysis of proteins using mass spectrometry

Primagen Gilead For use of the Retina Mitox test for testing mitochondrial toxicity in a multi-year clinical study of Gilead's Viread for HIV

Promega Corporation

Hamilton Robotics To develop an automated system for isolating genomic DNA from large-volume blood samples that will be launched by Hamilton

Qbiogene Molecular Sensing plc (MSL)

To combine MSL's rapid DNA amplification and detection system GENE DRIVE with Qbiogene's GENECLEAN nucleic acid purification chemistries for near patient testing

QIAGEN Protedyne Corporation

To cross-promote Protedyne’s BioCube System in conjunction with QIAGEN’s QIAamp nucleic acid purification products

QIAGEN Agilent Technologies

To actively promote each other's technologies in combination, for SNP genotyping.

QIAGEN BD Bioscience PreAnalytiX GmbH, a joint venture between QIAGEN and BD launched its first product, the PAXgene Blood RNA System

QIAGEN Aventis Pharma QIAGEN to gain access to the ZeptoGene Workstation technology

QIAGEN Veridex ( a Johnson & Johnson company)

Veridex will market QIAGEN’s preanalytical solutions under itsGeneSearch trademark

QIAGEN Epigenomics To develop a portfolio for DNA methylation analysis for preclinical research and to have full compatibility for use in IVD

- 630 -

Page 633: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

QIAGEN Abbott Abbott received distribution rights to a number of real-time PCR diagnostic tests

QIAGEN Genmark Molecular Diagnostics

Genmark will incorporate certain preanalytical consumables and technologies from QIAGEN into its microarray-based solutions for use in diagnostic and research applications

QIAGEN Eppendorf AG QIAGEN acquired Eppendorf’s reagent business, which links their complementary technology portfolios and expertise

QIAGEN NuGen Technologies

A co-marketing alliance to create a series of joint applications for RNA amplification and analysis

QIAGEN Veterinary Laboratories Agency (VLA), UK

QIAGEN will commercialize outside the UK a portfolio of selected PCR-based, veterinary molecular tests (assays) developed by VLA

QIAGEN Genome Diagnostics (GenDx)

QIAGEN will sell GenDx’s reagents and software for sequencing-based HLA typing

QIAGEN Roche Diagnostics QIAGEN licensed real-time PCR from Roche and expands an existing arrangement to include all of Roche’s RT-PCR patents

QIAGEN Ortho Clinical Diagnostics

QIAGEN has licensed rights to patents for a taq-polymerase antibody method that speeds up the activation of PCR enzymes

QIAGEN Microsynth AG QIAGEN supplies Microsynth with PCR-based molecular cador assays for detection of viruses causing bovine viral diarrhoea

QIAGEN Olerup International AB

QIAGEN transferred distribution rights for the Olerup SSP® transplant testing product line and the related assets to Olerup

Quanterix Novartis To evaluate Quanterix’s SiMoA, platform for diagnostic use with focus on an undisclosed neuron-specific protein target

Quest Diagnostics

Tibotec-Virco Quest will offer Virco's Virtual/Phenotype test to predict resistance to antiviral drugs used to treat HIV.

QIAGEN Celera For distribution of the next generation version of ResPlex II assay for detection of respiratory pathogens in a single run

QIAGEN Abbott Automated IVD applications of quantitative tests for HIV, HBV and HCV in North America

Quest Diagnostics

Roche Diagnostics To develop and commercialize new gene-based medical tests and to expand access to them for patients, physicians and hospitals

Quest Diagnostics

GlaxoSmithKline (GSK)

Quest will provide of central laboratory testing services for GSK's global clinical trials and some early stage R&D activity

Quest Diagnostics

Thermo Electron Corporation

CF Portrait biochip using Quest's DNA extraction/amplification methods and Thermo electron's Optical ImmunoAssay

Quest Diagnostics

Ciphergen Biosystems

To develop and commercialize novel proteomic diagnostic tests based on Ciphergen’s SELDI ProteinChip technology

