tk t2202 800m3-439-01-001-mc reva

38
Page 1 of 38 Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA TANK REPORT: Printed - 21/01/2015 12:58:01 ETANK FULL REPORT - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA ETank2000 MU 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 6 ROOF DESIGN PAGE 13 SHELL COURSE DESIGN PAGE 14 BOTTOM DESIGN PAGE 24 BOTTOM DESIGN PAGE 27 ANCHOR BOLT DESIGN PAGE 31 CAPACITIES AND WEIGHTS PAGE 37 MAWP & MAWV SUMMARY PAGE 38

Upload: gtelleria

Post on 06-Dec-2015

15 views

Category:

Documents


1 download

DESCRIPTION

Tk T2202 800m3-439

TRANSCRIPT

Page 1: Tk T2202 800m3-439-01-001-MC RevA

Page 1 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

ETANK FULL REPORT - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevAETank2000 MU 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 6

ROOF DESIGN PAGE 13

SHELL COURSE DESIGN PAGE 14

BOTTOM DESIGN PAGE 24

BOTTOM DESIGN PAGE 27

ANCHOR BOLT DESIGN PAGE 31

CAPACITIES AND WEIGHTS PAGE 37

MAWP & MAWV SUMMARY PAGE 38

Page 2: Tk T2202 800m3-439-01-001-MC RevA

Page 2 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False * * NOTE: Ignored (Since App. F calcs apply per 650 1.1.1.) Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 0,5 in. Max. Tank Corr. Allowance : 0,5 in. External pressure calcs subtract C.A. per V.5 : False Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : False

Page 3: Tk T2202 800m3-439-01-001-MC RevA

Page 3 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

SUMMARY OF DESIGN DATA and REMARKS Job : Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA Date of Calcs. : 21/01/2015 , 12:57 Mfg. or Insp. Date : 21/01/2015 Designer : J.M.P. (Idear Ing) - 21/01/15 Project : Mem. cálc. 439-01-001-MC Rev.A Tag Number : T2202 Agua Amoniacal cap. 800 m3 Plant : Gral. Savio Plant Location : San Nicolás Site : Pcia. Bs. As. - Rep. Argentina Design Basis : API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- - TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- - Operating Ratio: 0,4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - API-650 Appendices Used: F.1.2, M, V - - Roof : A-516 Gr 70: 0,5in. - - Shell (6): A-516 Gr 70: 0,3125in. - - Shell (5): A-516 Gr 70: 0,3125in. - - Shell (4): A-516 Gr 70: 0,3125in. - - Shell (3): A-516 Gr 70: 0,3125in. - - Shell (2): A-516 Gr 70: 0,3125in. - - Shell (1): A-516 Gr 70: 0,3125in. - - Bottom : A-516 Gr 70: 0,875in. - ---------------------------------------------------------------------- Design Internal Pressure = 0,29 PSI or 8,04 IN. H2O Design External Pressure = -0,1233 PSI or -3,42 IN. H2O MAWP = 1,3199 PSI or 36,58 IN. H2O MAWV = -0,2980 PSI or -8,26 IN. H2O OD of Tank = 31,23 ft Shell Height = 41,667 ft S.G. of Contents = 1 Max. Liq. Level = 40,68 ft Design Temperature = 248 °F Tank Joint Efficiency = 1 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 30,6 lbf/ft^2 Design Roof Dead Load = 23 lbf/ft^2 Basic Wind Velocity = 113 mph Wind Importance Factor = 1 Using Seismic Method: NONE DESIGN NOTES NOTE 1 : Tank is not subject to API-650 Appendix F.7 DESIGNER REMARKS

Page 4: Tk T2202 800m3-439-01-001-MC RevA

Page 4 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

N° DOC.: 439-01-001-MC Rev.A REVISIONES: Rev.A: 21/1/15 - Primera emisión. NOTAS: 1- Ver cálculos complementarios en documentos 439-01-001-MC Anexos 1 y 2. 2- El valor de eficiciencia de junta para envolvente se adopta como 0.85 para cumplir con V.3.1 (cálc. para presión externa). Para el cálculo según 5.6.3.2 la eficiencia no aplica, pero la adopción de E= 0.85 no modifica los espesores calculados.

Page 5: Tk T2202 800m3-439-01-001-MC RevA

Page 5 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

SUMMARY OF RESULTS Shell Material Summary (Bottom is 1) Shell Width Material Sd St Weight « CA # (ft) (psi) (psi) (lbf) « (in) 6 0,656 A-516 Gr 70 22.689 28.500 820 « 0,0394 5 8,202 A-516 Gr 70 22.689 28.500 10.250 « 0,0394 4 8,202 A-516 Gr 70 22.689 28.500 10.250 « 0,0394 3 8,202 A-516 Gr 70 22.689 28.500 10.250 « 0,0394 2 8,202 A-516 Gr 70 22.689 28.500 10.250 « 0,0394 1 8,202 A-516 Gr 70 22.689 28.500 10.250 « 0,0394 Total Weight 52.070 Shell API 650 Summary (Bottom is 1) ---------------------------------------------------------------------- Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ---------------------------------------------------------------------- 6 0,0394 0 0,2672 N.A. 0,2672 0,3125 5 0,0711 0,0253 0,2672 N.A. 0,2672 0,3125 4 0,1057 0,0528 0,2672 N.A. 0,2672 0,3125 3 0,1402 0,0803 0,2672 N.A. 0,2672 0,3125 2 0,1748 0,1078 0,2672 N.A. 0,2672 0,3125 1 0,2093 0,1352 0,2672 N.A. 0,2672 0,3125 ---------------------------------------------------------------------- Self Supported Conical Roof; Material = A-516 Gr 70 t.required = 0,4477 in. t.actual = 0,5 in. Roof Joint Efficiency = 0,35 Weight = 16.176 lbf Bottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-516 Gr 70 t.required = 0,3935 in. t.actual = 0,875 in. Bottom Joint Efficiency = 1 Total Weight of Bottom = 27.930 lbf ANCHOR BOLTS: (12) 1,25in. UNC Bolts, A-307 TOP END STIFFENER: L2x2x1/4, Unknown Carbon Steel, 315, lbf

