tornado missile risk analysis of spent fuel pool.' · 2019. 8. 9. · poisson arrival process...

37
. . July 1979 Final Report 44T-1844 TORNADO MISSILE RISK ANALYSIS OF THE NORTH ANNA NUCLEAR PCWER STATION UNITS 1 & 2 SPENT FUEL POOL Prepared for Virginia Electric and Power Company 1 James River Plaza i th and Cary Streets Richmond, Virginia 23219 Under Purchase Order No. 83331 Prepared By L. A. Twisdale W. L. Cunn G. L. Bilbro E. A. Cannady 798 258 c36- 7903100

Upload: others

Post on 28-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

July 1979

Final Report 44T-1844

TORNADO MISSILE RISK ANALYSIS OF THE NORTH ANNANUCLEAR PCWER STATION UNITS 1 & 2 SPENT FUEL POOL

Prepared for

Virginia Electric and Power Company1 James River Plazai th and Cary Streets

Richmond, Virginia 23219

Under

Purchase Order No. 83331

Prepared By

L. A. TwisdaleW. L. CunnG. L. BilbroE. A. Cannady

798 258

c36-7903100

Page 2: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

July 1979

Final Report 44T-1844

TORNADO MISSILE RISK ANALYSIS OF THE NORTH ANNA

f!UCLEAR POWER STATION UNITS 1 & 2 SPENT FUEL PCOL

.

Prepared for

Virginia Electric and Power Comcany1 James River Plaza7th and Cary Streets

Richmond, Virginia 23219

Under

Purchase Order No. 38881

Prepared By

L. A. TwisdaleW. L. DunnG. L. BilbroE. A. Cannady

.

798 259

Page 3: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

TABLE OF CONTENTS

Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

II. METHODOLOGY .......................... II-1

A. Introduction ....................... II-1

B. Model s and Tornado Input Data . . . . . . . . . . . . . . . II-1

C. The Probabilistic Simulation Model II-4............

D. Probability Assignment II-6..................

E. Simulation Methodology II-8..................

III. PROBLEM OESCRIPTION AND SIMULATICN INPUTS III-l...........

A. Plant Definition III-l.....................

B. Postulated Missile Threat . . III-3...............

C. Tornado Hazard III-6......................

D. Simulaticn Input III-6.....................

!V. RESULTS ............................ IV-1

V. CONCLUSIONS V-1..........................

VI. REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-l

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

798 i!60s,

Page 4: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

-.

I. INTRODUCTION

This document is a report prepared by Research Triangle Institute (RTI)

unoer Virginia Ele,:tric and Power Company (VEPCO) Purchase Order No. 88881,

" Tornado Missile Analysis." The objective of this investigation was to

estimate the probability of tornado missile impact to the spent fuel pool of

Units 1 and 2 of the North Anna Nuclear Power Station. The scope of the study

consisted of four basic tasks: (1) acquisition of H c relevant data regarding

the plant design and missile characteristics, (2) s amalization of a plant

model with the important features of the spent fuel pool region and the

initial conditions of the postulated missiles, (3) computer simulation

analyses of the tornado missile threat to the spent fuel pool region, and (4)

compilation of the simulation results and the documentation of the findings of

the study. The information required to define the plant, structures, and

postulated missile input variables was obtained from VEPC0 and/or Stone and

Vebster Engineering Corporation. Tornado inputs were obtained from a recent

inslysis of the pertinent tornado data record with an upperbound intensity

given by the Nuclear Regulatory Commission (NRC) Region I design basis

tornado. A simulation computer code (TORMIS), developed explicitly for

tornado missile risk analysis, was used to estimate the missile impact

probabilities. The results of over 60,000 individual missile simulation

histories indicate that the probability that a single missile would impact the

pool region is 4.15 x 10-11 per year. The risk from the entire postulated

missile population is estimated as 7.65 x 10-7 per year. This report

documents the input data used in the investigation and summarizes the

methodology and results..

