topological defect formation and dynamics in ion coulomb crystals

60
Topological Defect Formation and Dynamics in Ion Coulomb Crystals Center for Qu antum E ngineering and S pace T ime Research (QUEST) Physikalisch-Technische Bundesanstalt, Braunschweig Tanja E. Mehlstäubler iQSim13 – Brighton, December 2013 Ramil Nigmatullin , Alex Retzker, Martin Plenio, Adolfo del Campo, Wojciech Zurek Universität Ulm, Hebrew University Jerusalem, Los Alamos NL K. Pyka, J. Keller , H. L. Partner, T. Burgermeister, D.M. Meier, K. Kuhlmann

Upload: samson

Post on 06-Feb-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Topological Defect Formation and Dynamics in Ion Coulomb Crystals. Tanja E. Mehlstäubler. K. Pyka, J. Keller , H. L. Partner, T. Burgermeister, D.M. Meier, K. Kuhlmann. Center for Qu antum E ngineering and S pace T ime Research (QUEST) Physikalisch-Technische Bundesanstalt, Braunschweig. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Topological Defect Formation and Dynamics in Ion Coulomb Crystals

Center for Quantum Engineering and Space Time Research (QUEST)Physikalisch-Technische Bundesanstalt, Braunschweig

Tanja E. Mehlstäubler

iQSim13 – Brighton, December 2013

Ramil Nigmatullin, Alex Retzker, Martin Plenio, Adolfo del Campo, Wojciech Zurek

Universität Ulm, Hebrew University Jerusalem, Los Alamos NL

K. Pyka, J. Keller, H. L. Partner, T. Burgermeister, D.M. Meier, K. Kuhlmann

Page 2: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

QUEST - Centre for Quantum Engineering and Space-Time ResearchQUEST - Centre for Quantum Engineering and Space-Time Research

Short History of the Lab...

20092010

2011This Talk: results 2012/13

Page 3: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

= 150 ms

1 day

100 days

c

A

TNQ

11Instability of

frequency standard:

Qwith

3x10-15 @1s

multiple ions?

clock laser

: averaging time

NA: number of atoms

: linewidth

Motivation

Page 4: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Precision Spectroscopy on many ions ?

Al+/Mg+ QL-clock

single Yb+-ion?

Multi-ion clocksEntangled ion clocks

Motivation

unite

Page 5: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

2D Paul ion traps

URF !

UDC

UDC

URF ! Axial micromotion?

Radial direction:

S0 P0

Page 6: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Challenges

On-axis micromotion e.g. Al+ clock → = -3×10-17 over l=3 µm observed (1)

(1) C. W. Chou et al., PRL (2010) 070802

trap

Page 7: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Tolerance on notches

On-axis rf trap fields

N. Herschbach et al., Appl. Phys. B (2012)

FEM calculations of RF-potential

Finite length effect on rf field

10-1810-18

GND

URF

Page 8: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Scalable ion clock with high control of ion motion

RF

RFextracompensationlayer

Compensated micromotion in all 3D 3D laser access Separated loading and spectroscopy segment

almost idealquadrupole trap:

Loss factor L = 1.2

Page 9: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Trap Prototype (Rogers 4350B)

Trap stack with OFHC Cu Foilaligned under Zeiss microscope < 20µm

Optocast 3410 Gen2: UV+heat cured

Pyka et al., Appl. Phys.B (2013)

Page 10: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Trap Prototype (Rogers 4350B)

Trap stack with OFHC Cu Foil

lasered electrodes

200µm

2mm

non magnetic SMD resistors+capacitors (Kester solder)bonded gold wires d= 30µm

low pass filter (RC)-1 = 110 Hz x 2

Pyka et al., Appl. Phys.B (2013)

Page 11: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

High-end trap

„High-accuracy optical clocks with trapped ions“

Finland (MIKES), Czech Republic (CMI), United Kingdom (NPL), Germany (PTB/QUEST)

laser machined ALN ceramic wafers: improved thermal conductivity: 160 Wm-

1K-1

mechanical stability higher breakdown threshold

TemperatureSensor

Page 12: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

First Test of the Prototype Trap with 172Yb+ !

New experiment to test and evaluate traps and Coulomb crystals

2. 172Yb+ Coulomb crystals

1 2 3

1. Shuttling of ions

• with Yb+: life time of several days observed

Page 13: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Measuring Micromotion in 3D - Setup

3D laser access!

Page 14: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Test: move ion in radial rf potential !

S/Smax = 0.01EDC = 0.9 mV/mmx ~ 50 nm

Photon-Correlation Spectroscopy

202

2

105.82

cv

2nd order Doppler shift /Time dilation:

Page 15: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Axial Micromotion in Rogers Trap

move ion along trap axis:

1810²

mcEkin

!