Quest Diagnostics

Luminex Corporation

R&D Systems has rights to develop and market reagents based on Luminex's proprietary LabMAP technology

Quest Diagnostics

Bio-Rad Laboratories

Bio-Rad agreed to supply Quest with its BioPlex 2200 systems and autoimmune test reagents, as well as its HIV-1/HIV-2 PLUS O EIA assay for use in Quest reference laboratories nationwide

Quest Diagnostics

Pathway Diagnostics

Quest licensed from Pathway the technology used in its co-receptor tropism HIV assay, SensiTrop test, and aims to develop a validated molecular assay for co-receptor tropism in 1 Q 2008

- 631 -

Page 634: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Quest Diagnostics

Epigenomics Quest licensed Septin 9 biomarker from Epigenomics to develop a homebrew Septin 9 DNA-methylation test and market it as a supplement to colonoscopy and fecal occult blood tests

Response Genetics Inc

Taiho Pharmaceutical Company

RGI will use its technology to provide gene expression data to Taiho

Response Genetics Inc

Eli Lilly & Co RGI will use its technology to provide gene expression data to Lilly from paraffin-preserved tumor tissue treated with Lilly drugs

Response Genetics Inc(RGI)

GlaxoSmithKline (GSK)

RGI does MAGE-A3 gene expression screening assay for phase III clinical trial of MAGE-A3 antigen-specific cancer therapeutic

Response Genetics Inc(RGI)

Genetic Technologies(GT)

G T will distribute ResponseDX cancer tests in Australia, Indonesia, Malaysia, the Philippines, Singapore and Thailand

Roche Diagnostics

CombiMatrix Corporation

Roche will purchase, use and resell CombiMatrix's biochips technology for rapid production of customizable biochips

Roche Diagnostics

Prionics Inc Both companies are developing new diagnostic tests for BSE and blood tests for the diagnosis of Creutzfeldt-Jakob disease

Roche Diagnostics

ExonHit Therapeutics

To develop tests for BSE in living animals by combining Roche's PCR-workflow platform and DATAS™ - ExonHit's proprietary qualitative gene profiling technology

Roche Diagnostics

Evotec AG Evotec granted a licence to Roche for the melting curve analysis of investigated gene fragments in PCR reactions in LightCycler

Roche Diagnostics

BioVisioN AG Identification a number of peptides in CSF that may enable early diagnosis of Alzheimer's disease

Roche Diagnostics

SYN X SYN X was granted a license in point-of-care diagnostics under Roche patent of congestive heart failure marker NT-proBNP

Roche Diagnostics

MicroFluidic Systems Inc

To develop some microfluidics-based automated technologies for possible use in Roche's PCR-based clinical diagnostics systems

Roche Diagnostics

IDEXX Laboratories

To develop PCR-based tests for veterinary pathogens

Roche Diagnostics

Eli Lilly & Co To confirm biomarkers that may be used to identify patients most likely to respond to certain cancer therapies

Roche Diagnostics

Specialty Labs Specialty Labs will offer Roche’s AmpliChip CYP450 assay

Roche Diagnostics

Lab Corp of America

Lab Corp of America will sell Roche's AmpliChip CYP450 assay

Roche Diagnostics

Protedyne Protedyne integrated its benchtop robotic system with Roche’s LightCycler 480 real-time PCR system to create an automated high-throughput product that can reproduce PCR assays

Roche Diagnostics

Ensemble Discovery

To develop a test using Ensemble's DNA Programmed Chemistry technology for analyzing combinations of specific receptors that may be used to help select cancer patients that are most likely to respond to particular therapies

Roche Diagnostics

NuGen Technologies

Roche licensed Ovation technology from NuGen that will be included in its LightCycler RNA Pre-Amplification Kit

Roche Diagnostics

Ionian Technologies

Roche will commercialize new applications and customers for Ionian’s NEAR Assay - rapid isothermal nucleic acid amplification

