tn h01-hand book for design of steel structures

210
TN H01 ACECOMS Technical Notes On Hand Book for Design of Steel Structures Naveed Anwar Buddhi S. Sharma © Asian Center for Engineering Computations and Software

Upload: edward-van-martino

Post on 28-Apr-2015

543 views

Category:

Documents


69 download

TRANSCRIPT

Page 1: TN H01-Hand Book for Design of Steel Structures

TN H01

ACECOMS Technical Notes On

Hand Book for Design of Steel

Structures

Naveed Anwar Buddhi S. Sharma

© Asian Center for Engineering Computations and Software

Page 2: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures ii

COPYRIGHT

These technical tones and all associated documentation are proprietary and copyrighted products. Worldwide rights of ownership are those of ACECOMS, AIT. Reproduction of the documentation in any form, without prior written authorization from ACECOMS, AIT, explicitly prohibited. Further information and copies of this documentation may be obtained from:

ACECOMS, AIT, PO Box 4, Klong Luang

Pathumthani, 12120 – Thailand.

Tel: (662) 524-5539 Fax: (662) 524-6059

E-mail: [email protected] Web: www.acecoms.ait.ac.th

Material from various sources including books and websites has been acknowledged.

Page 3: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3

Author Naveed Anwar Buddhi S. Sharma © Copyright 2003 by ACECOMS, AIT, Thailand All rights reserved. No part of this compilation may be reproduced in any form, by Photostat, microfilm, xerography or any other means or incorporated into any information retrieval system, electronic or mechanical, without the permission of its copyright owner. All inquiries should be addressed to: Asian Center for Engineering Computations and Software ACECOMS, AIT, P.O. Box 4, Klong Luang, Pathumthani, Thailand 12120. http://www.acecoms.ait.ac.th

Page 4: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4

ACKNOWLEDGEMENTS

First, the author wishes to express his appreciation to his wife, Farah, for her love, support and years of understanding during development of software and writing of these books. Author is also grateful to his parents for their love and support.

Numerous people have guided and helped in writing of these notes. The foremost is Prof. Worsak Kanok-Nukulchai, who as a teacher, advisor and as the Director of ACECOMS and Dean of School of Civil Engineering has inspired, encouraged and guided the author for nearly 10 years in both professional as well as personal endeavors.

Page 5: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5

RELATED SOFTWARE

Several software packages are available through the Asian Center for Engineering Computations and Software (ACECOMS), related to analysis and design of slab systems. These include:

SYSDesigner: SYSDesinger, which stands for 'Siam Yamato Steel Designer', is a software developed by ACECOMS, AIT for Siam Yamato Co. Ltd. Thailand. This software, to be used under windows platform (Win95/98 and WinNT), has been developed for the design of structural steel members for hot rolled steel specifically those produced by SYS. The software carries out it internal calculations based on working stress design method (AISC/ASD).

Page 6: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures vi

RELATED PUBLICATIONS

Various publications are available through Asian Center for Engineering Computations and Software (ACECOMS), related to these technical notes, giving in-depth knowledge and understanding of the topic as a whole. These publications include:

o WN A04-Integrated Approach to Steel Design

o WN E01-Design of Steel Beams

o WN E02-Design of Steel Columns

o WN E03-Design of Strut and Ties

Page 7: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-i

Table of content TABLE OF CONTENT.........................................................................................................................................................I

GENERAL .................................................................................................................................................................................

1. INTRODUCTION TO STEEL STRUCTURES...................................................................................................................1-3 2. DESIGN PHILOSOPHIES..............................................................................................................................................1-3

2.1. Allowable Stress Design (ASD).......................................................................................................................1-3 2.2. Limit State Design (LRFD) .............................................................................................................................1-3

3. OVERVIEW OF VARIOUS SPECIFICATIONS FOR HOT-ROLLED STEEL SHAPES........................................................1-4 4. MECHANICAL PROPERTIES .......................................................................................................................................1-6 5. CODES AND SPECIFICATIONS....................................................................................................................................1-6

SIAM YAMATO STEEL SECTIONS..................................................................................................................................

1. INTRODUCTION..........................................................................................................................................................2-1 2. PRODUCT SPECIFICATIONS.......................................................................................................................................2-1 3. SIZES AND PROPERTIES.............................................................................................................................................2-3

DESIGN OF TENSION MEMBERS ....................................................................................................................................

1. INTRODUCTION..........................................................................................................................................................3-1 2. GENERAL PROCEDURE..............................................................................................................................................3-1 3. EFFECTIVE NET AREA...............................................................................................................................................3-2 4. DESIGN EXAMPLES ....................................................................................................................................................3-4 5. DESIGN TABLES ........................................................................................................................................................3-6 6. SOFTWARE IMPLEMENTATION..................................................................................................................................3-7

DESIGN OF COMPRESSION MEMBERS........................................................................................................................

1. INTRODUCTION..........................................................................................................................................................4-1 2. FACTORS INFLUENCING THE STRENGTH OF COMPRESSION MEMBER ......................................................................4-1 3. MODES OF FAILURE OF COMPRESSION MEMBER ....................................................................................................4-2 4. GENERAL PROCEDURE FOR DESIGN OF COMPRESSION MEMBER...........................................................................4-4 5. STRESS REDUCTION FACTOR QS..............................................................................................................................4-6 6. EFFECTIVE AREA FACTOR QA...................................................................................................................................4-6 7. EFFECTIVE LENGTH FACTOR K................................................................................................................................4-7 8. DESIGN EXAMPLES ...................................................................................................................................................4-8 9. DESIGN TABLES ......................................................................................................................................................4-15 10. SOFTWARE IMPLEMENTATION ...........................................................................................................................4-15

DESIGN OF BEAMS...............................................................................................................................................................

1. INTRODUCTION..........................................................................................................................................................5-1 2. GENERAL PROCEDURE..............................................................................................................................................5-1 3. LATERAL TORSIONAL BUCKLING..............................................................................................................................5-5 4. LOCAL BUCKLING OF BEAM ELEMENTS AND SECTION COMPACTNESS.................................................................5-5 5. DESIGN FOR MOMENT ..............................................................................................................................................5-7 6. CHECK FOR SHEAR....................................................................................................................................................5-8 7. CHECK FOR CRIPPLING .............................................................................................................................................5-9 8. CHECK FOR SIDE SWAY WEB BUCKLING ..............................................................................................................5-10 9. DESIGN EXAMPLES .................................................................................................................................................5-12 10. DESIGN TABLES AND CHARTS ...........................................................................................................................5-21 11. SOFTWARE IMPLEMENTATION ...........................................................................................................................5-22

DESIGN OF COLUMNS.........................................................................................................................................................

1. INTRODUCTION..........................................................................................................................................................6-1

Page 8: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-ii

2. MOMENT AMPLIFICATION........................................................................................................................................6-1 3. COLUMN INTERACTION EQUATIONS........................................................................................................................6-3 4. GENERAL PROCEDURE..............................................................................................................................................6-4 5. DESIGN EXAMPLES ...................................................................................................................................................6-7 6. SOFTWARE IMPLEMENTATION................................................................................................................................6-11

INTRODUCTION TO CONNECTION DESIGN..............................................................................................................

1. INTRODUCTION……………………………………………………………………………………………... 7-1 2. TRUSS CONNECTIONS………………………………………………………………………………………. 7-1 3. PORTAL FRAME CONNECTIONS………………………………………………………………………………. 7-3 4. BUILDING FRAME CONNECTIONS……………………………………………………………………………. 7-6 5. COLUMN BASES……………………………………………………………………………………………. 7-11 6. DESIGN EXAMPLES…………………………………………………………………………………………. 7-15

Page 9: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-3

General

1. Introduction to Steel Structures

Steel is one of the most versatile building materials. Steel structures have always had the advantages of lightness, stiffness, and strength and lend themselves to rapid construction compared to other construction materials. The significant increase in the use of steel is due to the facts that new improvements have been made in the various aspect of steel technology. The advances in steel fabrication techniques, improved understanding of structural behavior, and the upgrading in the standards of structural steel design as well as the wide dissemination of excellent material are some of these factors. This manual is intended to present, in a condensed form, the relevant information likely to be useful to the modern structural steel designer.

2. Design Philosophies

Structures and structural elements must provide adequate safety, no matter what philosophy of design is used. The design must provide some reserve strength for the possibility of overload and under strength. These can arise from various sources like variation of material properties, uncertainties in the estimation of imposed loads, various assumptions and simplifications made in analysis, and imperfections in construction procedures. In general, a thorough analysis of all uncertainties that might influence the structural strength during the service life of the structure is not practical or perhaps even possible. So, the structural safety can only be based on probabilistic methods. Two philosophies of design in current use are:

• Working Stress Design

• Limit State Design The Working Stress Design is also known as Allowable Stress Design (ASD). Limit State Design includes the methods commonly known as "Ultimate Strength Design (USD)", "Strength Design (SD)", "Plastic Design (PD) ", "Load Factor Design (LFD)", "Limit Design (LD) " and the recently "Load and Resistance Factor Design (LRFD)".

2.1. Allowable Stress Design (ASD)

In this philosophy all loads are assumed to have the same average variability. The entire variability of the loads and the strengths is placed on the strength side of the equation. The design procedure includes the determination of allowable or working stress on a structure member by applying factor of safety on the actual stress induced by the expected design load (service load). The analysis and design are fully based on elastic analysis.

Chapter

1

Page 10: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-4

2.2. Limit State Design (LRFD)

The structural member or their component is so proportioned that its resistance when reduced by a resistance factor equals or exceeds the service load multiplied by overload factors. As this is the probability-based model, more realistic weightage are given for different type of loads and behavior depending upon the probability of occurrence and uncertainties involved in their prediction. Plastic design is a special case of limit state design.

3. Overview of Various Specifications for Hot-rolled Steel Shapes

Due to their own production and construction situation in various countries, the classification of hot-rolled steel shapes in various specifications is different. In general, the higher the industrialization level, the more the classification of structural steel. This is due to a need of various types and grades of structural steel in the complicated projects of those industrialized countries. A brief discussion for some of the model standard specifications is presented in the following section.

3.1.1. ASTM ( American Society for Testing and Materials )

For the specifications of ASTM, there are 16 specifications for structural steel approved for the use in building construction, and 6 out of those are available in hot rolled steel shapes. However, for the most commonly used grades, there are only two, i.e. A36 (Carbon Steel) and A572 (High-Strength Low-Alloy Steel). For other ASTM hot-rolled grades, they have some specific properties, such as corrosion-resistant of A242 and A588, etc. All the grades of hot-rolled shape are suitable for welded fabrication.

In the design specification for steel buildings of American Institute of Steel Construction (AISC, the above-mentioned grades of steel, i.e. A36 and A572, Gr. 50 with included in the design chart and table.

3.1.2. BS (British Standards)

Structural steel available in the UK consists of four main grades: 40, 43, 50 and 55, where the figures denote the approximated value of ultimate strength in kgf/mm2. Each grade in subdivided into a descending order of the values of C.E. (Carbon Equivalent, which is a measure of weldability) from A to E. The grades of 43 and 50, which have the yield strength of 275 Mpa and 355 Mpa, respectively, are frequently used in the steel buildings.

3.1.3. DIN (Deutsches Institut fur Normung)

In general, materials to be used in the hot-rolled shape include only St 37-2, St37-3 and St 52-2 steel, or briefly referred to as St 37 and St 52, which have the yield strength of 245 Mpa and 355 Mpa, respectively.

3.1.4. JIS (Japanese Industrial Standards)

In the steel buildings, grades SS and SM are commonly used for hot-rolled shapes, in which grade SS is specified for the secondary or temporary structural member with the bolt and rivet, or welded connections. Grades SM, which cover the yield strength from 245 Mpa of SM 400 to 460 Mpa of SM 570 are included in the JIS G3106- Rolled

Page 11: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-5

Steel for Welded Structure. JIS G3106: Rolled Steels for Welded Structure (1992). This standard specifies the hot rolled steel product used for buildings, bridges, ships, rolling stocks, petroleum storage tanks, containers and other constructions which required superiority in weldability. JIS G3136: Rolled Steels for Building Structure (1994). This standard specifies the hot-rolled steel products used for structure members for buildings. In JIS G3136, there are 5 grades of steel available, i.e.SN400A, SN400B, SN400C, SN490B and SN490B, SM490C, SM 490YA, SM490YB, SM520B, SM520C and SM570. There are some differences in chemical composition and mechanical properties between two standards, which can be seen, in the below Table 1.1.

3.1.5. TIS (Thai Industrial Standards)

From the draft of TIS, the classification of structure steel of Thailand is quit similar to that of Japan, however not all the Japanese grades are available in Thai standard. For hot-rolled shape, only grades SM which cover from SM 400 (245 Mpa yield strength) to SM 570 (460 Mpa yield strength) are used.

3.1.6. AS (Australian Standards)

There are only two grades of structural steel, i.e. 250 and 350 (which have the yield strength of 250 Mpa and 350 Mpa, respectively) commonly used in steel buildings.

3.1.7. ISO (International Standard Organization) and EN (Europaische Norm)

Both ISO and EN specifications have similar classification of steel grade, and there are three classes, i.e. Fe 360, Fe 450 and Fe 510 (whose yield strength ranges from 235, 275 and 350 Mpa, respectively).

3.2. Material Specifications for Hot-Rolled Steel Shapes

3.2.1. Differences in Mechanical Properties

The comparisons of mechanical properties of hot-rolled steel shape in the selected eight specifications, i.e. JIS, TIS, ASTM, BS, DIN, AS, ISO and EN are shown in Table 1.1. There are totally six groups of steel according to the different level of yield strength which is a governing material property in the design of steel member. The mechanical properties mainly include the items of yield and tensile strengths, notch toughness, and elongation.

Almost all of steel grades tabulated in Table 1.1 for hot-rolled shape are suitable for welding connection, except Group 1, in which only one Japanese grade, i.e. SS 400, is for general purpose, and its weldability is not as good as that as SM 400.

In the design of steel structure member, the yield strength is the main material property. As shown in Table 1.1 for all of the specifications, there is a little bit difference of yield strength for various thickness of steel plate i.e. the yield strength decreases as the plate becomes thicker. The reason is the larger effect of residual stress in the thicker plate, however, in common case, the plate thickness of hot-rolled shape is not more than 40 mm.

In some specifications, there are several sub-grades under each category of steel, e.g. for JIS, SM 400A, B, or C in the grade SM 400. The meaning of sub-grade for various countries is different. In Japanese specification (JIS), the sub-grades indicate the required values of absorbed energy in Charpy test at the same test temperature 0oC, which are N/A, 27 J, 47 J, for the sub-grades A, B, C, respectively. On the other hand, in British Standards (BS), the sub-grades A to F give the index of descending Charpy

Page 12: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-6

test temperature for the same absorbed energy, i.e. 27 J, as can be seen clearly from Table 1.1 For Australian Standards (AS), the sub-grades (L0, L15) indicate that the Charpy test temperature is 0 oC, -15 oC, respectively, for the same absorbed energy, i.e. 27 J. In ISO specification, the sub-grades B, C and D indicate various Charpy test temperatures, i.e. +20 oC, 0 oC, or –20 oC, respectively, under the same absorbed energy of 27 J. In JIS G3106 and JISG3136, it can be seen that yield strength are almost same, except two cases, i. e. SM400A ( when t=< 16 mm) is 245 Mpa. But 235 Mpa for SN400A ( when 16<t=<40 mm ) is 315 Mpa, but 325 Mpa for SN490, tensile strength are same, Notch Toughness are almost same, except one case of sub-grade C, in G3106, the absorbed energy is 47 J, but 27 J in G3136. For elongations, due to the various gauge length that adopted in two standards, the requirements of the maximum properties, as shown in Table 1.1. Due to the ductile requirement for steel structures, the materials used for hot-rolled shape should have certain values of elongation at an ultimate point. The required values of elongation for various specification range from 17% to 26 %, and as shown in Table 1.1, the difference of required elongation among various specifications is small for the same steel class.

3.2.2. Difference in Chemical Properties

Structural steels are a mixture of iron and carbon with varying amounts of other elements- primarily manganese, phosphorus, sulfur and silicon. Carbon (C) is the principle strengthening (hardening) element in steel where each addition increases the hardness, tensile strength and yield strength of the steel. On the other hand, increased amount of carbon cause a decrease in ductility, toughness and weldability. Manganese(Mn) increases the hardness and strength of steels but to a lesser degree than does carbon and it can minimize the harmful effects of sulfur. Silicon (Si) is the principal deoxidizer used in the manufacture of structural steels. Sulfur (S) and Phosphorus (P) adversely affect the surface quality, as a strong tendency to segregate and decrease ductility, toughness and weldability, therefore it is generally considered undesirable elements. Chemical properties of various grades of steels are shown in Table 1.3. As demonstrated in Table1.3, the chemical compositions for various specifications are compared in the same steel groups as classified in the comparison of mechanical properties. The content of adverse elements, such as P and S, are most strictly controlled in Japanese specifications in comparison with other specifications, i. e. the maximum content of P and S as seen in Table1.3 This means there is no limitation for the content of C, Si and Mn. It is noted that there is no similar grade to SS400 in other countries specifications. In JIS G3106, the requirements of adverse elements (P and S) for all grade are same ( 0.0345 % ), but in JIS G3136, the requirements are varied depending on the type of sub-grades, as shown in Table 1.3, especially for subgrade C, the content of Sulfur (S) should be very low i.e. 0.008%. The requirements of the content of other elements are similar, as shown in Table 1.3

3.2.3. Differences in Test Procedures

3.2.3.1. Tensile Test

Mechanical properties depend primarily upon the chemical composition, rolling processes, and heat treatment of the steels. Other factors, which may influence the mechanical properties, are the techniques of testing, such as the rate of loading the specimen, the conditions and geometry of the specimen, the cold work, and the temperature at the time of testing.

Page 13: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-7

The usual test coupon is a tensile specimen and for all practical purposes the behavior in compression is assumed to be similar to that in tension. Because the tensile test is easier to conduct, most mechanical properties are taken from the tensile stress-strain diagram. The procedures of the tensile test in various countries are quite similar, and the dimensions of the coupon are almost similar among various specifications. The most obvious difference among the specifications is the selection of gauge length. As shown in Table1.1, ASTM use both 200 mm and 50 mm for gauge length to indicate the elongation. On the other hand, in European countries and Australia, i. e. BS, DIN, AS, ISO and EN prefer proportional gauge length, i.e. oo SL 65.5= Where So is the sectional area of the coupon. It is noted that the later one seems to be more rational due to the change of specimen section.

3.2.3.2. Impact Test

Brittle behavior and cleavage-type fractures are the important properties of structural steel subjected to the impact load. Among various types of impact test, the Charpy notch test seems to be the one the most commonly used method. The test evaluates the notch toughness of the steel which is defined as the resistance to fracture in the presence of notch under impact loads. The test results are used qualitatively in the selection of a steel for a specific application. For the Charpy notch test in all specifications selected in this study, there is no much difference in the specimen dimensions or the test instruments. Therefore, as can be seen in Table1.1 the test result, which means the absorbed energy under specific range of temperature, is almost the same for all of the specifications.

Page 14: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-8

Table 1.1 Comparison of Mechanical Property Classification Strength Notch Toughness Elongation

Group Standard Description Designation Thickness t mm

Min. Yield Strength ( Mpa )

Tensile Strength ( Mpa )

Test Temp. 0C

Absorbed Energy ( J )

Thickness t ( mm )

Gauge Length ( mm )

Elongation% ( min.)

JIS G3101 Rolled steel

for general structure

SS 400

t40

40t16

16t

<

≤<

245 235 215

400 – 510 - -

5016165

5

≤<≤<

tt

t

50 200 200

21 17 21

TIS - ASTM -

BS - DIN - AS - ISO -

(1)

EN -

A - -

B 0 27

JIS G3106

Rolled steel for welded structure

SM 400

C 100t75

75t40

40t16

16t

≤<

≤<

≤<

245 135 215 215

400 – 510

0 47 5016165

5

≤<≤<

tt

t

50 200 200

23 18 22

(2)

JIS G3136

Rolled steel for building structure

SN 400 A

100404016

161612

126

≤<≤<

<<≤≤

tt

tt

235 235 235 235 215

400 – 510 - - 1004040161616

≤<≤<≤≤

ttt

200 200 50

17 21 23

Page 15: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-9

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard

Description Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation % (min)

JIS G3136 SN 400 B

100404016

161612

126

≤<≤<

<<≤≤

tt

tt

235 235 235 235 215

400 – 510 - 27 1004040161616

≤<≤<≤≤

ttt

50 200 200

21 17 21

JIS G3136

Rolled steel for building structure

SN 400 C

100404016

161612

126

≤<≤<

<<≤≤

tt

tt

- -

235 235 215

400 – 510 - 27 1004040161616

≤<≤<≤≤

ttt

50 200 200

21 17 21

(2)

TIS - SM400

100t75

75t40

40t16

16t

≤<

≤<

≤<

245 235 215 215

400 – 510 0 27

5016165

5

≤<≤<

tt

t

50 200 200

23 18 22

Page 16: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-10

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation % (min)

ASTM Structural

carbon steel-

A36 -

250 min 400 – 500 - - - 200 50

20 21

BS 4360

Weldable structural

steels Gr. 40DD

100t63

t40

40t16

t

≤<

≤<

≤<

63

16

250 245 240 225

340 – 500 -30 27 - 200

oS5.65 22 25

St 37-2 Ust 37-2 RSt 37-2

20 27 DIN

17100

Steel for general

structural purpose St 37-3

80

63

16

≤<

≤<

≤<

t63

t40

40t16

t

235 225 215 215

340 – 470

-20 27 100

63

≤<

≤<

≤<

t63

t40

40t16

oS5.65 26 25 24

- - -

L0 0 27 AS 1204

Ordinary weldable structural

steel

Gr. 250

L15 t40

40t12

t

<

≤<

≤ 12

260 250 230

410 min.

-15 27

- oS5.65 22

A - -

B +20 27

C 0 27 ISO 630

Structural steel

Fe 360

D 63

16

≤<

≤<

t40

40t16

t

235 225 215

360 - 460

-20 27

- oS5.65 25

(2)

EN 10025

HR unalloyed structural

steel

Fe 360 63

40

140t

t 235

215 360 340 -20 27 - oS5.65 26

25

Page 17: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-11

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation % (min)

JIS - TIS -

ASTM

High strength low alloy

steel

A572 Gr. 42 - 290 min 415 min - - - 200

50 20 24

BS 4360

Weldable structural

steels Gr. 43DD

100t63

t40

40t16

t

≤<

≤<

≤<

63

16

275 265 255 245

430 – 580 -30 27 - 200

oS5.65 20 22

St 44-2 20 27 100

63

≤<

≤<

≤≤

t63

t40

40t3

20 19 18

DIN 17100

Steel for general

structural purpose

St 44-3

80

63

16

≤<

≤<

≤<

t63

t40

40t16

t

275 265 255 245

430 – 540

-20 27 100

63

≤<

≤<

≤≤

t63

t40

40t3

oS5.65

26 25 24

AS 1204 - - - - - - - - - -

A -

B +20 27

C 0 27

(3)

ISO 630

Structural steel

Fe 430

D 63

16

≤<

≤<

t40

40t16

t

275 265 255

360 - 460

-20 27

- oS5.65 25

Page 18: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-12

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation % (min)

(3) EN 10025

HR unalloyed structural

steel

Fe 430 63

40

≤<

t40

t

275

255

430

410 -20 27 63

40

140t

t oS5.65 22

21

A - -

B 0 27 JIS G3106

Rolled steel for welded

structure-

SM490

C 10075

7540

4016

16

≤<

≤<

<<

t

t

t

t

325

315

295

295

490 - 610

0 47 5016

1655

≤<≤<

tt

t

50

200

200

22

17

22

B

10040

4016

16

1612

126

≤<

≤<

<<

≤≤

t

t

t

t

325

325

325

325

295 JIS

G3136

Rolled steel for welded

structure-

SN490

C

10040

4016

16

1612

126

≤<

≤<

<<

≤≤

t

t

t

t

-

-

325

325

295

490 - 610 0 27 10040

4016

166

≤<

<<

≤≤

t

t

t

50

200

200

22

17

22 (4)

TIS - SM 490 40

16

≤<

t16

t

325

315 490 - 610 0 27

5016

165

5

≤<

<<

t

t

t

50

200

200

22

17

22

Page 19: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-13

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation % (min)

ASTM - - - - - - - - - -

BS - - - - - - - - - -

DIN - - - - - - - - - -

AS - - - - - - - - - -

ISO - - - - - - - - - -

(4)

EN - - - - - - - - - -

YA - - SM490

YB 490- 610

0 27

B 0 27

JIS G 3106

Rolled steel for general

structure- SM520 C

100t63

t40

40t16

t

≤<

≤<

≤<

75

16

365

355

335

325 520 - 640 0 47

5016

165

5

≤<

<<

t

t

t

50

200

200

19

15

19

TIS - SM520 40t16

t

≤<

≤ 16

365 355 490 - 610 0 27

5016

165

5

≤<

<<

t

t

t

50

200

200

19

15

19

(5)

ASTM A572

High strength low alloy

steel

A572 Gr. 50 - 345 min 450 min - - - 200

50 18 21

Page 20: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-14

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation

% (min)

BS 4360

Weldable structural

steels Gr. 50E

100t63

t40

40t16

t

≤<

≤<

≤<

63

16

355

345

340

325

430 – 580 -30 27 - 200

oS5.65 18

20

DIN 17100

Steel for general

structural purpose

St 52-3

80

63

16

≤<

≤<

≤<

t63

t40

40t16

t

355

345

335

325

490 – 630 -20 27

100

63

≤<

≤<

≤≤

t63

t40

40t3 oS5.65

20

19

18

- - -

L0 0 27 AS 1204

Weldable structural

steels Gr. 350

L15 t40

40t12

t

<

≤<

≤ 12

360

340

330 490 - 630

-15 27

- oS5.65 20

A - -

B +20 27

C 0 27

(5)

ISO 630

Structural steel

Fe 510

D 63

16

≤<

≤<

t40

40t16

t

355 345 335

490 - 630

-20 27

- oS5.65 21

Page 21: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-15

Table 1.1 Contd. Classification Strength Notch Toughness Elongtion

Group Standard Description

Designation Thickness t mm

Min. Yield Strength (Mpa)

Tensile Strength (Mpa)

Test Temp.

0C

Absorbed Energy

(J)

Thickness t (mm)

Gauge Length (mm)

Elongation

% (min)

(5) EN 10025

HR unalloyed structural

steel

Fe 510 63

40

≤<

t40

t

355

335

510

490 -20 27 63

40

140t

t oS5.65 21

20

JIS G 3106

Rolled steel for general

structure-

SM 570

100t63

t40

40t16

t

≤<

≤<

≤<

75

16

460

450

430

420

570 - 720 0 27

5016

165

5

≤<

<<

t

t

t

50

50

50

19

26

20

TIS - SM570

100t63

t40

40t16

t

≤<

≤<

≤<

75

16

460

450

430

420

490 - 610 0 27

5016

165

5

≤<

<<

t

t

t

50

50

50

19

26

20

ASTM A572

High strength low alloy

steel

A572 Gr. 65 - 450 min 550 min - - - 200

50 15 17

(6)

BS 4360

Weldable structural

steels Gr. 55C

63

16

≤<

≤<

t40

40t16

t

450

430

415 550 – 700 0 27 -

200

oS5.65 17

19

DIN - - - - - - - - - - -

AS - - - - - - - - - - -

ISO - - - - - - - - - - -

EN - - - - - - - - - - -

Page 22: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-16

Table 1.2 Sub-grade of BS 4360: Weldable Structural Steels

Chemical Composition Yield strength Tensile Strength Charpy V-notch test

Elongation (%) for gauge length

Grade C max

Si max

Mn max

P Max

S max 16t ≤ 40t16 ≤< 63t40 ≤< 100t63 ≤<

(Mpa) Temp (0c) E (J) oS5.65 Remarks

40 DD - -30 Shape section

40E 0.04 -40 -

40EE

0.16 0.50 1.5 0.04

0.03

260 245 240 225 340/500

-50

25

Plates/Strip

43C 0.05 0.05 - - 0 Hollow shapes

43D 0.04 0.045 - - -20 Hollow shapes

43DD 0.04 - 255 245 -30 Shape section

43E 0.04 0.04 255 245 -40 -

43EE

0.21

0.20

0.16

0.16

0.16

0.

50

1.30

1.30

1.50

1.50

1.50 0.04 0.03

275 265

255 245

430/580

-50

22

Plate / Hollow

50C

0.20

0.20

0.20

0.18

0.16

0.

50 1.50 0.045 0.045 355 345 - - 490/640 0

27

21 Hollow shapes

50D 0.04 0.04 355 345 - - -20 21 Hollow shapes

50E 0.04 0.04 355 345 340 325 -40 20 Shape section

50EE 0.04 0.03 355 345 340 325 -50 20 Plate / Hollow

50F 0.025 0.025 390 390 - - -60 20 Plates/Strip

Page 23: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-17

Table 1.2 Contd.

Chemical Composition Yield strength Tensile Strength Charpy V-notch test

Elongation (%) for gauge length

Grade C max

Si max

Mn max

P Max

S max 16t ≤ 40t16 ≤< 63t40 ≤< 100t63 ≤<

(Mpa) Temp (0c) E (J) oS5.65 Remarks

55C 0.22

0.22

0.16

0.6

0

0.5

0

0.5

0

1.60

1.60

1.50

0.04 0.04 450 430 - - 550/700 0 19 Plate / shape

55EE 0.04 0.03 415 400 -50 Plate / Hollow

55F

0.025 0.025

415 -

-60

Plate / Hollow

Page 24: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-18

Table 1.3 Comparison of Chemical Composition Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

JIS G3101 SS400 - - - 0.050 0.050

TIS -

ASTM -

BS -

DIN -

AS -

ISO -

(1)

EN -

50t ≤ 0.23 SM400A

200t50 ≤< 0.25 - 2.5 C

0.035 0.035

50t ≤ 0.20 SM400B

200t50 ≤< 0.22 0.35 0.60 – 1.40- 0.035 0.035 JIS G3106

SM400C 00t 1≤ 0.18 0.35 1.40 max 0.035 0.035

SN400A 00t6 1≤< 0.24 - - 0.050 0.050

50t6 ≤< 0.20 SN400B

00t50 1≤< 0.22 0.35 0.60 – 1.40 0.030 0.015

50t16 ≤< 0.20

JIS G3136

SN400C 00t50 1≤< 0.22

0.35 0.60 – 1.40 0.020 0.008

TIS SM400 0.20 0.35 0.60 – 1.40 0.035 0.035

(2)

ASTM A36 0.26 0.40 - 0.04 0.05

Notations: C = Carbon Si= Silicon Mn= Manganese P= Phosphorus S= Sulfur

Page 25: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-19

Table 1.4 Contd. Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

BS 4360 Gr. 40DD 0.16 0.50 1.5 max 0.040 -

St 37-2 0.20 - - 0.050 0.050

USt 37-2 0.20 - - 0.050 0.050

RSt 37-2 0.20 - - 0.050 0.050 DIN

St 37-3 0.17 - - 0.040 0.040

Gr 250

Gr. 250 LO AS

Gr 250 L15

0.25 0.40 - 0.040 0.040

Fe 360 A 0.20 - - 0.060 0.050

Fe 360 B 0.20 - - 0.050 0.050

Fe 360 C 0.17 - - 0.045 0.045 ISO 630

Fe 360 D 0.17 - - 0.040 0.040

(2)

EN 10025 Fe 360 0.20 - - 0.045 0.045

JIS -

TIS -

ASTM A572 A 572 Gr 42 0.21 - 1.35 max 0.04 0.05

BS 4360 Gr 43 DD 0.16 0.50 1.5 max 0.040 0.050

(3)

DIN 17100 St 44-2 0.22 - - 0.050 0.050

Page 26: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-20

Table 1.3 Contd. Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

AS -

Fe 430 A 0.24 - - 0.060 0.050

Fe 430 B 0.22 - - 0.050 0.050

Fe 430 C 0.20 - - 0.045 0.045 ISO 630

Fe 430 D 0.20 - - 0.040 0.040

(3)

EN 10025 Fe 430 0.22 - - 0.045 0.045

50t ≤ 0.20 SM490A

200t50 ≤< 0.22 0.55 1.60 max 0.035 0.035

50t ≤ 0.18 SM490B

200t50 ≤< 0.20 0.55 1.60 max 0.035 0.035 JIS G3106

SM490C 00t 1≤ 0.18 0.55 1.60 max 0.035 0.035

SN490A 00t6 1≤< 0.18 0.55 - 0.030 0.015

50t6 ≤< 0.20 SN490B

00t50 1≤< 0.18 0.55 1.60 max 0.020 0.008

50t16 ≤< 0.20

JIS G3136

SN490C 00t50 1≤< 0.18

0.55 1.60 max 0.035 0.035

TIS SM 490 0.18 0.55 1.6 max 0.035 0.035

ASTM

BS

DIN

(4)

AS

Page 27: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-21

Table 1.3 Contd. Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

ISO - (4)

EN - SM 490 YA

SM 490 YB 0.20 0.55 1.6 max 0.035 0.035

SM 520C JIS G3106

SM 520 0.20 0.55 1.6 max 0.035 0.035

TIS SM520 0.20 0.55 1.6 max 0.035 0.035

ASTM A572 A572 Gr. 50 0.23 - 1.35 max 0.04 0.05

BS 4360 Gr. 50E 0.18 0.50 1.5 max 0.040 0.040

DIN 17100 St 52-3 0.22 - - 0.040 0.040 Gr. 350

Gr. 350 LO AS 1204

Gr.350 L15

0.22 0.50 1.6 max 0.040 0.040

Fe 510 B 0.22 - - 0.050 0.050 Fe 510 C 0.22 - - 0.045 0.045 ISO 630

Fe 510 D 0.22 - - 0.040 0.040

(5)

EN 10025 Fe 510 0.22 0.55 1.60 0.045 0.045

Notations: C = Carbon Si= Silicon Mn= Manganese P= Phosphorus S= Sulfur

Page 28: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-22

Table 1.3 Contd. Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

JIS G3106 SM 570 0.18 0.55 1.6 max. 0.035 0.035

TIS SM 570 0.18 0.55 1.6 max. 0.035 0.035

ASTM A572 A 572 Gr. 65 0.26 - 1.35 max. 0.04 0.05

BS 4360 Gr. 55C 0.22 0.60 1.60 max. 0.040 -

DIN -

AS -

ISO -

(6)

EN -

Notations: C = Carbon Si= Silicon Mn= Manganese P= Phosphorus S= Sulfur

Page 29: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 1-23

Table 1.3 Contd. Classification Chemical Composition % Remarks

Group Standard No Designation Max C Max Si Mn Max P Max S

BS 4360 Gr 40 DD 0.16 0.50 1.5 max 0.040 0.050

TIS -

ASTM -

BS -

DIN -

AS -

ISO -

(7)

EN -

50t ≤ 0.23 SM400A

200t50 ≤< 0.25 - 2.5 C 0.035 0.035

50t ≤ 0.20 SM400B

200t50 ≤< 0.22 0.35 0.60 – 1.40- 0.035 0.035 JIS G3106

SM400C 00t 1≤ 0.18 0.35 1.40 max 0.035 0.035

SN400A 00t6 1≤< 0.24 - - 0.050 0.050

50t6 ≤< 0.20 SN400B

00t50 1≤< 0.22 0.35 0.60 – 1.40 0.030 0.015

50t16 ≤< 0.20

JIS G3136

SN400C 00t50 1≤< 0.22

0.35 0.60 – 1.40 0.020 0.008

TIS SM400 0.20 0.35 0.60 – 1.40 0.035 0.035

(8)

ASTM A36 0.26 0.40 - 0.04 0.05

Page 30: TN H01-Hand Book for Design of Steel Structures

Siam Yamato Steel Sections

1. Introduction

Construction industry had been expanding at a remarkable rate for many years due to the high economy growth of Thailand. Such rapid growth is followed by an increase in demand of structural steel, which is one of the basic construction materials for both public and private projects. In response to the increasing demand, Siam Yamato Steel was established in 1992 as a joint venture between The Siam Cement Public Company Limited, Yamato Kogyo Co., Ltd., Mitsui & Co., Ltd., Mitsiam International, Limited, and Sumitomo Corporation. Siam Yamato Steel has been extensively used in high rise constructions, factory buildings, piling, bridges, refinery plants etc. Siam Yamato Steel (SYS) has its factory located in the Map Ta Phut Industrial Estate, Rayong Province. The world’s leading equipment and technology are employed to ensure that SYS’s quality products conform to international standards and can compete with imported structural steel. The capital investment is over 6,000 million baht, with annual production capacity of 600,000 metric tons.

2. Product Specifications

The structural steel products range from sheet materials, through optimized sections and plates, to heavy forgings and castings of intricate shape. The versatility of steel for structural applications rests on the fact that it can be readily supplied at a relatively cheap price in a wide range of different product forms and with a useful range of material properties. The key to understanding the versatility of steel lies in its basic metallurgical behavior. Steel is an efficient material for structural purposes because of its good strength-to-weight ratio. Steel can be supplied with strength levels from about 240 N/mm2 up to about 2000 N/mm2 for common structural applications, although the strength requirements may limit the product form. Although steel can be made to a wide range of strengths, it generally behaves as an elastic material with a high(and relatively constant) value of the elastic modules up to the yield or proof strength. It also usually has a high capacity for accepting plastic deformation beyond the yield strength, which is valuable for drawing and forming of different products as well as for general ductility in structural applications 17 Table2.1 as shown below gives the products manufactured by Siam Yamato Steel Co. Ltd. and corresponding specifications based on tensile strength and in some cases Charpy Impact test.

Chapter

2

Page 31: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-2

Table 2.1 SYS Steel and Corresponding Specifications

Classified by tensile strength

Specifications

Type

of m

ater

ial

Tensile strength class

(N/mm2)

Special specification

TIS JIS ASTM BS 4360

DIN 17100

400 - SS400 G3101 SS400 A36 Gr. 43A

St 33

Gen

eral

str

uctu

re

490 - SS490 G3101 SS490 - Gr. 50A

St 50-2

400 - - G3106 SM400A A572 Gr.42

Gr. 43B

-

Charpy impact test

SM 400 G 3106 SM 400B,C - Gr. 43C

St 37-2 RSt 37-

2 Charpy impact

test for low temperature

- - - Gr. 43D

-

490 - - G3106 SM 490A - Gr. 43DD

-

Charpy impact test

SM 490 G3106 SM 490B,C - -

490 (High yield

point)

- - G3106 SM 490 YA A572 Gr.50

Gr. 50B

-

Charpy impact test

SM 520 G3106 SM 490YB SM520 B,C,

- Gr. 50C

St 52-3

Wel

ded

stru

ctur

e

Charpy impact test for low

temperature

- - - Gr. 50D

-

2.1. Mechanical Properties

Steel derives its mechanical properties from a combination of chemical composition, heat treatment and manufacturing process. As laid down in the different specifications for manufacture of steel products, tests are carried out on samples representing each batch of steel and the results recorded on test certificate for mechanical properties which normally include the yield point, tensile strength and elongation to failure.

Table 2.2 Mechanical Properties of SYS Steel Products

Yield point (N/mm2)

Tensile strength (N/mm2)

Elongation, %

Classifications Thickness (mm) Thickness (mm) 16 or

under Over 16 5 or under 5 to 16 Over 16

JIS G3101 SS400

245 235 400-510 21 17 21

JIS G3101 SS490

285 275 490-610 19 15 19

JIS G3106 SM400 A,B,C

245 235 400-510 23 18 22

JIS G3106 SM490 A,B,C

325 315 490-610 22 17 21

Page 32: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-3

JIS G3106 SM490 YA,YB

365 355 490-610 19 15 19

JIS G3106 SM520 B,C

365 355 520-640 19 15 19

JIS G3106 SM570

460 450 570-720 19 19 26

If the fracture toughness is important, the standard charpy test is also included. Table2.2 gives the detailed mechanical properties for Siam Yamato Steel products.

2.2. Chemical Properties

As the chemical composition of steel greatly affects the important structural properties of steel, it is one of the important criteria for the selection. Although steel is basically iron, the addition of small amount of other elements can remarkably affect the type of properties of steel, and sensitivity to heat treatment. A correct proportion of elements like carbon, manganese, chromium, molybdenum, nickel, copper may improve the strength, ductility, fracture toughness, weldability heat and corrosion resistance. However, elements like vanadium and aluminium can be added in small quantities to improve grain refinement. However the presence of non-metalic inclusions specially sulphur and phosphorous must be controlled carefully, the high level of which may reduce resistance to ductile fracture and possibility of cracking problems in welded joints. Other impurities which may seriously affect the quality of steel are tin, antimony, arsenic and some dissolved gases. The following Table 2.3 gives the detailed chemical composition for Siam Yamato Steel products using the following notations.

C = carbon SI = silica Mn = Manganese P =Phosphorus S = Sulfur

Table 2.3 Chemical Composition of SYS Products

Classifications Chemical Compositions, % Max. C Max. Si Mn Max. P Max. S

JIS G3101 SS400, 490 - - - 0.050 0.050 JIS G3106 SM400 A 0.23 - 2.5xCmin. 0.035 0.035 JIS G3106 SM400 B 0.20 0.35 0.60-1.40 0.035 0.035 JIS G3106 SM400 C 0.18 0.35 1.40 max. 0.035 0.035 JIS G3106 SM490 A 0.20 0.55 1.60 max. 0.035 0.035 JIS G3106 SM490 B,C 0.18 0.55 1.60 max. 0.035 0.035 JIS G3106 SM490YA, YB 0.20 0.55 1.60 max. 0.035 0.035 JIS G3106 SM520 B, C 0.20 0.55 1.66 max. 0.035 0.035 JIS G3106 SM570 0.18 0.55 1.60 max. 0.035 0.035

3. Sizes and Properties of SYS Sections

The section dimensions and their calculated properties have been expressed in appropriate units so as to avoid too small or too long digit numbers. All section related information has been reproduced, from "Siam Yamato Hot Rolled Shapes Product Specification Book", without any further verifications. A brief description of various symbols (notations) used for cross-section properties is given below. Notations related to dimension of the section can be read directly from the figure shown in their respective tables. A = The cross-section area of section, including all radii and fillets.

Ixx = The second moment of Inertia of section about XX (generally major) axis.

Page 33: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-4

Iyy = The second moment of inertia of section about YY (generally minor) axis.

rx = The radius of gyration of cross-section about x-axis, derived as AIr xx

x =

ry = The radius of gyration of cross-section about y-axis, derived as AI

r yyy =

Zxx = The section modulus or elastic modulus of section defined as the moment of Inertia Ixx divided by the extreme fibre distance measured from centroidal YY axis calculated by the following simple formula.

yI

Z xxxx =

Where y = Distance to the extreme fibre from the centroidal YY axis.

Zyy = The section modulus or elastic modulus of section defined as the moment of Inertia Iyy divided by the extreme fibre distance measured from centroidal XX axis as calculated as

xI

Z yyyy =

Where

x = Distance to the extreme fibre from the centroidal XX axis

4. Software Implementation

Steel designers frequently need to find the sections of specific requirements based on weight, width, height or other properties for design. The section properties listed on the following tables are grouped based on primary shape of the section i.e. C shapes put in one table, H shapes in another and so on, which, in most cases, is the practical way of selection. Further, the shapes have been ordered by their nominal sizes like width and height instead of weight or any other properties.

To provide the designer, any easy and quick way to find a section or group of sections which satisfy certain specified criteria, SYS Designer Software provide special tool for searching, sorting and printing those sections. User can specify the range for important section properties like weight, width or height, which further be sorted by any one of the properties. Some common and practical examples to illustrate the usefulness of this module are:

1. In the design of steel beams the designer frequently need to find the lightest section satisfying a certain minimum section modulus.

2. In the deflection checks, a sorted list of sections based on moment of inertia which is the main parameter to control the deflection, will be desirable for quick and an economic selection of the section.

3. Due to some architectural or connection restriction, in some cases, designer may need to find the section not exceeding certain width or height.

Page 34: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-5

Certain SYS Sections of not so common usage are not readily available in the market, which puts an additional limit on the section selection. This market/stock availability criterion has also been included in the section selection module. The following table gives the section designation used in the software.

