topology optimization for liquid cooled heat sink designŽ... · 2019. 5. 17. · topology...

21
Topology Optimization for Liquid Cooled Heat Sink Design Hao Li, Xiaohong Ding * , Dalei Jing, Min Xiong Mechanical Engineering University of Shanghai for Science and Technology (USST)

Upload: others

Post on 18-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Topology Optimization for Liquid Cooled Heat Sink Design

    Hao Li, Xiaohong Ding*, Dalei Jing, Min Xiong

    Mechanical EngineeringUniversity of Shanghai for Science and Technology (USST)

  • Page 2H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Passive cooling devices (natural convection)

    TopOPt for heat sink design

  • Page 3H. LI, USST, ME, Struct. Anal. & Optim. LAB

    TopOPt for heat sink designActive cooling devices (forced convection)

  • Page 4H. LI, USST, ME, Struct. Anal. & Optim. LAB

    TopOPt for heat sink design

    Common in TopOPt for heat sink design:

    • Thermo-fluidic problems• High nonlinear• Topology (layout) determines the response of structure

    We need to find the OPTIMAL TOPOLOGY (LAYOUT) to enhance the heat transfer rate.

    Our project use TOPOLOGY OPTIMIZATION to come up with the optimal cooling channel layout.

  • Page 5H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Structural Topology Optimization

    { }1 2 min max

    01

    : , , ( 1)

    :

    . . :

    TN

    T T

    Ne e

    e

    Find X x x x x x x

    Min C F U U KU

    s t V fV x v

    F KU=

    = ≤ ≤ =

    = =

    = =

    =

    Design problem Discretized elements Optimal topology

    Bendsoe (1989), Zhou and Rozvany (1991), Miejnek (1992)

    Interpolation function:

    0( )1

    pe eE x x E

    p=

    >

    𝑥𝑥

    𝐸𝐸

  • Page 6H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Topology optimization

    Common in TopOPt:

    • Objective function i.e. compliance, flow dissipation, sound pressure

    • Design variable• Constraint

    i.e. volume fraction

  • Page 7H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Fluid problems

  • Page 8H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Navier-Stokes equations

    Incompressible Navier-Stokes equation for porous flow

    ( ) ( )( )1ReT

    p α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋅∇ = ∇ − + ∇ + ∇ − u u u u uI

    0∗ ∗∇ ⋅ =uNon-fluid (solid) domain

    Fluid domain

    Interpolation function

    ( ) ( )max1q

    xq

    γα α

    γ∗ ∗ −=

    +

    γ=0, α→∞, F→∞ u=0

    γ=1, α→0, F→0 NS equation

  • Page 9H. LI, USST, ME, Struct. Anal. & Optim. LAB

    2D flow distribution problem

    ( )

    in

    *

    [0,1]minimize ,

    . . ,

    , i=1,...,n,

    1,i

    T

    f

    i i in

    in

    d

    s t d V Vol

    d FR V

    p u d

    γα

    γ

    ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

    ΩΩ

    Γ

    Γ

    ∈ Φ = ∇ ⋅ ∇ +∇ + ⋅ Ω

    Ω ≤ ⋅

    ⋅ Γ = ⋅

    Γ =

    ∫∫∫∫

    u u u u u

    u n

    FR1= FR16=1/2, FR2= FR14=1/3,FR3= FR15=1/6,FR4= FR5= FR12= FR13=1/4,FR6= FR7= FR9= FR10=1/5,FR8= FR10=1/10

  • Page 10H. LI, USST, ME, Struct. Anal. & Optim. LAB

    2D flow distribution problem

    Iterative process (Vf=40%)

    Optimal channel layout

    Vf=40% Vf=60%

  • Page 11H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Thermo-fluidic problems

  • Page 12H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Navier-Stokes equations

    Incompressible Navier-Stokes equation for porous flow

    ( ) ( )( )1ReT

    p α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ⋅∇ = ∇ − + ∇ + ∇ − u u u u uI

    0∗ ∗∇ ⋅ =u

    ( ) 22

    RePr (in fluid domains)

    0 (in solid domains)

    T T

    T Q

    ∗ ∗ ∗ ∗ ∗

    ∗ ∗ ∗

    ⋅∇ = ∇

    =∇ +

    u ,

    Energy equation

  • Page 13H. LI, USST, ME, Struct. Anal. & Optim. LAB

    2D heat exchange problem

    in

    [0,1]maximize (1 ) (1 ) ,

    . . ,

    1.

    f

    in

    h T d

    s t d V Vol

    p u d

    γγ

    γ

    ∗ ∗

    ΩΩ

    ∗ ∗

    Γ

    ∈Φ = − − Ω

    Ω ≤ ⋅

    Γ =

    ∫∫∫

  • Page 14H. LI, USST, ME, Struct. Anal. & Optim. LAB

    2D heat exchange problem

    Iterative process (Vf=40%)

    Optimal channel layout

    Vf=40% Vf=60%

  • Page 15H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Flow and Thermal Performance

  • Page 16H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Experimental Verification

  • Page 17H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Reference case

  • Page 18H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Reference case

  • Page 19H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Temp. distrib. (Exper. VS Numerical)

  • Page 20H. LI, USST, ME, Struct. Anal. & Optim. LAB

    Conclusions

    • Presented industrial application of TO in fluids, thermo-fluidic problems

    • We are at the verge of being able to send TO results to manufacturing

    • 3D channels with 3DP technology• TO considering turbulent flow

    Future works…

  • Thanks for your attention!

    Q&A

    幻灯片编号 1幻灯片编号 2幻灯片编号 3幻灯片编号 4幻灯片编号 5幻灯片编号 6幻灯片编号 7幻灯片编号 8幻灯片编号 9幻灯片编号 10幻灯片编号 11幻灯片编号 12幻灯片编号 13幻灯片编号 14幻灯片编号 15幻灯片编号 16幻灯片编号 17幻灯片编号 18幻灯片编号 19幻灯片编号 20幻灯片编号 21