t-

798 261

Page 5: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

II. METHODOLOGY

A. Introduction

In general, the quantitative assessment of tornado missile risk requires

a mathematical model of the physical process, probability models of the

identified random variables, specification of the probability sample space,

ano a means to assign probacility measures to the points in the sample space

The models and met' odology developed by Twisdale et al. [1] for tornado

missile risk analysis cf nuclear power plants have been used in this

investigation to estimate missila impact probabilities to the spent fuel pool

for Units 1 and 2. Figure 1 illustrates the modeling and data components that

comprise the integrated risk analysis approach. Due to the complexity of the

mathematical models that describe the general tornado missile event secuence

and the relatively large numoer of random variables and requisite probability

density functions, "onte Carlo simulation is used to estimate individual event

probabilities. This secticn summarizes the components of the methodology;

detailed description of the models and previous results are given in several

reports and publications [1-6].

S. Models and Tornado Inout Data

A sequence of events must occur for a safety-related component at a

nuclear plant to be impacted and actually damaged by a tornadc-generated

missile. First of all, a tornado must occur and pass through the plant site

area. Five years of the national tornado data record (4,582 tornadoes) were

analyzed to provide input information to the risk analysis on tornado

occurrence rates and strike chara teristics [1, 4]. The investigation also

included analyses of the potential for tornado classification error based uoan

storm damage inter;:retatior.s and the lack of a damage medium (structures,

vehicles, trees, etc.) in some regions. The research also addressec the

}gg11-1

Page 6: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

TORNADO WINDFIELDMODELSTRIKE ANALYSIS - - - - + TORNAD0 +-----

MODELING

.

t'

I

MISSILE MISSILE+____SPECTRUM CHARACTERIZATION

'r

INJECTION _ _ _ _ # MISSILE + _ _ _ _ TRAJECTORYMETHODOLOGY TRANSPORT ANALYSIS

PLANT _ _ _ _ _ _ _ .MODELING

Y

IMPACT + _ _ __. DAMAGE CRITERIAANALYSIS AND MCDELI'!G

V

PROBABILITY _ _ _ _ + RISK + _ _ _ _ SIMULATIONMODELING ASSESSMENT METHODOLOGY

Figure 1. Components of the Tornado Missile Hazard Simulation Analysis

798 263II-2

Page 7: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

-.

uncertainty in windspeed ranges and the variation of storm intensity along the

path length; a data set of 148 tornadoes was analyzed to provide quantitative

input on intensity variation. Combination of these analyses resulted in a

methodology to assess tornado strike probabilities and quantified input for

each of the Nuclear Regulatory Commission (NRC) tornado regions [7] in the

United' States.

A tornado windfield model was also developed to be compatible with the

entire range of observed windfield intensities and path widths. Tornado flow

characteristics were identified that were potentially significant in terms of

missile transport phenomena. In order to account for both modeling

uncertainty and the natural variability observed among tornadoes, several

random variables were specified in the model, including tornado intensity,

path width, translational speed, radius to maximum tangential velocity, ratio

of the radial to tangential wind speeds, vertical variation of core size, and

boundary layer thickness. In view of the difficulty in establishing a priori

conservative flow characteristics for missile transport, the windfield model

was synthesized from theoretical, observational, and probabilistic

considerations. A significant aspect of the model is that the parameters can

be adjusted to make the intensity, size, and velocity variables consistent

with the tornado path width boundary specifications.

Another component in the hazard must be the availability of objects in

the plant vicinity before any missiles can be generated. These objects must

be accelerated by the tornado winds to pose a potential threat to any of the

plant's safety systems. A missile transport model was needed that would be

efficient to permit simulation studies of thousands of trajectories and yet

describe ene e/nected variance of turbulent tornado transport. ^ random

orientation transport model was developed and statistically verified through a

II-3

798 264

Page 8: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

. .

series of comparisons to both simplified three-degree-of-freedom and rigid

body six-degree-of-freedom trajectory model s. The missile injection

methodology sas developed to provide for missile release to the moving tornado

when the restraint forces are exceeded by the tornado-induced aerodynamic

forces. A simulation study was performed to determine the optimum

specification of missile restraint forces to ensure conservatisa in this

component of th: ::echanistic analysis.