Table 2.4 SYS Section Designation Used in SYS Designer Software

Sr. No Actual Shape Primary Designation

Complete Designation Remark

1 H or WF or W H H

2 I I I

3 Channel C C

4 T Or TH T T

5 Equal Angle L EL

6 Unequal Angle L UL

7 Double Angles Equal Legs

LL ELL

8 Double Angles Unequal Legs, Longer Leg

Connected

LL ULLL

9 Double Angles Unequal Legs, Shorter Leg

Connected

LL ULLS

10 Double C Open or Like H Shape CC CCI

11 Double C Close or Like Box CC CCB

Page 35: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-6

Page 36: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-7

Table 2.5 Sizes and Properties of Sections for Design for Channel Shapes Sectional Dimension

(mm) Moment Of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3) Section Designation

t1 t2 r1 r2

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy

C 200x80x24.6 7.5 11 12 6 31.33 24.6 1950 168 7.88 2.32 195 29.1

C 200x90x30.3 8 13.5 14 7 38.65 30.3 2490 277 8.02 2.68 249 44.2

C 250x90x34.6 9 13 14 7 44.07 34.6 4180 294 9.74 2.58 334 44.5

C 250x90x40.2 11 14.5 17 8.5 51.17 40.2 4680 329 9.56 2.54 374 49.9

C 300x90x38.1 9 13 14 7 48.57 38.1 6440 309 11.5 2.52 429 45.7

C 300x90x43.8 10 15.5 19 9.5 55.74 43.8 7410 360 11.5 2.54 494 54.1 Y

XX

Y

H

t2t1

B

r2r1

C 300x90x48.6 12 16 19 9.5 61.9 48.6 7870 379 11.3 2.48 525 56.4

C 380x100x54.5 10.5 16 18 9 69.39 54.5 14500 535 14.5 2.78 763 70.5

C 380x100x67.3 13 20 24 12 85.71 67.3 17600 655 14.3 2.76 926 87.8

Page 37: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-8

Table 2.6 Sizes and Properties of Sections for Design for I Shapes

Sectional Dimension (mm)

Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3) Section Designation

t1 t2 r1 r2

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy

I 200x100x26 7 10 10 5 33.06 26 2170 138 8.11 2.05 217 27.7

I 200x150x50.4 9 16 15 7.5 64.16 50.4 4460 753 8.34 3.43 446 100

I 250x125x38.3 7.5 12.5 12 6 48.79 38.3 5180 337 10.3 2.63 414 53.9

I 250x125x55.5 10 19 21 10.5 70.73 55.5 7310 538 10.2 2.76 858 86

I 300x150x48.3 8 13 12 6 61.58 48.3 9480 588 12.4 3.09 632 78.4

I 300x150x65.5 10 18.5 19 9.5 83.47 65.5 12700 886 12.3 3.26 849 118

I 300x150x76.8 11.5 22 23 11.5 97.88 76.8 14700 1080 12.2 3.32 978 143

I 350x150x58.5 9 15 13 6.5 74.58 58.5 15200 702 14.3 3.07 870 93.5

I 350x150x87.2 12 24 25 12.5 111.1 87.2 22400 1180 14.2 3.26 1280 158

XX

Y

H

t2

t1

r1

B

Y

r2

I 400x150x72 10 18 17 8.5 91.73 72 24100 864 16.2 3.07 1200 115

I 400x150x95.8 12.5 25 27 13.5 122.1 95.8 31700 1240 16.1 3.18 1580 165

I 450x175x91.7 11 20 19 9.5 116.8 91.7 39200 1510 18.3 3.6 1740 173

I 450x175x115 13 26 27 13.5 146.1 115 48800 2020 18.3 3.72 2170 231

I 600x190x133 13 25 25 12.5 169.4 133 98400 2460 24.1 3.81 3280 259

I 600x190x176 16 35 38 19 224.5 176 130000 3540 24.1 3.97 4330 373

Page 38: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-9

Table 2.7 Sizes and Properties of Sections for Design for H Shapes

Sectional Dimension (mm)

Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3) Section Designation

t1 t2 r1

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy

H 100x100x17.2 6 8 10 21.9 17.2 383 134 4.18 2.47 76.5 26.7

H 125x125x23.8 6.5 9 10 30.31 23.8 847 293 5.29 3.11 136 47

H 150x100x21.1 6 9 11 26.84 21.1 1020 151 6.17 2.37 138 30.1

H 150x150x31.5 7 10 11 10.14 31.5 1640 563 6.39 3.75 219 75.1

H 175x175x40.2 7.5 11 12 51.21 40.2 2880 984 7.5 4.38 330 112

H 200x100x18.2 4.5 7 11 23.18 18.2 1580 114 8.26 2.21 160 23

H

B

X X

Y

Y

t1

t 2

r

H 200x100x21.3 5.5 8 11 27.16 21.3 1840 134 8.24 2.22 184 26.8

H 200x150x30.6 6 9 13 39.01 30.6 2690 507 8.3 3.61 227 67.6

H 200x200x49.9 8 12 13 63.53 49.9 4720 1600 8.62 5.02 472 160

H 200x200x56.2 12 12 13 71.53 56.2 4980 1700 8.35 4.88 498 167

H 200x200x65.7 10 16 13 83.69 65.7 6530 2200 8.83 5.13 628 218

H 250x125x25.7 5 8 12 32.68 25.7 3540 255 10.4 2.79 285 41.1

H 250x125x29.6 6 9 12 37.66 29.6 4050 294 10.4 2.79 324 47

H 250x175x44.1 7 11 16 56.24 44.1 6120 984 10.4 4.18 502 113

H 250x250x64.4 11 11 16 82.06 64.4 8790 2940 10.3 5.98 720 233

H 250x250x66.5 8 13 16 84.7 66.5 9930 3350 10.8 6.29 801 269

H 250x250x72.4 9 14 16 92.18 72.4 10800 3650 10.8 6.29 867 292

H 250x250x82.2 14 14 16 104.7 82.2 11500 3880 10.5 6.09 919 304

H 300x150x32.0 5.5 8 13 40.8 32 6320 442 10.4 3.29 424 59.3

H 300x150x36.7 6.5 9 13 46.78 36.7 7210 508 12.4 3.29 481 67.7

H 300x200x56.8 8 12 18 72.38 56.8 11300 1600 12.5 4.71 771 160

H 300x200x65.4 9 14 18 83.36 65.4 13300 1900 12.6 4.77 893 189

H 300x300x84.5 12 12 18 107.7 84.5 16900 5520 12.5 7.16 1150 365

Page 39: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-10

Table 2.7 (Continued) Sizes and Properties of Sections for Design for H Shapes

Sectional Dimension

(mm)

Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3) Section Designation

T1 t2 r1

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy

H 300x300x87.0 9 14 18 110.8 87 18800 6240 13 7.51 1270 417

H 300x300x94.0 10 15 18 119.8 94 20400 6750 13.1 7.51 1360 450

H 300x300x106.0 15 15 18 134.8 106 21500 7100 12.6 7.26 1440 466

H 300x300x106.0 11 17 18 134.8 106 23400 7730 13.2 7.57 1540 514

H 350x175x41.4 6 9 14 52.68 41.4 11100 792 14.5 3.88 641 91

H 350x175x49.6 7 11 14 63.14 49.6 13600 984 14.7 3.95 775 112

H 350x175x57.6 8 13 14 73.68 57.8 16100 1180 14.8 4.01 909 134

H 350x250x69.2 8 12 20 88.15 69.2 18500 3090 14.5 5.92 1100 248

H 350x250x79.7 9 14 20 101.5 79.7 21700 3650 14.6 6 1280 292

H

B

X X

Y

Y

t1

t 2

r

H 350x350x106.0 13 13 20 135.3 106 28200 9380 14.4 8.33 1670 534

H 350x350x115.0 10 16 20 146 115 33300 11200 15.1 8.78 1940 646

H350x350x131.0 16 16 20 166.6 131 35300 11800 14.6 8.43 2050 669

H 350x350x137.0 12 19 20 173.9 137 40300 13600 15.2 8.84 2300 776

H 350x350x156.0 19 19 20 198.4 156 42800 14400 14.7 8.53 2450 809

H 400x200x56.6 7 11 16 72.16 56.6 20000 1450 16.7 4.48 1010 145

H 400x200x66.0 8 13 16 84.12 66 23700 1740 16.8 4.54 1190 174

H 400x200x75.5 9 15 16 96.16 75.5 27500 2030 16.9 4.6 1360 202

H 400x300x94.5 9 14 22 120.1 94.5 33700 6240 16.7 7.21 1740 418

H 400x400x172 13 21 22 218.7 172 66600 22400 17.5 10.1 3330 1120

H400x400x232 18 28 22 295.4 232 92800 31000 17.7 10.02 4480 1530

H 450x200x66.2 8 12 18 84.3 66.2 28700 1580 18.5 4.33 1290 159

Page 40: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-11

Table 2.7 (Continued) Sizes and Properties of Sections for Design for H Shapes Sectional Dimension

(mm) Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3) Section Designation

t1 t2 r1

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy

H 450x200x76.0 9 14 18 96.76 76 33500 1870 18.6 4.4 1490 187

H 450x200x88.9 10 17 18 113.3 88.9 40400 2310 18.9 4.51 1770 230

H 450x300x106.0 10 15 24 135 106 46800 6690 18.6 7.04 2160 448

H 450x300x124.0 11 18 24 157.4 124 56100 8110 18.9 7.18 2550 541

H 450x300x145.0 13 21 24 184.3 145 66400 9660 19 7.24 2980 639

H 500x200x79.5 9 14 20 101.3 79.5 41900 1840 20.3 4.27 1690 185

H 500x200x89.6 10 16 20 114.2 89.6 47800 2140 20.5 4.33 1910 214

H 500x200x103.0 11 19 20 131.3 103 56500 2580 20.7 4.43 2230 254

H 500x300x114.0 11 15 26 145.5 114 60400 6760 20.4 6.82 2500 451

H

B

X X

Y

Y

t1

t 2

r

H 500x300x128.0 11 18 26 163.5 128 71000 8110 20.8 7.04 2910 541

H 500x300x150.0 13 21 26 191.4 150 83800 9660 20.9 7.1 3390 640

H 600x200x94.6 10 15 22 120.5 94.6 68700 1980 23.9 4.05 2310 199

H 600x200x106.0 11 17 22 134.4 106 77600 2280 24 4.12 2590 228

H 600x200x120.0 12 20 22 152.5 120 90400 2720 24.3 4.22 2980 271

H 600x200x134.0 13 23 22 170.7 134 103000 3180 24.6 4.31 3380 314

H 600x300x137.0 12 17 28 174.5 137 103000 7670 24.3 6.63 3530 511

H 600x300x151.0 12 20 28 192.5 151 118000 9020 24.8 6.85 5020 601

H 600x300x175.0 14 23 28 222.4 175 137000 10600 24.9 6.9 4620 7001

H 700x300x166.0 13 20 28 211.5 166 172000 9020 28.6 6.53 4980 602

H 700x300x185.0 13 24 28 235.5 185 201000 10800 29.3 6.78 5760 722

H 800x300x191.0 14 22 28 243.4 191 254000 9930 32.3 6.39 6410 662

H 800x300x210.0 14 26 28 267.4 210 292000 11700 33 6.62 7290 782

Page 41: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-12

Table 2.8 Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension

(mm)

Moment

of Inertia

(cm4)

Radius

of Gyration

(cm)

Modulus

of Section

(cm3)

Center of Gravity

from Top Section Designation

t1 t2 r1

Sectional

Area

(cm2)

Wght

kg/m

Ix Iy ix iy Zx Zy Cx=

T 50x100x8.6 6 8 10 10.95 8.6 16.1 66.9 1.21 2.47 4.03 13.4 1.0

T 62.5x125x11.9 6.5 9 10 15.16 11.9 35 147 1.52 3.11 6.91 23.5 1.19

T 75x100x10.5 6 9 11 13.42 10.5 51.7 75.3 1.96 2.37 8.84 15.1 1.55

T 75x150x15.8 7 10 11 20.07 15.8 66.4 282 1.82 3.75 10.8 37.6 1.37

T 87.5x175x20.1 7.5 11 12 25.61 20.1 115 492 2.12 4.38 15.9 56.2 1.55

T 100x100x9.1 4.5 7 11 11.59 9.1 93.8 56.8 2.84 2.21 12.1 11.5 2.14

T 100x100x10.7 5.5 8 11 13.58 10.7 114 67.0 2.9 2.22 14.8 13.4 2.29

T 100x150x15.3 6 9 13 19.51 15.3 125 254 2.53 3.61 15.8 33.8 1.79

XX

Y

Y

H

t2

t1

B

T 100x200x24.9 8 12 13 31.77 24.9 184 801 2.41 5.02 22.3 80.1 1.73

T 100x200x28.1 12 12 13 35.77 28.1 256 851 2.67 4.88 32.4 83.4 2.09

T 100x200x32.8 10 16 13 41.85 32.8 251 1100 2.45 5.13 29.4 109 1.91

T 125x125x12.8 5 8 12 16.34 12.8 208 127 3.57 2.79 21.3 20.5 2.68

T 125x125x14.8 6 9 12 18.83 14.8 248 147 3.63 2.79 25.6 23.5 2.78

T 125x175x22.1 7 11 16 25.12 22.1 289 492 3.2 4.18 29.1 56.3 2.27

T 125x250x32.2 11 11 16 41.03 32.2 445 1470 3.29 5.98 45.3 117 2.39

T 125x250x33.2 8 13 16 42.35 33.2 364 1670 2.93 6.29 34.9 134 1.98

T 125x250x36.2 9 14 16 43.09 36.2 412 1820 2.99 6.29 39.5 146 2.08

T 125x250x41.1 14 14 16 52.34 41.1 589 1940 3.36 6.09 59.4 152 2.58

T 150x150x16.0 5.5 8 13 30.4 16 393 551 4.39 6.29 33.8 29.7 3.26

T 150x150x18.4 6.5 9 13 23.39 18.4 464 254 4.45 3.29 40 33.8 3.41

T 150x200x28.4 8 12 18 36.19 28.4 572 802 3.97 4.71 48.2 80.2 2.83

Page 42: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-13

Table 2.8 (Continued) Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension

(mm) Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3)

Center of Gravity from

Top Section Designation

t1 t2 r1

Sectional Area (cm2)

Wght kg/m

Ix Ix Ix Iy Zx Zy Cx=

T 150x200x32.7 9 14 18 41.68 32.7 662 949 3.99 4.77 55.2 94.4 2.91

T 175x175x20.7 6 9 14 26.34 20.7 679 396 5.08 3.88 50 45.5 3.71

T 175x175x24.8 7 11 14 31.57 24.8 815 492 5.08 3.95 59.3 56.2 3.75

T 175x250x34.6 8 12 20 44.08 34.6 881 1540 4.47 5.92 64.0 124 3.02

T 175x250x39.8 8 14 20 50.76 39.8 1020 1830 4.48 6.00 73.1 146 3.09

XX

Y

Y

H

t2

t1

B

T 175x350x53.1 13 13 20 67.63 53.1 1420 4690 4.59 8.3 104 267 3.21

T 175x350x57.3 10 16 20 73 57.3 1230 5620 4.11 8.78 84.7 323 2.67

T 175x350x65.4 16 16 20 83.32 65.4 1800 5920 4.65 8.43 131 335 3.40

T 175x350x68.2 12 19 20 86.94 68.2 1520 6790 4.18 8/.84 104 388 2.86

T 175x350x77.9 19 19 20 99.19 77.9 2200 7220 4.71 8.53 158 4.4 3.59

T 175x350x79.3 14 22 20 101 79.3 1820 8000 4.25 8.9 124 455 3.05

T 200x200x28.3 7 11 16 36.08 28.3 1190 723 4.76 4.48 76.4 72.7 4.17

T 200x200x33.0 8 13 16 42.06 33 1400 868 5.76 4.54 88.6 86.8 4.23

T 200x300x47.1 9 14 22 60.05 47.1 1530 3120 5.04 7.21 95.5 209 3.33

T 200x300x53.4 10 16 22 67.98 53.4 1730 3600 5.05 7.28 108 240 3.41

T 250x200x39.7 9 14 20 50.64 39.7 2840 922 7.49 4.27 150 92.6 5.90

T 250x200x44.8 10 16 20 57.12 44.8 3210 1070 7.5 4.33 169 107 5.96

T 250x200x51.5 11 19 20 65.65 51.5 3670 1290 7.48 4.43 190 128 5.95

T 250x300x57.1 11 15 26 72.76 57.1 3420 3380 6.85 6.82 178 225 4.92

T 250x300x64.2 11 18 26 81.76 64.2 3620 4060 6.66 7.07 184 70 4.66

T 300x200x47.3 10 15 22 60.23 47.3 5190 989 9.29 4.05 236 99.4 7.79

Page 43: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-14

Table 2.8 (Continued) Sizes and Properties of Sections for Design for T or TH Shapes (Cut From H) Sectional Dimension

(mm) Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3)

Center of Gravity from

Top Section Designation

t1 t2 r1

Sectional Area (cm2)

Wght kg/m

Ix Ix Ix Iy Zx Zy Cx=

T 300x200x52.8 11 17 22 67.21 52.8 5810 1140 9.3 4.12 262 114 7.84

T 300x200x59.8 12 20 22 76.24 59.8 6570 1360 9.28 4.22 292 135 7.79

T 300x200x67.0 13 23 22 85.33 67 7340 1590 9.27 4.31 322 157 7.79

T 300x300x68.5 12 17 28 87.24 68.5 6360 3830 8.54 6.63 280 256 6.39

T 300x300x75.6 12 20 28 96.24 75.6 6710 4510 8.35 6.85 288 301 6.08

XX

Y

Y

H

t2

t1

B

T 300x300x87.3 14 23 28 111.2 87.3 7920 5290 8.44 6.9 339 350 6.33

Page 44: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-15

Table 2.9 Sizes and Properties of Sections for Design for Equal Angles EL Sectional Dimension

(mm)

Moment

of Inertia

(cm4)

Radius

of Gyration

(cm)

Modulus

of Section

(cm3))

Center of Gravity

(cm)

(From bot and Left) Section Designation

t1 t2 r1 r2

Sectional

Area

(cm2)

Wght kg/m

Ix Iy ix iy Zx Zy Cx Cy

EL 25x25x1.12 3 3 4 2 1.427 1.12 0.797 0.797 0.747 0.747 0.448 0.448 0.719 0.719

EL 30x30x1.36 3 3 4 2 1.727 1.36 1.42 1.42 0.908 0.908 0.661 0.661 0.844 0.844

EL 40x40x1.83 3 3 4.5 2 2.336 1.83 3.53 3.53 1.23 1.23 1.21 1.21 1.09 1.09

EL 40x40x2.95 5 5 4.5 3 3.755 2.95 5.42 5.42 1.2 1.2 1.91 1.91 1.17 1.17

EL 45x45x2.74 4 4 6.5 3 3.492 2.74 6.5 6.5 1.36 1.36 2 2 1.24 1.24

EL 45x45x3.38 4 4 6.5 3 4.302 3.38 7.91 7.91 1.36 1.36 2.46 2.46 1.28 1.28

EL 50x50x3.06 4 4 6.5 3 3.892 3.06 9.06 9.06 1.53 1.53 2.49 2.49 1.37 1.37

EL 50x50x3.77 5 5 6.5 3 4.802 3.77 11.1 11.1 1.52 1.52 3.08 3.08 1.41 1.41

EL 50x50x4.43 6 6 6.5 4.5 5.644 4.43 12.6 12.6 1.5 1.5 3.55 3.55 1.44 1.44

EL 60x60x3.68 4 4 6.5 3 4.692 3.68 16 16 1.85 1.85 3.66 3.66 1.61 1.61

H

B

r2

r1

t1t2 Cx

Cy

EL 60x60x4.55 5 5 6.5 3 5.802 4.55 19.6 19.6 1.84 1.84 4.52 4.52 1.66 1.66

EL 65x65x5.0 5 5 8.5 3 6.367 5 25.3 25.3 1.99 1.99 5.35 5.35 1.77 1.77

EL 65x65x5.91 6 6 8.5 4 7.527 5.91 29.4 29.4 1.98 1.98 6.26 6.26 1.81 1.81

EL 65x65x7.66 8 8 8.5 6 9.761 7.66 36.8 36.8 1.94 1.94 7.96 7.96 1.88 1.88

EL 70x70x6.38 6 6 8.5 4 8.127 6.38 37.1 37.1 2.14 2.14 7.33 7.33 1.93 1.93

EL 75x75x6.85 6 6 8.5 4 8.727 6.85 46.1 46.1 2.3 2.3 8.47 8.47 2.06 2.06

EL 75x75x9.96 9 9 8.5 6 12.69 9.96 64.4 64.4 2.25 2.25 12.1 12.1 2.17 2.17

EL 75x75x13.0 12 12 8.5 6 16.56 13 81.9 81.9 2.22 2.22 15.7 15.7 2.29 2.29

EL 80x80x7.32 6 6 8.5 4 9.327 7.32 56.4 56.4 1.46 1.46 9.7 9.7 2.18 2.18

EL 90x908.28 6 6 10 5 10.55 8.28 80.7 80.7 2.77 2.77 12.6 12.6 2.42 2.42

EL 90x90x9.59 7 7 10 5 12.22 9.59 93 93 1.76 1.76 14.2 14.2 2.46 2.46

Page 45: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-16

Table 2.9 Sizes and Properties of Sections for Design for Equal Angles L Sectional Dimension

(mm) Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus of Section

(cm3)) Center of Gravity

(cm)

(From bot and Left)Section Designation

t1 t2 r1 r2

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy Cx Cy

EL 90x90x13.3 10 10 10 7 17 13.3 125 125 1.71 1.71 19.5 19.5 2.57 2.57

EL 90x90x17.0 13 10 10 7 21.71 17 156 156 2.68 2.68 24.8 24.8 2.69 2.69

EL100x100x10.7 7 10 10 5 13.62 10.7 129 129 3.08 3.08 17.7 17.7 2.71 2.71

EL 100x100x17.9 10 10 10 7 19 17.9 175 175 3.04 3.04 24.4 24.4 2.82 2.82

EL 100x100x19.1 13 10 10 7 24.31 19.1 220 220 3 3 31.1 31.1 2.94 2.94

EL 120x120x14.7 8 12 12 5 18.74 14.7 258 258 3.71 3.71 29.5 29.5 3.24 3.24

EL 130x130x17.9 9 12 12 6 22.74 17.9 366 366 4.01 4.01 38.7 38.7 3.53 3.53

EL 130x130x23.4 12 12 12 8.5 29.76 23.4 467 467 3.96 3.96 49.9 49.9 3.64 3.64

EL 130x130x28.8 15 12 12 8.5 36.75 28.8 568 568 3.93 3.93 61.5 61.5 3.76 3.76

EL 150x150x27.3 12 14 12 7 34.77 27.3 740 740 4.61 4.61 68.1 68.1 4.14 4.14

H

B

r2

r1

t1t2 Cx

Cy

EL 150x150x33.6 15 14 14 10 42.74 33.6 888 888 4.56 4.56 82.6 82.6 4.24 4.24

EL 150x150x41.9 19 14 14 10 53.38 41.9 1090 1090 4.52 4.52 103 103 4.40 4.40

EL 175x175x31.8 12 15 14 11 40.52 31.8 1170 1170 5.38 5.38 91.8 91.8 4.73 4.73

EL 175x175x39.4 15 15 15 11 50.21 39.4 1440 1440 5.35 5.35 114 114 4.85 4.85

EL 200x200x45.3 15 17 15 12 57.75 45.3 2180 2180 6.14 6.14 150 150 5.46 5.46

EL 200x200x59.7 20 17 17 12 76 59.7 2820 2820 6.09 6.09 197 197 5.67 5.67

EL 200x200x73.6 25 17 17 12 93.75 73.6 3420 3420 6.04 6.04 242 242 5.86 5.86

EL 250x250x93.7 25 24 25 12 119.4 93.7 6950 6950 7.63 7.63 388 388 7.10 7.10

EL 250x250x128.0 35 24 35 18 162.6 128 9110 9110 7.49 7.49 519 519 7.45 7.45

Page 46: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-17

Table 2.10 Sizes and Properties of Sections for Design for Unequal Angles UL

Sectional Dimension (mm)

Moment of Inertia

(cm4)

Radius of Gyration

(cm)

Modulus Of Section

(cm3)) Center of Gravity

(cm)

(From bot and Left) Section Designation

t1 t2 r1 r2

Sectional Area (cm2)

Wght kg/m

Ix Iy ix iy Zx Zy Cx Cy

UL 90x75x11.0 9 9 8.5 6 14.04 11 109 68.1 2.78 2.2 17.4 12.4 2.75 2.00

UL 100x75x9.32 7 7 10 5 11.87 9.32 118 56.9 3.15 2.19 17 10 3.06 1.83

UL 100x75x13.0 10 10 10 7 16.5 13 159 76.1 3.11 2.15 23.3 13.7 3.17 1.94

UL 125x75x10.7 7 7 10 5 13.62 10.7 219 60.4 4.01 2.11 26.1 10.3 4.10 1.64

UL 125x75x14.9 10 10 10 7 19 14.9 299 80.8 3.96 2.06 36.1 14.1 4.22 1.75

UL 125x75x19.1 13 13 10 7 24.31 19.1 376 101 3.93 2.04 46.1 17.9 4.35 1.87

UL 125x90x16.1 10 10 10 7 20.5 16.1 318 138 3.94 2.59 37.2 20.3 3.95 2.22

UL 125x90x20.6 13 13 10 7 26.26 20.6 401 173 3.91 2.57 47.5 25.9 4.07 2.34

UL 150x90x16.4 9 9 12 6 20.94 16.4 485 133 4.81 2.52 48.2 19 4.95 1.99

UL 150x90x21.5 12 12 12 8.5 27.36 21.5 619 167 7.76 2.47 62.3 24.3 5.07 2.10

H

B

r2

r1

t1t2 Cx

Cy

UL 150x100x17.1 9 9 12 6 21.84 17.1 502 181 4.79 2.88 49.1 23.5 4.76 2.30

UL 150x100x22.4 12 12 12 8.5 28.56 22.4 612 223 4.74 2.83 63.4 30.1 4.88 2.41

UL 150x100x27.7 15 15 12 8.5 35.25 27.7 782 276 4.71 2.8 78.2 37 5.00 2.53

Page 47: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-18

Table 2.11 Properties of Sections Limited by Width-Thickness Ratio For Qa= 1

Fy = 2400 Ksc Fy = 3900 Ksc

Section Designation

Stem b / t

Factor Qs

Cc' Factor Qs

Cc'

T 50x100x8.6 6.25 -- -- -- --

T 62.5x125x11.9 6.94 -- -- -- --

T 74x100x10.5 8.22 -- -- -- --

T 75x150x15.8 7.50 -- -- -- --

T 87.5x175x20.1 7.95 -- -- -- --

T 99x99x9.1 14.14 -- -- -- --

T 100x100x10.7 12.50 -- -- -- --

T 97x150x15.3 10.78 -- -- -- --

T 100x200x24.9 8.33 -- -- -- --

T 100x204x28.1 8.33 -- -- -- --

T 104x202x32.8 6.50 -- -- -- --

T 124x124x12.8 15.50 -- -- -- --

T 125x125x14.8 13.89 -- -- -- --

T 122x175x22.1 11.09 -- -- -- --

T 122x252x32.2 11.09 -- -- -- --

T 124x249x33.2 9.54 -- -- -- --

T 125x250x36.2 8.93 -- -- -- --

T 125x255x41.1 8.93 -- -- -- --

T 149x149x16 18.63 -- -- 0.917 106.17

T 150x150x18.4 16.67 -- -- -- --

T 147x200x28.4 12.25 -- -- -- --

T 149x201x32.7 10.64 -- -- -- --

T 173x176x20.7 19.22 -- -- 0.885 108.06

T 175x175x24.8 15.91 -- -- -- --

T 168x249x34.6 14.00 -- -- -- --

T 170x250x39.8 12.14 -- -- -- --

T 169x351x53.1 13.00 -- -- -- --

T 172x348x57.3 10.75 -- -- -- --

T 172x354x65.4 10.75 -- -- -- --

T 175x350x68.2 9.21 -- -- -- --

T 175x357x77.9 9.21 -- -- -- --

T 178x352x79.3 8.09 -- -- -- --

T 198x199x28.3 18.00 -- -- 0.950 104.30

T 200x200x33 15.38 -- -- -- --

T193x299x47.1 13.79 -- -- -- --

T 195x300x53.4 12.19 -- -- -- --

T 248x199x39.7 17.71 -- -- 0.966 103.48

T 250x200x44.8 15.63 -- -- -- --

T 253x201x51.5 13.32 -- -- -- --

Page 48: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 2-19

Table 2.11 Properties of Sections Limited by Width-Thickness Ratio For Qa= 1

Fy = 2400 Ksc Fy = 3900 Ksc Section Designation

Stem b / t

Factor Qs

Cc' Factor Qs

Cc'

T 241x300x57.1 16.07 -- -- -- --

T 244x300x64.2 13.56 -- -- -- --

T 298x199x47.3 19.87 -- -- 0.851 110.22

T 300x200x52.8 17.65 -- -- 0.969 103.29

T 303x201x59.8 15.15 -- -- -- --

T 306x202x67 13.30 -- -- -- --

T 291x300x68.5 17.12 -- -- 0.997 101.82

T 294x300x75.6 14.70 -- -- -- --

T 297x302x87.3 12.91 -- -- -- --

Page 49: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-1

Design of Tension Member

1. Introduction

This chapter describes the general concepts for the design of steel tension members. Procedures implemented in the development of SYS Designer software and design tables for tension members are also presented. Design of an axial tension member involves considerably simple analysis and design procedures compared to any other types of members. Two important considerations in the design of tension members are the net effective area of cross section and permissible tensile stresses. Whenever a tension member is to be fastened by means of bolts or rivets, holes must be provided at the connection. As a result, the member cross-sectional area at the connection is reduced and the strength of the member may also be reduced depending on the size and location of holes. Thus in most cases, the designer need to design the member size and end connections together as they influence each other. Permissible tensile stress and detailed methods to determine net effective area can be referred to the relevant design codes.

2. General Procedure

A tension member can fail by reaching one of the limit states: yielding or fracture. To prevent yielding and accompanying excessive elongation, the stress on the gross area must be limited to yield stress Fy. To prevent fracture, the stress on the net area must not exceed the tensile strength Fu. With these two basic criteria, the tensile strength of a steel member is determined by using the following simple general procedures.

Permissible Stresses: (AISC/ASD)

yt FF 6.0= on gross area (3-1)

ut FF 5.0= on effective area (3-2)

Tensile Strength of a Member: The tensile strength, corresponding to the above two values for permissible stresses of, a member based on AISC/ASD is given by the smaller of the following two values for Pt.

gyt AFP ××= 6.0 (3-3)

eut AFP ××= 5.0 (3-4)

Where

yF = Specified Yield Strength

Fu = Specified Ultimate Strength

Chapter

3

Page 50: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-2

eA = Net effective area

gA = Gross area

The above formulae can be used for any consistent set of units. For example, for Metric system of units, if Fy and Fu are taken in Ksc and areas on cm2, the tensile strength will be in Kg. The procedures for calculations of Ae are explained in the following sections. Design Steps:

1) Compute Ag1 required based on yield criteria (Fy) from Eqn Error! Not a valid link.

2) Compute Ae required based on fracture criteria (Fu) from Eqn Error! Not a valid link.

3) Select appropriate reduction factor based on connection type and configuration.(usually 0.75 -1.0)

4) Compute Ag2 based on Ae from step 3. UA

A eg =2

5) Select section to satisfy higher of Ag1 and Ag2.

6) Check for other end connection requirements.

3. Effective Net Area

As mentioned in the previous section, detailed methods to find net effective area in design calculations depends upon the code requirements. In AISC specifications, calculation of the net effective area is based on actual net area multiplied by an appropriate reduction factor, which account for efficiency of the connection. This reduction factor includes various factors affecting the strength of the joint and the important phenomenon known as shear lag. Shear lag occurs due to the partial connection of the cross section resulting into an unequal stress distribution in different cross section elements. One very common example, where this phenomenon is quite serious, is the connection of only one leg of an angle section to gusset plate.

3.1.1. Effective Area:

For bolted and riveted connections ne UAA = (3-5)

For Welded Connections ge UAA = (3-6)

Where,

U = reduction coefficient/factor An = net area of cross section. The area after deduction of area for holes

from gross area = Ag - Aholes Ag = gross area of cross section

Page 51: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-3

3.1.2. Reduction Factors

The general equation for the calculation of reduction factors is given as below. Figure Error! Not a valid link.shows the definition of the parameters used for the calculations of U.

=

=

−=

connectiontheofLengthLplanesheartheandAreaconnectedthe

ofCentroidBetweenceDisx

LxU

tan

1

L

X

X

X

X X

Fig. 3.1. Parameters for the Calculation of Reduction Factor U

3.1.2.1. For Bolted and Riveted Connections

The reduction factor for bolted and riveted connections depends mainly on four parameters namely, the cross section shape of the member, depth to width ratio, number of fasteners per line and the portion of cross section actually connected. AISC specifies the following simple rules for the approximate calculations of reduction factors for some common shapes. Error! Not a valid link. shows reduction factors for some typical bolted connections.

1) For W, M, S or H shapes with flange widths not less than two-thirds the depth and structural tees cut from them, connected by the flanges and for bolted and riveted connections with at least three fasteners per line in the direction of the stress; U = 0.9

2) For W, M, S or H Shapes not meeting the conditions specified above, for structural tees cut form them, and all other shapes including built-up sections and for bolted and riveted connections with at least three fasteners per line in the directions of stress; U = 1

Page 52: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-4

3) For all members with bolted or riveted connections with only two fasteners per line in the directions of stress; U = 0.75

4) If all the elements of a member cross section are connected; U = 1

Page 53: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-1

Bar or Plate

Ae=An

WF Bf / d>2/3

Ae=0.9An

WF Bf / d>2/3

Ae =0.75 An

Single or DoubleAngle

Ae =0.85 An

WT Bf / d>2/3

Ae=0.90An

WF Bf / d<2/3

Ae=0.85An

WF Bf / d<2/3

Ae=0.75An

Single or DoubleAngle

Ae =0.75 An

Fig. 3.2. Net Effective Area for Bolted or Riveted Connections

3.1.2.2. For Welded Connections

For welded connections with both transverse and longitudinal welds, the reduction factor U is calculated by the general formula given above. For two special cases of connections with only longitudinal or only transverse welds, AISC specify the two rules as given below and illustrated in Fig Error! Not a valid link..

1. For any W, M, S, H or structural tees, connected by transverse welds alone

2. Ae = area of connected element

Page 54: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-2

3. For plates and bars connected by longitudinal welds at their ends as in the following figure three values of U depending upon the relative length of length l of the weld and their spacing w

U=1.0 for l >= 2w U=0.87 for 1.5 =< l < 2w U=1.0 for w =< l < 1.5w

w

l

Only Transverse Weld(a)

w

lOnly Logitudinal Weld

(b)

Fig. 3.3. Reduction Factors: Special Cases for Welded Connections

4. Design Examples

Design of tension member needs more considerations on the design of connections than the in calculations for the tension strength of the member itself. Welded connections are much simpler in design. The important considerations in the welded joint are the arrangement of weld so as to coincide the resisting force with center of gravity of the member and the form of welding. If the tension member is connected by a large number of rivets or bolts, the design becomes more complicated, requiring more calculations for determination of critical section for fracture on the cross section of the member and the other connecting elements like gusset plates etc. In such case the design strength will be the minimum of the member strength calculated based on the most critical failure path on the member or on the connecting element. If the connection is to be designed for eccentric load, additional calculations for the connection are required. An example is given here to demonstrate the general procedure for the design of tension members. However the detailed calculations for design of connections has not been included. They will be discussed briefly in the Chapter 7 ” Introduction to Design of Connections”

Page 55: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-3

Problem:

Design the lightest T-section whose net effective area after deduction for holes will be approximately 70% of the gross area. Maximum tensile load = 29 Ton which does not include the wind load.

Use SYS steel grade with properties: Fy = 2400 Ksc (34 ksi), Fu = 4000 Ksc (56.8 ksi)

T-Section

Ae=0.90An

29 Tons

Fig. 3.4. Bolt Connected T-section Tension Member for Design Example Error! Not a valid link.

Solution:

Tensile strength = yg FA 6.0× ….(1)

= ue FA 5.0× ….(2)

from (1) 2g1 cm 20.13

24000.629,000

0.6FyForce TensileA =

×==

from (2) 2e cm 14.50

40000.529,000

0.5FuForce TensileA =

×==

22 cm 71.20

7.050.14

7.0=== e

gAA

So higher of above two gross area Ag1 and Ag2 is the minimum required gross area. Ag= 20.71 cm2

The SYS T sections close to this requirement are T 75x150x15.8 Kg/m Ag = 20.07 cm2

T 150x150x16.0 Kg/m Ag = 20.40 cm2 T 150x150x18.4 Kg/m Ag = 23.39 cm2 So, use T 150x150x18.4 Kg/m Ag=23.39 cm2

Actual capacity based on gross area = Kg 681,3324006.039.23 =××

SYS Subject: Design of Bolt-Connected Tension Member

Example:3 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 3

Page 56: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-4

SYS Subject: Design of Bolt-Connected Tension Member

Example:3 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 3

Actual capacity based on net effective area = Kg 746,3240005.07.039.23 =×××

So safe capacity, the minimum of the above two actual capacities

= 32.75 Ton > 29 Ton (Section OK) Use T 150x150x18.4 Kg/m

Page 57: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-5

SYS Subject: Design of Weld-Connected Tension Member

Example:3 2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 3

Problem:

Compute the tension capacity of single angle section L 150x150x27.3 Kg/m connected by welds at the ends as the figure below. The length of the member = 10 m Use SYS steel grade with properties: Fy = 2400 Ksc (34 ksi), Fu = 4000 Ksc (56.8 ksi)

L150x150x27.3 kg/m T

20 cm

x

c.g.

Fig. 3.5.Bolt Connected T-section Tension Member for Design Example Error! Not a valid link.

Solution:

Computation of Design Strength:

Reduction factor 9.01 ≤−=LxU

Where x = distance from centroid of the connected area (cross section) to the shear plane

L = length of the connection in the direction of the applied force.

For L 150x150x37.3 Kg/m x = 4.14 cm from the outer face of the legs.

8.0793.02014.41 ≈=−=U

Tensile strength = yg FA 6.0× = Tons 5024006.077.34 =×× ….(1)

= ue FA 5.0× = Tons 6.5540005.077.348.0 =××× ….(2)

The minimum of the above two values gives T = 50 Tons Check for Slenderness Ratio:

Radius of gyration rx = ry = r = 4.16 cm Slenderness ratio = 10,00 / 4.16 = 240.38 < 300 OK

So the design tensile strength T = 50 Tons.

Page 58: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-6

5. Design Tables

In many design situations, the designer wants to find some section or sections that can approximately carry some tensile load without doing any calculation. The following tables will provide a quick and easy reference for the preliminary selection of the sections, which can be checked in detail later when the end connection requirements are finalized. The tensile strengths have been calculated for two different values of yield strengths Fy =2400 ksc and Fy = 4000 ksc. The tensile strengths are calculated based only on the following formula.

gyt AFP ××= 6.0

However the designer must verify the strength using the formula based on the fracture criteria as given below and take the minimum one as the final design strength.

eut AFP ××= 5.0

3.1 Tension Capacity (Ton) Based on Ag

Section Wght ( Kg / m)

Fy (2400 Ksc)

Fy (4000 Ksc)

C 200x80 24.6 4.70 7.33

C 200x90 30.3 5.80 9.04

C 250x90 34.6 6.61 10.31

C 250x90 40.2 7.68 11.97

C 300x90 38.1 7.29 11.37

C 300x90 43.8 8.36 13.04

C 300x90 48.6 9.29 14.48

C 380x100 54.5 10.41 16.24

C 380x100 67.3 12.86 20.06

H 100x100 17.2 3.285 5.12

H 125x125 23.8 4.5465 7.09

H 150x100 21.1 4.026 6.28

H 150x150 31.5 1.521 2.37

H 175x175 40.2 7.6815 11.98

H 200x100 18.2 3.477 5.42

H 200x100 21.3 4.074 6.35

H 200x150 30.6 5.8515 9.12

H 200x200 49.9 9.5295 14.86602

H 200x200 56.2 10.7295 16.73802

H 200x200 65.7 12.5535 19.58346

H 250x125 25.7 4.902 7.64712

H 250x125 29.6 5.649 8.81244

H 250x175 44.1 8.436 13.16016

H 250x250 64.4 12.309 19.20204

H 250x250 66.5 12.705 19.8198

H 250x250 72.4 13.827 21.57012

H 250x250 82.2 15.705 24.4998

H 300x150 32 6.12 9.5472

H 300x150 36.7 7.017 10.94652

H 300x200 56.8 10.857 16.93692

H 300x200 65.4 12.504 19.50624

H 300x300 84.5 16.155 25.2018

H 300x300 87 16.62 25.9272

H 300x300 94 17.97 28.0332

H 300x300 106 20.22 31.5432

H 300x300 106 20.22 31.5432

H 350x175 41.4 7.902 12.32712

H 350x175 49.6 9.471 14.77476

H 350x175 57.8 11.052 17.24112

H 350x250 69.2 13.2225 20.6271

H 350x250 79.7 15.225 23.751

H 350x350 106 20.295 31.6602

H 350x350 115 21.9 34.164

H 350x350 131 24.99 38.9844

H 350x350 137 26.085 40.6926

H 350x350 156 29.76 46.4256

H 400x200 56.6 10.824 16.88544

H 400x200 66 12.618 19.68408

H 400x200 75.5 14.424 22.50144

H 400x300 94.5 18.015 28.1034

H 400x300 107 20.4 31.824

Page 59: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-7

H 400x400 140 26.775 41.769

H 400x400 147 28.02 43.7112

H 400x400 168 32.16 50.1696

H 400x400 172 32.805 51.1758

H 400x400 232 44.31 69.1236

H 450x200 66.2 12.645 19.7262

H 450x200 76 14.514 22.64184

H 450x200 88.9 16.995 26.5122

H 450x300 106 20.25 31.59

H 450x300 124 23.61 36.8316

H 450x300 145 27.645 43.1262

H 500x200 79.5 15.195 23.7042

H 500x200 89.6 17.13 26.7228

H 500x200 103 19.695 30.7242

H 500x300 114 21.825 34.047

H 500x300 128 24.525 38.259

H 500x300 150 28.71 44.7876

H 600x200 94.6 18.075 28.197

H 600x200 106 20.16 31.4496

H 600x200 120 22.875 35.685

H 600x200 134 25.605 39.9438

T 125x250 33.2 6.3525 9.9099

T 125x250 36.2 6.4635 10.08306

T 125x250 41.1 7.851 12.24756

T 150x150 16 4.56 7.1136

T 150x150 18.4 3.5085 5.47326

T 150x200 28.4 5.4285 8.46846

T 150x200 32.7 6.252 9.75312

T 175x175 20.7 3.951 6.16356

T 175x175 24.8 4.7355 7.38738

T 175x250 34.6 6.612 10.31472

T 175x250 39.8 7.614 11.87784

T 175x350 53.1 10.1445 15.82542

T 175x350 57.3 10.95 17.082

T 175x350 65.4 12.498 19.49688

T 175x350 68.2 13.041 20.34396

T 175x350 77.9 14.8785 23.21046

T 175x350 79.3 15.15 23.634

T 200x200 28.3 5.412 8.44272

T 200x200 33 6.309 9.84204

T 200x300 47.1 9.0075 14.0517

T 200x300 53.4 10.197 15.90732

T 250x200 39.7 7.596 11.84976

T 250x200 44.8 8.568 13.36608

T 250x200 51.5 9.8475 15.3621

T 250x300 57.1 10.914 17.02584

T 250x300 64.2 12.264 19.13184

T 300x200 47.3 9.0345 14.09382

T 300x200 52.8 10.0815 15.72714

T 300x200 59.8 11.436 17.84016

T 300x200 67 12.7995 19.96722

T 300x300 68.5 13.086 20.41416

T 300x300 75.6 14.436 22.52016

T 300x300 87.3 16.68 26.0208

Page 60: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 3-8

6. Software Implementation

One of the modules included in the SYS Designer software is the “Axial Member Designer” which carries out the design and verification of axial tension and compression members. The program performs internal calculation based on the specification requirements of AISC/ASD described in Chapter 2 and 3 of this manual. As the design procedure for a tension member is quite simple, the procedure adopted in the SYS Designer’s Software can be described below as steps instead of flow diagram.

1) Compute the net effective area based on the user specified net effective area reduction factor U and the gross area Ag. The user must be aware of that the reduction factor is applied to the gross section area instead of the net area to obtain the net effective area. For example a section has a Ag= 25 cm2 ,area reduced by two 20 mm bolts = 3 cm2 and code specified reduction factor due to shear lag effect U =0.75 , the net effective area will be equal to (25-3)*0.75 = 16.5 cm2 So the use must enter a value of reduction factor = 16.5/25 = 0.66 in this case. For compressive load this reduction factor is not used for any calculation.

1) Compute the capacity of a section based on gross area and yield strength Fy

2) Compute the capacity of a section based on the effective net area and ultimate tensile strength Fu

3) Compute the design strength from the minimum of the above two capacities.

4) Compare the design load with the tensile strength of the section. If the section strength is more than the required, the section will be selected as the one that satisfies the design load, otherwise section will not be selected.

More detailed information for the various input parameters and their significance in the design can be obtained from the software Users Manual. Material and cross-sectional properties are a part of input data. The gross area for any Siam Yamato Standard Steel section is obtained directly from the section database. For the section selected from database, a number of load cases can be defined. The user can select a number of available SYS sections based on one or more selection criteria e.g. by specifying type, weight and /or depth range, and ask the program to check whether the section or sections can fulfill the required strength. Thus the program can be used for two purposes that a structural steel designer require in their routine work: The first is the selection of a list of available sections in SYS products catalogue full filling the user specified section selection criteria as well as the required design strength. The second use is the code verification (check) of a particular selected SYS section against one or more input load cases. For each case, a detailed design calculation report is generated which may be used directly as designers’ calculation sheet for the design approval.

Page 61: TN H01-Hand Book for Design of Steel Structures

Design of Compression Member

4.1. Introduction

Design of structural members subjected only to axial compressive force shall be discussed in this section. Structural members subjected to both axial compressive load as well as bending moment shall be discussed in the chapter 6 “Design of Columns”. Axial compressive member means that structural member which is loaded with a load applied through the centroid of the member cross section for which the compressive stress on the section can be assumed uniform. This chapter will describe the fundamental concepts about axial compression members from a structural steel designer’s point of view. Main topic for discussions will be on what are the factors that affect the compressive strength of a member, how a compression member fails, how to compute the effective length and allowable load etc. Some design examples and aids to assist the designer will be given at the end of the chapter.

4.2. Factors Influencing the Strength of Compression Member

Strength and behavior of a compression member is influenced by a number of material, member geometry and cross section properties. The interaction between the response and characteristics of the material, the cross section, the method of fabrication, the imperfections etc., in some cases, make the seemingly simple behavior member a complex one. Important parameters influencing the strength of a column are listed below. Unlike the tension member the holes in a compression member has little effect on the buckling strength of the member because as the strut compresses the axial load is transmitted by bearing on the shank of the bolt.

1) Grade of Steel

• Stress-strain relations • Yield stress

2) Manufacturing method

• Hot rolled shape • Welded built-up shape • Using flame-cut plates • Using universal mill plates • Cold-straightened shape

• Rotorizing (continuous straightening) • Gag (point) straightening

3) Size of shape (cross section area of steel)

4) Cross section geometry (W, H, C,WT etc ) 5) Bending axis

Chapter

4

Page 62: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-2

6) Initial out-of-straightness

• Maximum value • Distribution along column length

7) End support conditions

• Without sway, pinned or otherwise • With sway, pinned or otherwise • Restrained ends, with or without sway

8) Actual length of the member

4.3. Modes of Failure of Compression member

Euler was the first to recognize that columns could fail through bending or instability rather than yielding. He also showed that the column will remain straight until some critical load is reached, at which time the member may remain straight or assume a half sine wave deflection shape. Before designing any kind of structural member, it is significantly important for the designer to understand the possible mode of failure of the member and the modes which will govern under particular situation and how to provide adequate safety against the most critical one. A steel compression member can fail due to one or a combination of the following failure modes depending upon various factors listed in the previous article: A brief description of each mode of failure will be presented in the subsequent section.

• Excessive compressive stress • Overall flexural buckling of member • Local buckling of cross section elements • Torsional buckling • Flexural-torsional buckling

4.3.1. Excessive compressive stress

When the element width-thickness ratio falls within certain critical limit to prevent the local buckling and the member is short and stocky (small slenderness ratio), the Euler’s buckling stress is higher than the yield stress of the material. In such cases the member fails due to excessive compressive stress on the cross section of the members, leading to direct yielding of the material.

4.3.2. Overall flexural buckling of member

As slenderness ratio increases the member stability becomes more significant than the direct compressive stresses on the cross sections, so this type of failure occurs only for slender columns. The failure is associated with the deflection due to bending or flexure about the axis corresponding to the smallest radius of gyration – that is the one corresponding the greatest slenderness ratio. This failure is shown in Fig. 4.1. (a). The critical load for such buckling in elastic range is given by the following formula. Euler’s Formula:

Page 63: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-3

( )P

EIKLcr =π 2

2 (4-1)

Where L= Actual unsupported length of the member K = Effective length factor

E = Modulus of elasticity I = Moment of inertia of the section about the axis of

bending (buckling)

4.3.3. Local buckling of cross section elements

If the ratio of width to thickness of cross section elements exceed certain critical limit, the corresponding element will buckle locally at a stress lower than at which overall buckling or yielding of member occurs. This type of failure is governed by theory of local buckling of plate elements. The following equation (4-2) gives the critical buckling load for local buckling of cross section plate elements. Local buckling of plate element:

( )P

K Ebt

cr =−

π

µ

2

22

12 1 (Units: for any consistent set of units)

(4-2)

Where

Pcr = Critical buckling load

K = Effective length factor E = Modulus of elasticity

µ = Poisson’s ratio

t = Thickness of plate b = Width of plate

4.3.4. Torsional Buckling

This is the failure due to twisting which occurs only with symmetrical cross sections with very slender cross- sectional elements. Standard hot rolled shapes are generally not susceptible to torsional buckling but built-up sections with thin plate elements should be investigated for this type of failure. The Fig.. 4.1.(b) shows the torsional buckling type of failure.