Page 6: Tk T2202 800m3-439-01-001-MC RevA

Page 6 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

<Roof Design Per API 650> CONICAL ROOF: A-516 Gr 70 JEr = Roof Joint Efficiency = 0,35 Lr = Entered Roof Live Load = 30,6 lbf/ft^2 Lr_1 = Computed Roof Live Load, including External Pressure S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2 Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (0)(0/12) + 20,3976 + 23 = 43,4 lbf/ft^2 Roof Loads (per API-650 Appendix R) Pe = PV*144 = 0,1233*144 = 17,7552 lbf/ft^2 e.1b = DL + MAX(Sb,Lr) + 0,4*Pe = 43,4 + 30,6 + 0,4*17,7552 = 81,102 lbf/ft^2 e.2b = DL + Pe + 0,4*MAX(Sb,Lr) = 43,4 + 17,7552 + 0,4*30,6 = 73,395 lbf/ft^2 T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 81,102 lbf/ft^2 e.1u = DL + MAX(Su,Lr) + 0,4*Pe = 43,4 + 30,6 + 0,4*17,7552 = 81,102 lbf/ft^2 e.2u = DL + Pe + 0,4*MAX(Su,Lr) = 43,4 + 17,7552 + 0,4*30,6 = 73,395 lbf/ft^2 U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 81,102 lbf/ft^2 Lr_1 = MAX(T,U) = 81,102 lbf/ft^2 pt = Roof Cone Pitch = 3,2154 in/ft Theta = Angle of Cone to the Horizontal = ATAN(pt/12) = ATAN(0,2679) = 15,0000 degrees Alpha = 1/2 the Included Apex Angle of Cone = 75,0000 degrees R2 = 6*OD/SIN(Theta) = 723,98 in. Rc = ID/2 = 187,0675 in.

Page 7: Tk T2202 800m3-439-01-001-MC RevA

Page 7 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

<Weight, Surface Area, and Projected Areas of Roof> Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 3,2154*31,23^2/48 = 65,334 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31,23 = 15,615 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15,615^2 = 766,009 ft^2 Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(31,23)^2/COS(15,0000) = 114.196 in^2 Weight = (Density)(t)(Roof_Area) = (0,2833)(0,5)(114.196) = 16.176 lbf (New) = 14.902 lbf (Corroded) < Uplift on Tank > (per API-650 F.1.2) NOTE: This flat bottom tank is assumed supported by the bottom plate. If tank not supported by a flat bottom, then uplift calculations will be N.A., and for reference only. For flat bottom tank with self supported roof, Net_Uplift = Uplift due to design pressure less Corroded weight of shell and roof plates. = P * PI / 4 * D ^ 2 * 144 « - Corr. shell - Corr. roof weight = 0,29 * 3,1416 / 4 * 975,3129 * 144 « - 45.512 - 14.902 = -28.425 lbf < Uplift Case per API-650 1.1.1 > P_Uplift = 31.989 lbf W_Roof_Plates (corroded) = 14.902 lbf W_Shell (corroded) = 45.512 lbf Since W_Roof < P_Uplift <= W_Roof + W_Shell, Tank Roof should meet App. F.1.2 and F.2-F.6 requirements. <Minimum Thickness of Roof Plate> ME = 28.799.999/28.559.999 = 1,0084 (per API-650 App. M.5.1)

Page 8: Tk T2202 800m3-439-01-001-MC RevA

Page 8 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

<Section 5.10.5.1> t-Calc1 = ME * SQRT[T/45]*OD/(400*SIN(Theta)) + CA = 1,0084 * SQRT[81,102/45]*31,23/(400*SIN(15,0000)) + « 0,0394 = 0,4477 in. t-Calc2 = ME * SQRT[U/45]*OD/(460*SIN(Theta)) + CA = 1,0084 * SQRT[81,102/45]*31,23/(460*SIN(15,0000)) + « 0,0394 = 0,3945 in. t-Calc = MAX(t-Calc1,t-Calc2) = 0,4477 in. Max_f (due to roof thickness) = 400*SIN(Theta)*(t-CA)/ME/OD = 400*SIN(15,0000)*(0,5 - 0,0394)/1,0084/31,23 = 1,5143 Max_T1 (due to roof thickness) = Max_f^2 * 45 = 1,5143^2 * 45 = 103,1897lbf/ft^2 P_ext_1 (due to roof thickness) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[103,1897 - 43,4 - 0,4 * Max(0,30,6)]/144 = -0,3302 PSI or -9,15 IN. H2O P_max_ext = -0,3302 PSI or -9,15 IN. H2O <Actual Participating Area of Roof-to-Shell Juncture> (From API-650 Figure F-2) Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0,6 * SQRT[187,0675 * (0,3125 - 0,0394)] = 4,2886 in. (From API-650 Figure F-2) Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0,3 * SQRT[723,98 * (0,5 - 0,0394)] = MIN(5,4785, 12) = 5,4785 in. Top End Stiffener: L2x2x1/4 Aa = (Cross-sectional Area of Top End Stiffener) = 0,938 in^2 Using API-650 Fig. F-2, Detail a End Stiffener Detail Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 4,2886 * (0,3125 - 0,0394) = 1,171 in^2

Page 9: Tk T2202 800m3-439-01-001-MC RevA

Page 9 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:01

Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 5,4785 * (0,5 - 0,0394) = 2,524 in^2 A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 0,938 + 2,524 + 1,171 = 4,633 in^2 MINIMUM PARTICIPATING AREA Cone Roof ( Per API-650 Section 5.10.5.2 ) p = MAX(U,T) Fa = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(34.033,34.033,26.868) = 26.868 psi A_min = Minimum Participating Area = p*D^2/(8*Fa*TAN(Theta)) = 81,102*31,23^2/(8*26.868*TAN(15,0000)) = 1,373 in^2 MaxT_A = Max Roof Load due to Participating Area ( reversing API-650 Section 5.10.5.2 ) = 45*A*3000*SIN(Theta)/OD^2 = 45*4,633*3000*SIN(15,0000)/31,23^2) = 165,978 lbf/ft^2 P_ext_2 (Due to MaxT_A) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[165,978 - 43,4 - 0,4 * Max(0,30,6)]/144 = -0,7662 PSI (Due to Participating Area) NOTE: Per API-650 1.1.1, Tank must comply with F.4 through F.5.2 < API-650 App. F > Fy = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(34.033,34.033,26.868) = 26.868 psi A_min_a = Min. Participating Area due to full Design Pressure. (per API-650 F.5.1, and Fig. F-2) = [OD^2(P - 8*t)]/[0,962*26.868*TAN(Theta)] = [31,23^2(8,04 - 8*0,5)]/[0,962*26.868*0,2679] = 0,569 in^2 A_min = MAX(1,373,0,569,0) = 1,373 in^2 (per API-650 App F.5.2) P_F51 = Max. Design Pressure, reversing A_min_a calculation. = A * [0,962*26.868*TAN(Theta)]/OD^2 + 8*t_h = 4,633 * [0,962*26.868*0,2679]/31,23^2 + 8*0,4606 = 1,3199 PSI or 36,58 IN. H2O