Finally, if the potential missile is transported by the tornado, it must

hit a " target" or safety related system to pose an actual threat to the

operation of the plant. An impact methodology was developed for a spectrum of

missiles to provide a basis for predicting structual damage, given an impact.

Recent impact test data [8] were used in a probabilistic approach to

account for structural strength variations and random impact orientations. An

analytical study of oblique missile impact was also performed [6].

These components of the tornado missile hazard were linked together to

form an integrated model of the process as indicated in Figure 1. A total of

24 random variables were used to characterize the modeling uncertainty,

natural variability of tornado events, and the site-specific characteristics

at a particular plant. Specification of the probability models for these

variables, identification of the output sample space, and the use of

simulation techniques to assign probabilities to this sample space complete

the risk assessment methodology.

C. The Probabilistic Simulation Model

The probability model that is adopted to simulate ;ornado missile events

relies on the following hypotheses: (1) a finite and deterministic number (N)

of potential missiles exist in the plant vicinity and thus completely define -

the sampling population; (2) er.ch potential missile in the sampling population

793 265M4

Page 9: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

has an equally likely chance to be transported by each tornado that strikes

the plant; (3) a sequential event model for multiple missile generation is

adoptad: (4) the sample and/or event spaces for target impact are discrete;

and (5) individual missile events, including ground interaction and

termination, do not af#ect the governing sampling distributions of the

process. These hypotheses form a basis for constructing event spaces and

interpreting the resulting probability estimates from the simulations. The

detarministic restriction on ti in the first hypothesis results in considerable

simplification in the event space specification as well as in the probability

estimation and can be easily managed through conservative specification. The

second hypothesis ensures that a random sampling scheme that uses the common

missile input distributions is applicable. With respect to the first two

hypothesis, it is noted that it is not the total number of objects in the plant

vicinity but only those that have restraint forces that can be exceeded by the

tornado-induced forces. The number of potential missiles available for

transport during the actual time duration of a specific 1.ornado is

significantly less than the number of countable objects because of the

structural and storage mode restraints that limit missile ava.' lability

characteristics. The third hypothesis represents an approximat11n of the true

stochastic nature of the problem by adopting a sequential model of multiple

missile events rather that a " simultaneous" model with time history

superpositions. Hypothesis four is simply a statement of the discrete acure

of missile impact events. The final hypothesis specifies that a missile

history will not affect the sampling distributions for subsequent histories in

the same tornado event. Statistically, this suggests independence among the

missile histories in the sense that the sampling distributions remain

unchanged for a given tornado event.'

"-53g 266-

Page 10: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

D. Probability Assignment

The defined sampling experiment of tornado missile events specifies a

seqt.ence of individual missile trials to define the outcome of an individual

tarnado history. The developed methodology involves the' assignment of

multiple missile experimental outcomes from an analytical formulation that

uses the single missile probability estimations. In Ihe following paragraph ,

the basic analytic model for risk evaluation is given, the applicability of

the Bernoulli process and Poisun trials model is examined, and an analytical

model for multiple missiles is presented.

The basic tornado arrival process model for tornado missile risk

assessment is adopted from Wen and Chu's work [9] and can be expressed as

P(A) = 1 - exp[-v E(A)T] = v E(A)T, (1)

where P(A) = probability that event A occurs at least once during the time

period (T), v = tornado occurrence rate, and E(A) = an expectation over the

random variables defining event A for a single tornado. This expression is

the exact analytical expression for tornadoes that are characterized by a

Poisson arrival process and a union concept of success for event A. For rare

events, the approximation in Equation 1 is accurate to within 0.5 percent for

vE( A)T j 0.01. Consistent with the discrete nature of the tornado FPP (Fujita

intensity, Pearson path length, Pearean path width) classification system

[e.g.,10], E(A) is evoluated by its equivalent form

Ft

E(A) = [ E(AjI)P(I), (2)I=0

where I denotes the F-scale classification and F: the upperbound tornado

intensity.