4.3.5. Flexural-Torsional buckling

In this failure the twisting of the member about the member longitudinal axis is accompanied by flexural buckling. For concentric loads this failure mode can occur only with unsymmetrical cross sections, both those with one-axis of symmetry, such as structural tees, double-angle shapes and equal-leg single angles, and those with no axis of symmetry, such as unequal-leg single angles. In the design calculations all failure cases applicable for a given section should be investigated and designed according to the specific requirements.

Page 64: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-4

(a)Flexural Buckling

(b)Torsional Buckling

(c)Flexural-Torsional

Buckling

PPP

Fig. 4.1. Common Buckling Modes of Failure of a Compression Member

4.4. General Procedure for Design of Compression Member

4.4.1. General Concepts

The most general procedure to cover all type of cross section shapes for the design of seemingly simple compression member involves considerations for two factors Qa and Qs in addition to the method used for commonly used shapes. Design equation for the allowable stress in a compression member can be expressed in its most general form, as:

'asaa FQQF ××= (4-3)

Where

′aF = Permissible stress as determined by flexural buckling criteria (based on

basic equations without Qa ad Qs ) given by the equations (4-4) to (4-6) .

aQ = Effective area correction factor to take into account the non-uniform post buckling stress distribution on various stiffened elements (mostly webs) of the compressed section (for unstiffened elements aQ =1.0 )

Page 65: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-5

sQ = Stress reduction factor to take into account the local buckling effect of unstiffened elements (e.g projecting flanges) of the cross section based on width-thickness ratio (for stiffened elements sQ =1.0 )

Fa’ is calculated by the following formulae based on the overall cross-section properties and effective length of the member. In the following three formulas, the first formula (4-4) gives the critical buckling slenderness ratio, the second formula (4-5) gives the basic permissible stress for relatively short and medium length columns while the last equation (4-6) give that value for long columns. It is important to note here that the capacity of long columns (case 2) is independent Fy and depends solely on the E, effective length and the cross section properties.

FyECc

2π= (4-4)

For SYS (standard grade) 42.1312400

101.222 6

=××

== ππFyECc

Case 1: cCrKL

≤ 3

2

/81/

83

35

/211

'

−+

=

cc

cy

a

CrKL

CrKL

CrKLF

F (4-5)

Case 2: cCrKL

≥ 2

2

)/(2312'

rKLEFa

π= (4-6)

[ Units: Use any consistent set of units for Fy, L and r. For Metric System: Fa and Fy in Ksc, L and r in cm ]

For standard hot rolled shapes that are commonly used as axial compression members, the above capacity reduction factors are generally equal to one in most of the cases. However for some shapes such as T, channels and angles, whose capacity may be limited by element width to thickness ratios, these factors need to be considered to conform to the code requirements. A brief description of the various factors used in the general form of the axial member design equation (4-3) is presented in the following sections.

4.4.2. Design Steps:

1) Assume a trial section by judgement and experience or by using design aids for the compression member given at the end of this chapter.

2) Assume Qa =1.0 for first trial

3) Compute Qs based on the specification formula for the trial section shape. 4) Compute the critical slenderness ratio Cc.

5) Assume or compute the Kx and Ky by using alignment chart or equations. 6) Select correct formula from the two for Fa based on whether Cc is greater than Cact

or not.

Page 66: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-6

7) Revise the value for Qa by using new value for Fa. If the new Qa computed is within an acceptable accuracy (tolerance) compared to previous value (that calculated from the previous step) accept Fa (Go to next step ) otherwise revise the Fa (Go to step 4). Repeat the procedure until the desired accuracy is obtained.

8) Compute the capacity based on gross area and the Fa computed from step 7. 9) If the section capacity is more than or equal to the required capacity accept the

section otherwise try new section and repeat the whole calculation until suitable section is found.

The design steps explained above has been presented in more concise form as flow diagram below. This flow diagram also forms the basis of internal calculations in SYS Designer software. However the limitations of this procedure is that it does not carry any checks for possible modes of failures by any torsion which is important for section with one axis of symmetry or no axis of symmetry.

Page 67: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-7

Basic Data

Load Data PMaterial Data E, FyMember Data K, L

Trial CrossSection

Assume: Qa=1

Compute: Qs

cC

actC >

Compute FaFormula ( 1 ) Below

Compute FaFormula ( 2 ) Below

Revise: Qa New

Qa New ~ Qa

Qa= Qa NewCompute: Capacity= Fa Ag

Capacity >

Load

End

Compute:y

Fs

Qa

Q2E

Cc =

max(KL/r)y

(KL/r)xact

C =Compute:

Yes

No

No

Yes No

Fig. 4.2. Flow Diagram for the Design of Axial Compression Member (AISC/ASD)

Page 68: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-8

Formula (1) 3

2

/81/

83

35

/211

'

−+

=

cc

cy

a

CrKL

CrKL

CrKLF

F

Formula (2) 2

2

)/(2312'

rKLEFa

π=

4.5. Stress Reduction Factor Qs

Commonly used hot-rolled shapes are so proportioned that their elements are thick enough to preclude local buckling yield stress. Two different approaches have been adopted to take into account the elements with local buckling. The first approach is limiting the slenderness ratio b/t of element, totally avoiding the element buckling before member flexural buckling. The second approach is to calculate the effective width of elements stressed enough to buckle, and design taking into account the post buckling strength of the plates which can be considerably larger than their corresponding buckling strength. As the stress reduction factor Qs applies only to the unstiffened elements of a section, it is important to understand the stiffened and unstiffened elements in a shape. Plates supported on both unloaded edges are called stiffened elements while those supported on only one loaded edge are called unstiffened elements. The following figure shows the stiffened and unstiffened elements of H and box shapes.

UnstiffenedElement

StiffenedElement

Qs= 1

All (4)ElementsStiffened

Qs = 1

Fig. 4.3. Stiffened and Unstiffened Elements

The AISC/ASD specified formulas in US units to determine the factor sQ for different shapes are as follows. Permissible critical stress (reduced Fy or usable Fy) FL of the weakest unstiffened element is then calculated by FL = Qs Fy.

Notations and Units

Fy = Specified yield strength of steel in ksi

b = width of the element in inch

Page 69: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-9

t = thickness of the element in inch 9) For single angles

<<−

=

y

yyy

s

Ffor

FFforF

Q155

tb

(b/t)F15,500

155tb76

tb 00447.0340.1

2y

(4-7)

For SYS Grade Fy = 2400 ksc or 34 ksi

<<−=

3.26tb

(b/t)446.7

3.26tb9.12

tb 026.0340.1

2for

forQs

10) For angles or plates projecting form columns or other compression members and for projecting elements of compression flanges of beam and girders

<<−

=

y

yyy

s

Ffor

FFforF

Q195

tb

(b/t)F20,000

195tb95

tb 00437.0415.1

2y

(4-8)

For SYS Grade Fy = 2400 ksc or 34 ksi

<<−=

1.33tb

(b/t)576.4

1.33tb1.16

tb 0257.415.1

2for

forQs

11) For stems of tees

<<−

=

y

yyy

s

Ffor

FFforF

Q176

tb

(b/t)F20,000

176tb127

tb 00715.0908.1

2y

(4-9)

For SYS Grade Fy = 2400 ksc or 34 ksi

<<−=

9.29tb

(b/t)576.4

9.29tb6.21

tb 0421.0908.1

2for

forQs

Page 70: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-10

4.6. Effective Area Factor Qa

When column is short enough not to fail by flexural buckling, the effective width of the stiffened elements in the section may be less than the actual width due to the non-uniform stress distribution at various elements of the sections (Karman effect). However the width of the unstiffened elements remain fully effective. So the compressive strength P of a member containing both stiffened and unstiffened (e.g. Channel, H shapes) elements is taken to be the product of the effective area of the cross section which is the sum of the reduced effective area of the stiffened elements and actual unreduced areas of the unstiffened elements and the critical stress FL of the weakest unstiffened element (4-11). Method to compute the critical stress FL has been explained in the previous section.

General definition: Qa = Effective area / Gross area (4-10)

Example: Effective area factor for a channel section

In this case of channel section, the top and bottom flanges are fully effective and do not need any reduction but the web depth should be reduced by some amount as shown in the figure.

2211

2211

22

tbtbtbtbQ e

a ++

=

So if Qs is the reduction factor flanges then

FyQF sL .= So applying all the effect together the final capacity P becomes as

b e2

2

b e2

2

b2 t2

t1

b1

( )22112 tbtbFP eL += (4-11) Fig. 4.4. Effective Area Factor For C

The critical stress FL of the weakest unstiffened element is computed as Qs Fy. Specification formulas to compute the effective width of uniformly compressed stiffened elements of various shapes are given in AISC/ASD specifications which are reproduced here for easy reference.

Notations and Units

Fy = Specified yield strength of steel in ksi

b = width of the element in inch

t = thickness of the element in inch

For flanges of square and rectangular box sections of uniform thickness

bftbf

tbe ≤

−=

)/(9.641326

(4-12)

Page 71: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-11

For other uniformly compressed stiffened elements

bftbf

tbe ≤

−=

)/(2.571326

(4-13)

For axially loaded compression members f is obtained by dividing the load P by the actual cross-sectional area, rather than the effective area while for flexural members it is computed for the effective cross sections.

4.7. Effective Length Factor K

K may be defined as a factor by which the actual length of a compression member is multiplied in order to determine its effective length. K is a reflection of the length of curvature between the point of inflections. K is dependent upon the restraint at the ends of the unsupported (unbraced ) length and the ability of the column to resist lateral movement. Another important criteria for determining K is the side sway condition. Figure . 4.1.illustrates some typical cases of braced and unbraced frames.

P PP2

P2A

ABraced byshearwall

KL

MP P

M=0

K=1

BracedFrame

Unbraced Frame

t

Section A-A

Fig. 4.5. Braced (Non-sway) and Unbraced (Sway) Frames

Side sway prevented (braced) frame is the one that receives other means of lateral support independent of its own stiffness such as special sway bracing, shear wall parallel to the plane of displacement or attachment to a laterally stable structure. For such cases K may be taken at less than or equal to unity.

Page 72: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-12

For unbraced frames where side sway is not prevented a rational method is employed to determine K. A clear and simplified explanations as to what is meant by a rational method is not available in references. Therefore the engineer is left with his own good structural judgment to determine K for a compression member in an unbraced frames. Considering the column as an individual segment (isolated member or standing alone or truss member) unrelated to the overall structural system, and for an approximate value of K the standard alignment charts and tables provided in below an in appendix can be used. To determine the critical slenderness ratio of a compression member, it is necessary to investigate the effective length with respect to both, XX and YY axis using their respective values of Kx and Ky. The largest slenderness ratio will be used for the design.

Model Example Factor

1.0

0.85

0.7

2.0

1.0

Fig. 4.6. Typical K Factors for Columns in Various Structures

ACI 318-95 Approach: The following simplified equations for computing the effective length factors for braced and unbraced members are suggested in the ACI 318-95 commentary (Article 10.12)

For braced compression members, an upper bound to the effective length factor may be taken as the smaller of the following two expressions:

0.1min 05.085.00.1)(05.07.0

≤+=≤++=

GKGGK BA (4-14)

Page 73: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-13

where GA and GB are stiffness ratio values at the two ends (top an bottom) of the column and Gmin is the smaller of the two values.

]:[)/(

)/(

IncreasesGasIncreaseKGKNoteLEILEI

GBeams

Columns

α∑∑

= (4-15)

For unbraced compression members restrained at both ends, the effective length factor may be taken as For Gm<2

mm GGK +

−= 1

2020

(4-16)

For 2≥mG

)1(9.0 mGK += (4-17)

Gm is the mean of the relative stiffness ratios at two ends. For unbraced compression members hinged at one end, the effective length factor may be taken as:

GK 3.00.2 += (4-18)

Where G is the relative stiffness at the restrained end.

4.8. Design Examples

The examples presented in this section will illustrate design procedures for the design of some typical compression members. The first example will explain the simple procedure where the calculation steps for K factor are not required. In the subsequent examples, more emphasis has been given on the methods to calculate K factor for various cases. Two common tasks, a structure steel designer has to perform are: Verification The determination of the strength of a member for a given geometric and cross-section properties and comparing (verifying) with actual design loads. Design: The design (or selection) of an appropriate cross section for given load and end conditions. In the first procedure, that is the strength determination, the calculation has to be performed only one time. However, design of a compression member fulfilling both functional and cost requirements, may need a number of trial calculations. The designer has to consider various possibilities and select the most appropriate one. The last example is meant to explain the iterative and economic aspects of the design process. The example also describes the various alternatives for the same geometric and load values. If may be noted that a lighter steel section may sometimes provide higher compressive strength than a higher weight section under the same design conditions.

Page 74: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-14

As described in the preceding sections, the design of any type of compression member needs the determination of the effective length factor K. For this purpose, there may be two cases to choose at first, that is, whether the member to be designed is an isolated element(standing alone e.g. an electrical pole) or a part of a framed system (structure). If the compression member is an isolated one, the effective length can be readily obtained by referring to standard diagrams provided in the previous sections or in appendix. The typical K value may range from 0.5 (both end fix) to 2.0 (for one end fix, another free) depending upon the end conditions. On the other hand, if the member is a compression element forming part of a frame, the determination of the effective length factor requires more calculation steps. For framed members, irrespective of the sway conditions, the first three steps in the calculation for K will be common as explained in Example 4.2 below. The only difference, after first three steps, in the procedure to calculate K for sway and no sway is the selection of the different alignment chart or equations. For the illustration purpose, the frame of “Design Example 4.2” has been analyzed for both braced and un-braced conditions. The frame dimensions, cross-section and the support conditions have been selected to cover various end conditions commonly encountered in practical design. However in all the design example the calculations for two factors Qs and Qa are not included.

Page 75: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-15

SYS Subject: Design of Axial Compression Member Example:4.1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Problem:

Design an outdoor stadium electrical pole of height 6 m which carries a lamp and attachment weight of 6 tons at the top and the bottom is rigidly fixed with some other huge structure. Neglect the effect of lateral (wind) loads. Select a hollow circular section of approximate diameter 20 -25 cm and wall thickness of 10 –12 mm. Use SYS steel grade: Fy = 2400 Ksc (34 ksi) E = 2.1E6 Ksc (2900 ksi)

6 m high6 tons on top

Fig. 4.7.Electric Lamp Pole for Design Example Error! Not a valid link.

Solution:

The design of an isolated compression member does not need any calculations for K factor. The value can be readily read from the standard values based on top and bottom end conditions .For example if one end fixed and other free K = 2 etc.

42.1312400

101.222 6

=××

== ππFyECc

Case 1: cCrKL

≤ 3

2

/81/

83

35

/211

−+

=

cc

cy

a

CrKL

CrKL

CrKLF

F From equation Error! Not a valid link.

Case 2: cCrKL

≥ 2

2

)/(2312

rKLEFa

π= From equation (4-6)

Take thickness = 10 mm

The following table gives the detailed calculations for Fa and Pc for various trial diameters.

Page 76: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-16

SYS Subject: Design of Axial Compression Member Example:4.1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Dia.

Cm

Area

Cm2

Ixx

Cm4

r

cm KL/r

Wt

Kg/m

Fa

Ksc Capacity =

Fa Ag Wt./Cap.

X10-3

20 59.69 3645 6.72 357 46.85 80.74 4,819 9.72

22 65.97 2700 7.43 323 51.78 98.70 6,511 7.95

25 75.38 5438 8.5 282 59.17 129.17 9,737 6.08

Some important remarks:

• For circular section Qa = 1 and Qs = 1 as it does not contain any well defined stiffened and unstiffened elements.

• Member being an isolated member, no calculations for K factor are required.

• The weight to capacity ratio is decreasing with increasing diameter as illustrated in the above table.

• The required capacity is satisfied by the minimum diameter of 22 cm.

• The slenderness ratio is more than 200, which is generally the limiting value for compression members.

Now it is up to the designer whether to provide 22 cm x 1 cm with capacity just enough for the requirement by accepting a very slender member or go for 25 cm x 1 cm with an additional capacity and weight which indirectly means the additional cost.

Page 77: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-17

Problem:

Compute axial compressive strength of a SYS H 300×150×36.7 section with the following data:

6101.2 ×=E Ksc (29000 ksi)

2400=Fy Ksc (34.0 ksi).

The column is a part of a multi-story structure and is located on the exterior face. The framing conditions for the member in major axis and minor axis are as shown below. The frame is braced against side sway by shear walls.

5.0

H30

0X15

0

H200X100L=3 m

L=4

mH

150X

150

A

10

3.0

H30

0X15

0

H200X100

B

2.0

L=3

H200X100

L=3

H30

0X15

0

H200X100

L=3

H200X100

L=3

H15

0X15

0L=

4 m

C

In Major Axis

Plane

In Minor Axis

Plane

Braced Frame Fig. 4.8. Frame for Design Example Error! Not a valid link.

Solution:

1. Trial section properties

Section Ix (cm4) Ix (in4) Ax (cm2) Ax(in2) H 150x150 1640 39.40 51.21 7.94

H 200x100 1840 44.21 27.16 4.21

H 300x150 7210 17.30 46.78 7.25

As in this case, the bracing conditions for major and minor axis are different, we need to consider both the axis separately. Moreover, two segments for minor axis buckling are also not identical with respect to member actual length and end conditions. So critical slenderness ratio shall be selected considering all the three cases and choosing the maximum.

SYS Subject: Design of Axial Compression Member Example:4.2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Page 78: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-18

2. For segment (A)

Top end

4.2

31840

41640

43

57210

=

+

=

=

b

cA

LILI

G

(Note: The stiffness of the member with far end hinged, will be reduced by 25% i.e. multiplied by ¾ )

Bottom end GB = 10 (Approximate value for hinged base)

Using alignment chart for braced frame (From Appendix), KA = 0.92 (Note: values of K obtained using ACI (1995) code equations may differ slightly with this one.)

3. For segment (B)

Top end

318402

27210

43

37210

×

+

=

=

b

cA

LILI

G = 4.4

Bottom end

G B = 10 (Hinged Base)

From the alignment chart for braced frame(From Appendix), KB = 0.94

4. For segment (C)

Top end

318402

27210

41640

×

+

=

=

b

cA

LILI

G = 4.4

Bottom end

4.4

318402

27210

43

37210

+

=

=

b

cB

LILI

G

From the alignment chart for braced case, Kc = 0.92

SYS Subject: Design of Compression Member Example:4.2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Page 79: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-19

5. Critical KL/r

The next step is to compute the most critical slenderness ratio rKL / for the three segments.

0.374.12

100592.0=

××=

x

AA

rLK

71.8529.3

100394.0=

××=

y

BB

rLK

92.5529.3

100292.0=

××=

y

CC

rLK

So, maximum =actrKL )/( =max)/( rKL 85.71

6. Compression capacity

rKLCsoFyEC cc /,42.131

2400101.222 6

>=××

== ππ

3

2

3

2

42.1317.85

81

42.1317.85

83

35

42.1317.855.01

/81/

83

35

/211

+

×−

=

−+

=y

cc

cy

a

F

CrKL

CrKL

CrKLF

F

= 0.41 Fy

Fa = 0.41 x Fy = 0.41 x 2400 = 984 ksc.

Compressive strength Pc = ×F Aa

= 984 × 46.78 = 46.03 ton (101.26 kips)

The design safe compressive load on the SYS H 300x150x36.7 Kg/m = 46.03 Ton (101.26 kips)

(Note: Calculations for Qs and Qa are not included in the design as they are not essential for most standard hot rolled sections.)

SYS Subject: Design of Compression Member Example:4.2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:3 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Page 80: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-20

Problem:

Design (select) the lightest SYS H Section to carry safely, an axial compressive load of 40 Ton (66.0 kips) with the following data.

L mx = 6 . (19.68 ft.) .0.1=xK

L my = 3 . (9.84 ft.) Ky = 0 65. .

E = 2.1E6 Ksc (29000 ksi) Fy = 2400 Ksc (34 ksi) Solution:

Design of a compression member is a trail and error procedure. For a given member end conditions, two important parameters related to section which affect the capacity are the radius of gyrations and the gross cross section area. In this example the effective lengths of the member are given directly but if required the designer can refer to the previous examples for the procedure to compute K. First Trial Section, SYS H 300x150x36.7 (24.7 lb/ft) Section properties from SYS steel section catalogue or chapter 2 of this manual:

Ax = 46.78 cm2 (7.25 in2) rx = 12.4 cm (4.88 in)

ry = 3.29 cm (1.3 in)

38.484.1210061

=××

=xrxLxK

27.5929.3

100365.0=

××=

y

yy

rLK

(Any consistent unit can be used here to compute KL/r.)

So critical 27.59/ =rKL

From the previous example, for Fy=2400 ksc, Cc =131.42

As cCrKL </

3

131.4259.27

81

131.4259.27

83

35

yF2

131.4259.27

0.51

3

cCKL/r

81

cCKL/r

83

35

2

cCKL/r

21

1yF

aF

−+

××−

=

−+

=

= 0.493 x Fy = 1183.20 ksc (16.79 ksi)

Axial Capacity Pc = =× ga AF 1183.20 x 46.78 = 56.38 Ton (124.03 kips)

As 56.03 > 40, we have try to smaller section. Proceeding in the similar way, the following table can be obtained.

SYS Subject: Design of Axial Compression Member Example:4.3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Page 81: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-21

Axial Compressive

Capacity

Weight Section

Name Ton Kips kg/m lb/ft

CapacityWeight

(Normalized)

Remark

H 250x125x29.6 42.84 94.16 29.6 19.9 0.690

H 200x150x30.6 43.76 96.27 30.6 20.6 0.699

H 150x150x31.5 37.57 82.65 31.5 21.2 0.838 Max.

H 300x150x36.7 56.38 124.03 36.7 24.7 0.650 Min.

H 175x175x40.2 54.7 120.34 40.2 27.0 0.734

The table is presented to illustrate the fact that in some cases, a much lighter section can carry more axial compressive load than a heavier section If other section criteria are not governing, the designer should select the lightest section satisfying the load capacity. We should choose the section with the smallest weight to capacity ratio to make the design economic.

So use: SYS H250 x 125 x 29.6 kg/m Actual Capacity = 42.84 Ton (94.248 kips) > 40 Ton (88 kips)

SYS Subject: Design of Axial Compression Member

Example:4.3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 4

Page 82: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-22

4.9. Design Tables

The design of a typical steel compression member using specification equations is a trial-and -error procedure. The effective length factor “K” for a compression member in a frame depends upon the bending stiffness of the member relative to the stiffness of other members that connect to the ends of the member. Another important cross section parameter for design is the radius of gyration “r” of the cross-section. So unless the size of the member is known, the slenderness ratio kL/r and other stress calculation can not be carried out. That necessitates a preliminary selection (assumption) of the size of the member to be designed, which depends upon the experience and the judgement of the designer. However, “The tables for the design of compression members" given in this section may furnish a tool to assist the designer to make a preliminary selection that shall need minimum revision later for detailed design. In certain design situation like members of a truss, where the effective length factor k can be assumed in advance, even the final selection of member size may be based on the values in these tables. Another important application of these design tables provided here, can be to provide the designer, a set of sections of comparable compressive strength so the detailed design checks can be limited to only those shapes. This may save the designer time, especially when calculations are carried out by hand.

Standard hot-rolled sections are generally so proportioned that their bending strength in major axis is significantly higher than in minor axis. As the compression capacity calculations are based on first critical buckling mode, generally, the strength is governed by minor axis buckling strength. However, the compressive strength can be increased considerably by providing lateral bracing at some intermediate points so as to reduce the effective length for minor axis buckling. By keeping this practical design requirement in mind, the design tables for compression member includes two common cases: Equal effective length on both major and minor axis and minor axis effective length half of major axis effective length i.e. the member is braced laterally at midpoint. It should be noted that the member lengths shown at he top of the tables are the effective lengths KxLx and KyLy, in their respective axes. Although some of the shapes are not used commonly as compression member, they have also been included in design tables for the purpose of completeness. It is very important to note here that all the listed capacities are calculated based on flexural or bend buckling mode of the member. No reduction or checks for other modes of failure are included in the capacities shown in the following tables though they are important for unsymmetrical shapes like T or L etc. For such shapes the capacity values can be used as preliminary selection. In other words the following compression capacities are calculated based only on formulae Eqs nos 4-4 to 4-6. Moreover the effect of slender stiffened and unstiffened cross sectional elements (Qa and Qs) are also not included as they are very few sections that require these factors.

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ ].

Page 83: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-23

Table 4.1: Compression Capacity (Ton) For C Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

C 50x25 3.86 4.92 1.85 0.71 2.55 0.64 0.28 1.14 0.16 0.64 0.10 0.41 0.07 0.28 0.05 0.21 0.04 0.16 0.03 0.13

C 75x40 6.92 8.818 2.92 1.17 8.89 3.11 1.38 5.79 0.78 3.11 0.50 1.99 0.35 1.38 0.25 1.01 0.19 0.78 0.15 0.61

C 100x50 9.36 11.92 3.97 1.48 13.47 6.72 2.99 10.59 1.68 6.72 1.08 4.30 0.75 2.99 0.55 2.19 0.42 1.68 0.33 1.33

C 125x65 13.4 17.11 4.98 1.9 20.88 14.66 7.07 18.05 3.98 14.66 2.54 10.18 1.77 7.07 1.30 5.19 0.99 3.98 0.79 3.14

C 150x75 18.6 23.71 6.03 2.22 29.92 23.11 13.37 26.80 7.52 23.11 4.81 18.86 3.34 13.37 2.46 9.82 1.88 7.52 1.49 5.94

C 150x75 24 30.59 5.86 2.19 38.50 29.54 16.79 34.40 9.44 29.54 6.04 23.93 4.20 16.79 3.08 12.33 2.36 9.44 1.87 7.46

C 180x75 21.4 27.2 7.12 2.19 34.24 26.27 14.93 30.59 8.40 26.27 5.37 21.28 3.73 14.93 2.74 10.97 2.10 8.40 1.66 6.63

C 200x80 24.6 31.33 7.88 2.32 39.85 31.43 20.24 35.99 10.85 31.43 6.95 26.20 4.82 20.24 3.54 14.18 2.71 10.85 2.14 8.58

C 200x90 30.3 38.65 8.02 2.68 50.29 41.90 30.97 46.43 17.87 41.90 11.44 36.75 7.94 30.97 5.83 24.50 4.47 17.87 3.53 14.12

C 250x90 34.6 44.07 9.74 2.58 57.03 46.92 33.67 52.38 18.88 46.92 12.08 40.68 8.39 33.67 6.17 24.66 4.72 18.88 3.73 14.92

C 250x90 40.2 51.17 9.56 2.54 66.06 54.05 38.27 60.54 21.25 54.05 13.60 46.63 9.44 38.27 6.94 27.75 5.31 21.25 4.20 16.79

C 300x90 38.1 48.57 11.5 2.52 62.63 51.09 35.93 57.32 19.85 51.09 12.71 43.96 8.82 35.93 6.48 25.93 4.96 19.85 3.92 15.69

C 300x90 43.8 55.74 11.5 2.54 71.96 58.87 41.69 65.94 23.15 58.87 14.81 50.80 10.29 41.69 7.56 30.23 5.79 23.15 4.57 18.29

C 300x90 48.6 61.9 11.3 2.48 79.62 64.56 44.73 72.70 24.50 64.56 15.68 55.25 10.89 44.73 8.00 32.00 6.13 24.50 4.84 19.36

C 380x100 54.5 69.39 14.5 2.78 90.73 76.47 57.94 84.16 34.52 76.47 22.09 67.73 15.34 57.94 11.27 47.03 8.63 34.52 6.82 27.27

C 380x100 67.3 85.71 14.3 2.76 111.96 94.16 71.01 103.76 42.02 94.16 26.89 83.24 18.68 71.01 13.72 57.37 10.51 42.02 8.30 33.20

[Note: The availability of the sections can be checked from Chapter 2 – Tables for ‘Properties of SYS Steel Sections’].

Page 84: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-24

Table 4.2: Compression Capacity (Ton) For I Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

I 100x75 12.9 16.43 4.14 1.7 19.46 12.36 5.43 16.24 3.06 12.36 1.96 7.82 1.36 5.43 1.00 3.99 0.76 3.06 0.60 2.41

I 125x75 16.1 20.45 5.13 1.68 24.14 15.13 6.60 20.06 3.71 15.13 2.38 9.51 1.65 6.60 1.21 4.85 0.93 3.71 0.73 2.94

I 150x75 17.1 21.83 6.12 1.62 25.47 15.28 6.56 20.87 3.69 15.28 2.36 9.44 1.64 6.56 1.20 4.82 0.92 3.69 0.73 2.91

I 150x125 36.2 46.15 6.18 2.89 60.64 51.68 40.08 56.51 24.81 51.68 15.88 46.20 11.03 40.08 8.10 33.29 6.20 24.81 4.90 19.60

I 180x100 23.6 30.06 7.45 2.14 37.66 28.54 15.75 33.49 8.86 28.54 5.67 22.82 3.94 15.75 2.89 11.57 2.22 8.86 1.75 7.00

I 200x100 26 33.06 8.11 2.05 41.06 30.35 15.90 36.17 8.94 30.35 5.72 23.60 3.97 15.90 2.92 11.68 2.24 8.94 1.77 7.07

I 200x150 50.4 64.16 8.34 3.43 85.90 76.19 63.79 81.41 48.83 76.19 31.09 70.31 21.59 63.79 15.86 56.63 12.15 48.83 9.60 40.31

I 250x125 38.3 48.79 10.3 2.63 63.31 52.43 38.21 58.31 21.72 52.43 13.90 45.73 9.65 38.21 7.09 28.37 5.43 21.72 4.29 17.16

I 250x125 55.5 70.73 10.2 2.76 92.39 77.70 58.60 85.63 34.68 77.70 22.19 68.69 15.41 58.60 11.32 47.35 8.67 34.68 6.85 27.40

I 300x150 48.3 61.58 12.4 3.09 81.56 70.72 56.76 76.55 39.70 70.72 24.22 64.11 16.82 56.76 12.36 48.64 9.46 39.70 7.48 29.90

I 300x150 65.5 83.47 12.3 3.26 111.19 97.59 80.16 104.90 59.01 97.59 36.54 89.34 25.38 80.16 18.64 70.07 14.27 59.01 11.28 45.11

I 300x150 76.8 97.88 12.2 3.32 130.63 115.10 95.22 123.45 71.15 115.10 44.44 105.68 30.86 95.22 22.67 83.73 17.36 71.15 13.72 54.87

I 350x150 58.5 74.58 14.3 3.07 98.70 85.45 68.37 92.58 47.49 85.45 28.95 77.37 20.11 68.37 14.77 58.44 11.31 47.49 8.94 35.75

I 350x150 87.2 111.1 14.2 3.26 147.99 129.90 106.70 139.63 78.55 129.90 48.64 118.91 33.78 106.70 24.81 93.27 19.00 78.55 15.01 60.05

I 400x150 72 91.73 16.2 3.07 121.40 105.10 84.10 113.88 58.41 105.10 35.61 95.16 24.73 84.10 18.17 71.88 13.91 58.41 10.99 43.97

I 400x150 95.8 122.1 16.1 3.18 162.22 141.61 115.12 152.70 82.89 141.61 50.86 129.07 35.32 115.12 25.95 99.76 19.87 82.89 15.70 62.79

I 450x175 91.7 116.8 18.3 3.6 157.08 140.59 119.60 149.44 94.40 140.59 62.35 130.63 43.30 119.60 31.81 107.53 24.36 94.40 19.25 80.13

I 450x175 115 146.1 18.3 3.72 197.04 177.36 152.38 187.92 122.45 177.36 83.28 165.49 57.84 152.38 42.49 138.03 32.53 122.45 25.70 105.57

I 600x190 133 169.4 24.1 3.81 228.92 206.87 178.92 218.69 145.51 206.87 106.36 193.59 70.34 178.92 51.68 162.89 39.57 145.51 31.26 126.70

I 600x190 176 224.5 24.1 3.97 304.38 276.82 241.98 291.58 200.47 276.82 152.08 260.26 101.22 241.98 74.36 222.05 56.93 200.47 44.99 177.18

[Note: The availability of the sections can be checked from Chapter 2 – Table s for ‘Properties of SYS Steel Sections’].

Page 85: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-25

Table 4.3: Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

**H 100x50 9.3 11.85 3.98 1.12 11.62 3.83 1.70 6.80 0.96 3.83 0.61 2.45 0.43 1.70 0.31 1.25 0.24 0.96 0.19 0.76

H 100x100 17.2 21.9 4.18 2.47 28.15 22.79 15.73 24.16 8.60 20.42 5.50 16.09 3.82 10.95 2.81 8.04 2.15 6.16 1.70 4.86

**H 125x60 13.2 16.84 4.95 1.32 18.13 7.55 3.36 13.25 1.89 7.55 1.21 4.83 0.84 3.36 0.62 2.47 0.47 1.89 0.37 1.49

H 125x125 23.8 30.31 5.29 3.11 40.17 34.89 28.08 36.28 19.78 32.66 12.08 28.54 8.39 23.90 6.16 17.83 4.72 13.65 3.73 10.78

H 148x100 21.1 26.84 6.17 2.37 34.27 27.28 18.02 31.06 9.70 27.28 6.21 22.95 4.31 18.02 3.17 12.67 2.43 9.70 1.92 7.67

**H 150x75 14 17.85 6.11 1.66 20.99 12.98 5.63 17.36 3.17 12.98 2.03 8.10 1.41 5.63 1.03 4.14 0.79 3.17 0.63 2.50

H 150x150 31.5 40.14 6.39 3.75 54.17 48.83 42.04 50.25 33.93 46.63 23.25 42.53 16.15 37.98 11.86 32.97 9.08 27.47 7.18 20.84

**H 175x90 18.1 23.04 7.26 2.06 28.64 21.24 11.19 25.26 6.29 21.24 4.03 16.57 2.80 11.19 2.05 8.22 1.57 6.29 1.24 4.97

H 175x175 40.2 51.21 7.5 4.38 69.92 64.46 57.59 65.95 49.45 62.29 40.06 58.18 28.10 53.64 20.65 48.68 15.81 43.28 12.49 37.45

H 194x150 30.6 39.01 8.3 3.61 52.47 46.99 40.01 49.93 31.63 46.99 20.94 43.68 14.54 40.01 10.68 36.00 8.18 31.63 6.46 26.89

H 198x99 18.2 23.18 8.26 2.21 29.23 22.53 12.95 26.16 7.29 22.53 4.66 18.34 3.24 12.95 2.38 9.52 1.82 7.29 1.44 5.76

H 200x100 21.3 27.16 8.24 2.22 34.27 26.48 15.32 30.70 8.62 26.48 5.51 21.61 3.83 15.32 2.81 11.25 2.15 8.62 1.70 6.81

H 200x200 49.9 63.53 8.62 5.02 87.47 81.87 74.89 83.42 66.69 79.71 57.31 75.56 46.72 70.98 33.65 66.01 25.76 60.64 20.35 54.87

H 200x204 56.2 71.53 8.35 4.88 98.33 91.76 83.58 93.54 73.94 89.17 62.90 84.27 50.41 78.87 35.80 72.99 27.41 66.64 21.66 59.80

H 208x202 65.7 83.69 8.83 5.13 115.37 108.20 99.30 110.22 88.83 105.50 76.89 100.21 63.44 94.40 46.29 88.08 35.44 81.27 28.00 73.95

H 244x175 44.1 56.24 10.4 4.18 76.54 70.13 62.04 73.56 52.44 70.13 41.31 66.28 28.11 62.04 20.65 57.43 15.81 52.44 12.49 47.08

H 244x252 64.4 82.06 10.3 5.98 113.96 108.27 101.28 109.87 93.12 106.15 83.87 102.01 73.55 97.47 62.13 92.56 47.22 87.28 37.31 81.63

H 248x124 25.7 32.68 10.4 2.79 42.75 36.07 27.39 39.67 16.37 36.07 10.48 31.98 7.28 27.39 5.35 22.29 4.09 16.37 3.23 12.94

H 248x249 66.5 84.7 10.8 6.28 117.87 112.38 105.65 113.91 97.81 110.31 88.94 106.32 79.08 101.95 68.20 97.22 56.24 92.15 42.47 86.73

H 250x125 29.6 37.66 10.4 2.79 49.27 41.57 31.56 45.72 18.87 41.57 12.08 36.85 8.39 31.56 6.16 25.68 4.72 18.87 3.73 14.91

[Note: The availability of the sections can be checked from Chapter 2 – Table s for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 86: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-26

Table 4.3 (Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 250x250 72.4 92.18 10.8 6.29 128.29 122.32 115.02 123.97 106.51 120.06 96.88 115.71 86.17 110.95 74.36 105.81 61.38 100.28 46.37 94.39

H 250x255 82.2 104.7 10.5 6.09 145.52 138.44 129.75 140.44 119.61 135.82 108.13 130.68 95.33 125.05 81.20 118.96 65.61 112.41 49.37 105.42

H 294x200 56.8 72.38 12.5 4.70 99.28 92.28 83.53 96.01 73.21 92.28 61.37 88.11 47.91 83.53 33.63 78.56 25.75 73.21 20.34 67.48

H 294x302 84.5 107.7 12.5 7.16 150.62 144.76 137.66 146.57 129.44 142.85 120.17 138.75 109.92 134.26 98.69 129.43 86.47 124.26 73.19 118.76

H 298x149 32 408 3.9 1.04 379.25 113.79 50.58 202.30 28.45 113.79 18.21 72.83 12.64 50.58 9.29 37.16 7.11 28.45 5.62 22.48

H 298x201 65.4 83.36 12.6 4.77 114.44 106.56 96.71 110.76 85.09 106.56 71.78 101.86 56.67 96.71 39.93 91.11 30.57 85.09 24.16 78.65

H 298x299 87 110.8 13.0 7.50 155.20 149.54 142.70 151.20 134.80 147.58 125.92 143.58 116.09 139.22 105.36 134.53 93.71 129.50 81.09 124.17

H 300x150 36.7 46.78 12.4 3.30 62.38 54.88 45.27 58.91 33.63 54.88 20.93 50.33 14.53 45.27 10.68 39.71 8.17 33.63 6.46 25.83

H 300x300 94 119.8 13.0 7.51 167.81 161.69 154.30 163.50 145.76 159.60 136.15 155.28 125.54 150.58 113.94 145.52 101.35 140.10 87.71 134.35

H 300x305 106 134.8 12.6 7.26 188.61 181.41 172.69 183.56 162.60 178.96 151.23 173.87 138.66 168.33 124.91 162.35 109.95 155.96 93.70 149.16

H 304x301 106 134.8 13.2 7.57 188.88 182.07 173.86 184.09 164.37 179.76 153.70 174.97 141.91 169.75 129.04 164.13 115.07 158.13 99.94 151.74

H 336x249 69.2 88.15 14.5 5.92 122.37 116.17 108.55 119.46 99.65 116.17 89.56 112.53 78.30 108.55 65.84 104.25 49.72 99.65 39.29 94.75

H 338x351 106 135.3 14.4 8.33 190.12 184.09 176.87 185.84 168.57 182.00 159.26 177.77 149.00 173.18 137.83 168.24 125.76 162.97 112.77 157.38

H 340x250 79.7 101.5 14.6 6.00 140.98 133.97 125.35 137.69 115.30 133.97 103.90 129.85 91.20 125.35 77.14 120.50 58.73 115.30 46.41 109.76

H 344x348 115 146 15.1 8.76 205.44 199.35 192.09 201.05 183.76 197.15 174.43 192.87 164.17 188.22 153.01 183.23 140.97 177.90 128.04 172.25

H 344x354 131 166.6 14.6 8.42 234.17 226.85 218.10 228.94 208.03 224.26 196.74 219.12 184.31 213.53 170.78 207.52 156.16 201.11 140.44 194.30

H 346x174 41.4 52.68 14.5 3.88 71.29 64.60 56.14 68.19 46.03 64.60 34.21 60.58 22.66 56.14 16.65 51.29 12.74 46.03 10.07 40.35

H 350x175 49.6 63.14 14.7 3.95 85.57 77.76 67.87 81.94 56.10 77.76 42.36 73.06 28.15 67.87 20.68 62.22 15.83 56.10 12.51 49.48

H 350x350 137 173.9 15.2 8.84 244.76 237.60 229.06 239.58 219.27 234.98 208.32 229.93 196.27 224.46 183.17 218.58 169.04 212.31 153.88 205.66

H 350x357 156 198.4 14.7 8.52 278.97 270.39 260.13 272.78 248.35 267.28 235.15 261.23 220.62 254.66 204.80 247.59 187.72 240.05 169.36 232.06

[Note: The availability of the sections can be checked from Chapter 2 – Tables for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 87: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-27

Table 4.3(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 354x176 57.8 73.68 14.8 4.00 99.96 91.02 79.72 95.80 66.26 91.02 50.59 85.64 33.75 79.72 24.80 73.26 18.99 66.26 15.00 58.72

H 386x299 94.3 120.1 16.8 7.21 168.00 161.53 153.69 164.95 144.60 161.53 134.38 157.77 123.06 153.69 110.67 149.29 97.19 144.60 82.55 139.63

H 388x402 140 178.5 16.6 9.56 251.72 245.07 237.20 246.99 228.20 242.78 218.16 238.17 207.13 233.19 195.17 227.84 182.29 222.15 168.51 216.13

H 390x300 107 136 16.9 7.28 190.31 183.08 174.32 186.90 164.19 183.08 152.78 178.88 140.16 174.32 126.35 169.42 111.33 164.19 95.04 158.64

H 394x398 147 186.8 17.3 10.06 263.74 257.22 249.54 259.03 240.78 254.87 231.03 250.34 220.33 245.44 208.73 240.20 196.27 234.62 182.95 228.71

H 394x405 168 214.4 16.7 9.65 302.42 294.53 285.20 296.78 274.54 291.78 262.65 286.30 249.60 280.38 235.44 274.03 220.20 267.28 203.90 260.12

H 396x199 56.6 72.16 16.6 4.48 98.68 91.22 81.87 95.21 70.80 91.22 58.06 86.77 41.48 81.87 30.47 76.54 23.33 70.80 18.43 64.65

H 400x200 66 84.12 16.8 4.55 115.14 106.62 95.95 111.17 83.33 106.62 68.82 101.54 49.77 95.95 36.57 89.88 28.00 83.33 22.12 76.32

H 400x400 172 218.7 17.5 10.12 308.82 301.25 292.33 303.36 282.17 298.54 270.84 293.28 258.43 287.61 244.98 281.52 230.52 275.05 215.08 268.21

H 400x408 197 250.7 16.8 9.74 353.70 344.59 333.82 347.14 321.53 341.35 307.82 335.01 292.77 328.15 276.45 320.80 258.89 312.98 240.12 304.70

H 404x201 75.5 96.16 16.9 4.59 131.71 122.11 110.09 127.23 95.89 122.11 79.56 116.38 60.97 110.09 42.66 103.25 32.66 95.89 25.81 87.99

H 414x405 232 295.4 17.7 10.24 417.24 407.17 395.32 410.03 381.83 403.66 366.80 396.71 350.33 389.21 332.48 381.17 313.31 372.63 292.84 363.59

**H 428x407 283 360.7 18.2 10.45 509.70 497.71 483.63 501.21 467.61 493.68 449.78 485.47 430.25 476.61 409.10 467.14 386.40 457.06 362.15 446.41

H 434x299 106 135 18.6 7.04 188.69 181.18 172.06 185.15 161.50 181.18 149.59 176.81 136.40 172.06 121.95 166.95 106.20 161.50 89.07 155.71

H 440x300 124 157.4 18.9 7.18 220.15 211.62 201.28 216.12 189.30 211.62 175.81 206.66 160.89 201.28 144.55 195.49 126.76 189.30 107.44 182.74

H 446x199 66.2 84.3 18.5 4.33 115.02 105.86 94.36 110.76 80.73 105.86 64.98 100.39 45.20 94.36 33.21 87.80 25.42 80.73 20.09 73.12

H 446x302 145 184.3 19.0 7.24 257.85 247.97 236.01 253.19 222.16 247.97 206.57 242.24 189.32 236.01 170.44 229.31 149.90 222.16 127.60 214.58

H 450x200 76 96.76 18.6 4.40 132.15 121.87 108.96 127.37 93.68 121.87 76.04 115.73 53.49 108.96 39.30 101.61 30.09 93.68 23.77 85.16

H 456x201 88.9 113.3 18.9 4.52 155.01 143.42 128.89 149.61 111.71 143.42 91.93 136.50 66.08 128.89 48.55 120.62 37.17 111.71 29.37 102.15

**H 458x417 415 528.6 18.8 10.70 747.32 730.27 710.27 735.59 687.55 725.05 662.29 713.58 634.63 701.21 604.70 688.00 572.57 673.95 538.29 659.12

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 88: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-28

Table 4.3 (Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation[Note: * = Not Available]

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 482x300 114 145.5 20.4 6.82 203.13 194.68 184.39 199.15 172.46 194.68 158.99 189.75 144.06 184.39 127.67 178.62 109.77 172.46 85.94 165.91

H 488x300 128 163.5 20.8 7.04 228.53 219.44 208.41 224.24 195.62 219.44 181.20 214.15 165.25 208.41 147.76 202.22 128.70 195.62 107.96 188.61

H 494x302 150 191.4 20.9 7.10 267.61 257.09 244.33 262.65 229.55 257.09 212.89 250.98 194.46 244.33 174.26 237.18 152.26 229.55 128.34 221.45

H 496x199 79.5 101.3 20.3 4.26 138.06 126.82 112.67 132.83 95.89 126.82 76.47 120.08 52.63 112.67 38.67 104.60 29.61 95.89 23.39 86.52

**H 498x432 605 770.1 19.7 11.07 1089.5 1065.7 1037.9 1073.57 1006.6 1059.0 971.33 1043.37 933.00 1026.4 891.55 1008.36 847.10 989.17 799.70 968.91

H 500x200 89.6 114.2 20.5 4.33 155.81 143.41 127.82 150.04 109.35 143.41 88.01 135.99 61.22 127.82 44.98 118.94 34.43 109.35 27.21 99.05

H 506x201 103 131.3 20.7 4.43 179.42 165.64 148.33 173.00 127.85 165.64 104.24 157.40 73.80 148.33 54.22 138.48 41.51 127.85 32.80 116.45

H 582x300 137 174.5 24.3 6.63 243.37 232.85 220.01 238.41 205.10 232.85 188.26 226.70 169.58 220.01 149.04 212.81 126.56 205.10 97.51 196.92

H 588x300 151 192.5 24.8 6.85 268.79 257.67 244.15 263.55 228.45 257.67 210.74 251.19 191.12 244.15 169.58 236.56 146.07 228.45 114.68 219.84

H 594x302 175 222.4 24.8 6.90 310.64 297.94 282.50 304.65 264.59 297.94 244.39 290.54 222.01 282.50 197.46 273.84 170.68 264.59 141.47 254.77

H 596x199 94.6 120.5 23.9 4.05 163.63 149.27 131.15 156.96 109.57 149.27 84.49 140.65 56.64 131.15 41.61 120.78 31.86 109.57 25.17 97.49

H 600x200 106 134.4 24.0 4.12 182.72 167.07 147.32 175.45 123.85 167.07 96.60 157.67 65.22 147.32 47.92 136.04 36.69 123.85 28.99 110.72

