to poster 2012 vrubino photoel€¦ · to_poster_2012_vrubino_photoel.pptx author: vito rubino...

1
Laboratory earthquakes: Measuring surface displacements with high;speed DIC Vito Rubino, Nadia Lapusta, Ares Rosakis California Ins?tute of Technology The full;field displacement clearly shows rela?ve mo?on on the two sides of the fault. In order to compute strains, we denoise the displacement field using the tool available in COSI;Corr, based on Buades et al (2008). Research goals Inves?gate the feasibility of dynamic full;field earthquake measurements from space through laboratory studies. First, employ digital image correla?on techniques (such as VIC;2D and COSI;Corr) to study the final sta?c deforma?on of a dynamic crack with ‘before’ and ‘aRer’ event images of specimens undergoing dynamic fric?onal sliding. Next, extend digital image correla?on to high speed photography to capture dynamic rupture propaga?on. Specimen configura?ons Sta?c Measurements San Andreas strike6slip Fault, Carrizo Plain (h>p://tharsisgallery.com/san6andres6fault6pictures) 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 10 8 6 4 2 0 2 x 10 4 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 6 5 4 3 2 1 0 1 2 x 10 4 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 2 1 0 1 2 3 4 5 x 10 4 Conclusions and Future Work Successfully characterized full;field sta?c displacements and strain of a dynamic crack with digital image correla?on techniques (COSI;Corr and VOC;2D). Performed dynamic measurements by coupling high speed photography and digital image correla?on. Designing experiments to study poten?al transi?on to supershear speeds due to favorable heterogeneity. 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 5 4 3 2 1 0 1 2 3 4 5 x 10 4 Study discussed in this poster : interface is either uniform or par?ally glued in order to confine the rupture before it reaches the ends of the specimen. Ongoing work : interface contains a patch of heterogeneity with lower strength, higher stress, or pre;exis?ng subcri?cal crack. The aim is to study dynamic triggering of a secondary rupture on a patch of heterogeneity and explore poten?al transi?on to supershear speeds (Liu and Lapusta, 2008). Displacement field u Displacement u vs. s Strain field ε xx Fault parallel displacement (μm) Fault normal displacement (μm) ε xx ε yy ε xy 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 40 35 30 25 20 15 10 5 0 ARer Filtering Before Filtering 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0 5 10 15 20 25 30 From real earthquakes to Earthquakes are mimicked in the laboratory by the dynamic rupture propaga?ng along an inclined fric?onal interface formed by two Homalite quadrilateral plates under compression (Xia et al., 2004). The sta?c compressive stress P, applied to the test specimen assembly, provides resolved shear and normal stresses on the fault, simula?ng tectonic stresses applied to a strike;slip fric?onal fault within the Earth’s crust. Dynamic rupture is triggered through the electrical discharge provided by a NiCr wire filament. Digital Image Correla?on (DIC) is an op?cal method to measure the deforma?on on a specimen surface. DIC technique iden?fies gray level pa]erns in small pixel subsets and tracks their mo?on during deforma?on. Two methods are used in this study: VIC;2D (Correlated Solu?ons Inc.) and COSI;Corr (Leprince et. al, 2007). Results are presented for COSI;Corr. Before dynamic rupture ARer dynamic rupture 50 100 150 200 250 0.4 0.35 0.3 0.25 0.2 0.15 0.1 Location Data value unfiltered filtered • Interface length (shown in frame): ~40 mm • Rupture goes through interface in t < 20 μs • Computed rupture speed: v r ~ 2.5 mm/μs • Compare to Homalite wave speeds: - c s = 1.29 mm/μs - c p = 2.61 mm/μs • Mach cone angle is given by: sin θ = c s / v r , θ ~ 30° • Mach cone will advance ~ 12.5 mm Subset: 21 pixels Step: 1 pixels Digital Image Correla?on (DIC) Dynamic Measurements laboratory earthquakes All quotes are in mm x 1 x 2 u 1 u 2 Large: characteris?c pa]ern Small: high resolu?on Subset size: 32x32 Step: 4 1 pixel 83 μm 42.6 mm 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 s x 1 u 1 ' Fault Heterogenei?es We are currently inves?ga?ng supershear transi?on by dynamic triggering of a secondary rupture on a patch of heterogeneity, such as a preexis?ng subcri?cal crack or a patch of higher prestress, to extend and experimentally validate the study of Liu and Lapusta,2008. t = 29 μs t = 37 μs t = 41 μs t = 50 μs t = 30 μs t = 35 μs t = 40 μs t = 45 μs High-speed photoeleastic images from Mello et al, 2010.