II-6 .

798 267

Page 11: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

*.

For the assumed sequence of N missiles generated during a tornado strike,

(Ij), the probability of target damage can be formulated analytically from the

single trial probability, P( AlIj). The probability of the event that target A

is damaged by at least one of the N missiles in the sampling population during

the jth tornado F-scale intensity I is denoted as P ( A|Ij). A conservativeN

union (U) concept of damagt. 'uccess being adopted, this probability is

NP (A|Ij) = P[(A |Ij) U ( A |Ij) U ... U (A IIj)], (3)1 2 N

where Aj denotes the event that A is damaged by missile i. If mutua!

independence is assumed among the Aj, then Equation 3 can be stated

equivalently as

N NNP (A|Ij) = 1 - H P(7j | Ij ) = 1 - 2 [1 - P(Aj lIj)], (4)

i=1 i=1

where lj denotes the complement of event A . This assumption of mutuali

independence means that the missile trials are repeated under identical

conditions for the assumed tornado; i .e. , the ith trial alone determines

whether or not Aj occurs. If the missiles are treated as being

indistinguishable (nonordered) in the sampling experiement in terms of event

A, then P( Aj |Ij) is replaced by P(A|Ij) and

P ( Aj Ij) = 1 - [1 - P( A|Ij)] N. (5)N

This familiar expression provides a basis for assigning multiple missile event

likelihoods during a specific tornado event (Ij) with an estimate of P( AjI )j

from the sequential sampling experiment.

Examination of Equation 5 suggests that this expression is identical to

the extensively studied Bernoulli process. It is noted that the expected

number of successes during tornado i on a single target " A" is N.P( Aj !j), and

II-7

798 268

Page 12: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

-.

the variance is N P(A|Ij)[1 - P(A|Ij)]. Correspondingly, Equation 4 is the

analogous statement for Bernoulli trials with variable probabilities, i.e.,

Poisson trials [11]. The significance of the assumption of indistinguishable

missiles has been evaluated by comparing features of Poi'sson trials to

Bernoulli trials. It can be shown [cf.1] that the Bernoulli model provides a

conservative estimate of the variance and an estimate of the expected value

that is within a few percent of that obtained from the more general Poisson

trials model. Thus, the simplification provided by Equation 5 is used to.

assign multiple missile probabilities.

E. Simulation Methodolocy

Probabiliscic Monte Carlo simulation [e.g.,12,13] is used to estimate

the missile event probabilities--e.g., P( A|Ij)--because of the complex and

multidimensional form of the random process. The TORMIS simulation code has

been developed to produce numerical estimators of both single and multiple

missile event probabilities. The output consists of statistically independent

outcomes, each of which follows the same probability law. The expected value

and variance are the population descriptors evaluated explicitly in the TORMIS

code. For a mathematical statement of the tornado missile simulation, it is

convenient to introcuce the functions g(x|$) and h($) to represent the~

complete stochastic process. The random process for the tornado definition

andoccurrenceisdefinedbyh(I),where$isavectoroftornadorandom~

variables. The function g(x|$) denotes the tornado missile random process in'

which x is a vector of missile random variables. Thus, the complete

stochastic process is given by the product g(x|$)h($); the notation for an~

outcomeisg($j|kj)h(kj),whereX i denotes the i th vector of tornado variables~

sampled frcm f(x). For a single missile history, the outcome relative to some

defined event A is a random variable "a." This outcome being denoted as

"-8798 269

Page 13: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

. .

gA(kj |5j)h ( j), the characteristics of the probability law of "a" can beA

inferred frcm n independent observations. The expected value of "a" is

estimated by

1 m _ 1 n _ _

E(a|I) = - )m j =,1 h(Zj)nj.). 9A(Xj|Zj), (6)A

1

where n = m n. For the Bernoulli trial model, the probability of success of A^

is given by this expectation, an,! hence P(A) = E(a) and P(A) = ^E(a). The

estimate of '( A|Ij) is given by the right summation in Equation 6. It is

noted that for single missile events the es*.imation of P(A|I) is not dependent

upon the division of m and n for large n, pro 'ided that a reasonable number

(m) of tornadoes is considered and n is sufficiently large. However, for

multiple missile events, n must be large enou!5 to provide an estimate of

P( A|Ij), which can be used in the analytical expressions derived previously.