H 606x201 120 152.5 24.3 4.22 207.71 190.56 168.97 199.73 143.35 190.56 113.68 180.29 77.81 168.97 57.17 156.66 43.77 143.35 34.58 129.04

H 612x202 134 170.7 24.6 4.32 232.85 214.24 190.84 224.19 163.10 214.24 131.05 203.10 90.97 190.84 66.83 177.50 51.17 163.10 40.43 147.63

H 692x300 166 211.5 28.5 6.53 294.80 281.78 265.89 288.67 247.41 281.78 226.54 274.18 203.36 265.89 177.86 256.96 149.91 247.41 114.68 237.27

H 700x300 185 235.5 29.2 6.77 328.70 314.90 298.10 322.20 278.59 314.90 256.58 306.86 232.17 298.10 205.37 288.67 176.09 278.59 137.31 267.89

H 792x300 191 243.4 32.3 6.39 338.97 323.53 304.66 331.71 282.69 323.53 257.85 314.50 230.24 304.66 199.82 294.04 166.43 282.69 126.25 270.62

H 800x300 210 267.4 33.0 6.61 372.90 356.73 337.00 365.28 314.07 356.73 288.18 347.28 259.45 337.00 227.86 325.92 193.28 314.07 148.75 301.49

**H 890x299 213 270.9 35.7 6.17 376.72 358.70 336.61 368.25 310.85 358.70 281.70 348.13 249.23 336.61 213.40 324.17 173.92 310.85 130.95 296.69

**H 900x300 243 309.8 36.4 6.38 431.41 411.72 387.65 422.15 359.62 411.72 327.93 400.20 292.70 387.65 253.90 374.11 211.29 359.62 160.19 344.22

**H 912x302 286 364 37.0 6.57 507.47 485.24 458.11 497.01 426.57 485.24 390.95 472.25 351.40 458.11 307.90 442.87 260.26 426.57 199.61 409.26

Page 89: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-29

Table 4.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 50x100 8.6 10.95 1.21 2.47 11.27 4.13 1.83 1.83 1.03 1.03 0.66 0.66 0.46 0.46 0.34 0.34 0.26 0.26 0.20 0.20

T 62.5x125 11.9 15.16 1.52 3.11 17.31 9.02 4.01 4.01 2.25 2.25 1.44 1.44 1.00 1.00 0.74 0.74 0.56 0.56 0.45 0.45

T 75x100 10.5 13.42 1.96 2.37 16.50 11.85 5.90 5.90 3.32 3.32 2.12 2.12 1.47 1.47 1.08 1.08 0.83 0.83 0.66 0.66

T 75x150 15.8 20.07 1.82 3.75 24.23 16.43 7.61 7.61 4.28 4.28 2.74 2.74 1.90 1.90 1.40 1.40 1.07 1.07 0.85 0.85

T 87.5x175 20.1 25.61 2.12 4.38 32.03 24.15 13.17 13.17 7.41 7.41 4.74 4.74 3.29 3.29 2.42 2.42 1.85 1.85 1.46 1.46

T 99x99 9.1 11.59 2.84 2.21 14.61 11.26 6.48 9.89 3.64 6.02 2.33 3.85 1.62 2.67 1.19 1.96 0.91 1.50 0.72 1.19

T 100x100 10.7 13.58 2.9 2.22 17.14 13.24 7.66 11.83 4.31 7.35 2.76 4.70 1.91 3.27 1.41 2.40 1.08 1.84 0.85 1.45

T 97x150 15.3 19.51 2.53 3.61 25.17 20.56 14.51 14.51 8.04 8.04 5.14 5.14 3.57 3.57 2.62 2.62 2.01 2.01 1.59 1.59

T 100x200 24.9 31.77 2.41 5.02 40.67 32.61 21.95 21.95 11.88 11.88 7.60 7.60 5.28 5.28 3.88 3.88 2.97 2.97 2.35 2.35

T 100x204 28.1 35.77 2.67 4.88 46.52 38.71 28.53 28.53 16.41 16.41 10.50 10.50 7.29 7.29 5.36 5.36 4.10 4.10 3.24 3.24

T 104x202 32.8 41.85 2.45 5.13 53.72 43.36 29.68 29.68 16.17 16.17 10.35 10.35 7.19 7.19 5.28 5.28 4.04 4.04 3.19 3.19

T 124x124 12.8 16.34 3.57 2.79 21.38 18.04 13.70 16.65 8.19 13.08 5.24 8.58 3.64 5.96 2.67 4.38 2.05 3.35 1.62 2.65

T 125x125 14.8 18.83 3.63 2.79 24.63 20.78 15.78 19.37 9.43 15.36 6.04 10.22 4.19 7.10 3.08 5.21 2.36 3.99 1.86 3.15

T 122x175 22.1 28.12 3.2 4.18 37.39 32.68 26.64 26.64 19.29 19.29 11.86 11.86 8.24 8.24 6.05 6.05 4.63 4.63 3.66 3.66

T 122x252 32.2 41.03 3.29 5.98 54.71 48.11 39.66 39.66 29.42 29.42 18.29 18.29 12.70 12.70 9.33 9.33 7.15 7.15 5.65 5.65

T 124x249 33.2 42.35 2.93 6.29 55.74 47.69 37.26 37.26 23.40 23.40 14.98 14.98 10.40 10.40 7.64 7.64 5.85 5.85 4.62 4.62

T 125x250 36.2 46.09 2.99 6.29 60.81 52.30 41.31 41.31 26.52 26.52 16.97 16.97 11.79 11.79 8.66 8.66 6.63 6.63 5.24 5.24

T 125x255 41.1 52.34 3.36 6.09 69.93 61.77 51.34 51.34 38.71 38.71 24.34 24.34 16.90 16.90 12.42 12.42 9.51 9.51 7.51 7.51

T 149x149 16 20.4 4.39 3.29 27.20 23.92 19.72 22.96 14.63 19.73 9.10 16.00 6.32 11.25 4.64 8.26 3.55 6.33 2.81 5.00

T 150x150 18.4 23.39 4.45 3.29 31.19 27.43 22.61 26.46 16.77 22.84 10.43 18.66 7.24 13.25 5.32 9.73 4.07 7.45 3.22 5.89

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 90: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-30

Table 4.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 147x200 28.4 36.19 3.97 4.71 49.07 44.62 39.01 39.01 32.32 32.32 24.51 24.51 16.32 16.32 11.99 11.99 9.18 9.18 7.25 7.25

T 149x201 32.7 41.68 3.99 4.77 56.53 51.45 45.03 45.03 37.38 37.38 28.48 28.48 18.98 18.98 13.95 13.95 10.68 10.68 8.44 8.44

T147x302 42.3 53.83 3.99 7.16 73.01 66.45 58.16 58.16 48.28 48.28 36.78 36.78 24.51 24.51 18.01 18.01 13.79 13.79 10.90 10.90

T 149x299 43.5 55.40 3.59 7.51 74.49 66.63 56.64 56.64 44.63 44.63 29.41 29.41 20.42 20.42 15.01 15.01 11.49 11.49 9.08 9.08

T 150x300 47.0 59.89 3.65 7.51 80.64 72.35 61.81 61.81 49.17 49.17 32.87 32.87 22.82 22.82 16.77 16.77 12.84 12.84 10.14 10.14

T 150x305 52.9 67.39 4.05 7.26 91.51 83.47 73.31 73.31 61.23 61.23 47.18 47.18 31.62 31.62 23.23 23.23 17.79 17.79 14.05 14.05

T 152x301 52.9 67.41 3.66 7.57 90.79 81.49 69.68 69.68 55.51 55.51 37.20 37.20 25.83 25.83 18.98 18.98 14.53 14.53 11.48 11.48

T 173x174 20.7 26.34 5.08 3.88 35.65 32.31 28.08 31.16 23.03 27.82 17.13 24.00 11.34 19.70 8.33 14.29 6.38 10.94 5.04 8.64

T 175x175 24.8 31.57 5.08 3.95 42.79 38.88 33.95 37.35 28.06 33.34 21.20 28.77 14.09 23.61 10.35 17.12 7.93 13.11 6.26 10.36

T 168x249 34.6 44.08 4.47 5.92 60.27 55.69 49.96 49.96 43.17 43.17 35.35 35.35 25.19 25.19 18.51 18.51 14.17 14.17 11.20 11.20

T 170x250 39.8 50.76 4.48 6 69.41 64.16 57.58 57.58 49.79 49.79 40.81 40.81 29.14 29.14 21.41 21.41 16.39 16.39 12.95 12.95

T 169x351 53.1 67.63 4.59 8.33 92.63 85.86 77.40 77.40 67.39 67.39 55.89 55.89 42.79 42.79 29.95 29.95 22.93 22.93 18.11 18.11

T 172x348 57.3 73 4.11 8.78 99.23 90.70 79.94 79.94 67.15 67.15 52.30 52.30 35.27 35.27 25.92 25.92 19.84 19.84 15.68 15.68

T 172x354 65.4 83.32 4.65 8.43 114.21 106.03 95.79 95.79 83.71 83.71 69.83 69.83 54.05 54.05 37.86 37.86 28.99 28.99 22.90 22.90

T 175x350 68.2 86.94 4.18 8.84 118.33 108.41 95.91 95.91 81.07 81.07 63.87 63.87 43.45 43.45 31.93 31.93 24.44 24.44 19.31 19.31

T 175x357 77.9 99.19 4.71 8.53 136.07 126.50 114.55 114.55 100.44 100.44 84.25 84.25 65.87 65.87 46.25 46.25 35.41 35.41 27.98 27.98

T 178x352 79.3 101 4.25 8.9 137.62 126.37 112.20 112.20 95.40 95.40 75.95 75.95 52.19 52.19 38.34 38.34 29.35 29.35 23.19 23.19

T 198x199 28.3 36.08 5.76 4.48 49.34 45.61 40.92 44.14 35.39 40.35 29.01 36.04 20.71 31.23 15.22 25.89 11.65 19.26 9.21 15.22

T 200x200 33 42.06 5.76 4.54 57.57 53.29 47.94 51.46 41.62 47.04 34.34 42.02 24.80 36.41 18.22 30.18 13.95 22.45 11.02 17.74

T 193x299 47.1 60.05 5.04 7.21 82.70 77.43 70.87 70.87 63.16 63.16 54.36 54.36 44.42 44.42 32.06 32.06 24.54 24.54 19.39 19.39

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 91: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-31

Table 4.4(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 195x300 53.4 67.98 5.05 7.28 93.63 87.68 80.28 80.28 71.58 71.58 61.64 61.64 50.42 50.42 36.44 36.44 27.90 27.90 22.04 22.04

T 194x400 70.0 89.23 5.27 9.54 123.18 115.82 106.69 106.69 95.98 95.98 83.76 83.76 70.04 70.04 52.08 52.08 39.88 39.88 31.51 31.51

T 197x398 73.3 93.41 4.68 10.10 128.09 119.00 107.63 107.63 94.22 94.22 78.82 78.82 61.32 61.32 43.00 43.00 32.92 32.92 26.01 26.01

T 197x405 84.1 107.20 5.34 9.65 148.09 139.40 128.64 128.64 116.02 116.02 101.65 101.65 85.51 85.51 67.46 67.46 49.19 49.19 38.86 38.86

T 200x400 85.8 109.30 4.76 10.10 150.03 139.64 126.67 126.67 111.38 111.38 93.83 93.83 73.93 73.93 52.05 52.05 39.85 39.85 31.49 31.49

T 200x408 98.4 125.30 5.40 9.75 172.77 162.80 150.46 150.46 135.99 135.99 119.51 119.51 101.03 101.03 80.38 80.38 58.65 58.65 46.34 46.34

T 207x405 116.0 147.70 4.95 10.20 203.20 189.91 173.36 173.36 153.88 153.88 131.59 131.59 106.40 106.40 76.06 76.06 58.23 58.23 46.01 46.01

T 223x199 33.1 42.15 6.67 4.33 57.51 52.93 47.18 53.20 40.37 49.63 32.50 45.60 22.61 41.13 16.61 36.22 12.72 30.84 10.05 23.84

T 225x200 38.0 48.38 6.68 4.40 66.08 60.95 54.50 61.09 46.87 57.00 38.06 52.38 26.79 47.26 19.68 41.63 15.07 35.48 11.91 27.45

T 217x299 53.0 67.52 5.89 7.04 93.71 88.93 83.05 83.05 76.18 76.18 68.39 68.39 59.69 59.69 50.06 50.06 37.69 37.69 29.78 29.78

T 220x300 61.8 78.69 5.84 7.68 109.17 103.53 96.59 96.59 88.49 88.49 79.29 79.29 69.02 69.02 57.64 57.64 43.18 43.18 34.12 34.12

T 248x199 39.7 50.64 7.49 4.27 69.03 63.42 56.37 65.20 48.00 61.58 38.33 57.51 26.41 53.01 19.40 48.09 14.86 42.74 11.74 36.96

T 250x200 44.8 57.12 7.5 4.33 77.93 71.73 63.94 73.56 54.70 69.48 44.04 64.90 30.64 59.83 22.51 54.29 17.23 48.28 13.62 41.77

T 253x201 51.5 65.65 7.48 4.43 89.71 82.81 74.15 84.51 63.90 79.81 52.08 74.51 36.86 68.67 27.08 62.28 20.73 55.34 16.38 47.82

T 241x300 57.1 72.76 6.85 6.82 101.58 97.36 92.22 92.29 86.25 86.37 79.52 79.68 72.06 72.27 63.88 64.14 54.94 55.26 43.03 45.58

T 244x300 64.2 81.76 6.66 7.07 114.05 109.15 103.17 103.17 96.23 96.23 88.40 88.40 79.70 79.70 70.15 70.15 59.70 59.70 46.11 46.11

T 298x199 47.3 60.23 9.29 4.05 81.78 74.60 65.52 78.44 54.73 74.60 42.17 70.28 28.26 65.52 20.76 60.34 15.90 54.73 12.56 48.68

T 300x200 52.8 67.21 9.3 4.12 91.38 83.55 73.68 87.74 61.95 83.55 48.33 78.86 32.63 73.68 23.98 68.04 18.36 61.95 14.50 55.38

T 303x201 59.8 76.24 9.28 4.22 103.83 95.25 84.45 99.84 71.62 95.25 56.77 90.11 38.84 84.45 28.53 78.28 21.85 71.62 17.26 64.46

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 92: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-32

Table 4.4 (Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 306x202 67.0 85.33 9.27 4.31 116.39 107.06 95.34 112.05 81.45 107.06 65.39 101.48 45.34 95.34 33.31 88.66 25.51 81.45 20.15 73.70

T 291x300 68.5 87.24 8.54 6.63 121.67 116.41 109.99 114.42 102.54 109.26 94.12 103.47 84.78 97.11 74.51 90.18 63.28 82.69 48.75 74.65

T 294x300 75.6 96.24 8.35 6.85 134.39 128.83 122.08 125.86 114.24 119.97 105.39 113.38 95.59 106.12 84.84 98.21 73.10 89.66 60.28 80.46

T 297x302 87.3 111.2 8.44 6.9 155.32 148.96 141.24 145.63 132.27 138.93 122.17 131.43 110.97 123.17 98.68 114.18 85.28 104.47 70.66 94.02

T 346x300 83 105.7 10.3 6.53 147.33 140.82 132.88 141.53 123.65 136.74 113.21 131.40 101.62 125.55 88.88 119.22 74.91 112.42 57.30 105.15

T 350x300 92.4 117.7 10.1 6.78 164.29 157.40 149.02 157.30 139.29 151.81 128.30 145.70 116.13 139.00 102.76 131.74 88.15 123.93 68.79 115.59

T 396x300 95.6 121.7 12.1 6.38 169.48 161.75 152.29 165.20 141.29 160.80 128.85 155.92 115.02 150.60 99.79 144.85 83.06 138.70 62.98 132.15

T 400x300 105 133.7 11.9 6.62 186.46 178.38 168.52 181.26 157.07 176.31 144.15 170.82 129.80 164.83 114.02 158.36 96.76 151.43 74.49 144.05

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 93: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-33

Table 4.5: Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 25x25 1.12 1.427 0.747 0.747 0.82 0.21 0.09 0.09 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

EL 25x25 1.77 2.26 0.73 0.73 1.24 0.31 0.14 0.14 0.08 0.08 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

EL 30x30 1.36 1.727 0.908 0.908 1.41 0.37 0.16 0.16 0.09 0.09 0.06 0.06 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02

EL 30x30 2.18 2.78 0.88 0.88 2.19 0.55 0.25 0.25 0.14 0.14 0.09 0.09 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.03

EL 40x40 1.83 2.336 1.23 1.23 2.43 0.91 0.40 0.40 0.23 0.23 0.15 0.15 0.10 0.10 0.07 0.07 0.06 0.06 0.04 0.04

EL 40x40 2.42 3.08 1.21 1.21 3.17 1.16 0.52 0.52 0.29 0.29 0.19 0.19 0.13 0.13 0.09 0.09 0.07 0.07 0.06 0.06

EL 40x40 2.95 3.755 1.2 1.2 3.85 1.39 0.62 0.62 0.35 0.35 0.22 0.22 0.15 0.15 0.11 0.11 0.09 0.09 0.07 0.07

EL 40x40 3.52 4.48 1.19 1.19 4.57 1.63 0.73 0.73 0.41 0.41 0.26 0.26 0.18 0.18 0.13 0.13 0.10 0.10 0.08 0.08

EL 45x45 2.74 3.492 1.36 1.36 3.81 1.66 0.74 0.74 0.42 0.42 0.27 0.27 0.18 0.18 0.14 0.14 0.10 0.10 0.08 0.08

EL 45x45 3.38 4.302 1.36 1.36 4.70 2.05 0.91 0.91 0.51 0.51 0.33 0.33 0.23 0.23 0.17 0.17 0.13 0.13 0.10 0.10

EL 50x50 2.33 2.96 1.52 1.52 3.38 1.76 0.78 0.78 0.44 0.44 0.28 0.28 0.20 0.20 0.14 0.14 0.11 0.11 0.09 0.09

EL 50x50 3.06 3.892 1.53 1.53 4.45 2.46 1.04 1.04 0.59 0.59 0.38 0.38 0.26 0.26 0.19 0.19 0.15 0.15 0.12 0.12

EL 50x50 3.77 4.802 1.52 1.52 5.48 2.86 1.27 1.27 0.71 0.71 0.46 0.46 0.32 0.32 0.23 0.23 0.18 0.18 0.14 0.14

EL 50x50 4.43 5.644 1.5 1.5 6.41 3.27 1.45 1.45 0.82 0.82 0.52 0.52 0.36 0.36 0.27 0.27 0.20 0.20 0.16 0.16

EL 60x60 3.68 4.692 1.85 1.85 5.69 3.91 1.84 1.84 1.03 1.03 0.66 0.66 0.46 0.46 0.34 0.34 0.26 0.26 0.20 0.20

EL 60x60 4.55 5.802 1.84 1.84 7.02 4.81 2.25 2.25 1.26 1.26 0.81 0.81 0.56 0.56 0.41 0.41 0.32 0.32 0.25 0.25

EL 65x65 5 6.367 1.99 1.99 7.86 5.70 2.89 2.89 1.62 1.62 1.04 1.04 0.72 0.72 0.53 0.53 0.41 0.41 0.32 0.32

EL 65x65 5.91 7.527 1.98 1.98 9.28 6.71 3.38 3.38 1.90 1.90 1.22 1.22 0.84 0.84 0.62 0.62 0.47 0.47 0.38 0.38

EL 65x65 7.66 9.761 1.94 1.94 11.97 8.53 4.20 4.20 2.36 2.36 1.51 1.51 1.05 1.05 0.77 0.77 0.59 0.59 0.47 0.47

EL 70x70 6.38 8.127 2.14 2.14 10.18 7.72 4.26 4.26 2.40 2.40 1.53 1.53 1.06 1.06 0.78 0.78 0.60 0.60 0.47 0.47

Page 94: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-34

Table 4.5(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1)-Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 75x75 6.85 8.727 2.3 2.3 11.08 8.71 5.55 5.55 2.97 2.97 1.90 1.90 1.32 1.32 0.97 0.97 0.74 0.74 0.59 0.59

EL 75x75 9.96 12.69 2.25 2.25 16.05 12.48 7.35 7.35 4.13 4.13 2.65 2.65 1.84 1.84 1.35 1.35 1.03 1.03 0.82 0.82

EL 75x75 13 16.56 2.22 2.22 20.90 16.14 9.34 9.34 5.25 5.25 3.36 3.36 2.33 2.33 1.72 1.72 1.31 1.31 1.04 1.04

EL 80x80 7.32 9.327 2.46 2.46 11.98 9.68 6.66 6.66 3.63 3.63 2.33 2.33 1.61 1.61 1.19 1.19 0.91 0.91 0.72 0.72

EL 90x90 8.28 10.55 2.77 2.77 13.79 11.61 8.77 8.77 5.21 5.21 3.33 3.33 2.32 2.32 1.70 1.70 1.30 1.30 1.03 1.03

EL 90x90 9.59 12.22 2.76 2.76 15.96 13.43 10.12 10.12 5.99 5.99 3.83 3.83 2.66 2.66 1.96 1.96 1.50 1.50 1.18 1.18

EL 90x90 13.3 17 2.71 2.71 22.15 18.53 13.80 13.80 8.04 8.04 5.14 5.14 3.57 3.57 2.62 2.62 2.01 2.01 1.59 1.59

EL 90x90 15.9 20.3 2.7 2.7 26.44 22.08 16.41 16.41 9.52 9.52 6.10 6.10 4.23 4.23 3.11 3.11 2.38 2.38 1.88 1.88

EL 90x90 17 21.71 2.68 2.68 28.25 23.54 17.39 17.39 10.04 10.04 6.42 6.42 4.46 4.46 3.28 3.28 2.51 2.51 1.98 1.98

EL 100x100 10.7 13.62 3.08 3.08 18.03 15.62 12.52 12.52 8.73 8.73 5.32 5.32 3.70 3.70 2.72 2.72 2.08 2.08 1.64 1.64

EL 100x100 14.9 19 3.04 3.04 25.12 21.69 17.28 17.28 11.30 11.30 7.23 7.23 5.02 5.02 3.69 3.69 2.83 2.83 2.23 2.23

EL 100x100 17.8 22.7 3.02 3.02 29.99 25.85 20.52 20.52 13.33 13.33 8.53 8.53 5.92 5.92 4.35 4.35 3.33 3.33 2.63 2.63

EL 100x100 19.1 24.31 3 3 32.09 27.62 21.85 21.85 14.08 14.08 9.01 9.01 6.26 6.26 4.60 4.60 3.52 3.52 2.78 2.78

EL 120x120 14.7 18.76 3.71 3.71 25.30 22.76 19.54 19.54 15.68 15.68 10.64 10.64 7.39 7.39 5.43 5.43 4.15 4.15 3.28 3.28

EL 130x130 17.9 22.74 4.01 4.01 30.85 28.10 24.63 24.63 20.49 20.49 15.67 15.67 10.46 10.46 7.68 7.68 5.88 5.88 4.65 4.65

EL 130x130 23.4 29.76 3.96 3.96 40.34 36.67 32.04 32.04 26.51 26.51 20.07 20.07 13.35 13.35 9.81 9.81 7.51 7.51 5.93 5.93

EL 130x130 28.8 36.75 3.93 3.93 49.79 45.21 39.42 39.42 32.52 32.52 24.46 24.46 16.24 16.24 11.93 11.93 9.13 9.13 7.22 7.22

EL 150x150 27.3 34.77 4.61 4.61 47.63 44.18 39.85 39.85 34.74 34.74 28.87 28.87 22.19 22.19 15.53 15.53 11.89 11.89 9.39 9.39

EL 150x150 33.6 42.74 4.56 4.56 58.51 54.20 48.80 48.80 42.41 42.41 35.07 35.07 25.42 25.42 18.68 18.68 14.30 14.30 11.30 11.30

EL 150x150 41.9 53.38 4.52 4.52 73.04 67.58 60.75 60.75 52.67 52.67 43.36 43.36 31.20 31.20 22.92 22.92 17.55 17.55 13.87 13.87

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 95: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-35

Table 4.5(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 175x175 31.8 40.52 5.38 5.38 56.00 52.75 48.72 48.72 44.01 44.01 38.64 38.64 32.61 32.61 25.87 25.87 18.87 18.87 14.91 14.91

EL 175x175 39.4 50.21 5.35 5.35 69.37 65.31 60.28 60.28 54.39 54.39 47.68 47.68 40.14 40.14 31.71 31.71 23.12 23.12 18.27 18.27

EL 200x200 45.3 57.75 6.14 6.14 80.29 76.43 71.69 71.69 66.17 66.17 59.91 59.91 52.95 52.95 45.25 45.25 36.77 36.77 27.68 27.68

EL 200x200 59.7 76 6.09 6.09 105.63 100.49 94.18 94.18 86.82 86.82 78.49 78.49 69.20 69.20 58.94 58.94 47.62 47.62 35.84 35.84

EL 200x200 73.6 93.75 6.04 6.04 130.26 123.84 115.97 115.97 106.78 106.78 96.37 96.37 84.76 84.76 71.93 71.93 55.03 55.03 43.48 43.48

EL 250x250 93.7 119.4 7.63 7.63 167.34 161.37 154.17 154.17 145.86 145.86 136.51 136.51 126.19 126.19 114.92 114.92 102.69 102.69 89.47 89.47

EL 250x250 128.0 162.6 7.49 7.49 227.75 219.42 209.36 209.36 197.73 197.73 184.65 184.65 170.19 170.19 154.40 154.40 137.24 137.24 118.66 118.66

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 96: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-36

Table 4.6(Continued): Compression Capacity (Ton) For UL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

UL 90x75 11 14.04 2.78 2.2 17.69 13.60 7.78 11.72 4.37 6.98 2.80 4.47 1.94 3.10 1.43 2.28 1.09 1.75 0.86 1.38

UL 100x75 9.32 11.87 3.15 2.19 14.94 11.46 6.51 11.11 3.66 7.93 2.35 4.85 1.63 3.37 1.20 2.48 0.92 1.90 0.72 1.50

UL 100x75 13 16.5 3.11 2.15 20.69 15.72 8.73 15.29 4.91 10.77 3.14 6.57 2.18 4.57 1.60 3.35 1.23 2.57 0.97 2.03

UL 125x75 10.7 13.62 4.01 2.11 17.02 12.80 6.94 14.75 3.90 12.27 2.50 9.38 1.73 6.26 1.27 4.60 0.98 3.52 0.77 2.78

UL 125x75 14.9 19.00 3.96 2.06 23.62 17.51 9.23 20.45 5.19 16.93 3.32 12.81 2.31 8.52 1.69 6.26 1.30 4.79 1.03 3.79

UL 125x75 19.1 24.31 3.93 2.04 30.16 22.23 11.58 26.08 6.51 21.51 4.17 16.18 2.89 10.74 2.13 7.89 1.63 6.04 1.29 4.77

UL 125x90 16.1 20.5 3.94 2.59 26.54 21.87 15.74 22.02 8.85 18.18 5.66 13.70 3.93 9.10 2.89 6.69 2.21 5.12 1.75 4.05

UL 125x90 20.6 26.26 3.91 2.57 33.96 27.90 19.96 28.10 11.16 23.13 7.14 17.32 4.96 11.48 3.65 8.44 2.79 6.46 2.21 5.10

UL 150x90 16.4 20.94 4.81 2.52 27.00 22.03 15.49 24.35 8.56 21.47 5.48 18.16 3.80 14.42 2.79 10.18 2.14 7.80 1.69 6.16

UL 150x90 21.5 27.36 4.76 2.47 35.17 28.47 19.65 31.71 10.74 27.88 6.88 23.49 4.77 18.51 3.51 13.03 2.69 9.97 2.12 7.88

UL 150x100 17.1 21.84 4.79 2.88 28.69 24.43 18.90 25.36 11.66 22.34 7.46 18.87 5.18 14.93 3.81 10.53 2.91 8.06 2.30 6.37

UL 150x100 22.4 28.56 4.74 2.83 37.43 31.71 24.29 33.05 14.72 29.03 9.42 24.42 6.54 19.18 4.81 13.49 3.68 10.33 2.91 8.16

UL 150x100 27.7 35.25 4.71 2.8 46.13 38.97 29.66 40.71 17.79 35.69 11.38 29.94 7.91 23.41 5.81 16.43 4.45 12.58 3.51 9.94

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 97: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-37

Table 4.7: Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 25x25 2.24 2.854 0.75 1.15 1.64 0.41 0.18 0.18 0.10 0.10 0.07 0.07 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02

ELL 25x25 3.54 4.52 0.73 1.28 2.47 0.62 0.27 0.27 0.15 0.15 0.10 0.10 0.07 0.07 0.05 0.05 0.04 0.04 0.03 0.03

ELL 30x30 2.72 3.454 0.91 1.35 2.82 0.73 0.32 0.32 0.18 0.18 0.12 0.12 0.08 0.08 0.06 0.06 0.05 0.05 0.04 0.04

ELL 30x30 4.36 5.56 0.88 1.46 4.38 1.11 0.49 0.49 0.28 0.28 0.18 0.18 0.12 0.12 0.09 0.09 0.07 0.07 0.05 0.05

ELL 40x40 3.66 4.672 1.23 1.75 4.85 1.82 0.81 0.81 0.45 0.45 0.29 0.29 0.20 0.20 0.15 0.15 0.11 0.11 0.09 0.09

ELL 40x40 4.84 6.16 1.20 1.79 6.32 2.30 1.02 1.02 0.58 0.58 0.37 0.37 0.26 0.26 0.19 0.19 0.14 0.14 0.11 0.11

ELL 40x40 5.9 7.51 1.20 1.86 7.70 2.79 1.24 1.24 0.70 0.70 0.45 0.45 0.31 0.31 0.23 0.23 0.17 0.17 0.14 0.14

ELL 40x40 7.04 8.96 1.19 1.91 9.12 3.25 1.44 1.44 0.81 0.81 0.52 0.52 0.36 0.36 0.27 0.27 0.20 0.20 0.16 0.16

ELL 45x45 5.48 6.984 1.36 1.98 7.63 3.35 1.49 1.49 0.84 0.84 0.54 0.54 0.37 0.37 0.27 0.27 0.21 0.21 0.17 0.17

ELL 45x45 6.76 8.604 1.36 2.04 9.38 4.07 1.81 1.81 1.02 1.02 0.65 0.65 0.45 0.45 0.33 0.33 0.25 0.25 0.20 0.20

ELL 50x50 4.66 5.92 1.52 2.11 6.76 3.71 1.57 1.57 0.88 0.88 0.57 0.57 0.39 0.39 0.29 0.29 0.22 0.22 0.17 0.17

ELL 50x50 6.12 7.784 1.53 2.19 8.90 4.90 2.07 2.07 1.17 1.17 0.75 0.75 0.52 0.52 0.38 0.38 0.29 0.29 0.23 0.23

ELL 50x50 7.54 9.604 1.52 2.25 10.97 5.72 2.54 2.54 1.43 1.43 0.91 0.91 0.64 0.64 0.47 0.47 0.36 0.36 0.28 0.28

ELL 50x50 8.86 11.288 1.49 2.29 12.81 6.49 2.88 2.88 1.62 1.62 1.04 1.04 0.72 0.72 0.53 0.53 0.41 0.41 0.32 0.32

ELL 60x60 7.36 9.384 1.85 2.59 11.37 7.80 3.66 3.66 2.06 2.06 1.32 1.32 0.92 0.92 0.67 0.67 0.51 0.51 0.41 0.41

ELL 60x60 9.1 11.604 1.84 2.65 14.04 9.60 4.49 4.49 2.52 2.52 1.61 1.61 1.12 1.12 0.82 0.82 0.63 0.63 0.50 0.50

ELL 65x65 10 12.734 1.99 2.84 15.72 11.41 5.79 5.79 3.26 3.26 2.08 2.08 1.45 1.45 1.06 1.06 0.81 0.81 0.64 0.64

ELL 65x65 11.82 15.054 1.98 2.89 18.54 13.39 6.73 6.73 3.78 3.78 2.42 2.42 1.68 1.68 1.24 1.24 0.95 0.95 0.75 0.75

ELL 65x65 15.32 19.522 1.94 2.99 23.95 17.08 8.42 8.42 4.74 4.74 3.03 3.03 2.11 2.11 1.55 1.55 1.18 1.18 0.94 0.94

ELL 70x70 12.76 16.254 2.14 3.09 20.36 15.42 8.49 8.49 4.78 4.78 3.06 3.06 2.12 2.12 1.56 1.56 1.19 1.19 0.94 0.94

Page 98: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-38

Table 4.7(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 75x75 13.7 17.454 2.30 3.29 22.17 17.41 11.08 11.08 5.93 5.93 3.80 3.80 2.64 2.64 1.94 1.94 1.48 1.48 1.17 1.17

ELL 75x75 19.92 25.38 2.25 3.46 32.11 24.99 14.74 14.74 8.29 8.29 5.31 5.31 3.68 3.68 2.71 2.71 2.07 2.07 1.64 1.64

ELL 75x75 26 33.12 2.22 3.65 41.81 32.33 18.74 18.74 10.54 10.54 6.75 6.75 4.69 4.69 3.44 3.44 2.64 2.64 2.08 2.08

ELL 80x80 14.64 18.654 2.46 3.49 23.96 19.37 13.31 13.31 7.26 7.26 4.65 4.65 3.23 3.23 2.37 2.37 1.82 1.82 1.43 1.43

ELL 90x90 16.56 21.1 2.77 3.88 27.57 23.20 17.52 17.52 10.39 10.39 6.65 6.65 4.62 4.62 3.39 3.39 2.60 2.60 2.05 2.05

ELL 90x90 19.18 24.44 2.76 3.94 31.92 26.84 20.24 20.24 11.97 11.97 7.66 7.66 5.32 5.32 3.91 3.91 2.99 2.99 2.36 2.36

ELL 90x90 26.6 34 2.71 4.10 44.31 37.06 27.62 27.62 16.09 16.09 10.30 10.30 7.15 7.15 5.25 5.25 4.02 4.02 3.18 3.18

ELL 90x90 31.8 40.6 2.70 4.23 52.88 44.17 32.82 32.82 19.05 19.05 12.19 12.19 8.47 8.47 6.22 6.22 4.76 4.76 3.76 3.76

ELL 90x90 34 43.42 2.68 4.28 56.49 47.08 34.80 34.80 20.08 20.08 12.85 12.85 8.93 8.93 6.56 6.56 5.02 5.02 3.97 3.97

ELL 100x100 21.4 27.24 3.08 4.34 36.06 31.24 25.02 25.02 17.43 17.43 10.63 10.63 7.38 7.38 5.42 5.42 4.15 4.15 3.28 3.28

ELL 100x100 29.8 38 3.03 4.50 50.23 43.36 34.50 34.50 22.53 22.53 14.42 14.42 10.01 10.01 7.36 7.36 5.63 5.63 4.45 4.45

ELL 100x100 35.6 45.4 3.02 4.62 59.97 51.71 41.05 41.05 26.65 26.65 17.05 17.05 11.84 11.84 8.70 8.70 6.66 6.66 5.26 5.26

ELL 100x100 38.2 48.62 3.01 4.68 64.20 55.30 43.81 43.81 28.32 28.32 18.12 18.12 12.59 12.59 9.25 9.25 7.08 7.08 5.59 5.59

ELL 120x120 29.4 37.52 3.71 5.20 50.59 45.51 39.07 39.07 31.34 31.34 21.26 21.26 14.76 14.76 10.84 10.84 8.30 8.30 6.56 6.56

ELL 130x130 35.8 45.48 4.01 5.65 61.71 56.21 49.26 49.26 40.99 40.99 31.36 31.36 20.94 20.94 15.38 15.38 11.78 11.78 9.31 9.31

ELL 130x130 46.8 59.52 3.96 5.80 80.68 73.36 64.09 64.09 53.04 53.04 40.17 40.17 26.72 26.72 19.63 19.63 15.03 15.03 11.87 11.87

ELL 130x130 57.6 73.5 3.93 5.98 99.58 90.43 78.85 78.85 65.05 65.05 48.95 48.95 32.50 32.50 23.87 23.87 18.28 18.28 14.44 14.44

ELL 150x150 54.6 69.54 4.61 6.61 95.27 88.37 79.73 79.73 69.52 69.52 57.79 57.79 44.44 44.44 31.10 31.10 23.81 23.81 18.82 18.82

ELL 150x150 67.2 85.48 4.56 6.76 117.02 108.39 97.58 97.58 84.80 84.80 70.10 70.10 50.80 50.80 37.33 37.33 28.58 28.58 22.58 22.58

ELL 150x150 83.8 106.76 4.52 7.00 146.07 135.16 121.48 121.48 105.31 105.31 86.70 86.70 62.36 62.36 45.82 45.82 35.08 35.08 27.72 27.72

Page 99: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-39

Table 4.7(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 175x175 63.6 81.04 5.37 7.57 111.98 105.48 97.42 97.42 87.97 87.97 77.20 77.20 65.12 65.12 51.62 51.62 37.65 37.65 29.75 29.75

ELL 175x175 78.8 100.42 5.36 7.75 138.74 130.64 120.60 120.60 108.83 108.83 95.43 95.43 80.37 80.37 63.55 63.55 46.34 46.34 36.62 36.62

ELL 200x200 90.6 115.5 6.14 8.74 160.59 152.87 143.40 143.40 132.36 132.36 119.87 119.87 105.95 105.95 90.58 90.58 73.64 73.64 55.43 55.43

ELL 200x200 119.4 152 6.09 9.03 211.27 200.99 188.37 188.37 173.66 173.66 156.99 156.99 138.43 138.43 117.92 117.92 95.29 95.29 71.71 71.71

ELL 200x200 147.2 187.5 6.04 9.33 260.51 247.68 231.93 231.93 213.55 213.55 192.73 192.73 169.52 169.52 143.86 143.86 110.06 110.06 86.96 86.96

ELL 250x250 187.4 238.8 7.63 11.31 334.68 322.74 308.34 308.34 291.71 291.71 273.02 273.02 252.38 252.38 229.83 229.83 205.37 205.37 178.91 178.91

ELL 250x250 256 325.2 7.49 11.86 455.49 438.81 418.67 418.67 395.39 395.39 369.21 369.21 340.27 340.27 308.65 308.65 274.30 274.30 237.10 237.10

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 100: TN H01-Hand Book for Design of Steel Structures
Page 101: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-41

Table 4.8: Compression Capacity (Ton) For ULL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ULLL 90x75 22 28.08 2.79 3.29 36.73 30.98 23.50 23.50 14.03 14.03 8.98 8.98 6.24 6.24 4.58 4.58 3.51 3.51 2.77 2.77

ULLL 100x75 18.64 23.74 3.15 3.09 31.44 27.26 21.88 22.24 15.30 15.88 9.34 9.72 6.48 6.75 4.76 4.96 3.65 3.80 2.88 3.00

ULLL 100x75 26 33 3.10 3.25 43.73 37.96 30.53 30.53 21.46 21.46 13.10 13.10 9.10 9.10 6.68 6.68 5.12 5.12 4.04 4.04

ULLL 125x75 21.4 27.24 4.01 2.90 35.81 30.54 23.72 29.50 14.72 24.54 9.42 18.77 6.54 12.53 4.81 9.21 3.68 7.05 2.91 5.57

ULLL 125x75 29.8 38 3.97 3.05 50.26 43.45 34.67 40.94 23.92 33.91 14.58 25.71 10.13 17.11 7.44 12.57 5.70 9.62 4.50 7.60

ULLL 125x75 38.2 48.62 3.93 3.24 64.73 56.74 46.50 52.17 34.06 43.05 21.04 32.40 14.61 21.51 10.73 15.80 8.22 12.10 6.49 9.56

ULLL 125x90 32.2 41 3.94 3.76 55.34 49.90 43.00 44.03 34.74 36.35 23.86 27.39 16.57 18.19 12.18 13.37 9.32 10.23 7.37 8.09

ULLL 125x90 41.2 52.52 3.91 3.94 71.12 64.53 56.18 56.18 46.23 46.23 34.60 34.60 22.94 22.94 16.86 16.86 12.90 12.90 10.20 10.20

ULLL 150x90 32.8 41.88 4.81 3.51 56.19 50.05 42.23 48.71 32.81 42.95 21.23 36.34 14.74 28.86 10.83 20.39 8.29 15.61 6.55 12.33

ULLL 150x90 43 54.72 4.76 3.66 73.70 66.15 56.56 63.40 45.06 55.74 30.19 46.94 20.97 36.97 15.40 26.02 11.79 19.92 9.32 15.74

ULLL 150x100 34.2 43.68 4.79 3.98 59.23 53.89 47.14 50.74 39.10 44.70 29.73 37.77 19.80 29.91 14.55 21.10 11.14 16.16 8.80 12.76

ULLL 150x100 44.8 57.12 4.74 4.13 77.67 71.04 62.68 66.11 52.74 58.07 41.20 48.84 27.85 38.37 20.46 26.99 15.66 20.66 12.38 16.32

ULLL 150x100 55.4 70.5 4.71 4.31 96.16 88.46 78.78 81.41 67.31 71.39 54.05 59.88 37.49 46.81 27.54 32.87 21.09 25.17 16.66 19.88

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 102: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-42

Table 4.9: Compression Capacity (Ton) For ULLS Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ULLS 75x90 22 28.08 2.20 4.24 35.38 27.22 15.58 15.58 8.77 8.77 5.61 5.61 3.90 3.90 2.86 2.86 2.19 2.19 1.73 1.73

ULLS 75x100 18.6 23.74 2.19 4.64 29.88 22.92 13.02 13.02 7.32 7.32 4.69 4.69 3.26 3.26 2.39 2.39 1.83 1.83 1.45 1.45

ULLS 75x100 26 33 2.15 4.81 41.38 31.42 17.42 17.42 9.80 9.80 6.27 6.27 4.35 4.35 3.20 3.20 2.45 2.45 1.94 1.94

ULLS 75x125 21.4 27.24 2.11 5.99 34.02 25.55 13.82 13.82 7.78 7.78 4.98 4.98 3.46 3.46 2.54 2.54 1.94 1.94 1.54 1.54

ULLS 75x125 29.8 38 2.06 6.17 47.25 35.06 18.49 18.49 10.40 10.40 6.66 6.66 4.62 4.62 3.40 3.40 2.60 2.60 2.05 2.05

ULLS 75x125 38.2 48.62 2.04 6.36 60.30 44.42 23.11 23.11 13.00 13.00 8.32 8.32 5.78 5.78 4.25 4.25 3.25 3.25 2.57 2.57

ULLS 90x125 32.2 41 2.59 5.94 53.10 43.77 31.55 31.55 17.76 17.76 11.37 11.37 7.90 7.90 5.80 5.80 4.44 4.44 3.51 3.51

ULLS 90x125 41.2 52.52 2.57 6.13 67.91 55.77 39.85 39.85 22.27 22.27 14.25 14.25 9.90 9.90 7.27 7.27 5.57 5.57 4.40 4.40

ULLS 90x150 32.8 41.88 2.52 7.23 54.00 44.05 30.98 30.98 17.12 17.12 10.96 10.96 7.61 7.61 5.59 5.59 4.28 4.28 3.38 3.38

ULLS 90x150 43.0 54.72 2.47 7.40 70.34 56.95 39.31 39.31 21.50 21.50 13.76 13.76 9.55 9.55 7.02 7.02 5.37 5.37 4.25 4.25

ULLS 100x150 34.2 43.68 2.88 7.08 57.37 48.84 37.79 37.79 23.30 23.30 14.91 14.91 10.36 10.36 7.61 7.61 5.82 5.82 4.60 4.60

ULLS 100x150 44.8 57.12 2.83 7.25 74.84 63.38 48.51 48.51 29.35 29.35 18.78 18.78 13.04 13.04 9.58 9.58 7.34 7.34 5.80 5.80

ULLS 100x150 55.4 70.5 2.80 7.43 92.26 77.91 59.27 59.27 35.53 35.53 22.74 22.74 15.79 15.79 11.60 11.60 8.88 8.88 7.02 7.02

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 103: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-43

Table 4.10: Compression Capacity (Ton) For CCI Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

CCI 50x25 7.72 9.84 1.85 1.28 10.42 4.13 1.83 3.84 1.03 2.16 0.66 1.38 0.46 0.96 0.34 0.71 0.26 0.54 0.20 0.43

CCI 75x40 13.84 17.636 2.92 1.93 21.60 15.34 7.52 15.48 4.23 9.69 2.71 6.20 1.88 4.31 1.38 3.17 1.06 2.42 0.84 1.91

CCI 100x50 18.72 23.84 3.97 2.32 30.33 23.92 15.41 25.70 8.26 21.29 5.29 16.16 3.67 10.76 2.70 7.90 2.07 6.05 1.63 4.78

CCI 125x65 26.8 34.22 4.98 2.91 45.00 38.41 29.89 40.24 18.62 35.76 11.91 30.64 8.27 24.86 6.08 17.82 4.65 13.64 3.68 10.78

CCI 150x75 37.2 47.42 6.03 3.42 63.48 56.28 47.09 58.63 36.00 53.96 22.89 48.68 15.90 42.79 11.68 36.27 8.94 27.71 7.07 21.89

CCI 150x75 48 61.18 5.86 3.52 82.12 73.22 61.87 75.16 48.21 68.88 31.31 61.77 21.74 53.82 15.97 45.02 12.23 33.79 9.66 26.70

CCI 180x75 42.8 54.4 7.12 3.31 72.58 63.92 52.83 68.58 39.40 63.92 24.57 58.66 17.07 52.83 12.54 46.42 9.60 39.40 7.58 30.34

CCI 200x80 49.2 62.66 7.89 3.47 83.98 74.66 62.76 79.67 48.42 74.66 31.09 69.02 21.59 62.76 15.86 55.91 12.14 48.42 9.60 40.27

CCI 200x90 60.6 77.3 8.03 4.13 105.11 96.13 84.80 100.55 71.34 95.55 55.71 89.93 37.65 83.74 27.66 76.99 21.18 69.69 16.73 61.81

CCI 250x90 69.2 88.14 9.74 3.85 119.20 107.88 93.54 113.95 76.42 107.88 56.37 101.07 37.30 93.54 27.40 85.33 20.98 76.42 16.58 66.78

CCI 250x90 80.4 102.34 9.56 3.89 138.53 125.60 109.23 132.53 89.69 125.60 66.86 117.82 44.30 109.23 32.55 99.85 24.92 89.69 19.69 78.71

CCI 300x90 76.2 97.14 11.51 3.67 130.87 117.54 100.61 124.69 80.31 117.54 53.98 109.50 37.49 100.61 27.54 90.88 21.09 80.31 16.66 68.84

CCI 300x90 87.6 111.48 11.53 3.81 150.65 136.15 117.76 143.92 95.78 136.15 70.03 127.41 46.32 117.76 34.03 107.22 26.05 95.78 20.59 83.41

CCI 300x90 97.2 123.8 11.28 3.80 167.25 151.06 130.53 159.74 105.98 151.06 73.52 141.30 51.06 130.53 37.51 118.75 28.72 105.98 22.69 92.15

CCI 380x100 109 138.78 14.46 4.04 188.41 171.80 150.81 180.69 125.84 171.80 96.79 161.82 64.81 150.81 47.61 138.82 36.45 125.84 28.80 111.85