Roche Diagnostics

Merck & Co Merck will use Roche's p53 AmpliChip, for cancer research

- 632 -

Page 635: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Roche Diagnostics

CapitalBio To further develop microarray technologies and complementary products for molecular diagnostics applications with initial focus on enhancing and automating the Roche NimbleGen microarray

Roche Diagnostics

Kinaxo Biotechnolgies

Roche will develop its tests with Kinaxo's PhosphoScout® to detect mutation in the tumor suppressor gene p53

Roche Diagnostics

Genzyme To develop an assay for detection of EGFR activating mutations in patients with NSCLC

Roche Molecular Systems

Primagen To develops dry filter spot technology for HIV-1 viral load testing in the developing world

Rubicon Genomics

Asterand Asterand will supply tissue and biofluid samples from its biorepository and Rubicon will use MethylPlex technology to discover methylated DNA biomarkers for cancer diagnosis

Savyon Diagnostics

ProChon Biotech For the development and manufacture of a genetic kit for diagnosis of mutations associated with bladder cancer

Seegene Shimadzu To develop molecular diagnostics tests that will run on Shimadzu’s MultiNA high-speed electrophoresis system

Seegene Molzym Molzym provides its MolYsis microbial DNA-enrichment technology on the front end of Seegene's Magicplex Sepsis test

Sequel Genetics

Neo Gen Screening For development of molecular technologies to detect the mutations in the cystic fibrosis gene

SEQUENOM GlaxoSmithKline A genome-wide SNP assay portfolio to screen the human genome for genes associated with diseases and adverse drug reactions

SEQUENOM LGC (UK) To enable LGC to use the validated panel of SNP assays on its MassARRAY platform to provide paternity and forensic testing

SEQUENOM Translational Genomics Research Institute (TGen)

SEQUENOM will provide TGen access to its candidate gene portfolio of targets associated with predisposition for skin cancer foro their potential use as diagnostic markers for skin cancer risk

SEQUENOM Siemens Healthcare Diagnostics

A joint working group to explore the requirements for next generation molecular diagnostics platforms

SEQUENOM Isis Innovation Ltd SEQUENOM acquired exclusive rights in certain countries including the US, UK and other countries in Europe and elsewhere, to noninvasive prenatal diagnostic intellectual property

SEQUENOM QIAGEN To develop a gold standard preanalytical solution for small molecule (fetal) DNA enrichment for prenatal diagnostics

SEQUENOM SensiGen LLC To develop proprietary gene-based, molecular diagnostic tests, expansion of their global alliance to develop and market advanced diagnostic tests and systems to commercial laboratories

SEQUENOM Genomic Nanosystems

SEQUENOM gained rights to use Genomics's digital PCR methods for noninvasive, prenatal diagnostic testing and sample analysis

SEQUENOM GeneWorks Pty Ltd GeneWorks will assist SEQUENOM's marketing in Australia

SEQUENOM New England Biolabs (NEB)

For the commercialization of tools for epigenetics research as the basis for EpiMark Methylated DNA Enrichment Kit from NEB

Siemens Healthcare Diagnostics

Bio-Rad Laboratories

Bio-Rad will provide its quality control products and Unity™ QC data management solutions for use on Siemen's ADVIA® Chemistry and ADVIA Centaur® Immunoassay Systems

- 633 -

Page 636: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Siemens Healthcare Diagnostics

Bayer ScheringBoehringer Ingelheim

Part of Innovation Alliance Molecular Imaging to develop new contrast media, devices, and software

Siemens Healthcare Diagnostics

Laboratory Corporation of America

To co-develop new clinical diagnostic tests in the areas of companion diagnostics, metabolic syndrome, oncology and diabetes that could make the biggest impact to patient care

Sigma-Aldrich Corporation

Rubicon Genomics To further develop and commercialize Sigma's GenomePlex WGA technology

Sigma-Aldrich Corporation

Roche NimbleGen Roche NimbleGen's ChIP-chip high-density microarrays and GenomePlex by Sigma-Aldrich will enable researchers to effectively study the entire genome for epigenetic interactions

Singulex Wyeth Research Singulex is optimizing assays that will allow Wyeth to accurately and precisely measure specific biomarkers in human blood

Singulex Novartis Pharma AG

Novartis gains access to Singulex advanced biomarker detection technology through an Erenna™ Technology Access Program

SIRS-Lab GmbH

Biosite Inc Tration to develop diagnostics for sepsis.