Upload: others

Post on 07-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TO Poster 2012 VRubino PhotoEl€¦ · TO_Poster_2012_VRubino_PhotoEl.pptx Author: Vito Rubino Created Date: 11/8/2012 10:24:18 PM

Laboratory(earthquakes:(Measuring(surface(displacements(with(high;speed(DIC(Vito%Rubino,%Nadia%Lapusta,%Ares%Rosakis%

California(Ins?tute(of(Technology(

The(full;field(displacement(clearly(shows(rela?ve(mo?on(on(the(two(sides(of(the(fault.(In(order(to(compute(strains,(we(denoise(the(displacement(field(using(the(tool(available( in(COSI;Corr,(based(on(Buades(et(al((2008).((

Research(goals(• ((Inves?gate(the(feasibility(of(dynamic(full;field(earthquake(measurements(from(space(through(laboratory(studies.(• ((First,(employ(digital(image(correla?on(techniques((such(as(VIC;2D(and(COSI;Corr)(to(study(the(final(sta?c(deforma?on(of(a(dynamic(crack(with(‘before’(and(‘aRer’(event(images(of(specimens(undergoing(dynamic(fric?onal(sliding.(• (Next,(extend(digital(image(correla?on(to(high(speed(photography(to(capture(dynamic(rupture(propaga?on.((

Specimen(configura?ons(

Sta?c(Measurements(San%Andreas%strike6slip%Fault,%Carrizo%Plain%(h>p://tharsisgallery.com/san6andres6fault6pictures)%

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 −10

−8

−6

−4

−2

0

2

x 10−4

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 −6

−5

−4

−3

−2

−1

0

1

2x 10−4

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500−2

−1

0

1

2

3

4

5x 10−4

Conclusions(and(Future(Work(• ((Successfully(characterized(full;field(sta?c(displacements(and(strain(of(a(dynamic(crack(with(digital(image(correla?on(techniques((COSI;Corr(and(VOC;2D).((• ((Performed(dynamic(measurements(by(coupling(high(speed(photography(and(digital(image(correla?on.((• ((Designing(experiments(to(study(poten?al(transi?on(to(supershear(speeds(due(to((favorable(heterogeneity.(

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 −5

−4

−3

−2

−1

0

1

2

3

4

5x 10−4

• (((Study(discussed(in(this(poster:(interface(is(either(uniform(or(par?ally(glued(in(order(to(confine(the(rupture(before(it(reaches(the(ends(of(the(specimen.(• (((Ongoing(work:(interface(contains(a(patch(of(heterogeneity(with(lower(strength,(higher(stress,(or(pre;exis?ng(subcri?cal(crack.(The(aim(is(to(study(dynamic(triggering(of(a(secondary(rupture(on(a(patch(of(heterogeneity(and(explore(poten?al(transi?on(to(supershear(speeds((Liu(and(Lapusta,(2008).(

Displacement(field(u% Displacement(u(vs.(s% Strain(field(εxx%

Fault(parallel(displacement((((µm)( Fault(normal(displacement((((µm)(

εxx εyy εxy

Fault parallel displacement

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500−40

−35

−30

−25

−20

−15

−10

−5

0

ARer(Filtering(

Before(Filtering(

Fault normal displacement

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

From(real(earthquakes(to(

Earthquakes(are(mimicked( in( the( laboratory(by( the(dynamic( rupture(propaga?ng(along(an(inclined(fric?onal(interface(formed(by(two(Homalite(quadrilateral(plates(under(compression((Xia( et( al.,( 2004).( The( sta?c( compressive( stress(P,( applied( to( the( test( specimen( assembly,(provides( resolved( shear( and( normal( stresses( on( the( fault,( simula?ng( tectonic( stresses(applied(to(a(strike;slip(fric?onal(fault(within(the(Earth’s(crust.(Dynamic(rupture( is(triggered(through(the(electrical(discharge(provided(by(a(NiCr(wire(filament.(((

Digital( (Image(Correla?on((DIC)(is(an(op?cal(method(to(measure(the(deforma?on(on(a(specimen(surface.(DIC(technique(iden?fies(gray(level(pa]erns(in(small(pixel(subsets(and(tracks(their(mo?on(during(deforma?on.(Two(methods(are(used(in(this(study:(VIC;2D((Correlated(Solu?ons(Inc.)(and(COSI;Corr((Leprince(et.(al,(2007).(Results(are(presented(for(COSI;Corr.((

Before(dynamic(rupture% ARer(dynamic(rupture%

50 100 150 200 250

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

Location

Dat

a va

lue

unfilteredfiltered

•  Interface length (shown in frame): ~40 mm •  Rupture goes through interface in t < 20 µs •  Computed rupture speed: vr ~ 2.5 mm/µs •  Compare to Homalite wave speeds: - cs = 1.29 mm/µs - cp = 2.61 mm/µs •  Mach cone angle is given by: sin θ = cs / vr , θ ~ 30° •  Mach cone will advance ~ 12.5 mm

Subset: 21 pixels Step: 1 pixels

Digital(Image(Correla?on((DIC)( Dynamic(Measurements(

laboratory(earthquakes(

All(quotes(are(in(mm(

x2’

x1

x2

u1# u2#

Large:(characteris?c(pa]ern(Small:(high(resolu?on(

• ((Subset(size:(32x32%• %%Step:(4(1 pixel ∼ 83 µm

42.6 mm

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 −0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

s(

x1’

u1'#

Fault(Heterogenei?es(We(are(currently(inves?ga?ng(supershear(transi?on(by(dynamic(triggering(of(a(secondary(rupture(on(a(patch(of(heterogeneity,(such(as(a(preexis?ng(subcri?cal(crack(or(a(patch(of(higher(prestress,(to(extend(and(experimentally(validate(the(study(of(Liu(and(Lapusta,2008.((((

t = 29 µs

t = 37 µs

t = 41 µs

t = 50 µs

t = 30 µs

t = 35 µs

t = 40 µs

t = 45 µs

High-speed photoeleastic images from Mello et al, 2010.