Page 10: Tk T2202 800m3-439-01-001-MC RevA

Page 10 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

< Maximum Design Pressure > (per F.4.1) P_F41 = 0,962*26.868*A*TAN(Theta)/D^2 + 8*t_h = 0,962*26.868*(4,633)*(0,2679)/(31,23^2) + 8*(0,4606) = 1,3199 PSI or 36,58 IN. H2O P_F42 = N.A. (Tank is Anchored) P_Std = Max. Pressure allowed (Per API-650 App. F.1.3 & F.7) = 2,5 PSI or 69,28 IN. H2O P_max_internal = MIN(P_F51, P_F41, P_Std) = MIN(36,58, 36,58, 69,28) = 1,3199 PSI or 36,58 IN. H2O P_max_ext = MAX(-0,3302,-0,7662) = -0,3302 PSI or -9,15 IN. H2O

Page 11: Tk T2202 800m3-439-01-001-MC RevA

Page 11 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

* * * API 650 APPENDIX V * * * <Section V.7.2.1> Pr = Max Roof Load = Lr_1 t_Cone1 = OD/SIN(Theta)*SQRT[Pr/(0,248*E)] = 31,23/SIN(15,0000)*SQRT[81,102/(0,248*28.559.999)] = 0,4083 in. t_Cone = MAX(t-Calc1, t_Cone1) = MAX(0,4477, 0,4083) = 0,4477 in. <Participating Area Required per App. V> f (Allowable Design Stress) = 17.912 psi ts1 (Top Shell Course thickness) = 0,3125 in. tr (Roof Actual Thickness) = 0,5 in. JEr (Roof Joint Efficiency) = 0,35 JEs (Top Shell Course Joint Efficiency) = 0,85 JEst (Roof Comp. Ring Joint Efficiency) = 0,7 (Section V.7.2.2) A_Reqd = Pr*OD^2/(8*f*TAN(Theta)) = 81,102*31,23^2/(8*17.912*TAN(15,0000)) = 2,0601 in^2 (Section V.7.2.3) X_Cone = 1,47*SQRT[OD*tr/SIN(Theta)] = 1,47*SQRT[31,23*0,5*/SIN(15,0000)] = 11,418 in (Section V.7.2.4) X_Shell = 1,47*SQRT[OD*ts1] = 1,47*SQRT[31,23*0,3125] = 4,5923 in (Section V.7.2.5) A_stiff_reqd = (A_Reqd - JEs*ts1*X_Shell - JEr*tr*X_Cone)/JEst = (2,0601 - 0,85*0,3125*4,5923 - 0,35*0,5*11,418)/0,7 = -1,6541 in^2 Since A_stiff_reqd <=0, No Roof Stiffener Required A_stiff_actual = 0,938 in^2 using L2x2x1/4 A_actual = JEs*ts1*X_Shell + JEr*tr*X_Cone + A_stiff_actual*JEst = 0,85*0,3125*4,5923 + 0,35*0,5*11,418 + 0,938*0,7 = 3,8746 in^2

Page 12: Tk T2202 800m3-439-01-001-MC RevA

Page 12 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

<TOP END STIFFENER CALCULATIONS> <V.8.2.2.1 Number of Waves> N^2 = SQRT[5,33*D^3/(tsmin*Hts^2)] = SQRT[5,33*31,23^3/(0,3125*41,6342^2)] = 17,31 N = 4,16 <V.8.2.3 Contributing Shell at Stiffener> w_shell = 1,47*(D*ts1)^0,5 = 1,47*(31,23*0,3125)^0,5 = 4,5923 in. <V.8.2.3.1 Radial Load, VI> VI = Ps * H/48 = 34,59 * 41,667/48 = 30,0263 lbf/ft <V.8.2.3.2 Required Moment of Inertia> I_reqd = 648*VI*D^3/[E*(N^2-1)] = 648*30,0263*31,23^3/[28.559.999*(4,16^2-1)] = 1,273 in^4 I_actual = 0,677 in^4 using L2x2x1/4, ts1 = 0,3125 in., & W = 4,5923 in. <V.8.2.3.3.1 Area Required> define f = Min(f_roof, f_shell, f_stiff) = Min(22.689, 22.689, 17.912) = 17.912 psi A_reqd = 6*VI*D/f = 6*30,0263*31,23/17.912 = 0,3141 in^4 <V.8.2.3.3.2 Area required by stiffener> A_stiff_reqd = A_reqd - JEs*ts1*X_Shell - JEr*t_roof*X_Cone = 0,3141 - 0,85*0,3125*4,5923 - 0,35*0,5*11,418 = -2,9 in^2 Since A_stiff_reqd <=0, No Roof Stiffener Required A_stiff = 0,938 in^2 using L2x2x1/4 A_actual = JEs*ts1*X_Shell + JEr*tr*X_Cone + A_stiff_actual = 0,85*0,3125*4,5923 + 0,35*0,5*11,418 + 0,938 = 4,156 in^2 t.required = 0,4477 in.

Page 13: Tk T2202 800m3-439-01-001-MC RevA

Page 13 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

< ROOF DESIGN SUMMARY > t.required = 0,4477 in. t.actual = 0,5 in. P_max_internal = 1,3199 PSI or 36,58 IN. H2O P_max_external = -0,3302 PSI or -9,15 IN. H2O

Page 14: Tk T2202 800m3-439-01-001-MC RevA

Page 14 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

SHELL COURSE DESIGN (Bottom Course is #1) VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0,5 = (6*31,23*(0,3125-0,0394))^0,5 = 7,1536 H = Max Liquid Level =40,68 ft L / H <= 2 Course # 1 Material: A-516 Gr 70; Width = 8,2021 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 40,68 + 2.31*0,29/1 = 41,35ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(41,35 - 1)*1/(22.689*0,85) + 0,0394 = 0,2093 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_1 = (hMax_1 - H) * 0,433 * G = (65,865 - 40,68) * 0,433 * 1 = 10,9051 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 10,9051 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 40,68 + 2.31*0,29/1 = 41,35ft t.test = 2,6*31,23*(41,35 - 1)/(28.500*0,85) = 0,1352 in.