Tr us, the estimation accuracy of P(A|Ij) is useful; the sampla variance,

2(a|Ij and the variance of P(A|Ij) follow the standard forms [1]. In the

TORMIS code, confidence bounds are calculated assuming normality, which has

been shown '.o give accurate results compared to a modified binomial sampling

procedure [1].

.

798 270u-9 -

Page 14: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

III. PROBLEM DESCRIPTION AND SIMULATION INPUTS

A. Plant Definition

The spent fuel pool for Units 1 and 2 is located within the fuel

building, which is directly between Containments 1 and 2 and south of the

auxiliary, service, and turbine buildings. To simulate the tornado missile

threat to the spent fuel storage area, the structures shown in Figure 2 were

modeled as a cluster of 13 targets. The interior of the pool itself was

modeled as two separa e targets (Numbers 7 and 8). Target 7 represents the

interior of the pool, from the top of the pool to a point 6 feet abcVe the

elevation of the top of the spent fuel assemblies. Target 8 covers the area

from 6 feet above the location of the fuel assemblies to the bottom of the

pool at elevation 249 feet 4 inches. This targeting arrangement was devised

to provide the most information about potential impacts within the pool.

Impacts to Target 7, which was modeled with no top or bottom surfaces,

represent actual hits to the interior walls of the pool. Impacts to Target S

represent hits to the fuel assemblies or to pool walls just above the fuel

assemblies. The probability of missiles entering the top portion of the pool

is thus the addition of the individua' probabilities for Targets 7 and 8. The

fluid within the pool was ignored in the trajectory analyses, and thus the

predicted missile impact veloctities are higher than those that would actually

occur because of the increased drag resistance provided by the water.

Targets 3, 4, 5, and 6 include the exterior pool walls and the remaining

per-ic' of the fuel building. The portion of the fuel building above the

elevation of the top of the pool (elevation 291 feet 10 inches) was not

considered to provide any significant missile protection to the pool and hence

was not modeled in the analysis. The remaining targets include the

containment structures, the auxiliary, service, and turbine buildings, and the

798 Nm-1 -

Page 15: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

11

Turbine Building

10

Service Building

Auxili ary

9

4 BuildingN

Containment 3 6 Conta nment

5

" "9 % Primary GradeWater Storage Tanks

(a) Target Plan View

Lecend

@ Spent Fuel Pool1,...,13 Target Numbers

Scale 1"=100'2

'150

::

100 :0

3 1 2

50 -

: 11 mun: 10 33 12

'

13 'ffg { p,q,w <<winwmwrw -w w e

NSpent Fuel Grade E1.270'Assemblies

(b) South Elevation View

798 272Figure 2. Plan and Elevation Views of Plant Targets

III-2

Page 16: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

..

primary grade water storage tanks. The auxiliary, service, and turbine

build ngs were modeled up to elevations that would continue to provide missile

protection during the design basis tornado. Other structures, components,

etc., in the region of the spent fuel pool were not explicitly modeled in this

study. Hence, only the major " shadows" were modeled, and the shadowing

effects of other structures, such as those of the waste disposal building, are

conservatively ignored in the missile simulations.

B. Postulated Missile Threat

The missile threat that was postulated for the spent fuel pool included

buildings, loose objects, construction materials, and other sources over the

entire plant and construction site area. As noted in Figure 3, a total of 17

areas were used to identify different missile origin zones. The zones include

storage and laydown areas, parking, Units 3 and 4 construction area, the

switchyard, and wooded regions. These areas include the contiguous land

region around the plant and thus all possible missile origins within 2,000

feet of the actual spint fuel pool target. A previous investigation indicatea

that missiles rareij travel more than 2,C00 feet and hence do not contributa

significantly to the impact risk for targets that are located more than 2,000

feet frcm the missile source. Simulation of missile trajectories and field

observations suggest that the greatest hazard is from missiles that originate

within several hundre.d feet of the target.