CCI 380x100 134.6 171.42 14.33 4.22 233.47 214.18 189.90 224.50 161.07 214.18 127.70 202.62 87.37 189.90 64.19 176.04 49.15 161.07 38.83 144.97

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 104: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-44

Table 4.11: Compression Capacity (Ton) For CCB Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Designation

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

CCB 50x25 7.72 9.84 19.91 1.83 11.90 8.12 3.79 10.18 2.13 8.12 1.36 5.45 0.95 3.79 0.70 2.78 0.53 2.13 0.42 1.68

CCB 75x40 13.84 17.636 14.87 2.96 23.25 19.95 15.68 21.72 9.97 19.95 6.38 17.93 4.43 15.68 3.26 13.19 2.49 9.97 1.97 7.88

CCB 100x50 18.72 23.84 12.79 3.76 32.18 29.02 25.01 30.72 20.22 29.02 13.90 27.12 9.65 25.01 7.09 22.71 5.43 20.22 4.29 17.51

CCB 125x65 26.8 34.22 10.68 4.98 47.09 44.04 40.23 45.67 35.76 44.04 30.64 42.22 24.85 40.23 17.82 38.08 13.64 35.76 10.78 33.28

CCB 150x75 37.2 47.42 9.07 5.67 65.70 62.17 57.81 62.65 52.70 60.07 46.91 57.19 40.43 54.03 33.23 50.59 24.56 46.88 19.40 42.91

CCB 150x75 48 61.18 7.98 5.63 84.74 80.13 74.45 79.52 67.80 75.53 60.25 71.06 51.80 66.12 42.40 60.73 31.25 54.90 24.69 48.61

CCB 180x75 42.8 54.4 8.47 5.80 75.45 71.52 66.67 71.27 61.01 68.01 54.59 64.36 47.41 60.34 39.46 55.96 29.46 51.23 23.28 46.15

CCB 200x80 49.2 62.66 7.89 6.24 87.18 83.07 78.04 81.31 72.18 77.15 65.55 72.48 58.18 67.33 50.04 61.72 41.08 55.63 30.98 49.06

CCB 200x90 60.6 77.3 8.03 6.81 107.91 103.42 97.94 100.55 91.59 95.55 84.42 89.93 76.48 83.74 67.75 76.99 58.23 69.69 45.56 61.81

CCB 250x90 69.2 88.14 9.74 7.09 123.22 118.36 112.47 117.36 105.64 113.03 97.94 108.21 89.42 102.92 80.09 97.17 69.92 91.00 58.86 84.39

CCB 250x90 80.4 102.34 9.56 7.07 143.07 137.40 130.54 136.01 122.58 130.85 113.61 125.10 103.68 118.79 92.80 111.94 80.94 104.56 68.05 96.67

CCB 300x90 76.2 97.14 11.51 7.23 135.90 130.69 124.38 131.35 117.07 127.58 108.84 123.41 99.74 118.84 89.78 113.91 78.94 108.62 67.17 102.99

CCB 300x90 87.6 111.48 11.53 7.13 155.89 149.79 142.39 150.76 133.82 146.44 124.17 141.66 113.49 136.43 101.79 130.78 89.05 124.72 75.20 118.27

CCB 300x90 97.2 123.8 11.28 7.16 173.14 166.41 158.25 167.11 148.80 162.17 138.15 156.68 126.37 150.68 113.47 144.20 99.43 137.24 84.16 129.83

CCB 380x100 109 138.78 14.46 8.08 194.84 188.41 180.69 190.63 171.80 186.70 161.83 182.37 150.83 177.67 138.84 172.61 125.86 167.22 111.87 161.49

CCB 380x100 134.6 171.42 14.46 7.96 240.55 232.45 222.70 235.47 211.47 230.61 198.85 225.26 184.94 219.46 169.77 213.21 153.34 206.54 135.61 199.47

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 105: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-45

Table 4.12: Compression Capacity (Ton) For C Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

C 50x25 3.86 4.92 1.85 0.71 2.55 0.64 0.28 1.14 0.16 0.64 0.10 0.41 0.07 0.28 0.05 0.21 0.04 0.16 0.03 0.13

C 75x40 6.92 8.818 2.92 1.17 8.89 3.11 1.38 5.79 0.78 3.11 0.50 1.99 0.35 1.38 0.25 1.01 0.19 0.78 0.15 0.61

C 100x50 9.36 11.92 3.97 1.48 13.47 6.72 2.99 10.59 1.68 6.72 1.08 4.30 0.75 2.99 0.55 2.19 0.42 1.68 0.33 1.33

C 125x65 13.4 17.11 4.98 1.9 20.88 14.66 7.07 18.05 3.98 14.66 2.54 10.18 1.77 7.07 1.30 5.19 0.99 3.98 0.79 3.14

C 150x75 18.6 23.71 6.03 2.22 29.92 23.11 13.37 26.80 7.52 23.11 4.81 18.86 3.34 13.37 2.46 9.82 1.88 7.52 1.49 5.94

C 180x75 21.4 27.2 7.12 2.19 34.24 26.27 14.93 30.59 8.40 26.27 5.37 21.28 3.73 14.93 2.74 10.97 2.10 8.40 1.66 6.63

C 150x75 24 30.59 5.86 2.19 38.50 29.54 16.79 34.40 9.44 29.54 6.04 23.93 4.20 16.79 3.08 12.33 2.36 9.44 1.87 7.46

C 200x80 24.6 31.33 7.88 2.32 39.85 31.43 20.24 35.99 10.85 31.43 6.95 26.20 4.82 20.24 3.54 14.18 2.71 10.85 2.14 8.58

C 200x90 30.3 38.65 8.02 2.68 50.29 41.90 30.97 46.43 17.87 41.90 11.44 36.75 7.94 30.97 5.83 24.50 4.47 17.87 3.53 14.12

C 250x90 34.6 44.07 9.74 2.58 57.03 46.92 33.67 52.38 18.88 46.92 12.08 40.68 8.39 33.67 6.17 24.66 4.72 18.88 3.73 14.92

C 300x90 38.1 48.57 11.5 2.52 62.63 51.09 35.93 57.32 19.85 51.09 12.71 43.96 8.82 35.93 6.48 25.93 4.96 19.85 3.92 15.69

C 250x90 40.2 51.17 9.56 2.54 66.06 54.05 38.27 60.54 21.25 54.05 13.60 46.63 9.44 38.27 6.94 27.75 5.31 21.25 4.20 16.79

C 300x90 43.8 55.74 11.5 2.54 71.96 58.87 41.69 65.94 23.15 58.87 14.81 50.80 10.29 41.69 7.56 30.23 5.79 23.15 4.57 18.29

C 300x90 48.6 61.9 11.3 2.48 79.62 64.56 44.73 72.70 24.50 64.56 15.68 55.25 10.89 44.73 8.00 32.00 6.13 24.50 4.84 19.36

C 380x100 54.5 69.39 14.5 2.78 90.73 76.47 57.94 84.16 34.52 76.47 22.09 67.73 15.34 57.94 11.27 47.03 8.63 34.52 6.82 27.27

C 380x100 67.3 85.71 14.3 2.76 111.96 94.16 71.01 103.76 42.02 94.16 26.89 83.24 18.68 71.01 13.72 57.37 10.51 42.02 8.30 33.20

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 106: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-46

Table 4.13: Compression Capacity (Ton) For I Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

I 100x75 12.9 16.43 4.14 1.7 19.46 12.36 5.43 16.24 3.06 12.36 1.96 7.82 1.36 5.43 1.00 3.99 0.76 3.06 0.60 2.41

I 125x75 16.1 20.45 5.13 1.68 24.14 15.13 6.60 20.06 3.71 15.13 2.38 9.51 1.65 6.60 1.21 4.85 0.93 3.71 0.73 2.94

I 150x75 17.1 21.83 6.12 1.62 25.47 15.28 6.56 20.87 3.69 15.28 2.36 9.44 1.64 6.56 1.20 4.82 0.92 3.69 0.73 2.91

I 180x100 23.6 30.06 7.45 2.14 37.66 28.54 15.75 33.49 8.86 28.54 5.67 22.82 3.94 15.75 2.89 11.57 2.22 8.86 1.75 7.00

I 200x100 26 33.06 8.11 2.05 41.06 30.35 15.90 36.17 8.94 30.35 5.72 23.60 3.97 15.90 2.92 11.68 2.24 8.94 1.77 7.07

I 150x125 36.2 46.15 6.18 2.89 60.64 51.68 40.08 56.51 24.81 51.68 15.88 46.20 11.03 40.08 8.10 33.29 6.20 24.81 4.90 19.60

I 250x125 38.3 48.79 10.3 2.63 63.31 52.43 38.21 58.31 21.72 52.43 13.90 45.73 9.65 38.21 7.09 28.37 5.43 21.72 4.29 17.16

I 300x150 48.3 61.58 12.4 3.09 81.56 70.72 56.76 76.55 39.70 70.72 24.22 64.11 16.82 56.76 12.36 48.64 9.46 39.70 7.48 29.90

I 200x150 50.4 64.16 8.34 3.43 85.90 76.19 63.79 81.41 48.83 76.19 31.09 70.31 21.59 63.79 15.86 56.63 12.15 48.83 9.60 40.31

I 250x125 55.5 70.73 10.2 2.76 92.39 77.70 58.60 85.63 34.68 77.70 22.19 68.69 15.41 58.60 11.32 47.35 8.67 34.68 6.85 27.40

I 350x150 58.5 74.58 14.3 3.07 98.70 85.45 68.37 92.58 47.49 85.45 28.95 77.37 20.11 68.37 14.77 58.44 11.31 47.49 8.94 35.75

I 300x150 65.5 83.47 12.3 3.26 111.19 97.59 80.16 104.90 59.01 97.59 36.54 89.34 25.38 80.16 18.64 70.07 14.27 59.01 11.28 45.11

I 400x150 72 91.73 16.2 3.07 121.40 105.10 84.10 113.88 58.41 105.10 35.61 95.16 24.73 84.10 18.17 71.88 13.91 58.41 10.99 43.97

I 300x150 76.8 97.88 12.2 3.32 130.63 115.10 95.22 123.45 71.15 115.10 44.44 105.68 30.86 95.22 22.67 83.73 17.36 71.15 13.72 54.87

I 350x150 87.2 111.1 14.2 3.26 147.99 129.90 106.70 139.63 78.55 129.90 48.64 118.91 33.78 106.70 24.81 93.27 19.00 78.55 15.01 60.05

I 450x175 91.7 116.8 18.3 3.6 157.08 140.59 119.60 149.44 94.40 140.59 62.35 130.63 43.30 119.60 31.81 107.53 24.36 94.40 19.25 80.13

I 400x150 95.8 122.1 16.1 3.18 162.22 141.61 115.12 152.70 82.89 141.61 50.86 129.07 35.32 115.12 25.95 99.76 19.87 82.89 15.70 62.79

I 450x175 115 146.1 18.3 3.72 197.04 177.36 152.38 187.92 122.45 177.36 83.28 165.49 57.84 152.38 42.49 138.03 32.53 122.45 25.70 105.57

I 600x190 133 169.4 24.1 3.81 228.92 206.87 178.92 218.69 145.51 206.87 106.36 193.59 70.34 178.92 51.68 162.89 39.57 145.51 31.26 126.70

I 600x190 176 224.5 24.1 3.97 304.38 276.82 241.98 291.58 200.47 276.82 152.08 260.26 101.22 241.98 74.36 222.05 56.93 200.47 44.99 177.18

Page 107: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-47

Table 4.14: Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 100x50 9.3 11.85 3.98 1.12 11.62 3.83 1.70 6.80 0.96 3.83 0.61 2.45 0.43 1.70 0.31 1.25 0.24 0.96 0.19 0.76

H 125x60 13.2 16.84 4.95 1.32 18.13 7.55 3.36 13.25 1.89 7.55 1.21 4.83 0.84 3.36 0.62 2.47 0.47 1.89 0.37 1.49

H 150x75 14 17.85 6.11 1.66 20.99 12.98 5.63 17.36 3.17 12.98 2.03 8.10 1.41 5.63 1.03 4.14 0.79 3.17 0.63 2.50

H 100x100 17.2 21.9 4.18 2.47 28.15 22.79 15.73 24.16 8.60 20.42 5.50 16.09 3.82 10.95 2.81 8.04 2.15 6.16 1.70 4.86

H 175x90 18.1 23.04 7.26 2.06 28.64 21.24 11.19 25.26 6.29 21.24 4.03 16.57 2.80 11.19 2.05 8.22 1.57 6.29 1.24 4.97

H 198x99 18.2 23.18 8.26 2.21 29.23 22.53 12.95 26.16 7.29 22.53 4.66 18.34 3.24 12.95 2.38 9.52 1.82 7.29 1.44 5.76

H 148x100 21.1 26.84 6.17 2.37 34.27 27.28 18.02 31.06 9.70 27.28 6.21 22.95 4.31 18.02 3.17 12.67 2.43 9.70 1.92 7.67

H 200x100 21.3 27.16 8.24 2.22 34.27 26.48 15.32 30.70 8.62 26.48 5.51 21.61 3.83 15.32 2.81 11.25 2.15 8.62 1.70 6.81

H 125x125 23.8 30.31 5.29 3.11 40.17 34.89 28.08 36.28 19.78 32.66 12.08 28.54 8.39 23.90 6.16 17.83 4.72 13.65 3.73 10.78

H 248x124 25.7 32.68 10.4 2.79 42.75 36.07 27.39 39.67 16.37 36.07 10.48 31.98 7.28 27.39 5.35 22.29 4.09 16.37 3.23 12.94

H 250x125 29.6 37.66 10.4 2.79 49.27 41.57 31.56 45.72 18.87 41.57 12.08 36.85 8.39 31.56 6.16 25.68 4.72 18.87 3.73 14.91

H 194x150 30.6 39.01 8.3 3.61 52.47 46.99 40.01 49.93 31.63 46.99 20.94 43.68 14.54 40.01 10.68 36.00 8.18 31.63 6.46 26.89

H 150x150 31.5 40.14 6.39 3.75 54.17 48.83 42.04 50.25 33.93 46.63 23.25 42.53 16.15 37.98 11.86 32.97 9.08 27.47 7.18 20.84

H 298x149 32 408 3.9 1.04 379.25 113.79 50.58 202.30 28.45 113.79 18.21 72.83 12.64 50.58 9.29 37.16 7.11 28.45 5.62 22.48

H 300x150 36.7 46.78 12.4 3.30 62.38 54.88 45.27 58.91 33.63 54.88 20.93 50.33 14.53 45.27 10.68 39.71 8.17 33.63 6.46 25.83

H 175x175 40.2 51.21 7.5 4.38 69.92 64.46 57.59 65.95 49.45 62.29 40.06 58.18 28.10 53.64 20.65 48.68 15.81 43.28 12.49 37.45

H 346x174 41.4 52.68 14.5 3.88 71.29 64.60 56.14 68.19 46.03 64.60 34.21 60.58 22.66 56.14 16.65 51.29 12.74 46.03 10.07 40.35

H 244x175 44.1 56.24 10.4 4.18 76.54 70.13 62.04 73.56 52.44 70.13 41.31 66.28 28.11 62.04 20.65 57.43 15.81 52.44 12.49 47.08

H 350x175 49.6 63.14 14.7 3.95 85.57 77.76 67.87 81.94 56.10 77.76 42.36 73.06 28.15 67.87 20.68 62.22 15.83 56.10 12.51 49.48

H 200x200 49.9 63.53 8.62 5.02 87.47 81.87 74.89 83.42 66.69 79.71 57.31 75.56 46.72 70.98 33.65 66.01 25.76 60.64 20.35 54.87

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 108: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-48

Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 200x204 56.2 71.53 8.35 4.88 98.33 91.76 83.58 93.54 73.94 89.17 62.90 84.27 50.41 78.87 35.80 72.99 27.41 66.64 21.66 59.80

H 396x199 56.6 72.16 16.6 4.48 98.68 91.22 81.87 95.21 70.80 91.22 58.06 86.77 41.48 81.87 30.47 76.54 23.33 70.80 18.43 64.65

H 294x200 56.8 72.38 12.5 4.70 99.28 92.28 83.53 96.01 73.21 92.28 61.37 88.11 47.91 83.53 33.63 78.56 25.75 73.21 20.34 67.48

H 354x176 57.8 73.68 14.8 4.00 99.96 91.02 79.72 95.80 66.26 91.02 50.59 85.64 33.75 79.72 24.80 73.26 18.99 66.26 15.00 58.72

H 244x252 64.4 82.06 10.3 5.98 113.96 108.27 101.28 109.87 93.12 106.15 83.87 102.01 73.55 97.47 62.13 92.56 47.22 87.28 37.31 81.63

H 298x201 65.4 83.36 12.6 4.77 114.44 106.56 96.71 110.76 85.09 106.56 71.78 101.86 56.67 96.71 39.93 91.11 30.57 85.09 24.16 78.65

H 208x202 65.7 83.69 8.83 5.13 115.37 108.20 99.30 110.22 88.83 105.50 76.89 100.21 63.44 94.40 46.29 88.08 35.44 81.27 28.00 73.95

H 400x200 66 84.12 16.8 4.55 115.14 106.62 95.95 111.17 83.33 106.62 68.82 101.54 49.77 95.95 36.57 89.88 28.00 83.33 22.12 76.32

H 446x199 66.2 84.3 18.5 4.33 115.02 105.86 94.36 110.76 80.73 105.86 64.98 100.39 45.20 94.36 33.21 87.80 25.42 80.73 20.09 73.12

H 248x249 66.5 84.7 10.8 6.28 117.87 112.38 105.65 113.91 97.81 110.31 88.94 106.32 79.08 101.95 68.20 97.22 56.24 92.15 42.47 86.73

H 336x249 69.2 88.15 14.5 5.92 122.37 116.17 108.55 119.46 99.65 116.17 89.56 112.53 78.30 108.55 65.84 104.25 49.72 99.65 39.29 94.75

H 250x250 72.4 92.18 10.8 6.29 128.29 122.32 115.02 123.97 106.51 120.06 96.88 115.71 86.17 110.95 74.36 105.81 61.38 100.28 46.37 94.39

H 404x201 75.5 96.16 16.9 4.59 131.71 122.11 110.09 127.23 95.89 122.11 79.56 116.38 60.97 110.09 42.66 103.25 32.66 95.89 25.81 87.99

H 450x200 76 96.76 18.6 4.40 132.15 121.87 108.96 127.37 93.68 121.87 76.04 115.73 53.49 108.96 39.30 101.61 30.09 93.68 23.77 85.16

H 496x199 79.5 101.3 20.3 4.26 138.06 126.82 112.67 132.83 95.89 126.82 76.47 120.08 52.63 112.67 38.67 104.60 29.61 95.89 23.39 86.52

H 340x250 79.7 101.5 14.6 6.00 140.98 133.97 125.35 137.69 115.30 133.97 103.90 129.85 91.20 125.35 77.14 120.50 58.73 115.30 46.41 109.76

H 250x255 82.2 104.7 10.5 6.09 145.52 138.44 129.75 140.44 119.61 135.82 108.13 130.68 95.33 125.05 81.20 118.96 65.61 112.41 49.37 105.42

H 294x302 84.5 107.7 12.5 7.16 150.62 144.76 137.66 146.57 129.44 142.85 120.17 138.75 109.92 134.26 98.69 129.43 86.47 124.26 73.19 118.76

H 298x299 87 110.8 13.0 7.50 155.20 149.54 142.70 151.20 134.80 147.58 125.92 143.58 116.09 139.22 105.36 134.53 93.71 129.50 81.09 124.17

H 456x201 88.9 113.3 18.9 4.52 155.01 143.42 128.89 149.61 111.71 143.42 91.93 136.50 66.08 128.89 48.55 120.62 37.17 111.71 29.37 102.15

Page 109: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-49

Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 500x200 89.6 114.2 20.5 4.33 155.81 143.41 127.82 150.04 109.35 143.41 88.01 135.99 61.22 127.82 44.98 118.94 34.43 109.35 27.21 99.05

H 300x300 94 119.8 13.0 7.51 167.81 161.69 154.30 163.50 145.76 159.60 136.15 155.28 125.54 150.58 113.94 145.52 101.35 140.10 87.71 134.35

H 386x299 94.3 120.1 16.8 7.21 168.00 161.53 153.69 164.95 144.60 161.53 134.38 157.77 123.06 153.69 110.67 149.29 97.19 144.60 82.55 139.63

H 596x199 94.6 120.5 23.9 4.05 163.63 149.27 131.15 156.96 109.57 149.27 84.49 140.65 56.64 131.15 41.61 120.78 31.86 109.57 25.17 97.49

H 506x201 103 131.3 20.7 4.43 179.42 165.64 148.33 173.00 127.85 165.64 104.24 157.40 73.80 148.33 54.22 138.48 41.51 127.85 32.80 116.45

H 300x305 106 134.8 12.6 7.26 188.61 181.41 172.69 183.56 162.60 178.96 151.23 173.87 138.66 168.33 124.91 162.35 109.95 155.96 93.70 149.16

H 304x301 106 134.8 13.2 7.57 188.88 182.07 173.86 184.09 164.37 179.76 153.70 174.97 141.91 169.75 129.04 164.13 115.07 158.13 99.94 151.74

H 338x351 106 135.3 14.4 8.33 190.12 184.09 176.87 185.84 168.57 182.00 159.26 177.77 149.00 173.18 137.83 168.24 125.76 162.97 112.77 157.38

H 434x299 106 135 18.6 7.04 188.69 181.18 172.06 185.15 161.50 181.18 149.59 176.81 136.40 172.06 121.95 166.95 106.20 161.50 89.07 155.71

H 600x200 106 134.4 24.0 4.12 182.72 167.07 147.32 175.45 123.85 167.07 96.60 157.67 65.22 147.32 47.92 136.04 36.69 123.85 28.99 110.72

H 390x300 107 136 16.9 7.28 190.31 183.08 174.32 186.90 164.19 183.08 152.78 178.88 140.16 174.32 126.35 169.42 111.33 164.19 95.04 158.64

H 482x300 114 145.5 20.4 6.82 203.13 194.68 184.39 199.15 172.46 194.68 158.99 189.75 144.06 184.39 127.67 178.62 109.77 172.46 85.94 165.91

H 344x348 115 146 15.1 8.76 205.44 199.35 192.09 201.05 183.76 197.15 174.43 192.87 164.17 188.22 153.01 183.23 140.97 177.90 128.04 172.25

H 606x201 120 152.5 24.3 4.22 207.71 190.56 168.97 199.73 143.35 190.56 113.68 180.29 77.81 168.97 57.17 156.66 43.77 143.35 34.58 129.04

H 440x300 124 157.4 18.9 7.18 220.15 211.62 201.28 216.12 189.30 211.62 175.81 206.66 160.89 201.28 144.55 195.49 126.76 189.30 107.44 182.74

H 488x300 128 163.5 20.8 7.04 228.53 219.44 208.41 224.24 195.62 219.44 181.20 214.15 165.25 208.41 147.76 202.22 128.70 195.62 107.96 188.61

H 344x354 131 166.6 14.6 8.42 234.17 226.85 218.10 228.94 208.03 224.26 196.74 219.12 184.31 213.53 170.78 207.52 156.16 201.11 140.44 194.30

H 612x202 134 170.7 24.6 4.32 232.85 214.24 190.84 224.19 163.10 214.24 131.05 203.10 90.97 190.84 66.83 177.50 51.17 163.10 40.43 147.63

H 350x350 137 173.9 15.2 8.84 244.76 237.60 229.06 239.58 219.27 234.98 208.32 229.93 196.27 224.46 183.17 218.58 169.04 212.31 153.88 205.66

H 582x300 137 174.5 24.3 6.63 243.37 232.85 220.01 238.41 205.10 232.85 188.26 226.70 169.58 220.01 149.04 212.81 126.56 205.10 97.51 196.92

H 388x402 140 178.5 16.6 9.56 251.72 245.07 237.20 246.99 228.20 242.78 218.16 238.17 207.13 233.19 195.17 227.84 182.29 222.15 168.51 216.13

Page 110: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-50

Table 4.14(Continued): Compression Capacity (Ton) For H Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight [Note: * = Not Available]

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

Cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

H 388x402 140 178.5 16.6 9.56 251.72 245.07 237.20 246.99 228.20 242.78 218.16 238.17 207.13 233.19 195.17 227.84 182.29 222.15 168.51 216.13

H 446x302 145 184.3 19.0 7.24 257.85 247.97 236.01 253.19 222.16 247.97 206.57 242.24 189.32 236.01 170.44 229.31 149.90 222.16 127.60 214.58

H 394x398 147 186.8 17.3 10.06 263.74 257.22 249.54 259.03 240.78 254.87 231.03 250.34 220.33 245.44 208.73 240.20 196.27 234.62 182.95 228.71

H 494x302 150 191.4 20.9 7.10 267.61 257.09 244.33 262.65 229.55 257.09 212.89 250.98 194.46 244.33 174.26 237.18 152.26 229.55 128.34 221.45

H 588x300 151 192.5 24.8 6.85 268.79 257.67 244.15 263.55 228.45 257.67 210.74 251.19 191.12 244.15 169.58 236.56 146.07 228.45 114.68 219.84

H 350x357 156 198.4 14.7 8.52 278.97 270.39 260.13 272.78 248.35 267.28 235.15 261.23 220.62 254.66 204.80 247.59 187.72 240.05 169.36 232.06

H 692x300 166 211.5 28.5 6.53 294.80 281.78 265.89 288.67 247.41 281.78 226.54 274.18 203.36 265.89 177.86 256.96 149.91 247.41 114.68 237.27

H 394x405 168 214.4 16.7 9.65 302.42 294.53 285.20 296.78 274.54 291.78 262.65 286.30 249.60 280.38 235.44 274.03 220.20 267.28 203.90 260.12

H 400x400 172 218.7 17.5 10.12 308.82 301.25 292.33 303.36 282.17 298.54 270.84 293.28 258.43 287.61 244.98 281.52 230.52 275.05 215.08 268.21

H 594x302 175 222.4 24.8 6.90 310.64 297.94 282.50 304.65 264.59 297.94 244.39 290.54 222.01 282.50 197.46 273.84 170.68 264.59 141.47 254.77

H 700x300 185 235.5 29.2 6.77 328.70 314.90 298.10 322.20 278.59 314.90 256.58 306.86 232.17 298.10 205.37 288.67 176.09 278.59 137.31 267.89

H 792x300 191 243.4 32.3 6.39 338.97 323.53 304.66 331.71 282.69 323.53 257.85 314.50 230.24 304.66 199.82 294.04 166.43 282.69 126.25 270.62

H 400x408 197 250.7 16.8 9.74 353.70 344.59 333.82 347.14 321.53 341.35 307.82 335.01 292.77 328.15 276.45 320.80 258.89 312.98 240.12 304.70

H 800x300 210 267.4 33.0 6.61 372.90 356.73 337.00 365.28 314.07 356.73 288.18 347.28 259.45 337.00 227.86 325.92 193.28 314.07 148.75 301.49

*H 890x299 213 270.9 35.7 6.17 376.72 358.70 336.61 368.25 310.85 358.70 281.70 348.13 249.23 336.61 213.40 324.17 173.92 310.85 130.95 296.69

H 414x405 232 295.4 17.7 10.24 417.24 407.17 395.32 410.03 381.83 403.66 366.80 396.71 350.33 389.21 332.48 381.17 313.31 372.63 292.84 363.59

*H 900x300 243 309.8 36.4 6.38 431.41 411.72 387.65 422.15 359.62 411.72 327.93 400.20 292.70 387.65 253.90 374.11 211.29 359.62 160.19 344.22

*H 428x407 283 360.7 18.2 10.45 509.70 497.71 483.63 501.21 467.61 493.68 449.78 485.47 430.25 476.61 409.10 467.14 386.40 457.06 362.15 446.41

*H 912x302 286 364 37.0 6.57 507.47 485.24 458.11 497.01 426.57 485.24 390.95 472.25 351.40 458.11 307.90 442.87 260.26 426.57 199.61 409.26

*H 458x417 415 528.6 18.8 10.70 747.32 730.27 710.27 735.59 687.55 725.05 662.29 713.58 634.63 701.21 604.70 688.00 572.57 673.95 538.29 659.12

*H 498x432 605 770.1 19.7 11.07 1089.5 1065.7 1037.9 1073.57 1006.4 1059.1 971.33 1043.37 933.00 1026.4 891.55 1008.36 847.10 989.17 799.70 968.91

Page 111: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-51

Table 4.15: Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 50x100 8.6 10.95 1.21 2.47 11.27 4.13 1.83 1.83 1.03 1.03 0.66 0.66 0.46 0.46 0.34 0.34 0.26 0.26 0.20 0.20

T 99x99 9.1 11.59 2.84 2.21 14.61 11.26 6.48 9.89 3.64 6.02 2.33 3.85 1.62 2.67 1.19 1.96 0.91 1.50 0.72 1.19

T 74x100 10.5 13.42 1.96 2.37 16.50 11.85 5.90 5.90 3.32 3.32 2.12 2.12 1.47 1.47 1.08 1.08 0.83 0.83 0.66 0.66

T 100x100 10.7 13.58 2.9 2.22 17.14 13.24 7.66 11.83 4.31 7.35 2.76 4.70 1.91 3.27 1.41 2.40 1.08 1.84 0.85 1.45

T 62.5x125 11.9 15.16 1.52 3.11 17.31 9.02 4.01 4.01 2.25 2.25 1.44 1.44 1.00 1.00 0.74 0.74 0.56 0.56 0.45 0.45

T 124x124 12.8 16.34 3.57 2.79 21.38 18.04 13.70 16.65 8.19 13.08 5.24 8.58 3.64 5.96 2.67 4.38 2.05 3.35 1.62 2.65

T 125x125 14.8 18.83 3.63 2.79 24.63 20.78 15.78 19.37 9.43 15.36 6.04 10.22 4.19 7.10 3.08 5.21 2.36 3.99 1.86 3.15

T 97x150 15.3 19.51 2.53 3.61 25.17 20.56 14.51 14.51 8.04 8.04 5.14 5.14 3.57 3.57 2.62 2.62 2.01 2.01 1.59 1.59

T 75x150 15.8 20.07 1.82 3.75 24.23 16.43 7.61 7.61 4.28 4.28 2.74 2.74 1.90 1.90 1.40 1.40 1.07 1.07 0.85 0.85

T 149x149 16 20.4 4.39 3.29 27.20 23.92 19.72 22.96 14.63 19.73 9.10 16.00 6.32 11.25 4.64 8.26 3.55 6.33 2.81 5.00

T 150x150 18.4 23.39 4.45 3.29 31.19 27.43 22.61 26.46 16.77 22.84 10.43 18.66 7.24 13.25 5.32 9.73 4.07 7.45 3.22 5.89

T 87.5x175 20.1 25.61 2.12 4.38 32.03 24.15 13.17 13.17 7.41 7.41 4.74 4.74 3.29 3.29 2.42 2.42 1.85 1.85 1.46 1.46

T 173x174 20.7 26.34 5.08 3.88 35.65 32.31 28.08 31.16 23.03 27.82 17.13 24.00 11.34 19.70 8.33 14.29 6.38 10.94 5.04 8.64

T 122x175 22.1 28.12 3.2 4.18 37.39 32.68 26.64 26.64 19.29 19.29 11.86 11.86 8.24 8.24 6.05 6.05 4.63 4.63 3.66 3.66

T 175x175 24.8 31.57 5.08 3.95 42.79 38.88 33.95 37.35 28.06 33.34 21.20 28.77 14.09 23.61 10.35 17.12 7.93 13.11 6.26 10.36

T 100x200 24.9 31.77 2.41 5.02 40.67 32.61 21.95 21.95 11.88 11.88 7.60 7.60 5.28 5.28 3.88 3.88 2.97 2.97 2.35 2.35

T 100x204 28.1 35.77 2.67 4.88 46.52 38.71 28.53 28.53 16.41 16.41 10.50 10.50 7.29 7.29 5.36 5.36 4.10 4.10 3.24 3.24

T 198x199 28.3 36.08 5.76 4.48 49.34 45.61 40.92 44.14 35.39 40.35 29.01 36.04 20.71 31.23 15.22 25.89 11.65 19.26 9.21 15.22

T 147x200 28.4 36.19 3.97 4.71 49.07 44.62 39.01 39.01 32.32 32.32 24.51 24.51 16.32 16.32 11.99 11.99 9.18 9.18 7.25 7.25

T 122x252 32.2 41.03 3.29 5.98 54.71 48.11 39.66 39.66 29.42 29.42 18.29 18.29 12.70 12.70 9.33 9.33 7.15 7.15 5.65 5.65

Page 112: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-52

Table 4.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 149x201 32.7 41.68 3.99 4.77 56.53 51.45 45.03 45.03 37.38 37.38 28.48 28.48 18.98 18.98 13.95 13.95 10.68 10.68 8.44 8.44

T 104x202 32.8 41.85 2.45 5.13 53.72 43.36 29.68 29.68 16.17 16.17 10.35 10.35 7.19 7.19 5.28 5.28 4.04 4.04 3.19 3.19

T 200x200 33.0 42.06 5.76 4.54 57.57 53.29 47.94 51.46 41.62 47.04 34.34 42.02 24.80 36.41 18.22 30.18 13.95 22.45 11.02 17.74

T 223x199 33.1 42.15 6.67 4.33 57.51 52.93 47.18 53.20 40.37 49.63 32.50 45.60 22.61 41.13 16.61 36.22 12.72 30.84 10.05 23.84

T 124x249 33.2 42.35 2.93 6.29 55.74 47.69 37.26 37.26 23.40 23.40 14.98 14.98 10.40 10.40 7.64 7.64 5.85 5.85 4.62 4.62

T 168x249 34.6 44.08 4.47 5.92 60.27 55.69 49.96 49.96 43.17 43.17 35.35 35.35 25.19 25.19 18.51 18.51 14.17 14.17 11.20 11.20

T 125x250 36.2 46.09 2.99 6.29 60.81 52.30 41.31 41.31 26.52 26.52 16.97 16.97 11.79 11.79 8.66 8.66 6.63 6.63 5.24 5.24

T 225x200 38.0 48.38 6.68 4.40 66.08 60.95 54.50 61.09 46.87 57.00 38.06 52.38 26.79 47.26 19.68 41.63 15.07 35.48 11.91 27.45

T 248x199 39.7 50.64 7.49 4.27 69.03 63.42 56.37 65.20 48.00 61.58 38.33 57.51 26.41 53.01 19.40 48.09 14.86 42.74 11.74 36.96

T 170x250 39.8 50.76 4.48 6 69.41 64.16 57.58 57.58 49.79 49.79 40.81 40.81 29.14 29.14 21.41 21.41 16.39 16.39 12.95 12.95

T 125x255 41.1 52.34 3.36 6.09 679.93 61.77 51.34 51.34 38.71 38.71 24.34 24.34 16.90 16.90 12.42 12.42 9.51 9.51 7.51 7.51

T147x302 42.3 53.83 3.99 7.16 73.01 66.45 58.16 58.16 48.28 48.28 36.78 36.78 24.51 24.51 18.01 18.01 13.79 13.79 10.90 10.90

T 149x299 43.5 55.40 3.59 7.51 74.49 66.63 56.64 56.64 44.63 44.63 29.41 29.41 20.42 20.42 15.01 15.01 11.49 11.49 9.08 9.08

T 250x200 44.8 57.12 7.5 4.33 77.93 71.73 63.94 73.56 54.70 69.48 44.04 64.90 30.64 59.83 22.51 54.29 17.23 48.28 13.62 41.77

T 150x300 47.0 59.89 3.65 7.51 80.64 72.35 61.81 61.81 49.17 49.17 32.87 32.87 22.82 22.82 16.77 16.77 12.84 12.84 10.14 10.14

T 193x299 47.1 60.05 5.04 7.21 82.70 77.43 70.87 70.87 63.16 63.16 54.36 54.36 44.42 44.42 32.06 32.06 24.54 24.54 19.39 19.39

T 298x199 47.3 60.23 9.29 4.05 81.78 74.60 65.52 78.44 54.73 74.60 42.17 70.28 28.26 65.52 20.76 60.34 15.90 54.73 12.56 48.68

T 253x201 51.5 65.65 7.48 4.43 89.71 82.81 74.15 84.51 63.90 79.81 52.08 74.51 36.86 68.67 27.08 62.28 20.73 55.34 16.38 47.82

T 300x200 52.8 67.21 9.3 4.12 91.38 83.55 73.68 87.74 61.95 83.55 48.33 78.86 32.63 73.68 23.98 68.04 18.36 61.95 14.50 55.38

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 113: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-53

Table 4.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 150x305 52.9 67.39 4.05 7.26 91.51 83.47 73.31 73.31 61.23 61.23 47.18 47.18 31.62 31.62 23.23 23.23 17.79 17.79 14.05 14.05

T 152x301 52.9 67.41 3.66 7.57 90.79 81.49 69.68 69.68 55.51 55.51 37.20 37.20 25.83 25.83 18.98 18.98 14.53 14.53 11.48 11.48

T 217x299 53.0 67.52 5.89 7.04 93.71 88.93 83.05 83.05 76.18 76.18 68.39 68.39 59.69 59.69 50.06 50.06 37.69 37.69 29.78 29.78

T 169x351 53.1 67.63 4.59 8.33 92.63 85.86 77.40 77.40 67.39 67.39 55.89 55.89 42.79 42.79 29.95 29.95 22.93 22.93 18.11 18.11

T 195x300 53.4 67.98 5.05 7.28 93.63 87.68 80.28 80.28 71.58 71.58 61.64 61.64 50.42 50.42 36.44 36.44 27.90 27.90 22.04 22.04

T 241x300 57.1 72.76 6.85 6.82 101.58 97.36 92.22 92.29 86.25 86.37 79.52 79.68 72.06 72.27 63.88 64.14 54.94 55.26 43.03 45.58

T 172x348 57.3 73 4.11 8.78 99.23 90.70 79.94 79.94 67.15 67.15 52.30 52.30 35.27 35.27 25.92 25.92 19.84 19.84 15.68 15.68

T 303x201 59.8 76.24 9.28 4.22 103.83 95.25 84.45 99.84 71.62 95.25 56.77 90.11 38.84 84.45 28.53 78.28 21.85 71.62 17.26 64.46

T 220x300 61.8 78.69 5.84 7.68 109.17 103.53 96.59 96.59 88.49 88.49 79.29 79.29 69.02 69.02 57.64 57.64 43.18 43.18 34.12 34.12

T 244x300 64.2 81.76 6.66 7.07 114.05 109.15 103.17 103.17 96.23 96.23 88.40 88.40 79.70 79.70 70.15 70.15 59.70 59.70 46.11 46.11

T 172x354 65.4 83.32 4.65 8.43 114.21 106.03 95.79 95.79 83.71 83.71 69.83 69.83 54.05 54.05 37.86 37.86 28.99 28.99 22.90 22.90

T 306x202 67.0 85.33 9.27 4.31 116.39 107.06 95.34 112.05 81.45 107.06 65.39 101.48 45.34 95.34 33.31 88.66 25.51 81.45 20.15 73.70

T 175x350 68.2 86.94 4.18 8.84 118.33 108.41 95.91 95.91 81.07 81.07 63.87 63.87 43.45 43.45 31.93 31.93 24.44 24.44 19.31 19.31

T 291x300 68.5 87.24 8.54 6.63 121.67 116.41 109.99 114.42 102.54 109.26 94.12 103.47 84.78 97.11 74.51 90.18 63.28 82.69 48.75 74.65

T 194x400 70.0 89.23 5.27 9.54 123.18 115.82 106.69 106.69 95.98 95.98 83.76 83.76 70.04 70.04 52.08 52.08 39.88 39.88 31.51 31.51

T 197x398 73.3 93.41 4.68 10.10 128.09 119.00 107.63 107.63 94.22 94.22 78.82 78.82 61.32 61.32 43.00 43.00 32.92 32.92 26.01 26.01

T 294x300 75.6 96.24 8.35 6.85 134.39 128.83 122.08 125.86 114.24 119.97 105.39 113.38 95.59 106.12 84.84 98.21 73.10 89.66 60.28 80.46

T 175x357 77.9 99.19 4.71 8.53 136.07 126.50 114.55 114.55 100.44 100.44 84.25 84.25 65.87 65.87 46.25 46.25 35.41 35.41 27.98 27.98

T 178x352 79.3 101 4.25 8.9 137.62 126.37 112.20 112.20 95.40 95.40 75.95 75.95 52.19 52.19 38.34 38.34 29.35 29.35 23.19 23.19

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 114: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-54

Table 4.15(Continued): Compression Capacity (Ton) For T Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

T 346x300 83 105.7 10.3 6.53 147.33 140.82 132.88 141.53 123.65 136.74 113.21 131.40 101.62 125.55 88.88 119.22 74.91 112.42 57.30 105.15

T 197x405 84.1 107.20 5.34 9.65 148.09 139.40 128.64 128.64 116.02 116.02 101.65 101.65 85.51 85.51 67.46 67.46 49.19 49.19 38.86 38.86

T 200x400 85.8 109.30 4.76 10.10 150.03 139.64 126.67 126.67 111.38 111.38 93.83 93.83 73.93 73.93 52.05 52.05 39.85 39.85 31.49 31.49

T 297x302 87.3 111.2 8.44 6.9 155.32 148.96 141.24 145.63 132.27 138.93 122.17 131.43 110.97 123.17 98.68 114.18 85.28 104.47 70.66 94.02

T 350x300 92.4 117.7 10.1 6.78 164.29 157.40 149.02 157.30 139.29 151.81 128.30 145.70 116.13 139.00 102.76 131.74 88.15 123.93 68.79 115.59

T 396x300 95.6 121.7 12.1 6.38 169.48 161.75 152.29 165.20 141.29 160.80 128.85 155.92 115.02 150.60 99.79 144.85 83.06 138.70 62.98 132.15

T 200x408 98.4 125.30 5.40 9.75 172.77 162.80 150.46 150.46 135.99 135.99 119.51 119.51 101.03 101.03 80.38 80.38 58.65 58.65 46.34 46.34

T 400x300 105 133.7 11.9 6.62 186.46 178.38 168.52 181.26 157.07 176.31 144.15 170.82 129.80 164.83 114.02 158.36 96.76 151.43 74.49 144.05

T 207x405 116.0 147.70 4.95 10.20 203.20 189.91 173.36 173.36 153.88 153.88 131.59 131.59 106.40 106.40 76.06 76.06 58.23 58.23 46.01 46.01

Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 115: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-55

Table 4.16: Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 25x25 1.12 1.427 0.747 0.747 0.82 0.21 0.09 0.09 0.05 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

EL 30x30 1.36 1.727 0.908 0.908 1.41 0.37 0.16 0.16 0.09 0.09 0.06 0.06 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02

EL 25x25 1.77 2.26 0.73 0.73 1.24 0.31 0.14 0.14 0.08 0.08 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02

EL 40x40 1.83 2.336 1.23 1.23 2.43 0.91 0.40 0.40 0.23 0.23 0.15 0.15 0.10 0.10 0.07 0.07 0.06 0.06 0.04 0.04

EL 30x30 2.18 2.78 0.88 0.88 2.19 0.55 0.25 0.25 0.14 0.14 0.09 0.09 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.03

EL 50x50 2.33 2.96 1.52 1.52 3.38 1.76 0.78 0.78 0.44 0.44 0.28 0.28 0.20 0.20 0.14 0.14 0.11 0.11 0.09 0.09

EL 40x40 2.42 3.08 1.21 1.21 3.17 1.16 0.52 0.52 0.29 0.29 0.19 0.19 0.13 0.13 0.09 0.09 0.07 0.07 0.06 0.06

EL 45x45 2.74 3.492 1.36 1.36 3.81 1.66 0.74 0.74 0.42 0.42 0.27 0.27 0.18 0.18 0.14 0.14 0.10 0.10 0.08 0.08

EL 40x40 2.95 3.755 1.2 1.2 3.85 1.39 0.62 0.62 0.35 0.35 0.22 0.22 0.15 0.15 0.11 0.11 0.09 0.09 0.07 0.07

EL 50x50 3.06 3.892 1.53 1.53 4.45 2.46 1.04 1.04 0.59 0.59 0.38 0.38 0.26 0.26 0.19 0.19 0.15 0.15 0.12 0.12

EL 45x45 3.38 4.302 1.36 1.36 4.70 2.05 0.91 0.91 0.51 0.51 0.33 0.33 0.23 0.23 0.17 0.17 0.13 0.13 0.10 0.10

EL 40x40 3.52 4.48 1.19 1.19 4.57 1.63 0.73 0.73 0.41 0.41 0.26 0.26 0.18 0.18 0.13 0.13 0.10 0.10 0.08 0.08

EL 60x60 3.68 4.692 1.85 1.85 5.69 3.91 1.84 1.84 1.03 1.03 0.66 0.66 0.46 0.46 0.34 0.34 0.26 0.26 0.20 0.20

EL 50x50 3.77 4.802 1.52 1.52 5.48 2.86 1.27 1.27 0.71 0.71 0.46 0.46 0.32 0.32 0.23 0.23 0.18 0.18 0.14 0.14

EL 50x50 4.43 5.644 1.5 1.5 6.41 3.27 1.45 1.45 0.82 0.82 0.52 0.52 0.36 0.36 0.27 0.27 0.20 0.20 0.16 0.16

EL 60x60 4.55 5.802 1.84 1.84 7.02 4.81 2.25 2.25 1.26 1.26 0.81 0.81 0.56 0.56 0.41 0.41 0.32 0.32 0.25 0.25

EL 65x65 5.00 6.367 1.99 1.99 7.86 5.70 2.89 2.89 1.62 1.62 1.04 1.04 0.72 0.72 0.53 0.53 0.41 0.41 0.32 0.32

EL 65x65 5.91 7.527 1.98 1.98 9.28 6.71 3.38 3.38 1.90 1.90 1.22 1.22 0.84 0.84 0.62 0.62 0.47 0.47 0.38 0.38

EL 70x70 6.38 8.127 2.14 2.14 10.18 7.72 4.26 4.26 2.40 2.40 1.53 1.53 1.06 1.06 0.78 0.78 0.60 0.60 0.47 0.47

EL 75x75 6.85 8.727 2.3 2.3 11.08 8.71 5.55 5.55 2.97 2.97 1.90 1.90 1.32 1.32 0.97 0.97 0.74 0.74 0.59 0.59

Page 116: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-56

Table 4.16(Continued): Compression Capacity (Ton) For EL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 80x80 7.32 9.327 2.46 2.46 11.98 9.68 6.66 6.66 3.63 3.63 2.33 2.33 1.61 1.61 1.19 1.19 0.91 0.91 0.72 0.72

EL 65x65 7.66 9.761 1.94 1.94 11.97 8.53 4.20 4.20 2.36 2.36 1.51 1.51 1.05 1.05 0.77 0.77 0.59 0.59 0.47 0.47

EL 90x90 8.28 10.55 2.77 2.77 13.79 11.61 8.77 8.77 5.21 5.21 3.33 3.33 2.32 2.32 1.70 1.70 1.30 1.30 1.03 1.03

EL 90x90 9.59 12.22 2.76 2.76 15.96 13.43 10.12 10.12 5.99 5.99 3.83 3.83 2.66 2.66 1.96 1.96 1.50 1.50 1.18 1.18

EL 75x75 9.96 12.69 2.25 2.25 16.05 12.48 7.35 7.35 4.13 4.13 2.65 2.65 1.84 1.84 1.35 1.35 1.03 1.03 0.82 0.82