SIRS-Lab GmbH

DxS Ltd An EU-wide licensing agreement with for use of DxS Scorpions Technology including an option for worldwide IVD utilization

SIRS-Lab GmbH

AJ Innuscreen (Analytik Jena)

AJ Innuscreen will provide SIRS-Lab a platform for the automated extraction of DNA in whole blood samples

SIRS-Lab Pfizer For sepsis diagnostics and treatment with focus on severe fungal blood stream infections and its pharmacoeconomic aspects

SmartGene Laboratory Corporation of America (LabCorp)

LabCorp will utilize SmarGene’s technology to support more rapid and precise identification of bacterial and fungal pathogens

Solexa Inc Pfizer Application of MPSS™ technology to cell samples from normal subjects and patients to provide information on specific genes involved in disease progression

Solexa Inc Takara Bio Inc Takara gains rights to MPSS™ technology in Japan, Korea and China including Taiwan.

Solexa Inc Millennium Oharmaceuticals

Millennium will study gene expression in specific blood cell populations using MPSS technology

SomaLogic Merial Limited To develop aptamer-based diagnostics for BSE

SomaLogic Quest Diagnostics Quest will develop new diagnostic tests based on SomaLogic’s proprietary aptamer array platform

Source MDx Pfizer To develop and validate RNA-based pharmacodynamic and predictive biomarkers within Pfizer's cancer and inflammation therapeutic development programs

Specialty Laboratories

Genzyme Molecular Oncology (GMO)

For non-exclusive access to GMO's proprietary genetic markers for colon cancer.

Specialty Laboratories

Axis-Shield plc For exclusive US rights to GenotypR/Col1A1 test

Specialty Laboratories

Zyomyx Inc Zyomyx has delivered its Protein Profiling Biochip system to Specialty. Design of assay standards and controls, and suitability of the platform for its use in clinical laboratory testing

Specialty Labs Tm Bioscience For development of the CF test

Specialty Laboratories

Celera Genomics Specialty will use Celera' genetic data to develop a test to predict the risk for patients with HCV of developing liver cirrhosis

- 634 -

Page 637: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Spectral Diagnostics Inc

Allegiance Healthcare

Allegiance will distribute Spectral's rapid diagnostic products to healthcare providers in the US

Spectral Diagnostics Inc

IDx To develop a rapid Test for West Nile virus

Spectral Diagnostics Inc

Fisher Healthcare For the distribution of Spectral's RapidWN™ West Nile Virus Test in the US

Spectral Diagnostics Inc

Menarini Diagnostics Deutschland

Spectral launched its EAA™ Endotoxin Activity Assay, a rapid diagnostic product for sepsis, in Germany

Spectral Diagnostics Inc

Toray Medical Co Toray will be the exclusive distributor in Japan for Spectral EAA™ diagnostic system

SQI Diagnostic Systems

Silliker Inc For commercialization of IgXplex BOTX panel that will run on SQI’s SQiDman™ analytical systemfor the diagnosis of botulism infection in the food chain by detecting botulinum toxins

SQI Diagnostic Systems

Gamma-Dynacare Medical Labs

Gamma-Dynacare will use SQI’s SQiDworks™ and buy SQI’s multiplexed IgXPLEX™ RA consumables for its needs

Stratagene Focus Diagnostics Stratagene will license its Full Velocity™ nucleic acid amplification technology and associated know-how to Focus for the development of molecular diagnostic products

Stratagene Rosetta Inpharmatics

To create and market an instrument and a single-use consumable for automated isolation of nucleic acids from clinical samples

Stratagene AROS Applied Biotechnology

Stratagene licensed the rights from AROS to certain gene groups that have predictive capabilities for certain cancers from.