Page 15: Tk T2202 800m3-439-01-001-MC RevA

Page 15 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

Course # 2 Material: A-516 Gr 70; Width = 8,2021 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32,4779 + 2.31*0,29/1 = 33,15ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(33,15 - 1)*1/(22.689*0,85) + 0,0394 = 0,1748 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_2 = (hMax_2 - H) * 0,433 * G = (65,865 - 32,4779) * 0,433 * 1 = 14,4566 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(10,9051, 14,4566) Pmax_int_shell = 10,9051 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 32,4779 + 2.31*0,29/1 = 33,15ft t.test = 2,6*31,23*(33,15 - 1)/(28.500*0,85) = 0,1078 in. Course # 3 Material: A-516 Gr 70; Width = 8,2021 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress)

Page 16: Tk T2202 800m3-439-01-001-MC RevA

Page 16 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24,2758 + 2.31*0,29/1 = 24,95ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(24,95 - 1)*1/(22.689*0,85) + 0,0394 = 0,1402 in. hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_3 = (hMax_3 - H) * 0,433 * G = (65,865 - 24,2758) * 0,433 * 1 = 18,0081 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(10,9051, 18,0081) Pmax_int_shell = 10,9051 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24,2758 + 2.31*0,29/1 = 24,95ft t.test = 2,6*31,23*(24,95 - 1)/(28.500*0,85) = 0,0803 in. Course # 4 Material: A-516 Gr 70; Width = 8,2021 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16,0737 + 2.31*0,29/1 = 16,74ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(16,74 - 1)*1/(22.689*0,85) + 0,0394 = 0,1057 in.

Page 17: Tk T2202 800m3-439-01-001-MC RevA

Page 17 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_4 = (hMax_4 - H) * 0,433 * G = (65,865 - 16,0737) * 0,433 * 1 = 21,5596 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(10,9051, 21,5596) Pmax_int_shell = 10,9051 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16,0737 + 2.31*0,29/1 = 16,74ft t.test = 2,6*31,23*(16,74 - 1)/(28.500*0,85) = 0,0528 in. Course # 5 Material: A-516 Gr 70; Width = 8,2021 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 7,8716 + 2.31*0,29/1 = 8,54ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(8,54 - 1)*1/(22.689*0,85) + 0,0394 = 0,0711 in. hMax_5 = E*Sd*(t_5 - CA_5)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_5 = (hMax_5 - H) * 0,433 * G = (65,865 - 7,8716) * 0,433 * 1 = 25,1112 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(10,9051, 25,1112) Pmax_int_shell = 10,9051 PSI

Page 18: Tk T2202 800m3-439-01-001-MC RevA

Page 18 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 7,8716 + 2.31*0,29/1 = 8,54ft t.test = 2,6*31,23*(8,54 - 1)/(28.500*0,85) = 0,0253 in. Course # 6 Material: A-516 Gr 70; Width = 0,6565 ft. Corrosion Allow. = 0,0394 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.689 PSI (allowable design stress per API-650 Table 5-2b) (and per API-650 App. M 3.2) St = 28.500 PSI (allowable test stress) DESIGN CONDITION G = 1 (per API-650) < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 0 + 2.31*0,29/1 = 0,67ft H' = 1, since H' - 1 cannot be negative t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*31,23*(1 - 1)*1/(22.689*0,85) + 0,0394 = 0,0394 in. hMax_6 = E*Sd*(t_6 - CA_6)/(2,6*OD*G) + 1 = 0,85*22.689*(0,3125 - 0,0394) / (2,6 * 31,23 * 1) + 1 = 65,865 ft. Pmax_6 = (hMax_6 - H) * 0,433 * G = (65,865 - 0) * 0,433 * 1 = 28,5196 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(10,9051, 28,5196) Pmax_int_shell = 10,9051 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 0 + 2.31*0,29/1 = 0,67ft H' = 1, since H' - 1 cannot be negative

Page 19: Tk T2202 800m3-439-01-001-MC RevA

Page 19 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

t.test = 2,6*31,23*(1 - 1)/(28.500*0,85) = 0 in. <API-650 APPENDIX V FOR EXTERNAL PRESSURE> W (Wind Pressure) = 31*(V/120)^2 = 31*(113/120)^2 = 27,49 lbf/ft^2 Pe (External Pressure) = 0,1233 PSI, OR 3,42 In. H2O = 17,7552 lbf/ft^2 Ps (Shell Design Pressure) = MAX(Pe, W + 0,4*Pe) = MAX(17,7552, 27,49 + 0,4*17,7552) = MAX(17,7552, 34,5921) = 34,59 lbf/ft^2 Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5 Transforming Courses (1) to (6) Wtr(1) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(2) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(3) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(4) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(5) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(6) = 0,6237*[ 0,3125/0,3125 ]^2.5 = 0,6237 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 41,6342 ft

