topology optimization in engineering structure design · vi topology optimization in engineering...

4
Contents Introduction ................................... ix Chapter 1. Standard Material Layout Design ............ 1 1.1. Basic formulations of topology optimization............ 1 1.2. Typical applications of standard topology optimization .................................. 6 1.3. Topology optimization of cellular materials and structures ................................. 10 1.3.1. Homogenization method and material microstructure designs .......................... 10 1.3.2. Scale-effect of the material microstructure .......... 12 1.3.3. Scale-related topology optimization .............. 15 1.3.4. Numerical examples ........................ 19 1.4. Conclusions ............................... 26 Chapter 2. Low-Density Areas in Topology Optimization ........................... 27 2.1. Localized mode in low-density areas ................ 27 2.2. Localized deformation ......................... 38 2.3. Polynomial interpolation model ................... 41 2.4. Breakdown issue in ESO ....................... 51 2.5. Conclusions ............................... 59 Chapter 3. Dynamic Problems ...................... 61 3.1. Introduction ............................... 61 3.2. Analysis methods for harmonic force excitations ......... 64

Upload: others

Post on 17-Oct-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topology Optimization in Engineering Structure Design · vi Topology Optimization in Engineering Structure Design 3.2.1. Mode displacement method ..... 65 3.2.2. Mode acceleration

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. Standard Material Layout Design . . . . . . . . . . . . 1

1.1. Basic formulations of topology optimization . . . . . . . . . . . . 1 1.2. Typical applications of standard topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Topology optimization of cellular materials and structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1. Homogenization method and material microstructure designs . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2. Scale-effect of the material microstructure . . . . . . . . . . 12 1.3.3. Scale-related topology optimization . . . . . . . . . . . . . . 15 1.3.4. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 2. Low-Density Areas in Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1. Localized mode in low-density areas . . . . . . . . . . . . . . . . 27 2.2. Localized deformation . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3. Polynomial interpolation model . . . . . . . . . . . . . . . . . . . 41 2.4. Breakdown issue in ESO . . . . . . . . . . . . . . . . . . . . . . . 51 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3. Dynamic Problems . . . . . . . . . . . . . . . . . . . . . . 61

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2. Analysis methods for harmonic force excitations . . . . . . . . . 64

Page 2: Topology Optimization in Engineering Structure Design · vi Topology Optimization in Engineering Structure Design 3.2.1. Mode displacement method ..... 65 3.2.2. Mode acceleration

vi Topology Optimization in Engineering Structure Design

3.2.1. Mode displacement method . . . . . . . . . . . . . . . . . . . 65 3.2.2. Mode acceleration method . . . . . . . . . . . . . . . . . . . 66 3.2.3. Full method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.4. Comparative tests of harmonic analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3. Topology optimization under harmonic force excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1. Topology optimization formulation . . . . . . . . . . . . . . 74 3.3.2. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3.3. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 77

3.4. Analysis methods for stationary random force excitations . . . . . 87 3.4.1. Complete quadratic combination method . . . . . . . . . . . 87 3.4.2. Conventional pseudo-excitation method . . . . . . . . . . . 89 3.4.3. The combined method of PEM and MAM . . . . . . . . . . 90 3.4.4. Comparative tests of stationary random analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5. Topology optimization under stationary random force excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.1. Topology optimization formulation . . . . . . . . . . . . . . 95 3.5.2. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 96 3.5.3. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 97

3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 4. Thermo-Elastic Problems . . . . . . . . . . . . . . . . . 107

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2. Thermo-elastic analysis . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3. Thermo-elastic topology optimization with single material . . . . 111

4.3.1. Topology optimization formulation . . . . . . . . . . . . . . 111 4.3.2. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 112 4.3.3. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 114

4.4. Thermo-elastic topology optimization with multiple materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.1. Standard optimization formulation . . . . . . . . . . . . . . . 125 4.4.2. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 125 4.4.3. Mass constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.4. Improved optimization formulation . . . . . . . . . . . . . . 131 4.4.5. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 137

4.5. Distinction between mean compliance and elastic strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Page 3: Topology Optimization in Engineering Structure Design · vi Topology Optimization in Engineering Structure Design 3.2.1. Mode displacement method ..... 65 3.2.2. Mode acceleration

Contents vii

4.5.1. Formulations of mean compliance and elastic strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.5.2. Comparisons between mean compliance and elastic strain energy . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.5.3. Effects of thermal and mechanical loads on the optimized configurations . . . . . . . . . . . . . . . . . . . . . 151

4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Chapter 5. Integrated Layout and Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.1. Introduction to integrated optimization . . . . . . . . . . . . . . . 159 5.2. Finite-circle method . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.1. Formulation of finite-circle method . . . . . . . . . . . . . . . 160 5.2.2. Improved adaptive constraint aggregation . . . . . . . . . . . 166

5.3. Density points and embedded meshing . . . . . . . . . . . . . . . 173 5.3.1. Definition of the density points . . . . . . . . . . . . . . . . . 173 5.3.2. Superelement and semi-analytical sensitivities . . . . . . . . 176 5.3.3. Decomposition optimization strategies . . . . . . . . . . . . . 180

5.4. MPC-based component-structure connections . . . . . . . . . . . 185 5.5. Integrated optimization based on implicit model . . . . . . . . . 194

5.5.1. Implicit representation of component geometry . . . . . . . 194 5.5.2. Sensitivity analysis and examples with implicit functions . 202 5.5.3. Integrated optimization based on XFEM . . . . . . . . . . . . 207

5.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Chapter 6. Optimization with Constraints on Multifastener Joint Loads . . . . . . . . . . . . . . . . . . . . . . . 217

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.2. Joint load calculation and sensitivity analysis . . . . . . . . . . 219 6.3. Numerical examples and discussions . . . . . . . . . . . . . . . 222 6.3.1. Cantilever beam with experiments . . . . . . . . . . . . . . . 222 6.3.2. Two different wing boxes . . . . . . . . . . . . . . . . . . . . 230

6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Chapter 7. Potential Applications of Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.1. Shape-preserving design . . . . . . . . . . . . . . . . . . . . . . . . 239 7.2. Smart structure design . . . . . . . . . . . . . . . . . . . . . . . . . 243

Page 4: Topology Optimization in Engineering Structure Design · vi Topology Optimization in Engineering Structure Design 3.2.1. Mode displacement method ..... 65 3.2.2. Mode acceleration

viii Topology Optimization in Engineering Structure Design

7.3. Structural features design . . . . . . . . . . . . . . . . . . . . . . . 245 7.4. Topology optimization and additive manufacturing . . . . . . . 247

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273