Time dilation shift:

Sensitivity < 10-19 demonstrated 12 ions stored with time dilation shift below 10-18 √

Pyka et al., Appl. Phys.B (2013)

DC Stark-shift √

Page 16: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Coulomb crystals in well-controlled environment

ca. 80 ions

Linear-

Zigzag-

Helix

Page 17: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Topological Defect Formation in Ion Coulomb Crystals

Landa, H., Marcovitch, S., Retzker, A., Plenio, M. B., Reznik, B.“Quantum Coherence of Discrete Kink Solitons in Ion Traps”, PRL 104, 043004 (2010).

• Quantum information

• Soliton physics in Coulomb crystals

Page 18: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Landa, H., Marcovitch, S., Retzker, A., Plenio, M. B., Reznik, B.“Quantum Coherence of Discrete Kink Solitons in Ion Traps”, PRL 104, 043004 (2010).

C. Schneider, D. Porras, and T. Schaetz, Rep. Prog. Phys.75, 024401 (2012).

Del Campo, A., De Chiara, G., Morigi, G., Plenio, M. B., Retzker, A.“Structural Defects in Ion Chains by Quenching the External Potential:The Inhomogeneous Kibble-Zurek Mechanism”, PRL 105, 075701 (2010).

Kibble-Zurek?

exp. kinks?

Topological Defect Formation in Ion Coulomb Crystals

Page 19: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Ion Coulomb Crystals

Trap Potential1 D

2 D

3 D

Page 20: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Symmetry breaking phase transitions

What happens when a system changes from one equilibrium condition to another?

• Examples for phase transitions: - water freezes to ice

- ferro-magnetism para-magnetism - metal superconductor

- early universe

Nature Physics 7, 2 (2011) doi:10.1038/nphys1874

Higgs field

Page 21: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Symmetry breaking in ion Coulomb crystals

Rotational symmetry Mirror symmetry

defects

1: Fishman et al., PRB 77, 064111 (2008) 2nd order phase transition1

Page 22: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

- ferro-electric domains in solid state systems (manganites)- early universe: appearance of domains?

Griffin, S. M. et al., Phys. Rev. X 2, 041022 (2012) jpl.n

asa.

gov

Examples for defects in other systems

Page 23: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

The Kibble-Zurek Mechanism

1976: Tom Kibble postulates the appearance of domains in the early Universe

1985: Wojciech Zurek proposes to test cosmology in super-liquid helium

universal theory applicable to all 2nd order phase transitions

liquid crystalssuper-liquid heliumBose-Einstein condensatessuperconductors

Chuang et al., Science (1991)Ruutu et al., Nature (1996)Sadler et al., Nature (2006)Weiler et al., Nature (2008)Griffin et al., Phys. Rev. X (2012)

Page 24: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

1976: Tom Kibble postulates the appearance of domains in the early Universe

1985: Wojciech Zurek proposes to test cosmology in super-liquid helium

The Kibble-Zurek Mechanism

→ test in laser-cooled ion Coulomb crystals!

• high sensitivity to control parameter

•well-defined critical exponents • high control of environmental parameters

universal theory applicable to all 2nd order phase transitions

Page 25: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

The Kibble-Zurek Mechanism

sizesystem

Page 26: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

The Kibble-Zurek Mechanism

sizesystem

Page 27: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

The Kibble-Zurek Mechanism

del Campo et al., PRL 105, 075701 (2010) Fishman et al., PRB 77, 064111 (2008)

sizesystem

test of KZM with defined , z

Page 28: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

The Kibble-Zurek Mechanism

Prediction of KZM

Power law scaling of defect density:

test of KZM with defined , z

Page 29: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Inhomogeneous Systems

• harmonic trap: position dependent transition

Page 30: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Inhomogeneous Systems

• harmonic trap: position dependent transition

• moving transition front• compare vF with vSound

„Causality enhancement“

Page 31: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Inhomogeneous Systems

finite size - 3 regimes

• homogeneous KZM• inhomogeneous KZM• max. 1 defect doubled:

Saito et al., Phys. Rev. A 76, 043613 (2007)Dziarmaga et al., Phys. Rev. Lett. 101, 115701 (2008)Monaco et al., Phys. Rev. B 80, 180501(R) (2009)

-ln [Qax]

ln

[d]

-ln [Qax]

ln

[d]

simulation of 30 ions

„Causality enhancement“

Page 32: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Non adiabatic radial quenches

• confinement to 2D:t1/t2 = 1.3

• mixer nonlinearity corrections to Q,eff

• monitor radial frequencies

Radial trap frequencies

Page 33: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Localized kink for

Extended kink for

• same statistics, lower losses

Different types of defects

Page 34: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Examples of kink creation

Page 35: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Stability of topological defects!