The number of each of the itandard missile types [14] postulated by zone

is summarized in Table I. A total of 19,995 potential missiles were specified

to simulate the availability of missile sources during the period of on-site

construction activities for Units 3 and 4. Upon completion of these units,

the number of potential on-site missiles will diminish, and thus this time

period is expected to reoresent the worst case in terms of the tornado missile

III-3

798 273

Page 17: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

Y

2500

14

N2000 Pipe Laythwei Aira

21*

'? 13 15

I d Y '*" A' edd1500

Pasking11

WoodedArea

"$witthyard

16

500 Construt.tlon IUnits 3 & 4 L! nits 1 & 2 p,,gggg

10

*-*Woode<l Area

g . . * * ' ' ' : x. 500 1000 2000 oo 5000gy

2

500 Emi>ank nin t

9 7 5 4

Parking Storagekrh Wh PelStorage Area Area

10008

-

Storage 6Area

Discharge Canaland Wooded Area

-15005torage Arca

-~~.Y,.c

00 2000

N __

4# Figure 3. tiissile Origin Zone Definit. ion

Page 18: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

TABLE I. MISSILE SPECIFIC UION BY ZOI:E

NumDer of Missiles by Tyce TotalP1 ant Number

Zone Wood 6" 1" Utility 12" Automobile OfNumber Beam Pice Rod Pole Pice Missiles

1 10 10 10 5 10 5 50

2 100 100 100 5 100 5 410

3 1,000 1,000 1,000 500 1,000 100 4,600

4 0 0 0 0 0 5 5

5 50 0 0 30 0 50 320

6 1,000 1,000 1,000 500 1,000 100 130

7 0 0 0 20 0 300 4,600

8 100 50 50 10 50 10 320

9 500 250 250 50 250 50 1,350

10 100 0 0 10 0 50 160

11 0 500 100 0 500 5 1,105

12 0 0 0 0 0 0 0

13 100 100 0 0 100 25 325

14 1,000 1,000 1,000 500 1,000 100 4,500

15 0 0 0 80 0 1,200 1,230

16 0 50 0 40 0 600 690

17 0 0 0 100 0 0 100

Total 3,960 4,060 3,510 1,850 4,010 2,605 19,995

* Zone 12 is a wooded area that is more than 2,000 feet frcm the spentfuel pool target.

III-5

]9b

Page 19: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

threat. These missiles were specified to originate at heights that follow the

land topography, building, and material laydown storage heights. The zone

elevation and maximum injection heights are given in Table II. The minimum

injection height was conservatively considered to be five feet above the zone

grade elevation. The missiles were uniformly injected over the interval

defined by these minimum and maximum heights, incorporating the differences in

zone elevations. The automobile was injected at a constant height of five

feet above grade for all zones.

C. Tornado Hazard

The input data for the tornado hazard definition was taken from an

analysis of 4,582 tornado data entries reported in the 1971-1975 FPP data base

[1]. Specifically, the data for NRC tornado Region I was used in the

specification of tornado intensity, path width, path length, and tornado

direction. The design basis tornado with a windspeed of 360 mph [7] was used

as the maximum intensity event. Thus, as noted in Table III, the F'6 tornado

intensities were specified to have a windspeed interval of from 277 to 366 mph

and an occurrence rate of 2.152 x 10-7 per square mile per year. A review of

the 1971-1975 data for the State of Virginia confirmed the conservatism of

using Region I tornado statistics in the tornado hazard simulation. The

angular difference of 21 degrees clockwise between plant north and true north

was also accounted for in the directional tornado data input relative to the

plant target model and missile zone geometry.

D. Simulation Incuts

Appendix A includes an actual computer printout of all of the input data

for the simulation of a given tornado intensity interval. Tne input data were

checked against the problem description defined in this chapter to insure the

validity of the results.