Page 20: Tk T2202 800m3-439-01-001-MC RevA

Page 20 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

* * * SHELL STIFFENING PER API-650 APP. V.8 * * * D (Tank OD) = 31,23 ft SHELL MATERIAL (thinnest course) : A-516 Gr 70 ts1 (Top Shell Thickness) = 0,3125 in. tsn (Bottom Shell Thickness) = 0,3125 in. tsmin (Smallest Actual Shell Thickness) = 0,3125 in. JEr (Roof Joint Efficiency) = 0,35 JEs (Top Shell Joint Efficiency) = 0,85 Hts (Transformed Shell Height) = 41,6342 ft f_shell (Allowable Stress for thinnest Shell) = 22.689 psi Fy_shell (Yield Stress for thinnest Shell) = 38.000 psi E (Mod. of Elasticity for thinnest Shell) = 28.559.999 psi TOP STIFFENER MATERIAL : Unknown Carbon Steel f_stiff (Allowable Stress for Stiffener) = 17.912 psi Fy_stiff (Yield Stress for Stiffener) = 30.000 psi SHELL STIFFENER MATERIAL : N/A f_stiff (Allowable Stress for Stiffener) = N/A Fy_stiff (Yield Stress for Stiffener) = N/A BOTTOM STIFFENER MATERIAL : f_stiff (Allowable Stress for Stiffener) = 0 psi Fy_stiff (Yield Stress for Stiffener) = 0 psi BOTTOM PLATE MATERIAL : A-516 Gr 70 f_btm (Allowable Stress for Bottom Floor) = 22.689 psi Fy_shell (Yield Stress for Bottom Floor) = 38.000 psi JEn (Bottom Shell Joint Efficiency) = 0,85 JEb (Bottom Joint Efficiency) = 1 Bottom Floor OD = 31,5633 ft <V.8.1 UNSTIFFENED SHELLS> Pe (External Pressure) = 17,7552 lbf/ft^2 Ps (Shell Design Pressure) = 34,59 lbf/ft^2 V.8.1.1 Criteria (Elastic Failure when EFC >= 0,19, otherwise must use ASME Section VIII) EFC = (D/tsmin)^0,75*[(Hts/D)*(Fy/E)^0,5] = (31,23/0,3125)^0,75*[(41,6342/31,23)*(38.000/28.559.999)^0,5] = 1,537 Since EFC >= 0,19, using App. V method. Condition 1: Wind plus specified external (vacuum) pressure Since Pe > 15, PSI1 = MIN(Pe + 10,2.5) = 2.5 <V.8.1.2 Max External Pressure> PS_Max = 0,6*E/[PSI1*(Hts/D)*(D/tsmin)^2,5] = 0,6*28.559.999/[2,5*(41,6342/31,23)*(31,23/0,3125)^2,5] = 51,4975 lbf/ft^2 = 0,3576 psi PV_max1 = Min(PS_Max, [PS_Max - W/144]/0,4) = Min(0,3576, 0,4168) = 0,3576 psi Condition 2: Specified external (vacuum) pressure only PSI2 = 3

Page 21: Tk T2202 800m3-439-01-001-MC RevA

Page 21 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

<V.8.1.2 Max External Pressure> PV_Max2 = 0,6*E/[PSI2*(Hts/D)*(D/tsmin)^2,5] = 0,6*28.559.999/[3*(41,6342/31,23)*(31,23/0,3125)^2,5] = 42,9146 lbf/ft^2 = 0,298 psi PV_Max = Min(PV_Max1,PV_Max2) = Min(0,3576,0,298) = 0,298 psi Since PSI1*Ps >= 3*Pe, PSI = PSI1 & Ps = Ps <V.8.1.3 Min thickness due to Design Pressure> t_min_ext = 1,23*[(PSI*Hts*Ps)^0,4]*(D^0,6)/(E^0,4) = 0,2672 in. <V.8.2 CIRCUMFERENTIALLY STIFFENED SHELLS> <V.8.2.1.2 Maximum Unstiffened Shell Height> Hs = 0,6*(tsmin^2,5)*(E)/[(D^1,5)*Ps*PSI] = 0,6*(0,3125^2,5)*(28.559.999)/[(31,23^1,5)*34,59*2,5] = 61,98 ft. <V.8.2.1.3 Number of Stiffeners Required> Ns = Hts/Hs - 1 (Rounded Up) = 41,6342/61,98 - 1 = -0,3283, Rounded Up => 0 Actual Number of Stiffeners = 0 <V.8.2.1.4 Maximum Stiffener Spacing on transposed shell> Lx = Hts/(Ns + 1) = 41,6342/(0 + 1) = 41,6342 ft Since no Int. Wind Girders are specified, Stiffener Spacing (Ls) = N.A. t_min_ext_stiff = N.A. <V.8.2.2 Intermediate Stiffener Ring Design> No calculations performed since no stiffeners are required. SHELL COURSE #1 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,2093, 0,2672, 0) = 0,2672 in. t-650min = 0,236 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in.

Page 22: Tk T2202 800m3-439-01-001-MC RevA

Page 22 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*8,2021*0,3125 = 10.250 lbf (New) = 8.959 lbf (Corroded) SHELL COURSE #2 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1748, 0,2672, 0) = 0,2672 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*8,2021*0,3125 = 10.250 lbf (New) = 8.959 lbf (Corroded) SHELL COURSE #3 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1402, 0,2672, 0) = 0,2672 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*8,2021*0,3125 = 10.250 lbf (New) = 8.959 lbf (Corroded) SHELL COURSE #4 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1057, 0,2672, 0) = 0,2672 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

Page 23: Tk T2202 800m3-439-01-001-MC RevA

Page 23 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*8,2021*0,3125 = 10.250 lbf (New) = 8.959 lbf (Corroded) SHELL COURSE #5 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0711, 0,2672, 0) = 0,2672 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*8,2021*0,3125 = 10.250 lbf (New) = 8.959 lbf (Corroded) SHELL COURSE #6 SUMMARY ------------------------------------------- t_min_ext governs. See the STIFFENING RINGS Calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0394, 0,2672, 0) = 0,2672 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,2672 in. t.actual = 0,3125 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*31,23)-0,3125]*12*0,6565*0,3125 = 820 lbf (New) = 717 lbf (Corroded)

Page 24: Tk T2202 800m3-439-01-001-MC RevA

Page 24 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

FLAT BOTTOM: NON-ANNULAR PLATE DESIGN Bottom Plate Material : A-516 Gr 70 Annular Bottom Plate Material : A-516 Gr 70 <Weight of Bottom Plate> Bottom_Area = PI/4*(Bottom_OD)^2 = PI/4*(378,7599)^2 = 112.673 in^2 Weight = Density * t.actual * Bottom_Area = 0,2833 * 0,875 * 112.673 = 27.930 lbf (New) = 22.903 lbf (Corroded) < API-650 > Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1) t_1 : Bottom (1st) Shell Course thickness. H'= Max. Liq. Level + P(psi)/(0,433) = 40,68 + (0,29)/(0,433) = 41,3498 ft St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(31,23)(41,3498 - 1)/(0,3125) = 10.484 PSI. (Within 24900 PSI limit for Non-Annular Bottom) Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(31,23)(41,3498 - 1)(1)/(0,2731) = 11.997 PSI. (Within 23200 PSI limit for Non-Annular Bottom) -------------------------- <Non-Annular Bottom Plates> t_min = 0,236 + CA = 0,236 + 0,1575 = 0,3935 in. (per Section « 5.4.1) t-Calc = t_min = 0,3935 in. t-Actual = 0,875 in. < Vacuum Calculations > (per ASME Section VIII Div. 1) Weight of Corr. Bottom Plate Resisting External Vacuum P_btm = 0,2833 * 0,7175 = 0,2033 PSI or 5,63 IN. H2O P_ext = PV + P_btm = -0,1233 + 0,2033 = 0,08 PSI or 2,22 IN. H2O Since P_ext > 0, P_ext = 0