EL 100x100 10.7 13.62 3.08 3.08 18.03 15.62 12.52 12.52 8.73 8.73 5.32 5.32 3.70 3.70 2.72 2.72 2.08 2.08 1.64 1.64

EL 75x75 13 16.56 2.22 2.22 20.90 16.14 9.34 9.34 5.25 5.25 3.36 3.36 2.33 2.33 1.72 1.72 1.31 1.31 1.04 1.04

EL 90x90 13.3 17 2.71 2.71 22.15 18.53 13.80 13.80 8.04 8.04 5.14 5.14 3.57 3.57 2.62 2.62 2.01 2.01 1.59 1.59

EL 120x120 14.7 18.76 3.71 3.71 25.30 22.76 19.54 19.54 15.68 15.68 10.64 10.64 7.39 7.39 5.43 5.43 4.15 4.15 3.28 3.28

EL 100x100 14.9 19 3.04 3.04 25.12 21.69 17.28 17.28 11.30 11.30 7.23 7.23 5.02 5.02 3.69 3.69 2.83 2.83 2.23 2.23

EL 90x90 15.9 20.3 2.7 2.7 26.44 22.08 16.41 16.41 9.52 9.52 6.10 6.10 4.23 4.23 3.11 3.11 2.38 2.38 1.88 1.88

EL 90x90 17.0 21.71 2.68 2.68 28.25 23.54 17.39 17.39 10.04 10.04 6.42 6.42 4.46 4.46 3.28 3.28 2.51 2.51 1.98 1.98

EL 100x100 17.8 22.7 3.02 3.02 29.99 25.85 20.52 20.52 13.33 13.33 8.53 8.53 5.92 5.92 4.35 4.35 3.33 3.33 2.63 2.63

EL 130x130 17.9 22.74 4.01 4.01 30.85 28.10 24.63 24.63 20.49 20.49 15.67 15.67 10.46 10.46 7.68 7.68 5.88 5.88 4.65 4.65

EL 100x100 19.1 24.31 3 3 32.09 27.62 21.85 21.85 14.08 14.08 9.01 9.01 6.26 6.26 4.60 4.60 3.52 3.52 2.78 2.78

EL 130x130 23.40 29.76 3.96 3.96 40.34 36.67 32.04 32.04 26.51 26.51 20.07 20.07 13.35 13.35 9.81 9.81 7.51 7.51 5.93 5.93

EL 150x150 27.3 34.77 4.61 4.61 47.63 44.18 39.85 39.85 34.74 34.74 28.87 28.87 22.19 22.19 15.53 15.53 11.89 11.89 9.39 9.39

EL 130x130 28.8 36.75 3.93 3.93 49.79 45.21 39.42 39.42 32.52 32.52 24.46 24.46 16.24 16.24 11.93 11.93 9.13 9.13 7.22 7.22

EL 175x175 31.8 40.52 5.38 5.38 56.00 52.75 48.72 48.72 44.01 44.01 38.64 38.64 32.61 32.61 25.87 25.87 18.87 18.87 14.91 14.91

EL 150x150 33.6 42.74 4.56 4.56 58.51 54.20 48.80 48.80 42.41 42.41 35.07 35.07 25.42 25.42 18.68 18.68 14.30 14.30 11.30 11.30

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 117: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-57

Table 4.16(Continued): Compression Capacity (Ton) For L Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

EL 175x175 39.4 50.21 5.35 5.35 69.37 65.31 60.28 60.28 54.39 54.39 47.68 47.68 40.14 40.14 31.71 31.71 23.12 23.12 18.27 18.27

EL 150x150 41.9 53.38 4.52 4.52 73.04 67.58 60.75 60.75 52.67 52.67 43.36 43.36 31.20 31.20 22.92 22.92 17.55 17.55 13.87 13.87

EL 200x200 45.3 57.75 6.14 6.14 80.29 76.43 71.69 71.69 66.17 66.17 59.91 59.91 52.95 52.95 45.25 45.25 36.77 36.77 27.68 27.68

EL 200x200 59.7 76 6.09 6.09 105.63 100.49 94.18 94.18 86.82 86.82 78.49 78.49 69.20 69.20 58.94 58.94 47.62 47.62 35.84 35.84

EL 200x200 73.6 93.75 6.04 6.04 130.26 123.84 115.97 115.97 106.78 106.78 96.37 96.37 84.76 84.76 71.93 71.93 55.03 55.03 43.48 43.48

EL 250x250 93.7 119.4 7.63 7.63 167.34 161.37 154.17 154.17 145.86 145.86 136.51 136.51 126.19 126.19 114.92 114.92 102.69 102.69 89.47 89.47

EL 250x250 128.0 162.6 7.49 7.49 227.75 219.42 209.36 209.36 197.73 197.73 184.65 184.65 170.19 170.19 154.40 154.40 137.24 137.24 118.66 118.66

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 118: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-58

Table 4.17: Compression Capacity (Ton) For UL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) –Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

UL 100x75 9.32 11.87 3.15 2.19 14.94 11.46 6.51 11.11 3.66 7.93 2.35 4.85 1.63 3.37 1.20 2.48 0.92 1.90 0.72 1.50

UL 125x75 10.7 13.62 4.01 2.11 17.02 12.80 6.94 14.75 3.90 12.27 2.50 9.38 1.73 6.26 1.27 4.60 0.98 3.52 0.77 2.78

UL 90x75 11 14.04 2.78 2.2 17.69 13.60 7.78 11.72 4.37 6.98 2.80 4.47 1.94 3.10 1.43 2.28 1.09 1.75 0.86 1.38

UL 100x75 13 16.5 3.11 2.15 20.69 15.72 8.73 15.29 4.91 10.77 3.14 6.57 2.18 4.57 1.60 3.35 1.23 2.57 0.97 2.03

UL 125x75 14.9 19.00 3.96 2.06 23.62 17.51 9.23 20.45 5.19 16.93 3.32 12.81 2.31 8.52 1.69 6.26 1.30 4.79 1.03 3.79

UL 125x90 16.1 20.5 3.94 2.59 26.54 21.87 15.74 22.02 8.85 18.18 5.66 13.70 3.93 9.10 2.89 6.69 2.21 5.12 1.75 4.05

UL 150x90 16.4 20.94 4.81 2.52 27.00 22.03 15.49 24.35 8.56 21.47 5.48 18.16 3.80 14.42 2.79 10.18 2.14 7.80 1.69 6.16

UL 150x100 17.1 21.84 4.79 2.88 28.69 24.43 18.90 25.36 11.66 22.34 7.46 18.87 5.18 14.93 3.81 10.53 2.91 8.06 2.30 6.37

UL 125x75 19.1 24.31 3.93 2.04 30.16 22.23 11.58 26.08 6.51 21.51 4.17 16.18 2.89 10.74 2.13 7.89 1.63 6.04 1.29 4.77

UL 125x90 20.6 26.26 3.91 2.57 33.96 27.90 19.96 28.10 11.16 23.13 7.14 17.32 4.96 11.48 3.65 8.44 2.79 6.46 2.21 5.10

UL 150x90 21.5 27.36 4.76 2.47 35.17 28.47 19.65 31.71 10.74 27.88 6.88 23.49 4.77 18.51 3.51 13.03 2.69 9.97 2.12 7.88

UL 150x100 22.4 28.56 4.74 2.83 37.43 31.71 24.29 33.05 14.72 29.03 9.42 24.42 6.54 19.18 4.81 13.49 3.68 10.33 2.91 8.16

UL 150x100 27.7 35.25 4.71 2.8 46.13 38.97 29.66 40.71 17.79 35.69 11.38 29.94 7.91 23.41 5.81 16.43 4.45 12.58 3.51 9.94

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 119: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-59

Table 4.18: Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 25x25 2.24 2.854 0.75 1.15 1.64 0.41 0.18 0.18 0.10 0.10 0.07 0.07 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.02

ELL 25x25 2.72 3.454 0.73 1.28 1.89 0.47 0.21 0.21 0.12 0.12 0.08 0.08 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02

ELL 30x30 3.54 4.52 0.91 1.35 3.68 0.96 0.43 0.43 0.24 0.24 0.15 0.15 0.11 0.11 0.08 0.08 0.06 0.06 0.05 0.05

ELL 30x30 3.66 4.672 0.88 1.46 3.68 0.93 0.42 0.42 0.23 0.23 0.15 0.15 0.10 0.10 0.08 0.08 0.06 0.06 0.05 0.05

ELL 40x40 4.36 5.56 1.23 1.75 5.77 2.16 0.96 0.96 0.54 0.54 0.35 0.35 0.24 0.24 0.18 0.18 0.14 0.14 0.11 0.11

ELL 40x40 4.66 5.92 1.20 1.79 6.08 2.21 0.98 0.98 0.55 0.55 0.35 0.35 0.25 0.25 0.18 0.18 0.14 0.14 0.11 0.11

ELL 40x40 4.84 6.16 1.20 1.86 6.31 2.29 1.02 1.02 0.57 0.57 0.37 0.37 0.25 0.25 0.19 0.19 0.14 0.14 0.11 0.11

ELL 40x40 5.48 6.984 1.19 1.91 7.11 2.53 1.13 1.13 0.63 0.63 0.41 0.41 0.28 0.28 0.21 0.21 0.16 0.16 0.13 0.13

ELL 45x45 5.9 7.51 1.36 1.98 8.21 3.60 1.60 1.60 0.90 0.90 0.58 0.58 0.40 0.40 0.29 0.29 0.22 0.22 0.18 0.18

ELL 45x45 6.12 7.784 1.36 2.04 8.49 3.68 1.64 1.64 0.92 0.92 0.59 0.59 0.41 0.41 0.30 0.30 0.23 0.23 0.18 0.18

ELL 50x50 6.76 8.604 1.52 2.11 9.83 5.39 2.28 2.28 1.28 1.28 0.82 0.82 0.57 0.57 0.42 0.42 0.32 0.32 0.25 0.25

ELL 50x50 7.04 8.96 1.53 2.19 10.24 5.64 2.39 2.39 1.34 1.34 0.86 0.86 0.60 0.60 0.44 0.44 0.34 0.34 0.27 0.27

ELL 50x50 7.36 9.384 1.52 2.25 10.71 5.58 2.48 2.48 1.40 1.40 0.89 0.89 0.62 0.62 0.46 0.46 0.35 0.35 0.28 0.28

ELL 50x50 7.54 9.604 1.49 2.29 10.90 5.52 2.45 2.45 1.38 1.38 0.88 0.88 0.61 0.61 0.45 0.45 0.34 0.34 0.27 0.27

ELL 60x60 8.86 11.288 1.85 2.59 13.68 9.39 4.40 4.40 2.48 2.48 1.59 1.59 1.10 1.10 0.81 0.81 0.62 0.62 0.49 0.49

ELL 60x60 9.1 11.604 1.84 2.65 14.04 9.60 4.49 4.49 2.52 2.52 1.61 1.61 1.12 1.12 0.82 0.82 0.63 0.63 0.50 0.50

ELL 65x65 10 12.734 1.99 2.84 15.72 11.41 5.79 5.79 3.26 3.26 2.08 2.08 1.45 1.45 1.06 1.06 0.81 0.81 0.64 0.64

ELL 65x65 11.82 15.054 1.98 2.89 18.54 13.39 6.73 6.73 3.78 3.78 2.42 2.42 1.68 1.68 1.24 1.24 0.95 0.95 0.75 0.75

ELL 65x65 12.76 16.254 1.94 2.99 19.94 14.22 7.01 7.01 3.94 3.94 2.52 2.52 1.75 1.75 1.29 1.29 0.99 0.99 0.78 0.78

ELL 70x70 13.7 17.454 2.14 3.09 21.86 16.55 9.12 9.12 5.13 5.13 3.28 3.28 2.28 2.28 1.67 1.67 1.28 1.28 1.01 1.01

Page 120: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-60

Table 4.18(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 75x75 14.64 18.654 2.30 3.29 23.69 18.61 11.84 11.84 6.34 6.34 4.06 4.06 2.82 2.82 2.07 2.07 1.59 1.59 1.25 1.25

ELL 75x75 15.32 19.522 2.25 3.46 24.70 19.22 11.34 11.34 6.38 6.38 4.08 4.08 2.83 2.83 2.08 2.08 1.59 1.59 1.26 1.26

ELL 75x75 16.56 21.1 2.22 3.65 26.63 20.59 11.94 11.94 6.72 6.72 4.30 4.30 2.99 2.99 2.19 2.19 1.68 1.68 1.33 1.33

ELL 80x80 19.18 24.44 2.46 3.49 31.39 25.37 17.43 17.43 9.51 9.51 6.09 6.09 4.23 4.23 3.11 3.11 2.38 2.38 1.88 1.88

ELL 90x90 19.92 25.38 2.77 3.88 33.16 27.91 21.07 21.07 12.50 12.50 8.00 8.00 5.55 5.55 4.08 4.08 3.12 3.12 2.47 2.47

ELL 90x90 21.4 27.24 2.76 3.94 35.58 29.92 22.56 22.56 13.34 13.34 8.54 8.54 5.93 5.93 4.36 4.36 3.34 3.34 2.64 2.64

ELL 90x90 26 33.12 2.71 4.10 43.16 36.10 26.90 26.90 15.67 15.67 10.03 10.03 6.97 6.97 5.12 5.12 3.92 3.92 3.10 3.10

ELL 90x90 26.6 34 2.70 4.23 44.28 36.99 27.48 27.48 15.95 15.95 10.21 10.21 7.09 7.09 5.21 5.21 3.99 3.99 3.15 3.15

ELL 90x90 29.4 37.52 2.68 4.28 48.82 40.68 30.07 30.07 17.35 17.35 11.11 11.11 7.71 7.71 5.67 5.67 4.34 4.34 3.43 3.43

ELL 100x100 29.8 38 3.08 4.34 50.31 43.58 34.91 34.91 24.31 24.31 14.83 14.83 10.30 10.30 7.56 7.56 5.79 5.79 4.58 4.58

ELL 100x100 31.8 40.6 3.03 4.50 53.66 46.33 36.86 36.86 24.07 24.07 15.40 15.40 10.70 10.70 7.86 7.86 6.02 6.02 4.75 4.75

ELL 100x100 34 43.42 3.02 4.62 57.36 49.45 39.26 39.26 25.48 25.48 16.31 16.31 11.33 11.33 8.32 8.32 6.37 6.37 5.03 5.03

ELL 100x100 35.6 45.4 3.01 4.68 59.95 51.63 40.91 40.91 26.44 26.44 16.92 16.92 11.75 11.75 8.63 8.63 6.61 6.61 5.22 5.22

ELL 120x120 35.8 45.48 3.71 5.20 61.32 55.17 47.35 47.35 37.99 37.99 25.76 25.76 17.89 17.89 13.15 13.15 10.06 10.06 7.95 7.95

ELL 130x130 38.2 48.62 4.01 5.65 65.97 60.09 52.66 52.66 43.82 43.82 33.52 33.52 22.39 22.39 16.45 16.45 12.59 12.59 9.95 9.95

ELL 130x130 46.8 59.52 3.96 5.80 80.68 73.36 64.09 64.09 53.04 53.04 40.17 40.17 26.72 26.72 19.63 19.63 15.03 15.03 11.87 11.87

ELL 130x130 54.6 69.54 3.93 5.98 94.21 85.56 74.61 74.61 61.55 61.55 46.31 46.31 30.75 30.75 22.59 22.59 17.29 17.29 13.66 13.66

ELL 150x150 57.6 73.5 4.61 6.61 100.70 93.40 84.27 84.27 73.48 73.48 61.08 61.08 46.97 46.97 32.88 32.88 25.17 25.17 19.89 19.89

ELL 150x150 63.6 81.04 4.56 6.76 110.94 102.76 92.51 92.51 80.40 80.40 66.46 66.46 48.17 48.17 35.39 35.39 27.09 27.09 21.41 21.41

ELL 150x150 67.2 85.48 4.52 7.00 116.96 108.22 97.27 97.27 84.32 84.32 69.42 69.42 49.93 49.93 36.68 36.68 28.09 28.09 22.19 22.19

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 121: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-61

Table 4.18(Continued): Compression Capacity (Ton) For ELL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ELL 175x175 78.8 100.42 5.37 7.57 138.76 130.70 120.71 120.71 109.00 109.00 95.67 95.67 80.70 80.70 63.97 63.97 46.66 46.66 36.86 36.86

ELL 175x175 83.8 106.76 5.36 7.75 147.50 138.89 128.22 128.22 115.70 115.70 101.45 101.45 85.45 85.45 67.56 67.56 49.27 49.27 38.93 38.93

ELL 200x200 90.6 115.5 6.14 8.74 160.59 152.87 143.40 143.40 132.36 132.36 119.87 119.87 105.95 105.95 90.58 90.58 73.64 73.64 55.43 55.43

ELL 200x200 119.4 152 6.09 9.03 211.27 200.99 188.37 188.37 173.66 173.66 156.99 156.99 138.43 138.43 117.92 117.92 95.29 95.29 71.71 71.71

ELL 200x200 147.2 187.5 6.04 9.33 260.51 247.68 231.93 231.93 213.55 213.55 192.73 192.73 169.52 169.52 143.86 143.86 110.06 110.06 86.96 86.96

ELL 250x250 187.4 238.8 7.63 11.31 334.68 322.74 308.34 308.34 291.71 291.71 273.02 273.02 252.38 252.38 229.83 229.83 205.37 205.37 178.91 178.91

ELL 250x250 256 325.2 7.49 11.86 455.49 438.81 418.67 418.67 395.39 395.39 369.21 369.21 340.27 340.27 308.65 308.65 274.30 274.30 237.10 237.10

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 122: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-62

Table 4.18: Compression Capacity (Ton) For ULLL Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ULLL 90x75 18.64 23.74 2.79 3.29 31.05 26.19 19.87 19.87 11.86 11.86 7.59 7.59 5.27 5.27 3.87 3.87 2.97 2.97 2.34 2.34

ULLL 100x75 21.4 27.24 3.15 3.09 36.08 31.28 25.11 25.51 17.56 18.22 10.71 11.15 7.44 7.75 5.46 5.69 4.18 4.36 3.31 3.44

ULLL 100x75 22 28.08 3.10 3.25 37.21 32.30 25.98 25.98 18.26 18.26 11.15 11.15 7.74 7.74 5.69 5.69 4.35 4.35 3.44 3.44

ULLL 125x75 26 33 4.01 2.90 43.38 36.99 28.73 35.74 17.83 29.73 11.41 22.73 7.92 15.18 5.82 11.15 4.46 8.54 3.52 6.75

ULLL 125x75 29.8 38 3.97 3.05 50.26 43.45 34.67 40.94 23.92 33.91 14.58 25.71 10.13 17.11 7.44 12.57 5.70 9.62 4.50 7.60

ULLL 125x75 32.2 41 3.93 3.24 54.58 47.85 39.21 43.99 28.72 36.30 17.74 27.32 12.32 18.14 9.05 13.33 6.93 10.20 5.48 8.06

ULLL 125x90 32.8 41.88 3.94 3.76 56.53 50.98 43.92 44.97 35.49 37.13 24.38 27.98 16.93 18.58 12.44 13.65 9.52 10.45 7.52 8.26

ULLL 125x90 34.2 43.68 3.91 3.94 59.15 53.66 46.72 46.72 38.44 38.44 28.78 28.78 19.08 19.08 14.02 14.02 10.73 10.73 8.48 8.48

ULLL 150x90 38.2 48.62 4.81 3.51 65.23 58.11 49.02 56.55 38.09 49.86 24.64 42.19 17.11 33.50 12.57 23.67 9.63 18.12 7.61 14.32

ULLL 150x90 41.2 52.52 4.76 3.66 70.73 63.49 54.29 60.85 43.25 53.49 28.98 45.06 20.12 35.48 14.78 24.97 11.32 19.12 8.94 15.11

ULLL 150x100 43 54.72 4.79 3.98 74.21 67.52 59.06 63.57 48.98 55.99 37.25 47.31 24.81 37.47 18.23 26.43 13.96 20.24 11.03 15.99

ULLL 150x100 44.8 57.12 4.74 4.13 77.67 71.04 62.68 66.11 52.74 58.07 41.20 48.84 27.85 38.37 20.46 26.99 15.66 20.66 12.38 16.32

ULLL 150x100 55.4 70.5 4.71 4.31 96.16 88.46 78.78 81.41 67.31 71.39 54.05 59.88 37.49 46.81 27.54 32.87 21.09 25.17 16.66 19.88

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 123: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-63

Table 4.19: Compression Capacity (Ton) For ULLS Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

ULLS 75x90 18.64 23.74 2.20 4.24 29.91 23.02 13.18 13.18 7.41 7.41 4.74 4.74 3.29 3.29 2.42 2.42 1.85 1.85 1.46 1.46

ULLS 75x100 21.4 27.24 2.19 4.64 34.28 26.30 14.94 14.94 8.40 8.40 5.38 5.38 3.74 3.74 2.74 2.74 2.10 2.10 1.66 1.66

ULLS 75x100 22 28.08 2.15 4.81 35.21 26.73 14.82 14.82 8.34 8.34 5.33 5.33 3.70 3.70 2.72 2.72 2.08 2.08 1.65 1.65

ULLS 75x125 26 33 2.11 5.99 41.21 30.95 16.75 16.75 9.42 9.42 6.03 6.03 4.19 4.19 3.08 3.08 2.35 2.35 1.86 1.86

ULLS 75x125 29.8 38 2.06 6.17 47.25 35.06 18.49 18.49 10.40 10.40 6.66 6.66 4.62 4.62 3.40 3.40 2.60 2.60 2.05 2.05

ULLS 75x125 32.2 41 2.04 6.36 50.85 37.46 19.49 19.49 10.96 10.96 7.02 7.02 4.87 4.87 3.58 3.58 2.74 2.74 2.17 2.17

ULLS 90x125 32.8 41.88 2.59 5.94 54.24 44.71 32.23 32.23 18.15 18.15 11.61 11.61 8.06 8.06 5.93 5.93 4.54 4.54 3.58 3.58

ULLS 90x125 34.2 43.68 2.57 6.13 56.48 46.38 33.14 33.14 18.52 18.52 11.85 11.85 8.23 8.23 6.05 6.05 4.63 4.63 3.66 3.66

ULLS 90x150 38.2 48.62 2.52 7.23 62.69 51.14 35.97 35.97 19.88 19.88 12.72 12.72 8.83 8.83 6.49 6.49 4.97 4.97 3.93 3.93

ULLS 90x150 41.2 52.52 2.47 7.40 67.51 54.66 37.73 37.73 20.63 20.63 13.21 13.21 9.17 9.17 6.74 6.74 5.16 5.16 4.08 4.08

ULLS 100x150 43 54.72 2.88 7.08 71.87 61.19 47.35 47.35 29.19 29.19 18.68 18.68 12.97 12.97 9.53 9.53 7.30 7.30 5.77 5.77

ULLS 100x150 44.8 57.12 2.83 7.25 74.84 63.38 48.51 48.51 29.35 29.35 18.78 18.78 13.04 13.04 9.58 9.58 7.34 7.34 5.80 5.80

ULLS 100x150 55.4 70.5 2.80 7.43 92.26 77.91 59.27 59.27 35.53 35.53 22.74 22.74 15.79 15.79 11.60 11.60 8.88 8.88 7.02 7.02

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 124: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-64

Table 4.20: Compression Capacity (Ton) For CCI Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

CCI 50x25 7.72 9.84 1.85 1.28 10.42 4.13 1.83 3.84 1.03 2.16 0.66 1.38 0.46 0.96 0.34 0.71 0.26 0.54 0.20 0.43

CCI 75x40 13.84 17.636 2.92 1.93 21.60 15.34 7.52 15.48 4.23 9.69 2.71 6.20 1.88 4.31 1.38 3.17 1.06 2.42 0.84 1.91

CCI 100x50 18.72 23.84 3.97 2.32 30.33 23.92 15.41 25.70 8.26 21.29 5.29 16.16 3.67 10.76 2.70 7.90 2.07 6.05 1.63 4.78

CCI 125x65 26.8 34.22 4.98 2.91 45.00 38.41 29.89 40.24 18.62 35.76 11.91 30.64 8.27 24.86 6.08 17.82 4.65 13.64 3.68 10.78

CCI 150x75 37.2 47.42 6.03 3.42 63.48 56.28 47.09 58.63 36.00 53.96 22.89 48.68 15.90 42.79 11.68 36.27 8.94 27.71 7.07 21.89

CCI 150x75 42.8 54.4 5.86 3.52 73.02 65.10 55.01 66.83 42.87 61.25 27.84 54.92 19.33 47.86 14.20 40.03 10.87 30.05 8.59 23.74

CCI 180x75 48 61.18 7.12 3.31 81.63 71.89 59.41 77.12 44.31 71.89 27.64 65.97 19.19 59.41 14.10 52.20 10.80 44.31 8.53 34.12

CCI 200x80 49.2 62.66 7.89 3.47 83.98 74.66 62.76 79.67 48.42 74.66 31.09 69.02 21.59 62.76 15.86 55.91 12.14 48.42 9.60 40.27

CCI 200x90 60.6 77.3 8.03 4.13 105.11 96.13 84.80 100.55 71.34 95.55 55.71 89.93 37.65 83.74 27.66 76.99 21.18 69.69 16.73 61.81

CCI 250x90 69.2 88.14 9.74 3.85 119.20 107.88 93.54 113.95 76.42 107.88 56.37 101.07 37.30 93.54 27.40 85.33 20.98 76.42 16.58 66.78

CCI 250x90 76.2 97.14 9.56 3.89 131.49 119.22 103.68 125.79 85.13 119.22 63.47 111.83 42.05 103.68 30.89 94.78 23.65 85.13 18.69 74.71

CCI 300x90 80.4 102.34 11.51 3.67 137.87 123.84 105.99 131.37 84.61 123.84 56.87 115.36 39.49 105.99 29.02 95.75 22.22 84.61 17.55 72.53

CCI 300x90 87.6 111.48 11.53 3.81 150.65 136.15 117.76 143.92 95.78 136.15 70.03 127.41 46.32 117.76 34.03 107.22 26.05 95.78 20.59 83.41

CCI 300x90 97.2 123.8 11.28 3.80 167.25 151.06 130.53 159.74 105.98 151.06 73.52 141.30 51.06 130.53 37.51 118.75 28.72 105.98 22.69 92.15

CCI 380x100 109 138.78 14.46 4.04 188.41 171.80 150.81 180.69 125.84 171.80 96.79 161.82 64.81 150.81 47.61 138.82 36.45 125.84 28.80 111.85

CCI 380x100 134.6 171.42 14.33 4.22 233.47 214.18 189.90 224.50 161.07 214.18 127.70 202.62 87.37 189.90 64.19 176.04 49.15 161.07 38.83 144.97

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 125: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-65

Table 4.21: Compression Capacity (Ton) For CCB Sections For L=1 m To 9 m (Qs = 1and Qa = 1) -Sorted by Section Weight

Effective KL (m) Ax rx ry KLx=1 KLx=2 KLx=3 KLx=4 KLx=5 KLx=6 KLx=7 KLx=8 KLx=9

Section Name

Wght Kg/m

cm2 cm cm Kly=1 Kly=2 KLy=3 KLy=1.5 KLy=4 KLy=2 KLy=5 KLy=2.5 KLy=6 KLy=3 KLy=7 KLy=3.5 KLy=8 KLy=4 KLy=9 KLy=4.5

CCB 50x25 7.72 9.84 19.91 1.83 11.90 8.12 3.79 10.18 2.13 8.12 1.36 5.45 0.95 3.79 0.70 2.78 0.53 2.13 0.42 1.68

CCB 75x40 13.84 17.636 14.87 2.96 23.25 19.95 15.68 21.72 9.97 19.95 6.38 17.93 4.43 15.68 3.26 13.19 2.49 9.97 1.97 7.88

CCB 100x50 18.72 23.84 12.79 3.76 32.18 29.02 25.01 30.72 20.22 29.02 13.90 27.12 9.65 25.01 7.09 22.71 5.43 20.22 4.29 17.51

CCB 125x65 26.8 34.22 10.68 4.98 47.09 44.04 40.23 45.67 35.76 44.04 30.64 42.22 24.85 40.23 17.82 38.08 13.64 35.76 10.78 33.28

CCB 150x75 37.2 47.42 9.07 5.67 65.70 62.17 57.81 62.65 52.70 60.07 46.91 57.19 40.43 54.03 33.23 50.59 24.56 46.88 19.40 42.91

CCB 150x75 42.8 54.4 7.98 5.63 75.35 71.25 66.20 70.71 60.29 67.16 53.57 63.18 46.06 58.79 37.70 54.00 27.78 48.82 21.95 43.22

CCB 180x75 48 61.18 8.47 5.80 84.85 80.43 74.98 80.15 68.62 76.49 61.39 72.38 53.32 67.86 44.37 62.93 33.13 57.62 26.18 51.90

CCB 200x80 49.2 62.66 7.89 6.24 87.18 83.07 78.04 81.31 72.18 77.15 65.55 72.48 58.18 67.33 50.04 61.72 41.08 55.63 30.98 49.06

CCB 200x90 60.6 77.3 8.03 6.81 107.91 103.42 97.94 100.55 91.59 95.55 84.42 89.93 76.48 83.74 67.75 76.99 58.23 69.69 45.56 61.81

CCB 250x90 69.2 88.14 9.74 7.09 123.22 118.36 112.47 117.36 105.64 113.03 97.94 108.21 89.42 102.92 80.09 97.17 69.92 91.00 58.86 84.39

CCB 250x90 76.2 97.14 9.56 7.07 135.80 130.42 123.90 129.10 116.35 124.20 107.83 118.74 98.41 112.75 88.08 106.25 76.83 99.25 64.59 91.76

CCB 300x90 80.4 102.34 11.51 7.23 143.18 137.69 131.04 138.38 123.34 134.41 114.67 130.01 105.08 125.20 94.58 120.00 83.16 114.43 70.76 108.50

CCB 300x90 87.6 111.48 11.53 7.13 155.89 149.79 142.39 150.76 133.82 146.44 124.17 141.66 113.49 136.43 101.79 130.78 89.05 124.72 75.20 118.27

CCB 300x90 97.2 123.8 11.28 7.16 173.14 166.41 158.25 167.11 148.80 162.17 138.15 156.68 126.37 150.68 113.47 144.20 99.43 137.24 84.16 129.83

CCB 380x100 109 138.78 14.46 8.08 194.84 188.41 180.69 190.63 171.80 186.70 161.83 182.37 150.83 177.67 138.84 172.61 125.86 167.22 111.87 161.49

CCB 380x100 134.6 171.42 14.46 7.96 240.55 232.45 222.70 235.47 211.47 230.61 198.85 225.26 184.94 219.46 169.77 213.21 153.34 206.54 135.61 199.47

[Note: The availability of the sections can be checked from Chapter 2 – Table for ‘Properties of SYS Steel Sections’ **- Currently not available].

Page 126: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures

4.10. Software Implementation

The axial member design module of the SYSDesigner (SYS Steel Designer’s Software) has been developed based on the theory described in chapter 3 and 4 of this manual. The flow diagram for the design of axial compression member on which this module has been based is shown in the “General Procedure “ section of this chapter. However the factors Qa and Qs are not incorporated into the program thought they are shown in the flow diagram because these factors are applicable for very few hot rolled sections and the effect is also not so significant. Moreover the program will check only the bend buckling or flexural buckling mode of failure of member which may be important for some shapes such as T or L. The program computes the axial compression capacity of a member based on the user specified geometric and restraint conditions. User can specify different bracing and end conditions, independently for two principal axes of the section. In general Lx and Kx are related to buckling about the major axis i.e. the moment of inertia of the section is higher than the other axis (which may be an exception for shapes such as T or L). However they can very easily be checked in the detailed design report generated by the program. The module also includes the graphical built-in effective length factor K calculator which is linked very conveniently to the SYS section database. This can be used for almost all practically possible end restraint conditions, ranging from a simple isolated member to any general member in a frame, based on ACI318-95 code recommended method.

The concept of ‘Design Segments’ and ‘Unified Code Ratio-R’ used in the program have been described in the ‘Technical Background ‘ chapter of the ‘SYSDesigner’s Software Users Manual’. Some major screen captures of the program related to design of compression member are shown below.

Page 127: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures

Page 128: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-68

Page 129: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-69

Page 130: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-70

Page 131: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 4-71

Page 132: TN H01-Hand Book for Design of Steel Structures

Design of Beams

1. Introduction

Structural members that support transverse loads and are therefore subjected to flexure (bending) are called beams. Beams are more specifically described by various names depending upon their purpose or location in a structural system. The term used in this chapter include all the structural members whose design is primarily governed by uniaxial bending such as floor beam, girder, girt, header, joist, lintel, purlin, rafter, spandrel, beam stringer, trimmer etc. The most common shapes that are used as beam are H, I and Channels. The basic concept of bending behavior of beams can be studied by considering a originally straight beam subjected to transverse load causing a moment M. Assuming that the plane cross section normal to the length of the unbent beam are still plane after the beam is bent and referring to the Fig 5.1, the bending moment M can be expressed as:

xb S fM = (5-1)

M

L

x

y

Fig. 5.1. Elastic Analysis of Beam

Where

bf = Extreme fiber stress

max

Xx y

IS = = Section modulus

This is the basic equation used in the design of beam member by elastic methods.

2. General Procedure

A beam can fail by any one of the following modes due to the flexural effects: 1) Development of full plastic moment

2) Lateral torsional buckling, either elastically or inelastically 3) Flange local buckling, either elastically or inelastically

4) Web local buckling , either elastically or inelasticlally

Chapter

5

Page 133: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-2

So the general procedure for the design of beam needs the consideration for all the above possible mode of failure. The first failure mode is associated with excessive stresses on the section so as to the form enough plastic hinges before failure while the rest three are related to stability of the beam. Lateral instability of a member can be controlled by providing enough lateral bracing to preclude the lateral displacement accompanied with twist while the cross section element stability can be achieved by limiting the ratio b/t of each element under compression or taking into account their post buckling strength. The general design procedure must take into account the following important criteria.

1) Axis of bending ( Major or Minor ) 2) Spacing of lateral bracing ( longest unbraced length ) 3) Compactness of the section ( compact ,noncompact or slender) 4) Shape of the section ( symmetrical or asymmetrical)

5) Moment variation along the unbraced segment 6) Shear, deflection and effects due to concentrated loads like web yielding,

crippling, side sway buckling etc The flow diagram shown in this chapter, represent schematically the general design procedure for moment and also forms the basis for the development of the beam design module of SYS Steel Designers Software.

Page 134: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-3

BasicInfo

TrialUnbraced

Length

Bendingabout

Major Axis

Box-typeSection Doubly sym. I & H,

solid round, square& rectag. shape

MR=0.75 FYSminor

Trial CrossSection

Yes

Yes No

yF

bbL 2500<

Yes No

and

yF

fb

bL

76≤

yFbL

fAd

≤000,20

yF

ft

fb

5.52

2≤

Yes

MR=0.66 FySmajor

End

No

yF

ft

fb

95

2≤

No

Yes

majoryy SFFMRft

fb

= −

2002.79.0

Shape withslender elements( special design )

No

yF

bC

tr

bL 102000

MR=0.60 FySmajor

Flow Diagram For the Design ofBeam

No

2

yF

ft

b 190≤

Yes

MR > Mmax

Yes

No

Yes

Yes

No

3

1

No

4

No

5

Fig. 5.2.(a) Flow Diagram for Design of Beam Based on AISC/ASD (1991)

Page 135: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-4

2

yF

ft

b 238≤

MR=0.60 FyS

End

MR > Mmax

Yes

4 No

SpecialDesign

5

Comp. flange solid,appx. rect. and

End

MR > Mmax

Yes

Yes No

4 No

yF

bC

tr

bL 510000

max

3

3

2

/1012

1015303

2

fb

b

T

by

b

AdLx

Cxr

LF

F

=

max

3

2

3

/1012

10170

fb

T

b

b

b

AdLx

rL

Cx

F

=

MR=Fb Smajor

yF

bC

tr

bL 510000

b

T

by

b Cxr

LFF 3

2

1015303

2

=2

310170

=

T

b

bb

rL

CxF

Yes Yes

Fig. 5.2(b) Flow Diagram for Design of Beam Based on AISC/ASD (1991)

Page 136: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-5

3. Lateral Torsional Buckling

The most economical beam shapes are the ones whose moment of inertia about the major principal axis is considerably larger than that about the minor principle axis. As a result , they are relatively weak in resistance to torsion and to bending about the minor axis. So, if they are not supported laterally by some bracing or floor construction, they may become unstable under load. This phenomenon of sidewise bending associated to torsion is called lateral-torsional buckling. There are various ways to provide lateral support to a member like complete or compression flange embedment into floor slab, support from a laterally stable component or by specifically providing a bracing member. It has been observed from laboratory test that the bracing member provides reliable lateral support if designed for 2 percent of the compressive force in the flange of the beam it braces.

u

u

Fig. 5.3. Lateral Torsional Buckling of Beam

Most of the specification formula for flexural design are the simplified form of the general equations to compute critical end moments from lateral-torsional buckling analysis of an perfectly straight, simply supported unbraced segment of a beam subjected to equal end moments. The following equation is the generalized form of the equation which can be used for any combination of end restraint and moments.

Mcr =Const.( Saint-Venant torsional stiffness + warping stiffness )0.5 (5-2)

( ) ( )

+= W4

4

2

22

b2

cr EC yEIKL

GJ yEIKL

CMππ

(5-3)

Where

crM = Critical end moment at which a perfect beam just begins to bend out of plane.

Cb = Coefficient to take into account the variability of moment along the unbraced length.

K = Effective length factor whose value depends upon the restraint condition at the ends.

AISC/ASD uses the following equation obtained from numerical analysis for Cb

Page 137: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-6

2.32M1M

0.32M1M

1.051.75C

2

b ≤+−=

(5-4)

where M1 is smaller of the two end moments M1 and M2 and the ratio M1/M2 is positive for reverse curvature and negative for single curvature bending. The following figure shows the variation of Cb for various end moment ratios.

Cb For Beams

0.00

0.50

1.00

1.50

2.00

2.50

-1 -0.5 0 0.5 1 1.5

M1/M2 RatioC

b

Fig. 5.4. Variation of Cb (AISC/ASD) with Different End Moment Ratios

However Limit State Design(AISC/LRFD) uses the more refined expression for Cb which takes into account the nonlinear variation of the moment along the unbraced segment. The nonlinearity is accounted for by using the moment at every quarter points of the unbraced segment.

4. Local Buckling of Beam Elements and Section Compactness

The maximum moment which a beam can support depends not only on the over all lateral buckling of the beam but also on the integrity of the cross-sectional elements. The cross-sectional integrity will be lost either by buckling of the compression flange called flange local buckling, or by buckling of the compression part of the web, called web local buckling. The strength of a section for local buckling depends upon the width-to-thickness ratio and end stiffness condition. However, commonly used hot-rolled beam shapes are usually large enough and have plate elements thick enough to preclude local buckling at stresses less than the yield stress. The following equation derived for the buckling strength of a simply supported rectangular plate subjected to in-plane uniform compression forms the basis for the classification of shapes into some standard types with respect to local buckling. The same equation can be used for various end support and loading conditions by using an appropriate value of K

( )22

2

cr

tb)12(1

EKF

µ

π

−= (5-5)

Where

Page 138: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-7

K = A constant which depends upon how the edges are supported, upon the ratio of plate length to plate width and upon the nature of the loading.

µ = Poisson’s ratio

b = Length of loaded edge of plate (except that it is the smaller lateral dimension when the plate is subjected only to shearing force )

t = Plate thickness Values of K to be used in the above equation for common cases are shown below. In the figures below “simple” indicates the simply supported edge and “fixed” means that for fixed edge.

Simple

K = 4 K = 5.4

Fixed

K = 7

Fixed

Fixed

K = 1.33

Free

Fixed

Simple

Sim

ple

Sim

ple Simple

Sim

ple

Sim

ple

Sim

ple

Sim

ple

Sim

ple

Sim

ple

Fig. 5.5. Constant K for Plate Buckling

In specifications, depending upon the slenderness ratio of cross section elements, a section may be termed as compact, non compact or slender elements as defined in the following paragraph. Compactness of the section is one of the important parameters to be considered in the design of beams. Compact Section Section which can develop a fully plastic moment Mp (= plastic section modulus Z x Fy) before local buckling of any of its compression elements. Thus for compact shapes the design strength for moment is governed by either the lateral torsional buckling or yielding depending upon the unbraced length of the compression flange. Most of the hot rolled shapes fall in this category. Design Aids Table 5.1 gives the details for compactness classification of all SYS shapes commonly used as beams.

NonCompact Section

Section that can develop a moment equal to or greater than My (= elastic section modulus S x Fy)but less than Mp , before local buckling of any of its cross section element occurs.

Slender Section

Shapes with elements slenderer than those designated by noncompact are categorized as slender section or shape with slender elements.

Page 139: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-8

5. Design for Moment

As described in “General Procedure” section of this chapter, the factors that govern the design for flexure are :

5) Axis of bending 6) Spacing of lateral bracing 7) Section compactness 8) Section shape (symmetry ) 9) Moment variation along the unbraced segment 10) Maximum moment

It is not always necessary to consider all the criteria to design a beam. A typical design involves the design of a symmetric I or channel compact section bending about major axis with adequate bracing. Some common design cases shall be explained in the following paragraphs for stepwise calculations based on AISC/ASD specifications.

Case 1: Bending About Minor Axis Design Steps:

1) No need to check for the lateral bracing if loaded through shear center 2) Check the compactness of section. Allowable stress may vary from 0.75Fy

to 0.6Fy for shapes commonly used as beams. Refer to relevant code or Appendix for the appropriate specification formulas.

3) Applicable shapes for normal design procedure are symmetrical I shapes, round and square bars, and solid rectangular bars bent about minor axis.

Permissible stresses for minor axis bending is usually higher than the corresponding major axis bending. The reason for this is the stronger lateral resistance and higher shape factor of cross section for minor axis.

Case 2: Bending About Major Axis Design Steps:

1) Compute the critical laterally unsupported length Lc. 2) If the actual laterally unsupported length or unbraced length Lb is less than the

critical length Lc, it is not necessary to consider the lateral stability of the member. But it is necessary to examine the compactness of the section. Depending upon the compactness of the section the permissible stress vary from 0.66 Fy to 0.6 Fy according to AISC/ASD. The typical moment strength curves for commonly used shapes are shown in Fig.5.5. It is very clear from the figure that the moment strength reduces considerably as the unbraced length increases.

3) If the actual unbraced length Lb is more than the critical unbraced length, the design is governed by the design equations simplified from the lateral torsional buckling.

To further illustrate the design procedure explained above, design examples have been presented later in this chapter.

Page 140: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-9

Typical Moment Strength Curves

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

0 5 10 15

Unbraced Length (m)

Mom

ent (

Kg-

m)

H 300x305x106 Kg/m

H 304x301x106 Kg/m

H 346x174x41.4 Kg/m

H 350x175x49.6 Kg/m

H 354x176x57.8 Kg/m

H 336x249x69.2 Kg/m

Fig. 5.6. Moment Strength Curves for H Shapes

6. Check for Shear

Steel beams are rarely designed for shearing stress but it is usually calculated as a check after the beam has been designed for flexure. However it may govern the design of beams which support heavy concentrated loads near the reaction points and of very short span beams with heavy uniform load. In such cases the web of the beam may buckle at shearing stresses less than the shearing yield strength of the steel. The phenomenon of shear buckling of web on the basis of which the permissible shear stresses are specified, shall be discussed in the following paragraphs.

a

h

Fig. 5.7. Shear in Beam

Let us consider a flat plate acted upon by shear stresses distributed uniformly along the four boundaries as shown in Fig. . 5.1. . In this case, the shear stresses are equivalent to principal stresses of the same magnitude, one tension and another compression acting at 45 degree to the shear stresses as shown in the figure for an interior element of the beam web. The critical shear stress crvF , at which buckling of a perfect plate begins is given by the following equation

Page 141: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-10

( )22

2

,)1(12 thEkF crv

µ

π

−= (5-6)

This equation is similar to the equation already described in the section “Local buckling of plate elements and section compactness” in this chapter. The factor k depends upon the type of support on the edges. Two most common cases are 1) All four edges simply supported

( )( ) 0.1

/34.54 2 <+= h

aforha

k (5-7)

( )( ) 0.1

/0.434.5 2 ≥+= h

aforha

k (5-8)

2) All four edges clamped

( )( ) 0.1

/98.86.5 2 <+= h

aforha

k (5-9)

( )( ) 0.1

/6.598.8 2 ≥+= h

aforha

k (5-10)

Most of the formulae in the specifications for permissible shear stresses are based on the above equations though they may appear in different and, normally, in simplified forms in the codes. As an example the AISC/ASD uses the following form of equations for shear strength calculation.

( )y

yv FFF 380

thfor 4.0 ≤= (5-11)

( )y

yvv

v FFFCF 380

thfor 4.0

89.2>≤= (5-12)

Where vC is the ratio of the critical shear stress to the yield stress in shear.

( ) 8.0 if 000,452 <= v

y

v CthF

kC (5-13)

( ) 8.0 if Fk190

y

>= vv CthC (5-14)

It is important to note that the stress vF is defined as the average stress on the area equal to the overall depth d of the beam times the web thickness (area of the web).

7. Check for Web Yielding and Crippling

When a beam carries a heavy concentrated load on the top flange or reaction from the support is large, significant direct compressive stresses in the vertical direction of the web are produced. The concentrated compressive stresses are dispersed gradually

Page 142: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-11

into larger area from the maximum at the point of application to zero at the opposite flange (bottom flange). When the load is transmitted through the thin web plate, the web plate is crippled at the section nearest to the load and of thickness wt . In hot rolled sections, this will be at the toe of the fillet, a distance k, as shown in figure below , from the outside face of the flange. Specifications generally assume the divergence angle of 2

12 horizontal to 1 vertical. So the area nearest to the fillet bearing the load

will be wtNk )5.2( + near the support (one side divergence) and wtNk )5( + at any intermediate locations(both sides divergence).

Locally highBearing

Stresses atthe Junction

ktw

N

Fig. 5.8. Concentrated Load in Beam

AISC/ASD uses the following equations to calculate the resistance capacity of a beam for web yielding and crippling:

[Units: US system R in Kips; Fy and Fyw in ksi; tw, tf, N and d in inches]

For support reaction (or load within d/2 distance from end): Web yielding: )5.2(66.0 kNtFR wY += (5-15)

Web crippling:

w

fyw

f

ww t

tFtt

dNtR

+=

5.1

2 3134 (5-16)

For interior loads: Web yielding: )5(66.0 kNtFR wY += (5-17)

Web crippling:

w

fyw

f

ww t

tFtt

dNtR

+=

5.1

2 315.67 (5-18)

Where R = capacity (resistance) to concentrated load or reaction N = bearing length (length over which the load in acting)

=wt web thickness

k =distance from extreme fiber to toe of fillet (available in section properties tables)

Fy = Yield strength of the steel Fyw = Yield strength of the web for hybrid beams (Different grades of steels for

web and flange. For SYS hot rolled sections Fy = Fyw)

Page 143: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-12

8. Check for Side Sway Web Buckling

Side sway web buckling is an overall buckling failure of a beam web. An exact solution of this problem requires a stability analysis of the entire web with different load systems on two opposite edges(top and bottom). However for approximate analysis it is assumed that the critical vertical compression stress for the web of a beam supporting a uniformly distributed load is twice the critical stress for a plate uniformly compressed on two opposite edges for which analytical solutions are available. Several cases of plate buckling have been described in the preceding sections ”Local buckljng of plate elements and section compactness” and “Check for shear”. The following equation gives the critical compression stress for the web of a beam for side sway web buckling.