III-6 b

Page 20: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

TABLE II. MISSILE INJECTION HEIGHT BY ZONE

Maximum Injection Height Above Grade (ft) by Missile TypePlant GradeZone Elevation Wood 6" l' Utility 12" AutomobileNumcer (ft) Beam Pice Rod Pole Pice

1 270 30 30 30 5 30 5

2 270 20 20 20 20 20 5

3 270 50 50 50 20 50 5

4 320 5- - - - -

5 320 2 20 - 5- -

6 320 3 30 30 30 30 5

7 320 - - - 5 - 5

8 320 2 20 20 20 20 5

9 320 2 20 20 20 20 5

10 300 2 - - 20 5-

11 270 40 40 - 40 5-

12 270 - - - - -

13 270 5 5 5 5- -

14 270 5 5 5 5 5 5

15 270 - - - 5 - 5

16 270 20 - 20 - 5-

17 270 - - - 20 - -

t "-7

79g 277

Page 21: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

TABLE III. TOR! LAD 0 ItiTENSITY INTERVALS A!iD OCCURREtiCE RATES

Tornado Intensity Windspeed Interval Occurrence Rate(F'-Scale) (moh) (/sc. mi. yr.)

F'O 40-73 2.206x10-4

F'1 73-103 1.207x10-4

F'2 103-135 6.413x10-5

F'3 135-168 1.941x10-5

F'4 168-209 4.390x10-6

F'S 209-277 9.469x10-7

F'6 277-360 2.152x10-7

AlI 40-360 4.304x10-4

jgg 278t "-8

Page 22: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

. .

IV. RESULTS

Missile impact probabilities to the spent fuel pool targets were

estimated with the methodologv developed for the TORMIS computer code and the

specified input data. Ten thousand missile time histories were simulated for

tornado events within each tornado intensity interval. A total of 60,000

histories were recorded for F1 through F6 intensity tornadees. The tornado

charactistics or direction, path length, path width, translational windspeed

component, etc., were sampled from the defined frequency distributions for

each tornado event simulated. Missiles were selected from each of the types

specified and positioned within the zones for possible injection and transport

by the tornado. Missiles that impacted the structures were scored and the

target impact probabilities generated. The predicted impact probabilities for

the spent fuel targets (Numbers 7 and 8) are presented in Table IV for each

tornado intensity. The 95 percent confidence bounds are also given to

indicate the degree of statistical uncertainty in the simulation output, as

indicated in the example computer printout in Appendix A.

The results summarized in Table IV indicate that the probability of a

single tornade-generated missile, picked at andom frcm the entire missile

population, entering che spent fuel pool is estimated to be 4.15 x 10-11 per

year. The majority (95 percent) of this risk is due to impacts to the upper

portion of the interior wall the pool, as defined by Target 7. The model

predicts that the likelihood of a direct hit to Target 8 (the scent fuel

assemblies and the portion of the interior pool walls extending six feet abcve

the top of the assemblies) is 2.37 x 10-12 per year.

Multiple missile probabilities, as defined mathematically in Section

II.D, are also given in Table IV. Since there is : ore than one potent.al

missile at the plant, these probabilities are simply the total rid from all

pgIV-1

Page 23: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

TABLE IV. PHEGICILO liiPACT PROBAh!LITIES Afl0 % PERClitT STATISTICAL C0flFIDEtlCL BOUllDS

Tornado Single flissile fiultiple liissile

(F'-Scole) flumber (1) Limit (2) Limit (2) Limit (2) Upper (2)Intensity Tar 9et Lower fican Upper Lower fleanLimit

1 7 0 1.12x10_13 2.46x10-13 0 1,73x10-9 4,12x10-98 2.07x10-16 S,79x10-15 1,14 x10-14 0 3.65x10-Il 1.06x10 .0

7 or 8 0 1.18x10-13 2.Six10-13 0 1,79xio-9 4,17x10-9

2 7 0 3.21x10-ll 9.llx10-Il 0 5.84x10-7 1.66xiU-68 0 2.59x10-13 7.13x10-13 0 3.74x10-9 1.09x10-'