Page 25: Tk T2202 800m3-439-01-001-MC RevA

Page 25 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

td_ext = (t-Calc - CA) (1st course) = (0,2672 - 0,0394) = 0,2278 in. ts = (t.actual - CA) (1st course) = (0,3125 - 0,0394) = 0,2731 in. C = 0,33 * td_ext / ts = 0,33 * 0,2278 / 0,2731 = 0,2753 t-Vac = OD*SQRT(C*P_ext/SE) + CA = (374,76)*SQRT[(0,2753)(0)/(22.689)(1)] + 0,1575 = 0,1575 in. t-Calc = MAX(t-Calc, t-Vac) = MAX(0,3935,0,1575) = 0,3935 in. P_max_external (Vacuum limited by bottom plate thickness) = -([(t - CA)/OD]^2*(S*E/C) + P_btm) = -([(0,875 - 0,1575)/374,76]^2*(22.689*1/0,2753) + 0,2033) = -0,5054 PSI or -14,01 IN. H2O ------------------- Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5 Transforming Courses (1) to (6) Wtr(1) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(2) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(3) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(4) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(5) = 8,2021*[ 0,3125/0,3125 ]^2.5 = 8,2021 ft Wtr(6) = 0,6237*[ 0,3125/0,3125 ]^2.5 = 0,6237 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 41,6342 ft <API-650 APPENDIX V FOR EXTERNAL PRESSURE> W (Wind Pressure) = 31*(V/120)^2 = 31*(113/120)^2 = 27,49 lbf/ft^2 Pe (External Pressure) = 0,1233 PSI, OR 3,42 In. H2O = 17,7552 lbf/ft^2 Ps (Shell Design Pressure) = MAX(Pe, W + 0,4*Pe) = MAX(17,7552, 27,49 + 0,4*17,7552) = MAX(17,7552, 34,5921) = 34,59 lbf/ft^2

Page 26: Tk T2202 800m3-439-01-001-MC RevA

Page 26 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

* * * BOTTOM END STIFFENING CALCULATIONS PER V.8 * * * Using API-650 App. V for flat bottom tank stiffening. <V.8.2.3 Contributing Shell at Stiffener> w_shell = 1,47*(D*tsn)^0,5 = 1,47*(31,23*0,3125)^0,5 = 4,5923 in. <V.8.2.3.1 Radial Load, VI> VI = Ps * H/48 = 34,59 * 41,667/48 = 30,0263 lbf/ft <V.8.2.2.1 Number of Waves> N^2 = SQRT[5,33*D^3/(tsmin*Hts^2)] = SQRT[5,33*31,23^3/(0,3125*41,6342^2)] = 17,31 N = 4,16 <V.8.2.3.2 Required Moment of Inertia> w_btm (Width of bottom available for I) = 16*tb = 14in. I_reqd = 648*VI*D^3/[E*(N^2-1)] = 648*30,0263*31,23^3/[28.559.999*(4,16^2-1)] = 1,273 in^4 I_actual = 230,2345 in^4 using NONE, tsn = 0,3125 in., & W_shell = 4,5923 in. <V.8.2.3.3.1 Area Required> define f = Min(Fy_bottom, Fy_shell, Fy_stiff) = Min(22.689, 22.689, N.A.) = 22.689 psi A_reqd = 6*VI*D/f = 6*30,0263*31,23/22.689 = 0,248 in^4 <V.8.2.3.3.2 Area required by stiffener> A_stiff_reqd = A_reqd - JEb*tb*w_btm - JEn*tsn*w_shell = 0,248 - 1*0,875*14 - 0,85*0,3125*4,5923 = -13,22 in^2 Since A_stiff_reqd <=0, No Bottom Stiffener Required A_stiff = 0 in^2 using NONE A_actual = A_stiff + JEb*tb*w_btm + JEn*tsn*w_shell = 0 + 1*0,875*14 + 0,85*0,3125*4,5923 = 13,47 in^2

Page 27: Tk T2202 800m3-439-01-001-MC RevA

Page 27 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

< FLAT BOTTOM: NON-ANNULAR SUMMARY > Bottom Plate Material : A-516 Gr 70 t.required = 0,3935 in. t.actual = 0,875 in.

Page 28: Tk T2202 800m3-439-01-001-MC RevA

Page 28 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -28.425 lbf Anchorage NOT required for internal pressure. WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 113 mph vf = Velocity Factor = (vs/120)^2 = (113/120)^2 = 0,8867 Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0,8867 = 26,6021 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0,962*26.868*4,633*0,2679/31,23^2 + 8*0,4606) = 1,3199 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,4747 PSI 1.6*P_F41 = 2,1118 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(26,6021,262,345) = 26,6021 lbf/ft^2 Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 3,2154*31,23^2/48 = 65,334 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*31,23 = 15,615 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*15,615^2 = 766,009 ft^2 M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (26,6021)(766,009)(15,615) = 318.194 ft-lbf Xs (Moment Arm of Wind Force on Shell) = H/2 = (41,667)/2 = 20,8335 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (41,667)(31,23 + 0/6) = 1.301 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0,8867)(18)(1.301)(20,8335) = 432.706 ft-lbf

Page 29: Tk T2202 800m3-439-01-001-MC RevA

Page 29 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

Mw (Wind moment) = M_roof + M_shell = 318.194 + 432.706 = 750.900 ft-lbf W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.) = W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2) = 45.512 + 14.902 - 0,29*(PI/4)(144)(31,23^2) = 47.619 lbf RESISTANCE TO OVERTURNING (per API-650 5.11.2) An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < MDL/1,5 2) Mw + 0,4MPi < (MDL + MF)/2 Mw = Destabilizing Wind Moment = 750.900 ft-lbf MPi = Destabilizing Moment about the Shell-to-Bottom Joint from « Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0,29*(3,1416*31,23^2/4)*(144)*(15,615) = 499.501 ft-lbf MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the « Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (45.512 + 14.902)*15,615 = 943.365 ft-lbf tb = Bottom Plate thickness less C.A. = 0,7175 in. wl = Circumferential loading of contents along Shell-To-Bottom « Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*0,7175*SQRT(34.033*40,68) = 3.943 lbf/ft wl = 0.9 * H_liq * OD (lesser value than above) = 0,9*40,68*31,23 = 1.143 lbf/ft MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (15,615)(1.143)(3,1416)(31,23) = 1.751.694 ft-lbf Criteria 1 0,6*(750.900) + 499.501 < 943.365/1,5 Since 950.041 >= 628.910, Tank must be anchored. Criteria 2 750.900 + 0,4 * 499.501 < (943.365 + 1.751.694)/2 Since 950.700 < 1.347.530, Tank is stable. RESISTANCE TO SLIDING (per API-650 5.11.4)