( )22

2

,)1(12

2

tbEF crv

µ

π

−= (5-19)

Where E =Modulus of elasticity of steel

µ = Poisson’s’ ratio

b = depth of the web t = thickness of the web

Various forms of web buckling due to loads applied to the compression flange are shown in figures 5.9 and 5.10. Web buckling due to concentrated loads is more complex to determine than that for uniform loads. Let us consider a beam of rectangular cross section of unit thickness and depth ‘d’ supporting a concentrated load ‘P’. Figure 5.10 shows the variation of the stresses along the depth of the section. It will be noted that at all the three levels, the stress is compressive over a length (along the span) approximately equal to the depth ‘d’. The stress at the mid depth varies from zero at each end of the length d to 0.91P/d at the center. The average stress on the area is about 0.5P/d. In the average stress, the decrease in the compression with depth is the same as that for a uniformly distributed load. The web stability analysis of this case is very complex without many approximations.

Fig. 5.9. Various Forms of Beam Side Sway Web Buckling Due To Loads On Top

Page 144: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-13

2.46 Pd

0.91

0.29 Pd

Pd

P

d/2 d/2

d

Fig. 5.10.Stress Distribution Under The Concentrated Load on Rectangular Section of Unit Thickness (Similar for Beam Webs)

In AISC/ASD specification the following formulas have been specified for the side sway web buckling.

Loaded flange restrained against rotation and 3.2)//()/( <fwc bltd

+=

32

//4.016800

f

wcw

bltd

htR (5-20)

if 3.2)//()/( >fwc bltd No limit

Loaded flange not restrained against rotation and 7.1)//()/( <fwc bltd

=

32

//4.06800

f

wcw

bltd

htR (5-21)

if 7.1)//()/( >fwc bltd : No limit

where R = Resistance of the beam to side sway web buckling

cd = web depth clear of fillets or corner radius (= h)

wt = web thickness

l = largest unbraced length along the either flange (max of Lb,ten and Lb,comp) at the point of load

fb = flange width

If the applied load or reaction is more than the capacity of the section for web yielding web crippling, web stiffeners must be provided. The stiffeners must be proportioned such that the applied load is carried directly as column. The weld connecting the web stiffeners (transverse or vertical) must be sized to transmit the force in the stiffener to the web. However, for cases when the strength provided by the beam is not enough for side sway web buckling, local lateral bracing shall be provided at both the flanges at the point of application of the concentrated load.

Page 145: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-14

9. Design Examples

Design calculations for a steel beam may vary from that involving very few steps to few pages. The simplest calculation is for the simply supported beams of only one segment with enough lateral bracing at compression flange and compact I or C sections. On the other hand, the design of a beam with long multiple segments with variation of moment along the segments and trial sections which needs to check for compactness, requires calculations significantly more than the former case. Common design cases in practice are the design or verification of H shapes for small to medium spans (typically 2 - 6m) as floor or other beams and Channels as purlins. The examples presented in this section have been selected to illustrate design cases ranging from very simple ones to quite complicated ones. They are intended to cover the following three major aspects of steel beam design.

1) Computing the capacity of a beam section for bending about any one or both principal axis.

2) Selecting appropriate SYS beam sections for given loading and support condition.

3) Various checks for shear and concentrated load on beams.

The problems have been solved in two different unit systems wherever logical to help the users to understand the solution. The ‘Beam Design’ module of the SYS designer’s software can also be used as a tool to carry out the calculations similar to the one presented in the following examples.

Page 146: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-15

Problem: Find the moment capacity for

1) major axis bending 2) minor axis bending

of SYS H200x150x 30.6 kg/m whose compression flange is supported against lateral bracing by the floor slab or by close spacing of lateral ties. Fy = 2400 ksc (34.0 ksi)

Solution:

Section properties for SYS H200x150 x 30.6 kg/m (20.6 lb/ft) bf = 15 cm = 5.91 in d = 19.4 cm = 7.64 in

tf = 9 mm = 0.354 in tw = 6 mm = 0.236 in Sx = 227 cm3 = 16.9 in4 Sy = 67.6 cm3 = 4.13 in4

The allowable bending stress for H shaped members of steels with Fy ≤ 65 ksi (4580 ksc), supported against lateral buckling and bent about the major or minor axis are computed as follow.

1. Major Axis Bending

• Fb = 0.66 Fy for compact section

• Fb = 0.6 Fy < Fb < 0.66 Fy for non compact section Check the compactness:

8.3470.3542

5.91

f2tfb

=

14.11346565

==yF

As yf

f

Ftb 652

< Section is compact

The section compactness can also be read directly from the design aid table provided at the end of this chapter.

Mx = 0.66 x 34 x 16.9 = 379.23 kips-in

= 31.60 kips-ft

SYS Subject: Design of Beam Example: 5 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 147: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-16

2. Minor Axis Bending

• Fb = 0.75 Fy for compact section

• 0.5 Fy ≤ Fb < 0.75 Fy for non compact section

As the shape is compact My = 0.75 x 34 x 4.13

= 105.315 in-kips = 8.77 ft-kips

[Note: Lateral bracing is not required for members bent about the minor axis if the load is applied through the shear center of the section.]

SYS Subject: Design of Beam Example: 5 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 148: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-17

Problem:

Design (select) the lightest SYS H section for the following floor beam carrying heavy UDL of 10 ton. The top flange of the beam shall be partly embedded into the slab. Neglect the shear check.

5 m

UDL = 10 t/m

Fig. 5.11.Simply Supported Floor Beam for Design Example

Solution:

kg-mxM 312508

510000 2

max == kg 250002

5 x 10000 V max ==

1. Preliminary Section Selection

For the first trial assuming Fb = 0.6 Fy = 0.6 x 2400 = 1440 Ksc

3reqxx 2170

1440100 x 31250,S cm==

SYS H sections with Sxx very close to this requirements are: Section Sxx (cm3) Weight (Kg/m)

H 344x348x115 kg/m 1940 115

H 434x299x106 kg/m 2160 106

H 506x201x103 kg/m 2230 103

H 350x350x137 kg/m 2300 137

H 596x199x94.6 kg/m 2310 94.6

[Note: Quick and an easy way to find the sections of certain type or types, sorted in some order (by A or Sxx or Weight), is to use ‘Section properties’ in the SYS Designers software SYS Designer. It provides complete tools for the selection, viewing and printing of shapes which can be selected by various criteria e.g. max. and min. weight, width, depth etc. and further they can be sorted by any property. The above table was prepared by searching the database by H shape and sorted by Sxx .]

2. Detailed Checks:

SYS Subject: Design of Beam Example: 5 2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 149: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-18

It is given in the problem that the compression flange of the beam is fully restrained (braced) from lateral buckling. So in this case it is not necessary to check for the lateral torsional buckling requirements.

Only check necessary to determine the moment capacity is the section compactness. Depending upon the compactness the permissible stress Fb may vary from 0.66 Fy to 0.6 Fy . However it is always safe if Fb = 0.6 Fy is used without checking for compactness.

Compactness Checks

Section

f

f

tb2

yF

65

yF

95

Type

Fb

ksc

Moment Capacity

Kg-m

Weight / Capacity

X 10-2

H 596x199x94.6 kg/m 6.63 3659 2.58

H 506x201x103 kg/m 5.29 3532 2.91

H 434x299x106 kg/m 9.96 3421 3.09

H 344x348x115 kg/m 10.87 3072 3.74

H 350x350x137 kg/m 9.21

11.1 16.2 All

shapes compact

0.66Fy

=

1584

3643 3.76

[Note: The compactness of any section can be read directly from design aids tables provided at the end of this chapter.] Important Points:

1. All the sections that are considered in this example are compact for flange local buckling. 2. The moment capacity of the section does not vary in the same proportion of the weight. That

means much lighter section, sometimes, may give higher moment capacity than heavier section. This fact is point is important for economical design of the beams.

3. Efficient way to design for such fully braced beams is to sort the section first by Sxx and the by weight and pick the lightest section giving the required Sxx.

4. The design procedure for fully braced beam is very simple and needs only few checks. So use H 596x199x94.6 kg/m giving, Mr =3659 Kg-m > 3125 Kg-m.

SYS Subject: Design of Beam Example: 5 2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 150: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-19

Problem:

Determine the moment capacity of SYS H 300x150x36.7 kg/m (24.7 lb/ft) of Fy = 2400 ksc (34 ksi) steel with compression flange braced at intervals of 3.0 m (9.84 ft). Assume Cb = 1.0 [Case: maximum moment occurs at some point between the braced points or the most conservative capacity for any other cases]

Solution:

1. Trial Section

Section properties for SYS H300x150x36.7 Section parameter Metric Unit U.S. Unit

Fy 2400 ksc 34 ksi

Bf 15 cm 5.91 inch

D 30 cm 11.81 inch

tf 9.0mm 0.354 inch

tw 6.5 mm 0.256 inch

Sx 481 cm3 29.35 inch3

Af 13.9 cm2 2.154 inch2

Ix 7210 cm4 173.22 inch4

Iy 508 cm4 12.2 inch4

2. Checks For Lateral Bracing

Critical lateral bracing Lc is given by the smaller of the following two formulae

y

fc F

bL

76=

fyc AxdFL

/000,20

=

For US units ftinxLc 40.689.7634

9.5761 ===

.94.828.107154.2/81.1134

000,202 ftin

xLc ===

So critical unbraced length Lc = 8.94 ft

Actual unbraced length Lb = 9.84 ft. (3m)

So, Lb > Lc

Therefore, the lateral bracing condition will govern the design. The procedure to design for the case when the lateral bracing is the governing condition is given below.

SYS Subject: Design of Beam Example: 5 3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 151: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-20

For H shapes and when Lb > Lc then permissible Fb must be computed using two

formulas - one based on T

b

rL

and the other based on f

b

AdL

criteria and the larger be

taken for design.

3. Permissible Stress Fb Based on Lb/rT Ratio

inAI

rf

yT 6828.1

154.22/2.122/==≈

inrL

T

b 168.706828.1

128.9=

×=

So this value of Lb/rT shall be checked against the following specified limits based on Cb and Fy.

inxFC

y

b 77.5434

1000,102000,102==

inxF

C

y

b 47.12234

1000,510000,510==

So the case is

y

b

T

b

y

b

FC

rL

FC 000,510000,102

≤≤

54.77 ≤ 70.168 ≤122.47

For the value of T

b

rL

calculate above, Fb is computed as:

( )yyy

b

T

by

b FFFC

rL

FF ×=

××−=

××

−= 55.01101530

168.703432

10153032

3

2

3

2

1

Fb1 = 0.55 x 34 = 18.7 Ksi

So Fb based on T

b

rl

criteria: Fb1 = 18.7 Ksi

4. Permissible Stress Fb Based on Lb d/Af Ratio

SYS Subject: Design of Beam Example: 5 3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 152: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-21

41.647154.2

81.111284.9=

××=

f

b

AdL

23.588000,20=

y

b

FC

The case is: y

b

f

b

FC

AdL 000,20>

Fb based on f

b

AdL

criteria is given by

ksi18.53647.41

1x12,000

AdL

12,000CF

f

b

bb2 ===

5. Final Permissible Stress Fb and Moment Capacity

Fb1 = 19.61 ksi

Fb2 = 18.53 ksi

So higher of the two values should be used for design. Fb = 19.61 ksi (1380 ksc) Moment capacity = Fb x Sx

= 19.61 x 29.35

= 575.55 in-kips

= 48 ft-kips (6.64 ton-m)

Safe design moment capacity = 48 ft-kips (6.64 ton-m)

SYS Subject: Design of Beam Example:5 3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:3 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 153: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-22

Problem:

Select the lightest SYS H section for a beam (or beam segment) subjected to the bending moment due to two point loads as shown in the diagram below. The compression flange is braced at 4.0 m (13.12 ft) interval. (Unit conversion: 1 kip-inch = 11.5 kg-m)

Fy = 2400 ksc = 34 ksi M1 = 1300 kips-in. (14.95 ton-m) M2 = 1480 kips-in (17.02 ton-m)

M1=14.95 ton-m( 1300 kips-in ) M2=16.95 ton-m

( 1470 kips-in )

1.0 m 4.0 m 1.0 m

Fig. 5.12.:Moment Diagram for Design Example Solution:

1. Preliminary Section Selection

Assume the self weight of the beam = 66 Kg/m (44.25 lb/ft)

Max. moment due to self weight = 2

81

= 268.1925.4481

××

= 2.14 in-kips (too small compared to the applied moment)

Assuming Fb = 0.6 Fy = 0.6 x 34.0 = 20.4 ksi (1440 ksc)

Sx required = 3

b

max in72.0520.41470

FM

==

From the Siam Yamato Steel Table’s select

H 400x200x66 Kg/m (44.4 lb/ft), with Sx =72.6 in3(1190 cm3)

2. Check for Bracing Criteria

Critical spacing of lateral bracing for the selected H 400x200x66 section is calculated as:

SYS Subject: Design of Beam Example: 5 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 154: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-23

ft8.54in102.57347.8776

F

b76L

y

f1c ==

×== (2.60 m)

m) (4.4ft14.47in 173.710.591)/(7.8715.7534

20,000d/AF

20,000Lfy

2c ==××

=

So critical is the smaller of the above two critical length values: Lc = 8.54 ft (2.6 m)

This shows that the design condition is Lb > Lc where Lb = 10.16 ft

3. Design for Lb>Lc

The largest lateral bracing spacing Lc for which the allowable stress 0.6 Fy may be used is given by the larger of the following two lengths for Lc.

y

bT1c

FC102,000rL =

fy

b2c

d/A F20,000CL =

Before be able to use these two equations we need to compute Cb and Tr

4. Computation for Cb and rT

( ) in1.14790.5127.87

10.62/2A

/2Ir

f

yT =

×=≈

)MM (Where2.32MM

0.3MM

1.051.75C 212

1

2

1b <≤+−=

[Units: Any consistent units for moments can be used]

Cb 3.2058.1147013003.0

1470130005.175.1

2

≤=

+

−=

5. Permissible Stress Fb and Final Capacity

So substituting Tr and Cb into above equations for Lc

ft.4.69in56.3334

1.058102,0001.1479L 1c ==

×= (1.42 m)

SYS Subject: Design of Beam Example: 5 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 155: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-24

ft13.26in159.220.5127.87/15.7534

1.05820,000L 2c ==

××

×= (4.04 m)

Adopting higher of Lc1 and Lc2 final Lc = 13.26 ft (4.04 m)

Actual unbraced length Lb = 10.16 ft (3.09 m)

So the final design case is: Lb <Lc and the permissible stress is given by Fb = 0.6 Fy = 0.6 x 34.0 = 20.4 Ksi

Or

Fb = 0.6 Fy = 0.6 x 2400 = 1440 ksc

Moment Capacity = Fb x Sx

= 20.4 x 72.6

= 1481 in-kips > (1470 + 2.14 due to self wt.)

Hence use H 400 x 200 x 66 kg/m

SYS Subject: Design of Beam Example: 5 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 156: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-25

Problem:

Check the capacity of the beam shown in the figure below for

• shear

• web crippling

• side sway web buckling

7.8 in

H 350 x 175 x 49.6 kg/m

20'

Fig. 5.13.:Concentrated Load on Beam Example Problem Solution:

Section properties for H350x175x49.6 (33 lb/ft)

bf = 17.5 cm = 6.89 in

d = 35 cm = 13.78 in

tw = 7 mm = 0.276 in

tf = 11 mm = 0.433 in

r = 14 mm = 0.551 in

1. Shear Capacity:

h = d-2tf – 2 radius

= 13.78 – 2 x 0.433 – 2 x 0.551

= 11.812 in

8.42276.0812.11

==wth

169.6534

380380==

yF

So, yw Ft

h 380≤

Fv = 0.4 Fy = 0.4 x 34 = 13.6 ksi

Shear Capacity V = d x tw x Fv

SYS Subject: Beam Checks Example: 5 5

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 157: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-26

= 13.78 x 0.276 x 13.6

= 51 kips (24.54 ton)

2. Local Web Yielding

Length of bearing N = 7.8 in Thickness of web tw = 0.276 in Distance from extreme fiber to toe of fillet k = tf + r = 0.433 + 0.551 = 0.984 in

For the concentrated load which is not near by the support

Web yielding capacity = 0.66 Fy x tw (N + 5k)

R = 0.66 x 34 x 0.276 (7.8 + 5 * 0.984)

R = 77.66 kips ( 35.30 ton)

3. Web Crippling

w

fyw1.5

f

w2w t

tFtt

dN3167.5tR

×

+=

where:

d = length between the vertical stiffeners Assume d = 80 in.

( )

[ ] 7.303x0.148815.14

0.2760.43334x

0.4330.276

807.8310.27667.5R

1.52

+=

×

+=

= 43.12 kips (16.9 ton)

4. Side sway web buckling

Assume the largest unbraced length along either flange l = 180 in and loaded flange not restrained against rotation.

42.80.276

11.812th

td

ww

c ===

26.1246.89180

b f

==l

1.6326.124

42.8/b/td

f

wc ==l

For loaded flange not restrained and 1.7/b/td

f

wc <l

SYS Subject: Beam Checks Example: 5 5

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

SYS Subject: Beam Checks Example: 5 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 158: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-27

The resistance to side sway web buckling is given by

ton)(9.53kips 20.96

31.630.411.812

30.276x6800

3

/b/td

0.4h

3t6800R

f

wcw

=

×=

=

l

5. Design (Checks) Summary

Final Capacities

� For shear = 51 kips (24.54 ton)

� Web yielding = 77.66 kips (35.30 ton) � Web crippling = 43.12 kips (16.9 ton)

� Side sway web buckling = 2096 kips (9.53 ton)

SYS Subject: Beam Checks Example: 5 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:3 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 5

Page 159: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-28

10. Design Aids

It has been mentioned earlier in this chapter that the design of a beam primarily needs calculations for the determination of the critical unbraced lengths Lc and Lu and checking the section compactness. In some cases if the compression flange of the compact section beam has a continuous lateral support, the moment strength can be obtained without any calculations to check the adequacy of the lateral bracing. So the following three types of SYS beam design aids shall be provided to assist the structural steel designer in his regular design works.

Table 5.1 Allowable Stress Design Selection (For Shapes Used as Beam)

These tables are useful to check the critical unbraced length limits and to find the moment capacity when the lateral torsional buckling checks are not required or the unbraced length is less than that given by Lc. The table also gives the compactness of the sections for Fy = 2400 ksc (the most common standard grade of Siam Yamato steel) based on Fy’ criteria as explained below. Notations: Lc = Maximum unbraced length of the compression flange at which the allowable

bending stress may be taken as 0.66 Fy for compact shapes and between 0.6 Fy and 0.66 Fy for noncompact shapes.

Lu = Maximum unbraced length of the compression flange at which the allowable bending stress may be taken as 0.6 Fy.

Lb = Unbraced length of the compression flange. Mr = Moment capacity of the section when Lb< Lu.

Fy’ = The theoretical maximum yield stress based on the width-thickness ratio of one-

half the unstiffened compression flange, beyond which a particular shape is not “compact” based on flange local buckling criteria and is given by the following formula.

2

2

65

=

f

ft

b

Fy’’ = The theoretical maximum yield stress based on the depth-thickness ratio of web,

beyond which a particular shape is not “compact” based on web local buckling criteria and is given by the following formula. It is only applicable for the cases of pure bending i.e. fa = 0 (no axial load)

2

412

=

wtd

Fy’’’ = The theoretical maximum yield stress based on the depth-thickness ratio of web,

beyond which a particular shape is not “compact” for any condition of combined bending and axial stresses based on web local buckling criteria and is given by the following formula.

Page 160: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-29

2

257

=

wtd

Table 5.2 Properties of Sections for Beam Design

These tables are meat to assist the designer in saving time and effort for the calculation of important parameters when the beam design is carried out by hand calculation. Some intermediate calculations can be avoided by directly reading the values from these tables. Although some of the parameters for compactness checks are repeated from the previous tables, they are presented in slightly different form to provide more easy and practical way of beam design. As the notations used are quite obvious and standard ones, no explanation are provided here.

Table 5.3 Allowable Moment Capacity (Arranged According to Section Designations)

The allowable moment tables give the capacity in ton-m for various shapes that are commonly used as beam. Only parameter required to pick the correct value of the moment capacity for a given shape is the unbraced length of the compression flange. To cover most practical cases, the capacity have been computed for the unbraced length of 1 m to 10 m which may be too large for small sections. The sections in these tables have been arranged in the increasing order of the width and depth in the similar way in the SYS product catalogues.

Table 5.4 Allowable Moment Capacity (Arranged According to Section Weight)

Minimum weight criteria is one of the most important consideration in the design of steel structures. These tables provide an easy way to find a particular section or sections that has the minimum weight for a given moment strength requirement. These are the tables produced by rearranging the Tables 5.4 in the increasing order of weight instead of designation as in Tables 5.4. To pick a section that can carry certain required moment for a known unbraced length, the designer should move down along the column for that unbraced length, until he gets the moment capacity equal to more than that required. The section corresponding to this first occurrence will be the lightest section (most economical section) for the requirement.

Page 161: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-30

Table 5.1 Allowable Stress Design Selection (For Shapes Used as Beam)

Section Designation

Sx cm3

Fy’

Ksc Fy

’’ Ksc

Fy’’’

Ksc

Compact-ness for Fy=2400

ksc

Lc m

Lu m

Mr (=0.6FySx)

ton-m

C 200x90x30.3 Kg/m 195.00 5639 Comp 1.04 2.59 2808.0

C 200x90x30.3 Kg/m 249.00 6710 Comp 1.17 3.57 3585.6

C 250x90x34.6 Kg/m 334.00 6222 Comp 1.17 2.75 4809.6

C 250x90x40.2 Kg/m 374.00 7741 Comp 1.17 3.07 5385.6

C 300x90x38.1 Kg/m 429.00 6222 Comp 1.17 2.29 6177.6

C 300x90x43.8 Kg/m 494.00 8846 Comp 1.17 2.74 7113.6

C 300x90x48.6 Kg/m 525.00 9426 Comp 1.17 2.82 7560.0

C 380x100x54.5 Kg/m 763.00 7635 Comp 1.30 2.48 10987.2

C 380x100x67.3 Kg/m 926.00 11929 Comp 1.30 3.10 13334.4

H 100x100x17.2 Kg/m 76.50 4295 Comp 1.30 3.53 1101.6

H 125x125x23.8 Kg/m 136.00 3226 Comp 1.63 3.82 1958.4

H 148x100x21.1 Kg/m 138.00 4295 Comp 1.30 2.39 1987.2

H 150x150x31.5 Kg/m 219.00 2598 Comp 1.96 4.12 3153.6

H 175x175x40.2 Kg/m 330.00 2191 NonComp 2.28 4.41 4752.0

H 198x99x18.2 Kg/m 160.00 2465 Comp 1.29 1.96 2304.0

H 200x100x21.3 Kg/m 184.00 3609 Comp 1.30 1.91 2649.6

H 194x150x30.6 Kg/m 227.00 1909 NonComp 1.96 2.91 3268.8

H 200x200x49.9 Kg/m 472.00 1909 NonComp 2.61 4.71 6796.8

H 200x204x56.2 Kg/m 498.00 4128 Comp 2.66 7.20 7171.2

H 208x202x65.7 Kg/m 628.00 2924 Comp 2.63 5.71 9043.2

H 248x124x25.7 Kg/m 285.00 1940 NonComp 1.47 2.48 4104.0

H 250x125x29.6 Kg/m 324.00 2749 Comp 1.63 2.43 4665.6

H 244x175x44.1 Kg/m 502.00 1909 NonComp 2.28 3.47 7228.8

H 244x252x64.4 Kg/m 720.00 2273 NonComp 3.29 6.68 10368.0

H 248x249x66.5 Kg/m 801.00 1231 NonComp 3.25 5.02 11534.4

H 250x250x72.4 Kg/m 867.00 1546 NonComp 3.26 5.30 12484.8

H 250x255x82.2 Kg/m 919.00 3596 Comp 3.32 8.40 13233.6

H 298x149x32 Kg/m 424.00 1625 NonComp 1.62 2.85 6105.6

H 300x150x36.7 Kg/m 481.00 2240 NonComp 1.91 2.80 6926.4

H 294x200x56.8 Kg/m 771.00 1909 NonComp 2.61 3.87 11102.4

H 298x201x65.4 Kg/m 893.00 2392 NonComp 2.62 3.97 12859.2

H 294x302x84.5 Kg/m 1150.00 1884 NonComp 3.94 7.25 16560.0

H 298x299x87 Kg/m 1270.00 1081 NonComp 3.90 5.90 18288.0

Page 162: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-31

Table 5.1 (Continued) Allowable Stress Design Selection (For Shapes Used as Beam)

Section Designation

Sx cm3

Fy’

Ksc Fy

’’ Ksc

Fy’’’

Ksc

Compact-ness for Fy=2400

ksc

Lc m

Lu m

Mr (=0.6FySx)

ton-m

C 200x90x30.3 Kg/m 195.00 5639 Comp 1.04 2.59 2808.0

C 200x90x30.3 Kg/m 249.00 6710 Comp 1.17 3.57 3585.6

C 250x90x34.6 Kg/m 334.00 6222 Comp 1.17 2.75 4809.6

C 250x90x40.2 Kg/m 374.00 7741 Comp 1.17 3.07 5385.6

C 300x90x38.1 Kg/m 429.00 6222 Comp 1.17 2.29 6177.6

C 300x90x43.8 Kg/m 494.00 8846 Comp 1.17 2.74 7113.6

C 300x90x48.6 Kg/m 525.00 9426 Comp 1.17 2.82 7560.0

C 380x100x54.5 Kg/m 763.00 7635 Comp 1.30 2.48 10987.2

C 380x100x67.3 Kg/m 926.00 11929 Comp 1.30 3.10 13334.4

H 100x100x17.2 Kg/m 76.50 4295 Comp 1.30 3.53 1101.6

H 125x125x23.8 Kg/m 136.00 3226 Comp 1.63 3.82 1958.4

H 148x100x21.1 Kg/m 138.00 4295 Comp 1.30 2.39 1987.2

H 150x150x31.5 Kg/m 219.00 2598 Comp 1.96 4.12 3153.6

H 175x175x40.2 Kg/m 330.00 2191 NonComp 2.28 4.41 4752.0

H 198x99x18.2 Kg/m 160.00 2465 Comp 1.29 1.96 2304.0

H 200x100x21.3 Kg/m 184.00 3609 Comp 1.30 1.91 2649.6

H 194x150x30.6 Kg/m 227.00 1909 NonComp 1.96 2.91 3268.8

H 200x200x49.9 Kg/m 472.00 1909 NonComp 2.61 4.71 6796.8

H 200x204x56.2 Kg/m 498.00 4128 Comp 2.66 7.20 7171.2

H 208x202x65.7 Kg/m 628.00 2924 Comp 2.63 5.71 9043.2

H 248x124x25.7 Kg/m 285.00 1940 NonComp 1.47 2.48 4104.0

H 250x125x29.6 Kg/m 324.00 2749 Comp 1.63 2.43 4665.6

H 244x175x44.1 Kg/m 502.00 1909 NonComp 2.28 3.47 7228.8

H 244x252x64.4 Kg/m 720.00 2273 NonComp 3.29 6.68 10368.0

H 248x249x66.5 Kg/m 801.00 1231 NonComp 3.25 5.02 11534.4

H 250x250x72.4 Kg/m 867.00 1546 NonComp 3.26 5.30 12484.8

H 250x255x82.2 Kg/m 919.00 3596 Comp 3.32 8.40 13233.6

H 298x149x32 Kg/m 424.00 1625 NonComp 1.62 2.85 6105.6

H 300x150x36.7 Kg/m 481.00 2240 NonComp 1.91 2.80 6926.4

H 294x200x56.8 Kg/m 771.00 1909 NonComp 2.61 3.87 11102.4

H 298x201x65.4 Kg/m 893.00 2392 NonComp 2.62 3.97 12859.2

H 294x302x84.5 Kg/m 1150.00 1884 NonComp 3.94 7.25 16560.0

H 298x299x87 Kg/m 1270.00 1081 NonComp 3.90 5.90 18288.0

Page 163: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-32

Table 5.2 Properties of Section for Beam Design (For Shapes Used as Beam) Compact Section Criteria

RadiusrT Fy' Fy'' Fy''’

Torsional Constant

J

Warping Constant

Cw Section

Designation cm

d / Af Bf / 2tf Ksc

d / tw Ksc Ksc cm4 cm6

C200x80x24.6 2.95 0.33 5.33 -- 16.82 -- -- 5.06 12,047.06

C200x90x30.3 3.44 0.28 5.63 -- 13.63 -- -- 6.49 17,601.08

C250x90x34.6 3.30 0.31 5.00 -- 17.85 -- -- 10.45 33,306.76

C250x90x40.2 3.21 0.25 4.09 -- 15.72 -- -- 19.08 40,708.27

C300x90x38.1 3.25 0.37 5.00 -- 21.69 -- -- 11.66 50,964.91

C300x90x43.8 3.28 0.33 4.50 -- 18.06 -- -- 16.00 56,627.68

C300x90x48.6 3.17 0.28 3.75 -- 17.25 -- -- 27.65 67,953.21

C380x100x54.5 3.60 0.36 4.76 -- 22.44 -- -- 22.38 136,664.29

C380x100x67.3 3.57 0.29 3.85 -- 17.70 -- -- 42.48 169,203.40

H100x100x17.2 2.73 0.13 6.25 -- 14.00 -- -- 5.12 3,333.33

H125x125x23.8 3.41 0.11 6.94 -- 16.46 -- -- 9.11 11,444.09

H148x100x21.1 2.68 0.16 5.56 -- 21.67 -- -- 8.46 8,214.00

H150x150x31.5 4.10 0.10 7.50 -- 18.57 -- -- 15.00 31,640.63

H175x175x40.2 4.79 0.09 7.95 -- 20.40 -- -- 23.29 75,226.64

H198x99x18.2 2.60 0.29 7.07 -- 40.89 -- -- 4.53 11,094.88

H200x100x21.3 2.61 0.25 6.25 -- 33.45 -- -- 6.83 13,333.33

H194x150x30.6 4.05 0.14 8.33 -- 29.33 -- -- 12.00 47,633.06

H200x200x49.9 5.48 0.08 8.33 -- 22.00 -- -- 34.56 160,000.00

H200x204x56.2 5.46 0.08 8.50 -- 14.67 -- -- 35.02 169,793.28

H208x202x65.7 5.54 0.06 6.31 -- 17.60 -- -- 83.56 237,733.03

H248x124x25.7 3.26 0.25 7.75 -- 46.40 -- -- 8.47 39,088.33

H250x125x29.6 3.27 0.22 6.94 -- 38.67 -- -- 12.15 45,776.37

H244x175x44.1 4.72 0.13 7.95 -- 31.71 -- -- 26.35 146,243.05

H244x252x64.4 6.76 0.09 11.45 2,269 20.18 -- -- 33.19 436,679.41

H248x249x66.5 6.85 0.08 9.58 3,246 27.75 -- -- 54.63 514,320.12

H250x250x72.4 6.86 0.07 8.93 3,734 24.67 -- -- 68.60 569,661.46

H250x255x82.2 6.83 0.07 9.11 3,589 15.86 -- -- 69.51 604,529.30

H298x149x32 3.88 0.25 9.31 3,432 51.27 -- -- 10.17 97,919.70

H300x150x36.7 3.89 0.22 8.33 -- 43.38 -- -- 14.58 113,906.25

H294x200x56.8 5.35 0.12 8.33 -- 33.75 -- -- 39.97 345,744.00

H298x201x65.4 5.40 0.11 7.18 -- 30.00 -- -- 64.03 420,666.08

Page 164: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-33

Table 5.3 Properties of Section for Beam Design (For Shapes Used as Beam) Compact Section Criteria

RadiusrT Fy' Fy'' Fy''’

Torsional Constant

J

Warping Constant

Cw Section

Designation cm

d / Af Bf / 2tf Ksc

d / tw Ksc Ksc cm4 cm6

H294x302x84.5 8.09 0.08 12.58 1,880 22.50 -- -- 51.72 1,190,379.65

H298x299x87 8.21 0.07 10.68 2,610 30.00 -- -- 81.95 1,384,722.94

H300x300x94 8.22 0.07 10.00 2,977 27.00 -- -- 101.25 1,518,750.00

H300x305x106 8.16 0.07 10.17 2,880 18.00 -- -- 102.38 1,595,960.16

H304x301x106 8.25 0.06 8.85 3,798 24.55 -- -- 148.37 1,785,189.54

H346x174x41.4 4.55 0.22 9.67 3,186 54.67 -- -- 16.86 236,500.04

H350x175x49.6 4.59 0.18 7.95 -- 46.86 -- -- 31.06 300,906.58

H354x176x57.8 4.62 0.15 6.77 -- 41.00 -- -- 51.70 370,063.83

H336x249x69.2 6.71 0.11 10.38 2,765 39.00 -- -- 48.04 871,458.28

Page 165: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-34

Table 5.4 Allowable Moment Capacity (ton-m) Unbraced Length SYS

Section 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m C 200x90x30.3 Kg/m 4008.46 3644.06 3144.70 2358.52 1886.82 1572.35 1347.73 1179.26 1048.23 943.41

C 200x90x30.3 Kg/m 5118.50 4653.18 4653.18 4158.13 3326.51 2772.09 2376.08 2079.07 1848.06 1663.25

C 250x90x34.6 Kg/m 6865.78 6241.61 5729.07 4296.80 3437.44 2864.53 2455.31 2148.40 1909.69 1718.72

C 250x90x40.2 Kg/m 7688.02 6989.11 6989.11 5366.55 4293.24 3577.70 3066.60 2683.27 2385.13 2146.62

C 300x90x38.1 Kg/m 8818.62 8016.92 6132.16 4599.12 3679.30 3066.08 2628.07 2299.56 2044.05 1839.65

C 300x90x43.8 Kg/m 10154.77 9231.61 8419.21 6314.41 5051.53 4209.61 3608.23 3157.20 2806.40 2525.76

C 300x90x48.6 Kg/m 10792.01 9810.92 9236.17 6927.13 5541.70 4618.09 3958.36 3463.56 3078.72 2770.85

C 380x100x54.5 Kg/m 15684.39 14258.54 11774.77 8831.08 7064.86 5887.38 5046.33 4415.54 3924.92 3532.43

C 380x100x67.3 Kg/m 19035.06 17304.60 17304.60 13397.08 10717.66 8931.39 7655.47 6698.54 5954.26 5358.83

H 100x100x17.2 Kg/m 1572.55 1429.59 1429.59 1261.73 1009.38 841.15 720.99 630.86 560.77 504.69

H 125x125x23.8 Kg/m 2795.65 2541.50 2541.50 2429.99 1943.99 1620.00 1388.57 1215.00 1080.00 972.00

H 148x100x21.1 Kg/m 2836.76 2578.87 2182.62 1651.55 1230.30 1025.25 878.79 768.94 683.50 615.15

H 150x150x31.5 Kg/m 4501.81 4092.56 4092.56 4092.56 3371.20 2809.34 2408.00 2107.00 1872.89 1685.60

H 175x175x40.2 Kg/m 6721.31 6721.31 6166.86 6166.86 5442.74 4659.70 3887.67 3401.72 3023.75 2721.37

H 198x99x18.2 Kg/m 3288.99 2976.18 2543.64 1938.09 1275.85 886.00 650.94 498.38 439.82 395.84

H 200x100x21.3 Kg/m 3782.34 3402.59 2880.15 2148.73 1396.95 970.11 794.81 695.46 618.19 556.37

H 194x150x30.6 Kg/m 4554.74 4242.06 4211.63 3821.37 3319.61 2706.35 2033.09 1556.59 1286.58 1157.92

H 200x200x49.9 Kg/m 9470.65 9470.65 8820.48 8820.48 8303.76 7449.61 6600.67 5621.12 4613.20 4151.88

H 200x204x56.2 Kg/m 10237.00 10237.00 9306.36 9306.36 9306.36 9306.36 9306.36 8377.87 7446.99 6702.29

H 208x202x65.7 Kg/m 12909.30 12909.30 11735.73 11735.73 11735.73 11176.59 9579.93 8382.44 7451.06 6705.95

Page 166: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-35

Table 5.5 Allowable Moment Capacity (ton-m)

Unbraced Length SYS Section 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

H 248x124x25.7 Kg/m 5728.86 5325.93 5054.85 4383.75 3520.90 2536.60 1863.63 1426.84 1127.38 913.18

H 250x125x29.6 Kg/m 6660.21 6054.74 5698.30 4897.82 3868.63 2748.46 2019.28 1546.01 1221.54 1068.76

H 244x175x44.1 Kg/m 10072.59 10072.59 9381.11 9040.02 8261.84 7310.72 6186.68 4908.45 3878.28 3141.41

H 244x252x64.4 Kg/m 14720.15 14720.15 14720.15 13454.98 13454.98 13454.98 12848.45 11242.39 9993.24 8993.91

H 248x249x66.5 Kg/m 15181.01 15181.01 15181.01 14968.66 14968.66 14259.52 13402.85 12414.38 11294.12 10042.06

H 250x250x72.4 Kg/m 16958.92 16958.92 16958.92 16202.03 16202.03 15340.27 14379.00 13269.84 12012.79 10607.86

H 250x255x82.2 Kg/m 18891.16 18891.16 18891.16 17173.78 17173.78 17173.78 17173.78 17173.78 16032.97 14429.67

H 298x149x32 Kg/m 8346.52 7923.49 7824.99 7063.64 6084.76 4888.35 3635.84 2783.69 2199.46 1781.56

H 300x150x36.7 Kg/m 9819.22 8988.67 8837.88 7943.79 6794.26 5389.27 3984.46 3050.60 2410.35 1952.39

H 294x200x56.8 Kg/m 15470.06 15470.06 14408.04 14302.19 13342.14 12168.75 10782.02 9181.95 7415.34 6006.42

H 298x201x65.4 Kg/m 18350.45 18350.45 16687.91 16659.99 15601.28 14307.32 12778.08 11013.58 9020.76 7306.82

H 294x302x84.5 Kg/m 23039.86 23039.86 23039.86 21490.59 21490.59 21490.59 21490.59 19483.25 17318.45 15586.60

H 298x299x87 Kg/m 23586.05 23586.05 23586.05 23733.08 23733.08 23642.19 22657.11 21520.48 20232.30 18792.57

H 300x300x94 Kg/m 26053.36 26053.36 26053.36 25414.96 25414.96 25228.24 24141.08 22886.66 21464.99 19876.06

H 300x305x106 Kg/m 29600.95 29600.95 29600.95 26909.95 26909.95 26909.95 26909.95 26909.95 26828.88 24146.00

H 304x301x106 Kg/m 30238.93 30238.93 30238.93 28778.70 28778.70 28778.70 27504.45 26135.50 24584.03 22850.03

H 346x174x41.4 Kg/m 12395.97 11978.67 11978.67 11439.17 10387.04 9101.10 7581.36 5919.22 4676.91 3788.30

H 350x175x49.6 Kg/m 15550.32 15550.32 14482.79 13956.20 12754.83 11286.48 9551.15 7577.79 5987.39 4849.78

H 354x176x57.8 Kg/m 18685.60 18685.60 16986.91 16473.31 15122.72 13472.01 11521.17 9273.10 7326.89 5934.78

H 336x249x69.2 Kg/m 20847.83 20847.83 20847.83 20556.21 20387.46 19308.24 18032.80 16561.13 14893.25 13029.14

Page 167: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-36

Table 5.5 Allowable Moment Capacity (ton-m)

Unbraced Length SYS Section 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

H 340x250x79.7 Kg/m 25037.38 25037.38 25037.38 23919.96 23848.54 22647.69 21228.52 19591.00 17735.15 15660.97

H 340x250x79.7 Kg/m 25037.38 25037.38 25037.38 23919.96 23848.54 22647.69 21228.52 19591.00 17735.15 15660.97

H 338x351x106 Kg/m 32901.85 32901.85 32901.85 32901.85 31208.07 31208.07 31208.07 30986.53 27543.58 24789.23

H 344x348x115 Kg/m 35473.20 35473.20 35473.20 35473.20 36253.69 36253.69 36195.36 34944.38 33526.61 31942.04

H 344x354x131 Kg/m 42140.24 42140.24 42140.24 42140.24 38309.31 38309.31 38309.31 38309.31 38309.31 37113.46

H 350x350x137 Kg/m 44408.91 44408.91 44408.91 44408.91 42981.18 42981.18 42981.18 41467.42 39796.78 37929.60

H 350x357x156 Kg/m 50362.73 50362.73 50362.73 50362.73 45784.30 45784.30 45784.30 45784.30 45784.30 45784.30

H 396x199x56.6 Kg/m 19636.69 19636.69 18874.34 18823.57 17615.36 16138.66 14393.48 12379.80 10111.48 8190.30

H 400x200x66 Kg/m 23877.26 23877.26 22238.09 22238.09 20924.11 19258.76 17290.62 15019.70 12445.98 10081.80

H 404x201x75.5 Kg/m 27946.94 27946.94 25414.96 25414.96 24046.89 22202.44 20022.63 17507.46 14656.93 11889.35

H 386x299x94.5 Kg/m 32314.75 32314.75 32314.75 32516.19 32516.19 32391.66 31042.02 29484.75 27719.85 25747.30

H 390x300x107 Kg/m 37930.62 37930.62 37930.62 37001.19 37001.19 37001.19 35527.20 33817.43 31879.69 29713.99

H 388x4002x140 Kg/m 49739.84 49739.84 49739.84 49739.84 49739.84 47092.42 47092.42 47092.42 47092.42 43062.46

H 394x398x147 Kg/m 51397.48 51397.48 51397.48 51397.48 51397.48 53259.28 53259.28 53259.28 51778.58 50043.15

H 394x405x168 Kg/m 62172.43 62172.43 62172.43 62172.43 62172.43 56623.03 56623.03 56623.03 56623.03 56623.03

H 400x400x172 Kg/m 63327.21 63327.21 63327.21 63327.21 63327.21 62229.27 62229.27 62229.27 60480.42 58448.31

H 414x405x232 Kg/m 91924.91 91924.91 91924.91 91924.91 91924.91 83719.86 83719.86 83719.86 83719.86 83719.86

H 446x199x66.2 Kg/m 25913.04 25913.04 24106.83 23908.04 22289.54 20311.37 17973.54 15276.04 12313.47 9973.91

H 450x200x76 Kg/m 30628.76 30628.76 27844.33 27763.23 25977.34 23794.59 21214.98 18238.50 14887.85 12059.16

H 456x201x88.9 Kg/m 36384.50 36384.50 33076.82 33076.82 31424.91 29080.98 26310.89 23114.62

Table 5.5 Allowable Moment Capacity (ton-m)

Page 168: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-37

Unbraced Length SYS Section 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

H 434x299x106 Kg/m 41418.09 41418.09 41418.09 40364.93 40364.93 40041.58 38305.23 36301.75

H 440x300x124 Kg/m 50113.06 50113.06 50113.06 47653.04 47653.04 47653.04 45913.48 43760.11 41319.63 38592.02

H 446x302x145 Kg/m 60750.99 60750.99 60750.99 55688.65 55688.65 55688.65 53665.59 51152.11 48303.50 45119.77

H 496x199x79.5 Kg/m 34740.00 34740.00 31581.82 31449.42 29401.09 26897.57 23938.86 20524.96 16698.81 13526.04

H 500x200x89.6 Kg/m 39262.37 39262.37 35693.06 35693.06 33484.71 30768.04 27557.44 23852.89 19655.94 15921.31

H 506x201x103 Kg/m 45840.36 45840.36 41673.05 41673.05 39693.29 36784.84 33347.59 29381.53 24886.66 20272.04

H 482x300x114 Kg/m 49130.45 49130.45 49130.45 46718.67 46718.67 45831.03 43635.98 41103.22 38232.77 35024.61

H 488x300x128 Kg/m 57187.84 57187.84 57187.84 54380.53 54380.53 54380.53 52395.39 49938.01 47152.99 44040.31

H 494x302x150 Kg/m 69109.35 69109.35 69109.35 63350.52 63350.52 63350.52 61049.11 58189.82 54949.28 51327.52

H 596x199x94.6 Kg/m 47484.86 43168.05 43168.05 42825.08 39934.16 36400.81 32225.03 27406.82 22105.52 17905.47

H 600x200x106 Kg/m 53240.60 53240.60 48400.54 48246.13 45134.24 41330.81 36835.86 31649.37 25815.97 20910.94

H 606x201x120 Kg/m 61257.52 61257.52 55688.65 55688.65 52736.02 48714.29 43961.36 38477.19 32261.81 26179.99

H 612x202x134 Kg/m 69480.01 69480.01 63163.64 63163.64 60527.58 56279.70 51259.49 45466.94 38902.05 31886.78

H 582x300x137 Kg/m 70829.19 70829.19 70829.19 65966.76 65966.76 65044.03 62064.02 58625.53 54728.57 50373.16

H 588x300x151 Kg/m 100725.93 100725.93 100725.93 93811.09 93811.09 93811.09 90651.72 86493.72 81781.30 76514.50

H 594x302x175 Kg/m 94969.72 94969.72 94969.72 86336.10 86336.10 86336.10 83436.15 79611.81 75277.56 70433.40

H 692x300x166 Kg/m 101662.60 101662.60 101662.60 93063.59 93063.59 92679.32 88806.51 84337.90 79273.47 73613.22

H 700x300x185 Kg/m 117585.65 117585.65 117585.65 107639.81 107639.81 107639.81 105498.68 101182.00 96289.78 90822.00

H 792x300x191 Kg/m 131765.34 131765.34 131765.34 119786.67 119786.67 119592.53 114716.17 109089.61 102712.83 95585.84

Page 169: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-38

Table 5.5 Allowable Moment Capacity (ton-m)

SYS Unbraced Length Section 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

H 800x300x210 Kg/m 149854.81 149854.81 149854.81 136231.64 136231.64 136231.64 133627.36 128196.39 122041.32 115162.10

I 200x100x26 Kg/m 4460.70 4055.18 3976.68 2982.51 2386.01 1988.34 1704.29 1491.26 1325.56 1193.01

I 200x150x50.4 Kg/m 9168.07 8334.61 8334.61 8334.61 8334.61 8334.61 8334.61 7355.95 6538.62 5884.76

I 250x125x38.3 Kg/m 8510.27 7736.61 7736.61 7112.68 5690.14 4741.78 4064.39 3556.34 3161.19 2845.07

I 250x125x55.5 Kg/m 17637.23 16033.85 16033.85 16033.85 16033.85 14937.31 12803.41 11202.98 9958.21 8962.39

I 300x150x48.3 Kg/m 12991.53 11810.48 11810.48 11292.32 9033.86 7528.21 6452.75 5646.16 5018.81 4516.93

I 300x150x65.5 Kg/m 17452.23 15865.66 15865.66 15865.66 15865.66 14391.66 12335.71 10793.75 9594.44 8635.00

I 300x150x76.8 Kg/m 20103.98 18276.34 18276.34 18276.34 18276.34 18276.34 16898.43 14786.12 13143.22 11828.90

I 350x150x58.5 Kg/m 17883.91 16258.10 16258.10 15373.99 12299.19 10249.32 8785.14 7686.99 6832.88 6149.59

I 350x150x87.2 Kg/m 26311.96 23919.96 23919.96 23919.96 23919.96 23919.96 20680.41 18095.36 16084.76 14476.29

I 400x150x72 Kg/m 24667.46 22424.96 22424.96 22265.77 17812.62 14843.85 12723.30 11132.89 9895.90 8906.31

I 400x150x95.8 Kg/m 32478.82 29526.20 29526.20 29526.20 29526.20 27145.00 23267.14 20358.75 18096.67 16287.00

I 450x175x91.7 Kg/m 35767.81 35767.81 32516.19 32516.19 29761.00 24800.83 21257.86 18600.62 16533.89 14880.50

I 450x175x115 Kg/m 44606.99 44606.99 40551.81 40551.81 40551.81 40208.71 34464.61 30156.53 26805.80 24125.22

I 600x190x133 Kg/m 67424.39 67424.39 61294.89 61294.89 57103.00 47585.83 40787.86 35689.37 31723.89 28551.50

I 600x190x176 Kg/m 89008.41 89008.41 80916.74 80916.74 80916.74 80916.74 75382.93 65960.06 58631.16 52768.05

Page 170: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 5-39

11. Software Implementation

The beam design module of the SYS Designers Software has been developed based on the flow diagram as described in “General Procedure“ section of this chapter. The module can carry out all necessary design, investigation and checks according to AISC/ASD (1992) specifications. In addition to flexural strength calculation about both principal axis, various standard beam checks like shear, web yielding, crippling and side sway web buckling can also be carried out Built-in SYS section database facilitates the quick selection, design and verification of the beam.