Peierls-NabarroPotentials:

Page 36: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Creating stable topological defects for KZM!

• Same statistics for d < 1• Collision limited lifetime: ca. 1.6 s• Spontaneous kink creation rate: 1 every 67 s

Shallow ramps: Odd kink

Deep ramps: extended kink

Page 37: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Understanding kink dynamics – short time scales

Pyka et al., arXiv:1211.7005 (2012)

• Kink losses at short time scales – simulations!

filled symbols: createdempty symbols: surviving

•Friction independent kink creation rate

→ underdamped regime!

- Kibble-Zurek

Simulations for different friction parameters

Page 38: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Test of Kibble-Zurek Scaling

• Theory: 8/3 2.67• Simulations: 2.63 ± 0.13• Experiment: 2.7 ± 0.3

light grey: simulations

Pyka et al., Nat. Commun. 4, 2291 (2013)

Page 39: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Test of Kibble-Zurek Scaling

• Theory: 8/3 2.67• Simulations: 2.63 ± 0.13• Experiment: 2.7 ± 0.3

light grey: simulations

Pyka et al., Nat. Commun. 4, 2291 (2013) Ulm et al., Nat. Commun. 4, 2290 (2013)

Page 40: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Kink Motion

Page 41: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Motion of Kinks - Simulations

quench

PN

pot

entia

l / k

B m

K

x / µm

PN

pot

entia

l / k

B m

K

x / µm

odd kink

extended kink

Page 42: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Motion of Kinks - Experiment

motion of localized kink

motion of extended kink

Page 43: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Influence of Mass Defects

Page 44: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Mass defects

Defect scaling with molecules YbOH+

Page 45: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Mass defects

Spatial distribution of kinks

two kinks – kink interaction!

Page 46: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Mass defects

Spatial distribution of kinks

extended kink:

odd kink:

two kinks:

Page 47: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Created kinks Detectable kinks

Mass defects: kink creation rate + stability

!

Page 48: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Deterministic Control of Kinks with Mass Defects & Electric Fields

Page 49: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Oscillation and stabilization by mass defects

Credit: R. Nigmatullin

Page 50: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Oscillation and stabilization by mass defects

Credit: R. Nigmatullin

Page 51: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Oscillation and stabilization by mass defects

Experiment

Page 52: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Electric Fields and Mass Defects

Creating a kink without a quench!E-field ramp

time

Page 53: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Creating Kink & Anti-Kink!

Partner et al., New J. Phys. 15, 103013 (2013)

E-field ramp

Page 54: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Summary

• created stable types of kinks by adiabatic quenches• demonstrated different stability and motional properties• deterministic creation and control of kinks via mass defects

Page 55: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Outlook

• Soliton physics with laser cooled ions defects behave like quasi-particles

Entanglement generation using kink solitons:Landa et al.,arXiv:1308.2943(2013)

Trapping of 2D & 3D kinks:Mielenz et al., PRL (2013)

Long coherence times of localized internal modes:Landa et al., PRL (2010)

Page 56: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Outlook

• Soliton physics with laser cooled ions defects behave like quasi-particles

Entanglement generation using kink solitons:Landa et al.,arXiv:1308.2943(2013)

Trapping of 2D & 3D kinks:Mielenz et al., PRL (2013)

Long coherence times of localized internal modes:Landa et al., PRL (2010)

Page 57: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Outlook

• Soliton physics with laser cooled ions defects behave like quasi-particles • investigation of heat transport optical frequency standard

• quantum thermodynamics

Bermudez, A., Bruderer, M. & Plenio, M. B. PRL (2013)

Page 58: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

411 nm23 Hz

1S0, F = 9/2

3P0

3P1

236.5 nm

230.5 nm

159 nm = 360 kHz

= 0.8 Hz

= 194 MHz1P1

~ years!

115In+

172Yb+

Two-Species System In+ / Yb+

Page 59: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

Stable Laser System < 1Hz! Ground-State Cooling of Coulomb Crystal + Precision Spectroscopy+ Mode Structure of mixed crystals (In+ & Yb+)

Spectroscopy Lasers

411 nm

4 x 10-16

Keller et al., Appl. Phys. B (2013)

Page 60: Topological Defect Formation and Dynamics in Ion  Coulomb Crystals

In cooperation with: E. Peik, P. O. Schmidtvisiting scientists: L. Yi, S. Ignatovich

Karsten PykaT.E.M.

The Experimentalist Team:

David MeierJonas Keller

European Network „Ion Traps for Tomorrow's Applications“DPG bilateral grant with RFBREMRP JRP„Optical Clocks with Trapped Ions“

www.quantummetrology.de

Kristijan Kuhlmann

Lin Yi

Funding:

Stepan Ignatovich(visiting scientist,

detail)

Keshav Thirumalai Heather PartnerTobias Burgermeister