Page 30: Tk T2202 800m3-439-01-001-MC RevA

Page 30 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

F_wind = vF * 18 * As = 0,8867 * 18 * 1.301 = 20.770 lbf F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + W_min_Liquid) = 0,4 * (14.902 + 45.512 + 22.903 + 0) = 33.327 lbf No anchorage needed to resist sliding since F_friction > F_wind <Anchorage Requirement> Anchorage required since Criteria 1, Criteria 2, or Sliding are NOT acceptable. Bolt Spacing = 10 ft, Min # Anchor Bolts = 10

Page 31: Tk T2202 800m3-439-01-001-MC RevA

Page 31 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:02

ANCHOR BOLT DESIGN Bolt Material : A-307 Sy = 36.000 PSI < Uplift Load Cases, per API-650 Table 5-21b > D (tank OD) = 31,23 ft P (design pressure) = 8,04 INCHES H2O Pt (test pressure per F.4.4) = P = 8,04 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0,5 in. Mw (Wind Moment) = 750.900 ft-lbf Mrw (Seismic Ringwall Moment) = 0 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell) W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell) W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell) For Tank with Self Supported Roof, W1 = Corroded Shell + Shell Insulation = 45.512 + 0 = 45.512 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates + Roof Dead Load = 45.512 + 0 + 14.902 + 114.196 * 23,0024/144 = 78.656 lbf W3 = New Shell + Shell Insulation = 52.070 + 0 = 52.070 lbf Uplift Case 1: Design Pressure Only U = [(P - 8*t_h) * D^2 * 4,08] - W1 U = [(8,04 - 8*0,5) * 31,23^2 * 4,08] - 45.512 = -29.436 lbf bt = U / N = -2.453 lbf Sd = 15.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 2: Test Pressure Only U = [(Pt - 8*t_h) * D^2 * 4,08] - W1 U = [(8,04 - 8*0,5) * 31,23^2 * 4,08] - 45.512 = -29.436 lbf bt = U / N = -2.453 lbf Sd = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 32: Tk T2202 800m3-439-01-001-MC RevA

Page 32 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5,208 = 26,6021/5,208 = 5,1079 IN. H2O PWS = vF * 18 = 0,8867 * 18 = 15,9613 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 15,9613*(31,23+0/6)*41,667^2/2 = 432.706 ft-lbf U = PWR * D^2 * 4,08 + [4 * MWH/D] - W2 = 5,1079*31,23^2*4,08+[4*432.706/31,23]-78.656 = -2.908 lbf bt = U / N = -242 lbf Sd = 0,8 * 36.000 = 28.800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0,4*Av) U = [4 * 0 / 31,23] - 78.656*(1-0,4*0) = -78.656 lbf bt = U / N = -6.555 lbf Sd = 0,8 * 36.000 = 28.800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 6: Design Pressure + Wind Load U = [(0,4*P + PWR - 8*t_h) * D^2 * 4,08] + [4 * MWH / D] - W1 = [(0,4*8,04+5,1079-8*0,5)*31,23^2 * 4,08]+[4*432.706 / « 31,23] - 45.512 = 27.116 lbf bt = U / N = 2.260 lbf Sd = 20.000 = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 2.260/20.000 = 0,113 in^2 Uplift Case 7: Design Pressure + Seismic Load U = [(0,4*P - 8*t_h)*D^2 * 4,08] + [4*Mrw/D] - W1*(1-0,4*Av) U = [(0,4*8,04-8*0,5)*31,23^2*4,08]+[4*0/31,23]-45.512*(1-0,4*0) = -48.632 lbf bt = U / N = -4.053 lbf Sd = 0,8 * 36.000 = 28.800 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 33: Tk T2202 800m3-439-01-001-MC RevA

Page 33 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. < ANCHOR BOLT SUMMARY > Bolt Root Area Req'd = 0,113 in^2 d = Bolt Diameter = 1,25 in. n = Threads per inch = 7 A_s = Actual Bolt Root Area = 0,7854 * (d - 1,3 / n)^2 = 0,7854 * (1,25 - 1,3 / 7)^2 = 0,8896 in^2 Exclusive of Corrosion, Bolt Diameter Req'd = 0,479 in. (per ANSI B1.1) Including Corrosion, Bolt Diameter Req'd = 0,604 in. (per ANSI B1.1) Actual Bolt Diameter = 1,250 in. Bolt Diameter Meets Requirements. <ANCHORAGE REQUIREMENTS> Wind or Uplift calculations require anchorage, Minimum # Anchor Bolts = 10 per API-650 5.12.3 Actual # Anchor Bolts = 12 Anchorage Meets Spacing Requirements.

Page 34: Tk T2202 800m3-439-01-001-MC RevA

Page 34 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

ANCHOR CHAIR DESIGN (from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII) Entered Parameters Chair Material: A-36 Top Plate Type: DISCRETE Chair Style: VERT. TAPERED a : Top Plate Width = 7,874 in. b : Top Plate Length = 7,366 in. k : Verical Plate Width = 4,709 in. c : Top Plate Thickness = 1,000 in. d : Bolt Nominal Diameter = 1,250 in. e : Bolt Eccentricity = 4,610 in. f : Outside of Top Plate to Hole Edge = 1,993 in. g : Distance Between Vertical Plates = 3,150 in. h : Chair Height = 12,000 in. j : Vertical Plate Thickness = 0,500 in. m : Bottom Plate Thickness = 0,8750 in. t : Shell Course + Repad Thickness = 0,3125 in. r : Nominal Radius to Tank Centerline = 187,224 in. Design Load per Bolt: P = 3,39 KIPS (1.5 * Maximum from Uplift « Cases) d = Bolt Diameter = 1,25 in. n = Threads per unit length = 7 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1,25 - 1.3 / 7)^2 = 0,89 in^2 Seismic Design Bolt Load = Pa = 3*Pab = 0 KIPS Anchor Chairs will be designed to withstand Design Load per Bolt. Anchor Chair Design Load, P = 3,39 KIPS For Anchor Chair material: A-36 Per API-650 Table 5-2b, Sd_Chair = 20 KSI Since bottom t > 3/8 in., h_min = 6 in. For Discrete Top Plate, Max. Chair Height Recommended : h <= 3 * a h_max = 3 * 7,874 = 23,622 in. e_min = 0,886 * d + 0,572 = 1,68 in. g_min = d + 1 = 2,25 in.