Page 171: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-1

Design of Columns

1. Introduction

In the previous two chapters, we have discussed about the design of members subjected to only axial compression or flexure. While many structural members can be treated as either axially loaded members or beams with only flexural loading, many of them are subjected to some degree, of both bending and axial load. In many cases, the effects due to bending are so small that they can be considered as secondary effects and can be neglected, with negligible errors.

My Top

Mx Top

My Bot

Mx Bot

P

P

Fig. 6.1.General Steel Column

Structural members subjected to both significant compression and flexure are called beam-columns or columns in general. The rafter and column of a gable frame and top chord member of a truss with a purlin placed between the joints are the some common examples of such columns. Design of a column requires the determination of the stresses due to the axial loads and bending, and checks the combined effect by using some interaction formulae. The basic concepts for axial load are explained in Chapter 3 and 4 and for bending in chapter 5. This chapter describes the additional concepts and considerations specific to columns. Important topics to be covered in this chapter are the magnification (amplification) of actual moment due to presence of axial

Chapter

6

Page 172: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-2

force and column design using interaction formulae. Design examples and flow diagrams that form the basis of internal calculation for SYS designer are also included at the end.

2. Moment Amplification

For the design of columns, the moments obtained from elastic first-order analysis are magnified to take into account the following two type of effects.

• Secondary moment due to the deflection within the length of the member ( δ−P effects ) Fig 6.1(a)

• Secondary moment due to the effect of sway when the member is a part of a part of an unbraced frame ( ∆−P effects ) Fig.6.2(b).

δ

(a) (b)

Fig. 6.2.Second Order Effects Some specifications (e.g. AISC/LRFD) require separate first-order elastic analysis for ‘lateral translation (LT)’ and ‘No lateral Translation (NT)’ cases and using different amplification factor for moment obtained from each analysis. An analytical expression for a column subjected to an axial load P and unequal end moments 1M and 2M is given as follows.

• 2MxMFM max = • (6-1)

Where MF = moment magnification factor Mmax = maximum or magnified moment for design

The analytical solution for the pin-ended column segment as shown in figure 6.3 is given by

klklMMMMMF 2

2121 12sin

cos)/()/( ++= • (6-2)

Page 173: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-3

The location of the point of maximum moment can be calculated using the following equation.

xc

M2M1

Mmax

M2M1

Fig. 6.3. Single Curvature Bending

klMMklMMkxc sin)/(

cos)/()tan(21

21 1+−=

• (6-3)

Where •

EIPk = • (6-4)

And M1/M2 is positive for double curvature bending and negative for single curvature. The MF can also be written as

)/sec(. 2KlCMF m= • (6-5)

Where •

)/( 21klSec

Cm = • (6-6)

where the above exact solution has been simplified with the following assumptions for practical design purposes.

ePPkl

−=

1

12)/sec( • (6-7)

And • )/(.. 214060 MMCm −= • (6-8)

Finally the moment magnification factor takes the form as

e

m

PP

CMF−

=1

• (7-9)

Where Eulers’ Load is given as

2

2

)/( rkLEIPe

π= • (6-10)

Page 174: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-4

Equation 6-9 forms the basis for the moment magnification factors used in various forms in different specifications. Use of this moment magnifier in the column design interaction equations are discussed in the subsequent article ”Column Interaction Equations”

3. Column Interaction Equations

Column interaction equations are, basically, derived considering the column as simply supported and subjected to axial load and equal external moment at two ends. To generalize the equations such that they may be applied for members with other loading and boundary conditions, and for members in general frameworks, various factors to approximate the actual behavior are introduced. Such equations are based on linear first-order elastic analysis and amplified to account for second-order effects. So the major portion of the analysis/design of columns is devoted to the assessment of the procedure for calculations of the effective length and moment amplifications factors. Although various codes to permit the use of more rational second-order inelastic analysis, such analysis are impractical for manual calculations and can only be carried out with advanced computing tools.

Column interaction equations include two types of second-order effect δ−P and ∆−P which are explained in the previous article “Moment Amplification”. For the

illustration purposes, the interaction equations for AISC/ASD will be discussed in this article.

• For axial compression and bending

For 150.aFaf < •

01.Ff

Ff

Ff

by

by

bx

bx

a

a ≤++ • (6-11)

And for 0.15Ff

a

a ≥ following two equations •

0111

.Ff

CFf

FfC

Ff

Ff

bya

my

by

by

bxa

mx

bx

bx

a

a ≤−

+−

+ • (6-12)

0160

.Ff

Ff

F.f

by

by

bx

bx

y

a ≤++ • (6-13)

• For axial tension and bending •

01.Ff

Ff

Ff

by

by

bx

bx

t

a ≤++ • (6-14)

In the above column interaction equations, the term •

bxFaf1mxC

• (6-15)

is the moment amplification factor. It can be noted in the equation 6-11 that the amplification factor is equal to one. This means for small axial load (fa/Fa<0.15) the secondary effects are less significant and can be neglected without any serious error. The factor Cm is incorporated to account for the unequal end moments and the

Page 175: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-5

restraint conditions as explained in the previous section. Detailed procedures for the calculations of various parameters of the above equations has been shown in the ‘General Procedure” section of this chapter for AISC/ASD specifications.

4. General Procedure

General procedure for the design of a column is the combination of corresponding general procedures for the design of an axial compression and flexural members. In addition to this, column design also needs computations of factors for moment magnification. The following flow diagram describes schematically the stepwise design procedure for the design of a column. The details for sub parts can be referred to the general procedures described in last two chapters. This flow diagram, also forms the basis for the development of the column design module of the SYS Designers Software.

(Flow diagrams for the design of columns are shown in the following pages)

Page 176: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-6

Basic Data

Trial CrossSection

Compute: Fa

Compute: Fbx, Fby

Compute: fa,fbx, fby

fa / Fa< 0.15

Compute: Cmx,Cmy

Compute: FEX',FEY

'

No

End

Yes

Yes

Yes No

No

Flow Diagram for Column Design

0.1<++by

by

bx

bx

a

a

Ff

Ff

Ff

0.111 ''

<−

+−

+

EY

a

my

by

by

EX

a

mx

bx

bx

a

a

Ff

CFf

Ff

CFf

Ff

2

2

2

2

)/(2312'

)/(2312'

yEY

xEX

y

yby

x

xbx

a

rkLEF

rkLEF

ZM

f

ZMf

APf

π

π

=

=

=

=

=

0160

.Ff

Ff

F.f

by

by

bx

bx

y

a ≤++

Fig. 6.4. Flow diagram for a typical column design based on AISC/ASD specifications

Page 177: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-7

Basic Date

TransverseLoad on t he

member

Relative EndTranslation

EndRotationallyRestrained

Yes

Relative EndTranslation

No

NoYes

Cm=0.85

Yes Cm=1

No

Cm = 0.6-0.4M1/ M2M1 < M2

Yes No

Flow Diagram for Computation of C m

End

Fig. 6.5. Flow diagram for the computation of coefficient Cm based on AISC/ASD specifications

5. Design Examples

The example given in this section illustrates the complete design steps for a typical steel column subjected to moment and axial force at the ends.

Page 178: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-8

Problem:

Check the adequacy of the column of the gable frame shown below

SYS H300x150x36.7

SY

SH

300x

150x

36.7

[email protected] =44' [email protected] =44'

75'

20'

Fig. 6.6.General Column

7.26 Kips 2.64 Kips 29.60 ft- Kips

20.94 ft- Kips2.64 Kips7.26 Kips

P V M

Fig. 6.7.Design Actions Obtained from 2D Frame Analysis Solution:

Determine of effective length factor K and Fa

At top, ( )( ) ( ) 9.3

392/120/1

//

===∑∑

xG

bLEIcLEI

At base, G = 1 (fixed base )

Using Alignment chart for unbraced case Kx = 1.6

68.7888.4

12206.1==

xxrLK

x

xx

Normally, the column is braced laterally at mid height and K can be taken as 1 for that direction.

68.782/1=

×=

yy

yy

rLx

rLK

SYS Subject: Design of Beam Example:6 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 4

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 6

Page 179: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-9

So, critical 3.92=rKl

75.129342900022

== ππy

c FEC

Design Condition : cCrKl

< Ksi

CrKL

CrKL

CrKLF

Fa

cc

cy

44.13

81

83

35

/211

3

2

=

+

=

Actual ksiAPfa 001.1

25.726.7

===

So, 0744.044.13

001.1==

Fafa

Determination of Fb

Maximum unbraced length = 10 ft.

Maximum value of Lc for which Fb = 0.66 Fy is given by the smaller of

inFbfLcy

03.7734

91.576761 =

×==

in

AfdF

Lcy

20.904000,202 =

×=

smaller of the two, Lc = 77.03 = 6.41 ft. Actual unbraced length Lb = 10 ft. So Lb > Lc Computation of Cb and rT :

3.23.005.175.12

2

1

2

1 ≤

+

−=

MM

MMCb

3.21573.160.2994.203.0

60.2994.2005.175.1

2

≤=

+

−=bC

So use Cb = 1.157

SYS Subject: Design of Beam Example:6 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 4

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 6

Page 180: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-10

( ) 70.1354.091.52/2.122/

=≈AfI

r yT

Maximum spacing of lateral brace for the allowable stress 0.6 Fy is given by the higher of the following two equation.

inF

cbrLcy

T 15.10034

157.1000,1027.1000,1021 =

×==

in

AfdF

cbLcy

43.120

09.281.1134

157.1000,20000,202 =

×

×=

×=

So Lc = 120.43 = 10.0 ft.

Again Lb >= Lc

inF

C

y

b 65.575.35

157.1000,102000,102=

×=

inF

C

y

b 92.1285.35

157.1000,510000,510=

×=

inrL

T

58.707.112610

=

So y

b

Ty

b

FC

rL

FC ×

≤≤000,510000,102

( )ksiFFxF

cbrLF

Fb yyyT

y

120.20566.0157.1101530

58.705.3532

10153032

3

2

3

2

1 =×=

××−=×

×

−=

Computing Fb based on fAdL

67809.2

81.111210 =

××=

fAdL

83.6515.35

157.1000,20000,20=

×=

y

b

FC

So, y

b

f FC

AdL 000,20 >

ksiAdLCFf

bb 47.20

678157.1000,12

/ 000,12

2=

×==

SYS Subject: Design of Beam Example:6 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:3 / 4

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 6

Page 181: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-11

So, using the higher of the Fb1 and Fb2 : Fb = 20.47 ksi

Actual ksiSmomentMaxFx

b 08.124.29

1260.29.=

×==

59.047.2008.12

==b

b

Ff

Computation of Cm

As the frame is not braced against lateral translation cm=0.85

Computation of FEX’

( )ksix

rKLEFEX 52.17

3.92232900012

23

12' 2

2

2

2

=

=ππ

Final check

The above computed values of cm. and 'EXF is used only for the cases when

15.0>Fafa

. But in this case 15.00725.0 <=Fafa

so the following simplified check shall

apply.

0.1≤++by

by

bx

bx

Ff

Ff

Fafa

0.0725 + 0.59 + 0 0.66 < 1.0

Hence the section H300 x 150 is OK for column of the Gable frame.

SYS Subject: Design of Beam Example:6 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:4 / 4

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 6

Page 182: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 6-12

6. Software Implementation

The column design module of the software has been developed based on the flow diagram shown in “General Procedure” section of this chapter. As the design of a column is more complicated than any other steel members. The SYS steel designer’s software has been developed to assist the structural steel designer, from design point of view, primarily in the following two different ways:

Member Design : To find or select the most appropriate section available in SYS steel section database built in the program, for the designer specified member and loading conditions that confirm to AISC/ASD specification. Code Verification : To check an user specified member, loading and SYS section for AISC/ASD specification.

For the complete information regarding the software, reader is referred to the “SYS Steel Designers Software User’s Manual”.

Page 183: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures

Introduction to Connection Design

1. Introduction

The design of connections can be approached from a number of directions: The type of fasteners such as bolts, rivets, welds and special devices like cable sockets; the type of structures such as buildings, bridges, transmission towers etc. and also the type of loading like static and dynamic etc.. Irrespective of the type and classification of the design of any connection are interrelated criteria of strength, stiffness, ductility, predictability, practicability and cost. It is beyond the scope of this manual to cover comprehensively the detail of the connections from all criteria. The purpose of this chapter is to introduce some of the underlying common concerns and objectives to the design of most common type of connections with practical examples. The following connections shall be covered briefly followed by some examples on some typical type of connections.

• Truss Connections • Portal Frame Connections • Building Frame Connections • Column Bases

2. Truss connections

The connections used in a truss or lattice girder can be internal joint, external joint, site splice and bracing connection. Internal joints are needed to join the individual members together to form a complete truss while external joint are required to connect the truss as a whole to the structural element which supports the truss. To facilitate the transportation, very large trusses are assembled as component parts first and then site spliced to form the complete unit. Bracing connections are required to fix the diagonal members between building columns, portal frame members and adjacent trusses. The common truss connections though analyzed as pin joints do not reflect the idealization of pinned joints. The cost of connections is a major item in the total cost of steel structures. It is very expensive to make a truss with truly pinned joint that requires special plant, equipment and techniques. It has been found from experience that conventional fabrication and erection techniques can satisfy the relevant performance criteria. The following are some useful guidelines on the selection of joint type to give the most economic solution. 1) In general shop joints should be welded and site joints bolted. 2) If a large number of trusses are to be made, welded joints are usually more

economical than bolted joints. Welded joints are aesthetically better and maintenance cost also less than with bolted joints.

Chapter

7

Page 184: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-2

3) Gusset plates can be eliminated for directly welded connections. The selection depends upon the type of member for example hollow sections do not need gusset plate where as double angle members generally require gusseted joints.

4) Standard joints should be used with as much repetition of member shapes and sizes, end preparation and fabrication operation as possible. This can be achieved readily with parallel chord lattice girders.

2.1. Joint Behavior

Members framing into a joint should be so arranged that either their centroidal axes or in case of bolted connections, the bolt centerlines coincide at a point. If this can not be achieved the connection must be designed to resist the moment due to eccentricity. However the concentricity requirement may need for large gusset plates. One common method to minimize the size of the gusset plate is nesting the member as shown in Fig 7.1 The moment arising from eccentricity is distributed between the members meeting at the joint and the connections in proportion to their stiffnesses. As the trued behavior of a joint is complicated, the small eccentricities and secondary stresses are ignored in conventional analysis and design.

Fig. 7.1 Truss Connections

2.2. Design Considerations

The main point in the design of fasteners and the gusset plate if provided, for a truss joint is discussed briefly as follows.

2.2.1. Bolted Joints

If the centroidal axis of the connected parts meet at a point, the bolts are designed for direct load, otherwise the eccentricity in the plane of the joint should be taken into account. The small eccentricity between the centroidal axis and the bolt gauge line is ignored. Ordinary bolts are designed for single or double shear and bearing whereas pre-loaded bolts are designed for slip resistance, and shear and bearing where appropriate. In the bracing connections that connect the diagonal to the other building frame element, is designed for tension and shear and should be arranged as far as possible, to avoid any eccentricity.

2.2.2. Gusset Plates

The thickness of the gusset plate should be equal to or slightly larger than the thickest part to be connected and its size large enough to accommodate the required fasteners. Common design practice is to check the plate as a beam section in axial

Page 185: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-3

load, bending and shear or alternatively to check the direct stress in the plate at the end of each member assuming an dispersance angle of 30 degree on either side of the member.

3. Portal Frame Connections

The portal frames that will be discussed in this section are single-story pitched roof portal frame. Depending upon the location and performance requirements, pitched roof portal frame connections may be divided into the following three types.

� Eaves Connections � Ridge Connections

� Base Connections

3.1. Eaves Connections

Eaves connections are further divided into two types:

• Unhanuched Eaves Connections • Haunched Eaves Connections

3.2. Unhaunched Eaves Connections:

Commonly used type unhaunched fully rigid eaves connections and their force transfer diagrams are shown in Fig 7.2 (a), (b), ©. In the connection with cover plate, the force on the flange of the rafter is transmitted to the web of the column and the force in rafter web into the column flanges. The vertical shear in the rafter web passes through the web welds into the end plate. from this it passes through the connecting bolts into the column flange. Similarly, the tensile force in the rafter top flange passes to cover plate and then to column web. The compressive force in the bottom flange of the rafter passes into the web stiffener plate and through the connecting weld into the column web.

(a)Extended End Plate

(b)Cover Plate and Extended

End Plate

(c)Force Diagram

Fig. 7.2 Unhanched Eaves Connections(a)

Page 186: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-4

(d)With Diagonal End Plates

(e)Force Diagram

Fig. 7.3 Unhaunched Eaves Connections (b)

In the case of connection with diagonal end plates Fig.7.2.©, the welds are designed to transmit the flange forces and web forces into the end -plates. This element is designed to take compressive forces as struts. The end plate must also be checked for local buckling near the tension flange. The bolts are designed to transmit the bending moment at the eaves and the axial and shear forces that act perpendicular and parallel to the plane of the end plates.

(e)Force Diagram

(d)Flush End Plate and

Extended Plate

Fig. 7.4 Haunched Eaves Connections

Page 187: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-5

3.3. Haunched Eaves Connections:

Fig 7.3 shows some fully rigid haunched eaves connections and methods to resolve the forces in the connected parts. The vertical shear force in the rafter and haunch webs is transferred subsequently from web welds to end plate, end plate to connecting bolts and finally to column flange. The compressive force in the bottom flange of the haunch passes into the compression stiffeners on the column and through their to connecting welds into the column web. The fasteners can be divided by taking equal division of load in all or by assuming that it is taken only by the group of bolts near the haunch compression flange without any shear force in bolts near rafter tension flange.

In the connection without top cover plate Fig.7.3 (a) the tensile force in the top flange of the rafter is passed through the bolt group near the rafter top flange. The concentrated load at the transfer point at column flange is distributed into column web by top stiffener plate. The shear stress on the portion of the column web between top and Some of the advantages and disadvantages of the connections are: Connection with extended end plate Fig.7.3.(a) provides better tension load transfer mechanism than others. Although the connection with top cover plate may need more fabrication cost, it is aesthetically preferable bottom stiffener plates can be controlled by adjusting the spacing between the plate, i. .e the distance hp. Alternatively diagonal web stiffener plate can be provided.

3.4. Ridge Connections

The fully rigid ridge connections can be analyzed and designed in a similar way to eaves connections. However in case of three-pin portal frame, the ridge or apex is designed as pinned connection allowing fairly free rotation. Some of the usual type of apex connections and their load transfer diagram are shown in Fig. 7.4

WF Cutting

(a)Long Haunches

(b)Short Haunches

WF Cutting orPlate

PC

P T

QMF

Q MF

(c)Force Diagram

(d)Pinned Apex Connections

Fig. 7.5 Ridge Connections

Page 188: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-6

3.5. Building Frame Connections

Multi-story frame connections may conveniently be classified into the following five types.

1) Beam-to-beam connections 2) Beam-to-column connections

3) Column splices 4) Column bases

5) Bracing Connections Each type shall be explained briefly in the following sections.

3.5.1. Beam-to-beam connections

Fig.7.5 shows different beam-to-beam connections. The conventional design procedure for beam-to-beam connections assumes that they are simple connections and offer no resistance to rotation of the end of the beam in the vertical plane . So beam reaction is the only force be considered in the design. The connection between the flange or web of one beam to web of the main beam can be made with the use of angles, tees or welded plates as shown in Fig. 7.5 (d). and called accordingly as tee-framed shear connection or single-plate shear connection. The size of these connecting elements depends upon the space available and the number of fasteners to be accommodated. Various standard design manual (e.g. AISC Manual) give connection details for standard type of framed connections.

(b)

x x

(a)

Fig. 7.6 (a-b) Beam-to-beam Connections

(d)(c)

Page 189: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-7

Fig. 7.6 (c-d) Beam-to-beam Connections

x x x x

(e) (f)

Fig. 7.6 (e-f) Beam-to-beam Connections

(g)(h)

Fig.7.6 (g-h) Beam-to-beam connections

3.5.2. Beam-to-Column Connections

Beam-to-column connections can be further classified based on: 1) Type of fastener

• fully welded • fully bolted • shop welded / site bolted

2) Rigidity of joint

• rigid joints • semi-rigid (partial ) joints • simple joints

Another way of classifications based on rigidity of joint is

• Erection stiff • Fully rigid

Typical beam –to-column connections are shown in Fig 7.6 and Fig 7.7 .

Page 190: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-8

(a)Fully BoltedErection Stiff

(c)Fully BoltedFully Rigid

(a)Fully BoltedErection Stiff

Fig. 7.7 (a-c) Beam-to-column Connections

(d)Fully BoltedErection Stiff

(e)Fully BoltedErection Stiff( Stiffened )

(f)Fully WeldedErection Stiff

Fig.7.7 (d-f) Beam-to-column connections

It is the beyond the scope of this manual to describe the detailed analysis and design procedures for all the connection shown in the figures. However some of the general considerations for the design of various components of the beam-to-column connections shall be pointed here.

• Fasteners for erection stiff or simple beam-to-column connections are designed for the shear force only.

Page 191: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-9

(c)Fully RigidSite Bolted

Shop Welded

(b)Fully RigidSite Bolted

Shop Welded

(a)Fully RigidSite Bolted

Shop Welded

Fig. 7.8 (a-c) Beam-to-column Fully Rigid Connections

(d)Erection StiffSite Bolted

Shop Welded

(e)Erection StiffSite Bolted

Shop Welded

Fig.7.8 (d-e) Beam-to-column connections

3.5.3. Column Bases

Column bases are special type of connections. They are more complicated than other type of connections because of two different materials i.e. steel and concrete interaction. The interaction with soil poses one more complication if very accurate analysis and design is required. However, such an analysis and design is beyond the scope of this manual. Although semi-rigid connections are now being recognized, two primary type of connections namely pinned and fixed connections, being of more practical significance, shall be introduced here.

3.5.3.1. Pinned Connections

Typical pinned column base connections are shown in the Fig.7.7.These connections can be considered as hinge if the axial force in column, the theoretical rotation small and when the length of the plate in the direction of shear is limited to 300 mm. The

Page 192: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-10

size of the end plate must be such that the bearing pressure on the concrete is within allowable limits and the thickness must be such as to allow for rotation to occur i.e. less rigid. Single base plate with shear connector provides more flexibility in vertical and horizontal alignment of the column during erection. However in the other solution with secondary base plate, as the secondary plate is already fixed to the concrete it is difficult to adjust position of the column. The anchor bolts must therefore be placed very carefully.

PV

Fig. 7.9 Pinned Column Bases -Type1

3.5.3.2. Column with welded end plate and intermediate plate

The rotation capacity of the column with only one welded plate may be less to assume

Fig. 7.10 Pinned Column Bases -Type2

Page 193: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-11

as pinned connection for large column with heavy loading. The better solution for such cases can be to add an intermediate plate welded under the end plate to improve the rotation capacity. The axial force is transferred from column to intermediate plate to base plate and finally to the concrete. To prevent the web buckling the column web may be stiffened as shown in Fig 7.8. Fig.7.8 also shows the pinned and vertical forks connections that are practically possible to resemble an ideal hinge connection. In addition to the size of the base plate to distribute the load on concrete safely, more attention must be paid to the stress concentration at various points in the connection such as at the intersection of fork plates and column wall; and between pin and fork plates. The pin is designed only for single or double shear as the case may be.

3.5.3.3. Fixed Connections

Fixed connection as the term suggests, ideally, must be as stiff as practically possible to prevent any rotation, which usually need for stiffening of the base plate and column wall and more fasteners. Some common practical type of fixed connections is described briefly in this article. Fig.7.9.and Fig 7.10 show the various different fixed column bases with I-shaped and tubular columns. Connections with bolts on only two sides of the column are commonly used for uniaxial moment with axial forces while those connections with fasteners all around the column are used for columns subjected to biaxial bending. Suitability of a particular type depends upon a number of design factors. Design assumptions and procedures for some common type moment resisting column bases are given in the examples later in this chapter.

Fig.7.1.(a) Fixed column bases

Page 194: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-12

Fig.7.10 (b) Fixed column bases

Fig.7.10 (c-d) Fixed column bases

Page 195: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-13

Problem:

Design a bearing type connection to connect two channels SYS 200x80x 24.6 ( Smallest) to a single gusset plate as shown in Figure below. Assume: Design tensile load = 45.5 ton (100 kips) A325 bolts with threads not excluded from shear plane

Standard holes

2500Fy = Ksc.(35.5 ksi)

Solution:

First Trial Size of bolt: ¾ in. Allowable bolt shearing stress = 21 ksi Allowable shear per bolt in double shear = 2 x 21 x .44 =18.5 kips Allowable bolt bearing stress =1.2 Fu = 1.2 x 58 = 69.6 ksi

Allowable bearing on two channels of thickness (7.5mm/25.4 = 0.295 in) = 69.6 x 2 x 0.295 x 3/4

= 30.8 kips So the minimum of the shearing and bearing will be the design capacity of the bolt

= 18.5 kips Number of bolts required = 100/18.5 = 5.4

Use 6 bolts Use gusset plate length = 6 in to accommodate 6 of bolts in two lines

Thickness of Gusset plate thickness required = t = 0.3153/4 x 69.6 x 6

100=

So use 5/16 inch thick gusset plate.

(Note :The gusset plate must also be checked for gross area, net area and block shear)

SYS Subject: Design of Tension Connection Example:7 1

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 1

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 196: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-14

Problem:

Design a unstiffened beam seat to transfer a design load of 10 ton (22 kips ) from a SYS H300x150x36.7 beam to SYS H400x200x66 column. Assume A325 bolts , Standard holes , beam & column Fy = 2500 Ksc( 35.5 ksi)

Cleaarance1/2"

R / Fct

N

k

CriticalSection

forBending

Fig. 7. 11 Unstiffened Beam Seat

Solution:

Find Required Bearing Length N

For H300x150x36.7 from properties table k = rt f + = 8+13 mm = 21 mm

wt = 6.5 mm

Using : )5.2(66.0 kNtFR wY +=

10,000 = 0.66 x 2500 x 0.65 ( N + 2.5 x 2.1)

Solving for N, we get N = 4.0 cm So use N = 4 cm

Find Required Thickness of Bearing Seat

As channel sections are not available ,at present 1998), in Siam Yamato Steel Products Let us assume that the k distance for the beam seat angle will be = 25 mm

To allow for setback and underrun in the length of the beam use total clearance of 20 mm.

The reaction is assumed to act at the center of the bearing length. Largest length of the seat that can be accommodated in the SYS H400x200 = 200 mm So b = 200 mm

k)Clearance2N

R(M −+=

)5.2224

(000,10 −+=M= 15000 kg-cm = 150 kg-m

SYS Subject: Design of Unstiffened Beam Seat Example:7 2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 1

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 197: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-15

yFbF 66.0= =0.66 x 2500 =1650 Ksc

bbFMt 6

= =201650

150006x

x =16.5 mm

Check for Web Crippling

w

fyw1.5

f

w2w t

tFtt

dN3134tR

+=

Use US units, but non dimensional terms can be in any consistent units

bF6Mt

b= =

1650x206x15000 = 16.5 mm

5.695.35

95.6

30431)4.25/5.6(34

5.12 xxR

+=

= 19.44kips (8.837 ton)

N.G

which is less than the applied reaction 10 ton so another section for beam or larger seat to increase N should be selected so that R >10 ton Assuming the threads are excluded from the shear plane the allowable shear stress

ksc) (2113 ksi 30Fv =

For ¾ inch bolt, resistance for shearing R = 30x 0.44 = 13.2 kips (6 ton)

Number of bolt required n = 1.66ton 6ton 10

=

So use 2 no ¾ in bolts The selected angle seat should be checked for the following

• Size enough to accommodate these bolts • Thickness not less than t • Assumed and actual value of k • Bolts excluded from shear plane or not

SYS Subject: Design of Unstiffened Beam Seat Example:7 2

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 198: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-16

Problem:

Design the welded bracket connection as shown in the figure below. Assume beam reaction = 12 ton (26.4 kips) Assume: E70 weld

20

5 5

8

X

Y

H 300x150H 350x175

Fig. 7.12 Welded Bracket Connection

Solution:

1. Find Required Bearing Length N

Web Yielding Criteria:

For H300x150x36.7 from properties table k = rt f + =8+13 mm=21 mm

and wt =6.5 mm

Using )5.2(66.0 kNtFR wY += [concentrated load within d distance from beam end]

12,000 = 0.66 x 2500 x 0.65 ( N + 2.5 x 2.1 )

Solving for N, we get

N = 5.93 cm So use N =larger of k and 5.93 cm = 5.93 cm

Web Crippling Criteria:

w

fyw1.5

f

w2w t

tFtt

dN3134tR

+=

[Use US units for dimensional parameters and any consistent units for non dimensional parameters]

cm 0.65cm 0.9 x ksi 35.51.5

cm 0.9cm 0.65

cm 30cm N

312in) .434x(6.5/25kips 12x2.2

+=

Solving for N, we get N = 11.45 cm From the above two criteria the required minimum N = 11.45 cm

Providing for clearance, total bearing length of the seat = 11.45 + 1.2 =12.65 cm

SYS Subject: Design of Welded Bracket Example:7 3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 199: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-17

Use 13 cm.

Moment at the critical section = 12,000 x (13-13/5-1.2) =63600 kg-cm = 636 kg-m Try vertical leg = 20 cm and

Horizontal leg = 5 cm

cm 82x52x20

2x20x2x5y =

+=

3233

x cm 17492x83

8)(2082I =

+

−+=

xz I

yMq =

kg/cm 290.91749

63600x8qz ==

kg/cm 12050

6000length totalRqz ===

kg/cm 314.67 290.9120 qqq 222z

2y =+=+=

So use E70 fillet weld with q = 314.67 or more .

SYS Subject: Design of Welded Bracket Example:7 3

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 200: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-18

Problem:

Design the T-stub moment connection for SYS H250x125x29.6 beam to SYS H300x150x36.7 column as shown in the figure below. Use Steel: A36 and A325 bolts Design beam shear = 18 kips (8.18 ton) and beam moment = 55 ft-kips (7.6 ton-m)

Fig. 7.13 Beam-to-column T-stub Connection

Solution:

1. Computing Bolt Strengths

Strength for For dia 7/8 in For dia 1 in

Tension = 44 Ab 26.4 34.6

Single shear = 30 Ab 18 23.6

Bearing on beam flange

= 69.6 x 0.57 x d

69.9 x 7/8 x 0.512

= 31.31

69.9 x 1 x 0.512

= 35.63

Bearing on column flange

= 69.6 x 0.57 x d

69.9 x 7/8 x 0.551

= 33.70

69.9 x 1 x 0.551

= 38.51

Connection Between Tee and Beam

Force on bolts = M / d = 55 x 12 / 9.84 = 67 kips

No of 7/8 in bolt required = 67 / 18 = 3.72 So use 4 No -7/8 in bolts.

Connection Between Tee and Column

Force on bolts P =67 / 4 = 16.75 kips / bolt No of 7/8 in bolt required = 67 / 18 = 3.72 Assume Q/P= 0.5; Q = 0.5 x 16.75 = 8.375 kips Total Tension = T = P+Q =16.75 + 8.375 = 25.125 kips

Try 4No-7/8 in bolts.

SYS Subject: Beam-to-column T-stub Connection Example:7 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 201: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-19

T-stub

Try some T section with tf = 1 in , tw =0.6 in and bf = 8 in

Vertical spacing of bolts g = 4.5 in Horizontal spacing of bolts = column flange width – 2 x edge distance

= 5.9-2x1.5 = 2.9 in half the width of the Tee w = 6/2 = 3 in

a = (8 – 4.5 ) / 2 = 1.75 in < 2 tf b = (4.5-0.6 )/2 –1/16 = 1.88 in

( )( )

=+

−=

+

−=

221x4.25x12

8770x1.75x

218x4.25x12

87100x1.88x

221wt270ad

218wt2100bdPQ

0.36

P = 16.75

Q =0.36 x 16.75 = 6.03 kips T= P+Q = 22.78 < 26.4 (bolt strength in tension) OK

Bending in Flange

Moment M1 = Q a = 6.03 x 1.75 = 10.55 kips at bolt line Moment M2 = Q ( a + b )-T b = 6.03 ( 1.75 + 1.88 ) – 25.125 x 1.88 = 25.34 kips at web

3inch 0.7086

24.25x16

2wtS ===

27ksiksi 25.40.708

18S

force shearf <=== OK

Shear

Direct shear stress = shear force / no of bolts = 18/8 = 2.25 kips/bolt Shear stress fv = 2.25 / 0.6 = 3.75 ksi

=−=−= 22.15x3.7524422.15f244F vt 43.65 ksi

27ksiksi 25.40.708

18S

force shearf <=== OK

Total strength = 43.65 x 0.6 = 26.19 > T (25.125) OK

SYS Subject: Beam-to-column T-stub Connection Example:7 4

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 202: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-20

Problem:

Design the moment resistant connection for SYS H300x150x36.7 beam to SYS H400x200x66 column as shown in the figure below. Assume

• Slip critical connection • Steel yield strength = 35.5 ksi (2500 ksc) • A325 bolts and E70 electrodes • Design beam shear = 40 kips (18.2 ton) • Beam moment = 160 ft-kips (22.12 ton-m)

Fig. 7.14 Beam-to-column Moment Connection

1. Top Flange Plate

Tension force on the flange T = Moment / Depth = 160 x 12 / 11.81 = 162.57 kips

Area of plate required y

s 0.6FT A = =162.57 / (0.6 x 36 ) = 7.526 sq. inch.

Available flange width of the column = 7.87 in Providing 1.5 inch for welding space

Maximum available width = 7.87-1.5 =6.37 inch So use 1.25 x 6 in. = 7.5 sq. inch For 3/8 inch bolt q = 21 x 0.707 x 3/8 = 5.56 kips/ inch Length of the weld required = 162.57 / 5.56 = 29.23 inch

Provide 6 inch along end and 12 inch on each side. Total = 6+2 x 12 = 30 > 29.23 inch OK

Bottom Flange Plate

To facilitate the welding the bottom flange is chosen about 211 inch wider than the beam

flange.

Plate width = 5.91+1.25 = 7.16 So use 7.5 inch x 1 inch = 7.5 sq. inch

Use 83 inch x 15 inch weld on each side of the plate.

SYS Subject: Beam-to-column Moment Connection Example:7 5

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 203: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-21

Shear Plate

Bolts strength: single shear strength: So for 8

3 inch bolt strength in single shear = 17 x 0.6 = 10.2 kips

Bearing = 1.2 x 58 x 87

41

x =15.2 kips (Assuming plate thickness = 41 )

No of bolts required , n = Shear force / bolt strength = 40/10.2 = 3.92

Use 4 - 83 inch bolts.

Length of shear plate = ( n-1 ) x spacing + 2 x edge distance

= 3x3+2x 211 =12 inch

Thickness of plate required inch 0.23412 x 35.5 x 0.4

40L Fforce shear

tv

===

So use inch 5 x inch41 (So assumed plate thickness OK)

Length required for 163 inch weld L = inch 14.4

2.7840

nchstrength/i weldforce shear

==

Use 10-in weld on each side.

Column-Flange Stiffener at Top Flange

in. 0.5121.107.5 x 0.4fA0.4flange col. of thickness Min. >=== Stiffeners

required. Column-flange stiffener at bottom flange

Check for web crippling:

w

fyw

f

ww t

tF1.5

tt

dN

31267.5tR

+=

315.0512.05.35

512.0315.0

75.15131)315.0(5.67

5.12 xxR

+=

= 6.69 x 1.09 x 7.596

= 55.39 < 162.57 kips Stiffeners required

)512.0(0.63 515.7

5 ++=

+≥

xktA

tcbf

fw

= 1.12 inch.> tw ( .315 ) Stiffeners required Area of stiffener required As =7.5 – 0.315 (0.75+ 5 x 1.142) = 5.465 sq. inch

SYS Subject: Beam-to-column Moment Connection Example:7 5

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:2 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 204: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-22

Area for each stiffener = 5.465 / 2 =2.7325 sq inch.

So use two - 1 inch x 3 inch stiffeners both on top and bottom.

Column-Web shear

==wtcd

Vfv

152x.63)x0.32x0.512(15.75162.57

−−

Actual shear stress = 38.32 ksi > (0.4 x35.5)

os(33.68)0.6x35.5xC3.46x0.3150.4x35.5x1162.57

Cos FtdF VTotalA

t

wcvs

−=

−=

θ= 5.77 sq. inch

Area for one plate = 5.77 /2 = 2.885 sq. inch Use two - 1inch x 3 inch plates, one on each side.

SYS Subject: Beam-to-column Moment Connection Example:7 6

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:3 / 3

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 205: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-23

Problem:

Design a column splice between two columns of sizes SYS H150x150x31.5 and SYS H200x150x30.6 with the following data. Material properties:

Steel yield strength = 35.5 ksi (2500 ksc) Ultimate strength = 56.8 ksi (4000 ksc)

A325 bolts and E70 electrodes

(bolt threads not excluded from the shear plane)

Design loads:

Load Case

Axial (kips)

Moment (ft-kips)

Shear (kips)

DL 40 (18.18 ton) -- --

LL 70 (31.81 ton) -- --

WL 3 (1.36 ton) 20 (2.76 ton-m) 4 (1.82 ton) Solution

1. Flange Splice Plates

AISC requires considering the tension due to lateral loads acting in conjunction with 75 percent of the dead-load stress and no live load. Axial load on each flange due to 75 % of dead load = 0.5 x 0.75 x 40 = 15.0 kips

Axial load on each flange due to moment = 7.64

1220x depth

Moment= = 31.42 kips

Total tension = 15.0 + 31.42 = 46.42 kips

Gross area of plate, y0.6F

TensionAg = = 0.6x35.5

46.42 = 2.17 sq. inch

Flange width available = 5.91 inch; use plate width = 5.5 inch

Thickness of plate based on gross area requirement = 2.17 /5.5 = 0.39 inch

Net area of plate, u

n 0.5FTensionA = =

0.5x56.846.42 = 1.63 sq. inch

Assume 2 no ¾ bolts Thickness of plate based on net area requirement = 1.63 /(5.5-2x7/8) = 0.434 inch

So use ½ inch x 5.5 inch plate

Fasteners

Try ¾ inch bolts Strength in single shear = 21 x 0.44 = 9.24 kips

SYS Subject: Column Splice Example:7 6

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 206: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 7-24

Strength in bearing = 1.2 x 56.8 x 0.315 x ¾ = 16.10 kips

No of bolts required = 46.42 / (4/3 x 9.24) = 3.76 Use 4 ¾ inch bolts.

Weld for Shop Connection

Length of 16

3 E70 weld required = 46.42 / (0.3x70x.707x3/16) = 16.67 inch

Use 17 inch of16

3 inch weld.

Fill plate thickness = (7.84-5.87) / 2 = 0.98 inch Use 1 inch.

SYS Subject: Column Splice Example:7 7

Siam Yamato Steel Co. Ltd. Design Code: Designed by: BSS Sheet No:1 / 2

Thailand AISC/ASD (1991) Checked by: NA Reference Chapter: 7

Page 207: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 8-1

References 1. Nishino Fumio, Sato Naohiko, Hsegawa Akio, Critical Comments on the Recent Trends of

Design Code Change to Load Factor Design, Proceedings of Japan-Thai Civil Engineering Conference, Bangkok, March 1985

2. Johnson,B.b., Lin,F.J., Glambos,T.V., Basic Steel Design, 3rd Ed., Prentice-Hall, 1986

3. Bresler, B., Lin, T. Y., Scalzi, J. B., Design of Steel Structures, 2nd Ed., John Wiley & Sons, 1993

4. Crawley, S. W., Dillon, R. M., Steel Buildings Analysis and Design, 4th Ed., John Wiley & Sons, 1992

5. Gaylord, Jr., E. H. Gaylord, C.N., Stallmeyer, J.E., Design of Steel Structure, 3rd Ed. McGraw-Hill, 1992

6. Dowling, P. J., Harding, J. E., Constructional Steel Design An International Guide, Elsevier Applied Science, 1992

7. Nethercot, D. A., Limit States Design of Structural Steelwork, 2nd Ed., Chapman and Hall, 1993

8. Morris, L.J., Plum, D. R., Structural Steelwork Design to BS 5950, Longman Scientific & Technical, 1988

9. Martin, L. H., Purkiss, J. A., Structural Design of Steelwork to BS 5950, Edward Arnold, 1992

10. Chanakya, A., Design of Structural Elements, E & FN SPON, 1994

11. The Steel Construction Institute, Steel Designer’s Manual, 5th Dd., Blackwell Scientific Publications, 1992

12. Hogan, T. J., Thomas, I. R., Design of Structural Connection, 4th Ed., Australian Institute of Steel Construction

13. AISC, Manual of Steel Construction, Allowable Stress Design, 9th Ed., 1989

14. AISC, Manual of Steel Construction, Load and Resistance Factor Design,2nd Ed., 1993

15. AISC, Engineering for Steel Construction, A Source Book on Connection, 1984

16. AISC, Engineering for Steel Construction, Detailing for Steel Construction, 1983

17. JIS, 1994 JIS Handbook Ferrous Materials & Metallurgy, Japanese Standards Association, 1994

18. The International Technical Information Institute, Handbook of Comparative World Steel Standards, 1990

Page 208: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 8-2

19. AIJ, Design Standard for Steel Structures, Architectural Institute of Japan, 1973 (in Japanese)

20. Uniform Building Code, 1991 Ed.

21. ASTM Standards

• A 6/A 6M-92, Standard Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Pilling, and Bars for Structural Use

• A 36/A 36M, Standard Specification for Structural Steel

• A 242/A 242M - 91a, Standard Specification for High-Strength Low-Alloy Structural Steel

• A 283/A 283M-92, Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates

• A 284/A 284 M-90, Standard Specification for Low and Intermediate Tensile Strength Carbon-Silicon Steel Plates for Machine Parts and General Construction

• A 328/A 328 M-90, Standard Specification for Steel Sheet Piling

• A 529/A 529 M-92, Standard Specification for High-Strength Carbon-Manganese Steel of Structural Quality

• A 570/A 570 M-92, Standard Specification for Steel, Sheet an Strip, Carbon, Hot-Rolled, Structural Quality

• A 588/A 588 M-91a, Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi [345 Mpa] Minimum Yield Point to 4 in. [100 mm] Thick

• A 633/A 633 M-92, Standard Specification for Normalized High-Strength Low-Alloy Structural Steel

• A 656/A 656 M-89, Standard Specification for Hot-rolled Structural Steel, High-Strength Low-Alloy Plate with Improved Formability

• A 678/A 678 M-92, Standard Specification for Quenched-and-Tempered Carbon-Steel- Hot-rolled Structural Steel and High-Strength Low-Alloy Steel Plates for Structural Applications

• A 709/A 709 M-92, Standard Specification for Structural Steel for Bridges

• A 808/A 808 M-91, Standard Specification for High-Strength, Low Alloy Carbon, Manganese, Columbium, Vanadium Steel of Structural Quality with Improved Notch Toughness

• A 370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products

• E23-94a, Standard Test Method for Fire Test of Building Construction and Materials

Page 209: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 8-3

22. JIS Standards

• JIS G 0303, General Rules for Inspection of Steel

• JIS G 0301, Rolled Steel for General Structures

• JIS G 3106, Rolled Steel for Welded Structures

• JIS G 3192, Dimensions, Mass and Permissible Variations of Hot rolled Steel Sections

• JIS G 3194, Dimensions, Mass and Permissible Variations of Hot rolled Steel Plates, Sheets and Strips

• JIS Z 2201, Test Pieces for Tensile Test for Metallic Materials

• JIS Z 2202, Test Pieces for Impact Test for Metallic Materials

• JIS Z 2241, Method of Tensile Test for Metallic Materials

23. BS Standards

• BS4: Part 1: 1980, Structural Steel Section Part1. Specifications for Hot-rolled Sections

• BS 476: Fire Test on Building Materials and Structures

• BS 4360: 1990, British Standard Specifications for Weldable Structural Steels

• BS 5950: Part 1: 1990, British Standard Structural Use of Steelwork in Building

• Part 1: Code of Practice for Design in Simple and Continuous Construction: Hot rolled Sections

• Part 2: Specifications for Materials, Fabrications and Erections: Hot rolled sections

• Part 3: Design in Composite Construction

• Part 4: Code of Practice for Fire Resistant Design

24. DIN Standards

• DIN 17100, 1980, Steels for General Structural Purposes

• DIN 50145, 1975, Testing of Metallic Materials- Tensile Test

• DIN 50115, 1991, Notched Bar Impact Testing of Metallic Materials

Page 210: TN H01-Hand Book for Design of Steel Structures

Hand Book for Design of Steel Structures 8-4

25. AS Standards

• AS 1204–1980, Structural Steels Ordinary Weldable Grades

• AS 3679-1990, Hot-rolled Structural Steel Bars and Sections

• AS 4100-1990, Steel Structures

26. ISO Standards

• ISO 83-1976, Steel – Charpy Impact Test (U-Notch)

• ISO 148-1983, Steel – Charpy Impact Test (V-Notch)

• ISO 404-1992, Steel and Steel Products – General Technical Delivery Requirements

• ISO 630 – 1980, Structural Steels

27. EN Standards

• EN 10025–1, 1991, Hot Rolled Unalloyed Structural Steel Products – Technical Delivery Conditions

• EN 10045-1, 1991, Charpy Impact Test on Metallic Materials

28. TIS Standards

• TIS 224 No. – 1982, Tensile Test of Steel and Iron

• TIS 244 NO. 8- 1982, Charpy Impact Test for Steel

• TIS 1227-1994, Hot-Rolled Structural Steel Shapes