Sysmex Corporation

bioMérieux For distribution of UF-1000i urinalysis system in microbiology laboratories

Sysmex Corporation

Epigenomics To assess the suitability of Sysmex’s molecular diagnostics instrumentation for the detection of Epigenomics’ DNA methylation biomarkers of colorectal cancer in blood

Takara Bio Inc Transgenomic Inc Transgenomic can use and sell Takara's LA-PCR related products

Takara Bio Inc ID Biomedical Corporation

Granting Takara a worldwide non-exclusive license to ID Biomedical's Cycling Probe Technology

Targeted Diagnostics & Therapeutics

Millennium Pharmaceuticals

TDT granted a license to Millennium for its intellectual property surrounding guanylyl cyclase C for development of antibody-based therapeutics directed against colorectal cancer

Tecan Pierce To combine Tecan’s Ultra Evolution Detection Platform for HTP fluorescence measurements and Pierce’s HTS assay technologies

Tecan CIS bio international

HTRF® fluorescence assays now readily available on Tecan’s microplate readers.

Tecan Life Technologies To jointly develop and promote applications of Life Technologies' research kits on Tecan instruments

Tecan Promega To jointly develop and market genomic DNA purification applications on Tecan’s automated liquid handling platforms

Tecan Dynal Biotech To co-develop, promote and market optimized robotic applications based on Dynal Biotech research kits (Dynabeads®) for use on Tecan’s Freedom EVO automated platform

Tecan Hologic Inc A fully automated solution based on Tecan EVO® liquid handling platform for Hologic’s Cervista® molecular diagnostics for HPV

- 635 -

Page 638: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Tepnel Takara Biomedical Marketing of Tepnel T1000 Automated DNA Purification System

Tepnel AstraZeneca Tepnel will provide DNA-extraction services for AstraZeneca

Tepnel Luminex Corporation

For access to the Luminex® xMAP® platform for incorporation into Tepnel's innovative molecular diagnostics products

Tepnel SoftGenetics Tepnel will market and distribute its Elucigene QST*R products for prenatal detection of common chromosome abnormalities for use with SoftGenetics’ GeneMarker® genotyping software

Thermo Fisher Scientific

Life Technologies/ Applied Biosystems

Applied Biosystems granted Thermo licenses to allow its subsidiary, ABgene, to offer several PCR products

Thermo Fisher Scientific/Athena

Nanogen Athena subsidiary agreed to manufacture and market products based on its biomarkers for research and for IVD use by Nanogen

Third Wave Technologies (part of Hologic)

Novartis Pharmaceuticals

To develop the first high-density panel of 10,000 SNP assays spaced across the human genome.

Third Wave Technologies (part of Hologic)

Biomedical Laboratory (BML)

To expand BML's capabilities in pharmacogenomic and clinical testing using TWT's Invader operating system in Japan

Third Wave Technologies(part of Hologic)

GlaxoSmithKline Pfizer

Invader assays for evaluation in genotyping and gene expression applications relevant to drug discovery

Third Wave Technologies(part of Hologic)

Mitsubishi Corporation

Joint venture for personalized medicine in Japan and the Asia-Pacific region to develop products for the Japanese molecular diagnostic market, including tests for diagnosing infections

Third Wave Technologies (part of Hologic)

SeqWright SeqWright agreed to perform sequencing and analysis for TWT's clinical trials of IVD and a genotyong test for HPV types 14, 16 and 18

Third Wave Technologies(part of Hologic)

DCL Medical Laboratories

TWT will showcase its existing molecular diagnostic products and collaborate on research for future assays

Thorne Diagnostics Inc (TDI)

Neogen Corporation

Neogen will license TDI's advanced ramification amplication method (RAM) to develop rapid tests for foodborne bacteria, such as E. coli O157:H7, Salmonella and Listeria

Thorne Diagnostics Inc

CogniScent Inc For development and marketing of CogniScent’s “Electronic Nose” as a biosensor and diagnostic device

Tm Bioscience bioMérieux SA Use of bioMérieux's Factor II and Factor V Leiden gene patents in Tm's Tag-It Mutation Detection kits for coagulation disorders