Page 35: Tk T2202 800m3-439-01-001-MC RevA

Page 35 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

f_min = d/2 + 0,125 = 0,75 in. c_min = SQRT[P / Sd_Chair / f * (0,375 * g - 0,22 * d)] = SQRT[3,39 / 20 / 1,993 * (0,375 * 3,15 - 0,22 * 1,25)] = 0,278 in. j_min = MAX(0,5, [0,04 * (h - c)]) = MAX(0,5, [0,04 * (12,000 - 1,000)]) = 0,5 in. b_min = e_min + d + 1/4 = 1,680 + 1,25 + 1/4 = 3,18 in. <Stress due to Top Plate Thickness> S_actual_TopPlate = P / f / c^2 * (0,375 * g - 0,22 * d) = 3,39/1,993/1^2 * (0,375 * 3,15 - 0,22 * « 1,25) = 1,54 KSI <Shell Stress due to Chair Height> (For Discrete Top Plate) S_actual_ChairHeight = P * e / t^2 * F3 where F3 = F1 + F2, now F1 = (1,32 * z) / (F6 + F7) where F6 = (1,43 * a * h^2) / (r * t) and F7 = (4 * a * h^2)^(1/3) and z = 1 / (F4 * F5 + 1) where F4 = (0,177 * a * m) / SQRT(r * t) and F5 = (m / t)^2 yields F5 = (0,875 / 0,3125)^2 = 7,84 yields F4 = (0,177 * 7,874 * 0,875) / SQRT(187,2238 * 0,3125) = 0,1594 yields z = 1 / (0,1594 * 7,84 + 1) = 0,4445 yields F7 = (4 * 7,874 * 12,^2)^(1/3) = 16,5528 yields F6 = (1,43 * 7,874 * 12,^2) / (187,2238 * 0,3125) = 27,713 yields F1 = (1,32 * z) / (27,713 + 16,5528) = 0,0133 now F2 = 0,031 / SQRT(r * t) yields F2 = 0,031 / SQRT(187,2238 * 0,3125) = 0,0041 yields F3 = 0,0133 + 0,0041 = 0,0173 yields S_actual_ChairHeight = 3,39 * 4,61 / 0,3125^2 * 0,0173 = 2,7695 KSI Maximum Recommended Stress is 25 KSI for the Shell (per API-650 E.6.2.1.2) Sd_ChairHeight = 25 KSI

Page 36: Tk T2202 800m3-439-01-001-MC RevA

Page 36 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

< ANCHOR CHAIR SUMMARY > S_actual_TopPlate Meets Design Calculations (within 105% of Sd_Chair) S_actual_TopPlate/Sd_Chair = 1,54/28,5884 = 5,4% S_actual_ChairHeight Meets Design Calculations (within 105% of Sd_ChairHeight) S_actual_ChairHeight/Sd_ChairHeight = 2,7695/25 = 11,1%

Page 37: Tk T2202 800m3-439-01-001-MC RevA

Page 37 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

CAPACITIES and WEIGHTS Maximum Capacity (to upper TL) : 237.964 gal Design Capacity (to Max Liquid Level) : 232.325 gal Minimum Capacity (to Min Liquid Level) : 0 gal NetWorking Capacity (Design - Min.) : 232.325 gal New Condition Corroded ----------------------------------------------------------- Shell 52.070 lbf 45.512 lbf Roof Plates 16.176 lbf 14.902 lbf Bottom 27.930 lbf 22.903 lbf Stiffeners 315 lbf 315 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf ----------------------------------------------------------- Total 96.491 lbf 83.632 lbf Weight of Tank, Empty : 96.491 lbf Weight of Tank, Full of Product (SG=1): 2.082.396 lbf Weight of Tank, Full of Water : 2.082.396 lbf Net Working Weight, Full of Product : 2.035.336 lbf Net Working Weight, Full of Water : 2.035.336 lbf Foundation Area Req'd : 766 ft^2 Foundation Loading, Empty : 125,97 lbf/ft^2 Foundation Loading, Full of Product (SG=1) : 2.719 lbf/ft^2 Foundation Loading, Full of Water : 2.719 lbf/ft^2 SURFACE AREAS Roof 793 ft^2 Shell 4.088 ft^2 Bottom 766 ft^2 Wind Moment 750.900 ft-lbf Seismic Moment (NA) since zone = 0 MISCELLANEOUS ATTACHED ROOF ITEMS MISCELLANEOUS ATTACHED SHELL ITEMS

Page 38: Tk T2202 800m3-439-01-001-MC RevA

Page 38 of 38Idear Ingenieria - Tecins-Siderar-Tk T2202 800m3-439-01-001-MC RevA

TANK REPORT: Printed - 21/01/2015 12:58:03

MAWP & MAWV SUMMARY FOR Tecins-Siderar-Tk T2202 800m3-439-01-001-MC « RevA MAXIMUM CALCULATED INTERNAL PRESSURE MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7) MAWP = Maximum Calculated Internal Pressure (due to shell) = 2,5 PSI or 69,28 IN. H2O MAWP = Maximum Calculated Internal Pressure (due to roof) (Non-Frangible Roof also Per F.1.2, F.4.1 and F.4.2) = 1,3199 PSI or 36,58 IN. H2O TANK MAWP = 1,3199 PSI or 36,58 IN. H2O MAXIMUM CALCULATED EXTERNAL PRESSURE MAWV = -1 PSI or -27,71 IN. H2O (per API-650 V.1) MAWV = Maximum Calculated External Pressure (due to shell) = -0,298 PSI or -8,26 IN. H2O MAWV = Maximum Calculated External Pressure (due to roof) = -0,3302 PSI or -9,15 IN. H2O MAWV = Maximum Calculated External Pressure (due to bottom plate) = -0,5054 PSI or -14,01 IN. H2O TANK MAWV = -0,298 PSI or -8,26 IN. H2O