Tm Bioscience MetriGenix MetriGenix will use Tm's Universal Array technology, including both the Tm100 and Tm1000, for use on its 4D Assay System

Tm Bioscience Genzyme Corporation

A development and supply agreement to develop, validate and implement a yet undisclosed custom product of Tm Bioscience

Tm Bioscience Sirius Genomics Tm licensed patents for biomarkers linked to drugs for severe sepsis and will incorporate these into a diagnostic for physicians

Tm Bioscience Epidauros Biotechnolgie AG

Tm licensed Epidauros patents on a specific biomarker related to the P450-CYP2D6 gene

- 636 -

Page 639: Title - BioPortfolio — the Biotechnology, · Web viewMolecular Diagnostics Part II: Regulations, Markets & Companies A Jain PharmaBiotech Report Molecular Diagnostics Part II: Regulations,

Transgenomic Synthetic Genetics Synthetic Genetics will use the WAVE System to purify DNA

Transgenomic Novartis Pharmaceuticals

To provide mutation discovery services for support of biomarker discovery efforts in clinical trials by identifying genetic mutations that correlate with patients' response(s) to cancer therapeutics

Transgenomic SpectruMedix LLC Transgenomic was granted the rights to market, sell and service SpectruMedix's Reveal Genetic Analysis Systems in Europe

Transgenomic NorDiag NorDiag gained rights to use Wave system in Genefec test for colorectal and pancreatic cancer diagnostics

Transgenomic Fiuotecnica (Italy) Fiuotecnica will use Transgenomic's Wave technology to develop and market genetic tests to predict risk of cardiovascular disease

Transgenomic Power3 Medical Products

Transgenomic will buy the rights to Power3’ biomarkers of neurodegenerative disorders

Transgenomic IntegraGen Licensed IP from IntegraGen that will enable it to develop and commercialize a genetic test for assessing the risk of autism

Transgenomic Gene Solutions Transgenomic licensed a set of validated mutations found in Parkinson’s disease to form the basis of a test for the disease

TriPath Imaging

Millennium Pharmaceuticals

To develop and commercialize molecular diagnostics and pharmacogenomic tests for cancer as part of the ongoing strategic alliance of Becton, Dickinson BD and Millennium

Tyrian Diagnostics

BD Bioscience For the co-development of TB diagnostic products

US Genomics Exiqon To incorporated Exiqon’s LNA™ chemistries into reagent kits for US Genomics Trilogy™ platform

US Genomics Northrop Grumman

To develop and market USG’s biodetection technology for the US Department of Homeland Security.

US Genomics BD Biosciences To develop molecular diagnostics for infectious diseases

Ventana Medical Systems

LabCorp of America

A multi-year agreement to place Ventana’s BenchMark® XT advanced tissue staining systems in the LabCorp’s laboratories

Vermillion Quest Diagnostics Commercialization of novel proteomic diagnostic tests based on Vermillion’s proprietary SELDI ProteinChip® technology

Vermillion Bio-Rad Laboratories

Bio-Rad Laboratories agreed to purchase Ciphergen’s proteomics instrument business but Ciphergen will retain exclusive rights to the products for the diagnostics market

Warnex Inc AmeriSci Bio-Chem AmeriSci Bio-Chem will offer real-time PCR pathogen testing services using the Warnex™ Rapid Pathogen Detection System

Warnex Inc JEM Analytical Laboratory Services

JEM started to use Warnex™ Rapid Pathogen Detection System to offer real-time PCR pathogen testing services to its customers

Warnex Inc Xenomics Inc Warnex obtained a licence from Xenomics to offer NPM1 testing in Canada as a laboratory service for the diagnosis, stratification and monitoring of patients with acute myeloid leukemia

Xenomics Ipsogen Ipsogen will develop, manufacture and commercialize research and diagnostic products based on the analysis of NPM1 mutations for the stratification and monitoring of patients with AML

© Jain PharmaBiotech

- 637 -