7 or 8 0 3.24x10-Il 9.14x10-Il 0 5.89x10-7 1.66x10-6

3 7 0 5.52x10-12 1.28x10-Il 0 1.06x10-7 2.46x10-78 0 7.05x10-13 2.05x10-12 0 1.28x10-8 3.71x10-8

7 or 8 0 6.23x10-12 1.36x10-Il 0 1.19x10-7 2.6Sx10-7

4 7 1.02x10-13 9.76x10-13 1.85x10-12 1,44x10-9 1.85x10-8 3.SSx10-88 0 1.0lx10-12 2.93x10-12 0 1.93x10-8 S.61x10-8-

7 7 or 8 0 1.99x10-12 4,10x10-12 0 3.78x10-8 7.82x10-8'

5 7 2.48x10-14 4.12x10-13 7,99x10-13 4.27x10-10 7.9 x10-9 1.54x10-88 0 3.90x10-13 9.28x10-13 0 7.57x10-9 1.80x10-8

7 or 8 1.39x10-13 8.02x10-13 1,47xio-12 1,oixto-9 1.55x10-8 2.92x10-8

6 7 0 7.41x10-14 1.86x10-13 0 1.37x10-9 3.44x01-98 *(3) *

7 or 8 0 7.41x10-14 1.86x10-13 0 1.37x10-9 3.44x10-9

All 7 1.48x10-Il 3.91x10-Il 6. 34 x10-I l 2.77x10-7 7.20x10-7 1.16x10-68 1.37x10-12 2.37x10-12 3.37x10-12 2.47x10-8 4.34x10-8 6.21x10-8

7 or 8 1.72x10-Il 4.15x10-Il 6.58x10-Il 3.22x10-7 7.6Sx10-7 1.21x10-6

-.

flotes: (1) Target 7 = Spent fuel pool volume above fuel assemblies.-.,

Target 8 = Spent f uel pool volume containing fuel assemblies up to a point 6'~i above the top of spent fuel4 7 or 8 = Impact to either region defined by target 7 or target 8O (2) Upper and lower limits of the 95% statistical confidence bounds

(3) indicates that no hits were obtained to Llie to get far tiie specified tornado*

intensity

CDcD

Page 24: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

the potential missiles specified in the missile threat definition. The event

is not based upon the assumption that only one missile is generated per

tcrnado, but that the entire population of potential missiles may be generatea

for any tornato event. The term multiole missile is also interpreted to mean

that all of the missiles have restraining forces that are specified within an

optimum interval for transport and thus are potentially transported by any

tornado that strikes the plant. Thus, the multiple missile risk provides a

conservative estimate of tornado-generated missile impact probabilities. For

multiple missile generation for each tornado event, the respective probability

estimates are 7.65 x 10-7 per year for missiles entering the pool and 4.34 x

10-8 per year for missiles hitting near the fuel assemblies (as specified by

Target 8). The 95 percent confidence bounds for these results are relatively

t. lose to the predicted mean values, indicating that a sufficient number of

simulations were made to minimize the statistical uncertainty of the

outcomes.

An examination of these results indicates that the simulation model

predicted event likelihoods that closely follow expected missile occurrences.

In the first place, the pool offers a very limited target as illustrated in

Figure 1; it is shadowed, or partially shadowed, from practically every

direction by adjacent structures. The missiles must avoid these targets and

at the same time be lifted to a height of at least 20 feet above the plant

grade elevation. If a missile, by chance, is transported into the region

above the pool, its trajectory must fall quickly, or else it will be carried

over the pool and into another target or a ground impact. Inspection of the

simulation results indicates that these types of outcomes occured more

frequently than the event of a missile trajectory intersecting the pool. Fo r

example, the single missile hit probability to the outside scuth wall of the

g

Page 25: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

pool (Target 5) is more than 10 times likely than a hit to the pool it Li f

(4.61 x 10-10 vs 4.15 x 10-11). None of these predicted hits to the outside

wall produced damage to the massive 6-foot-thick, reir. forced concrete barrier.

Table IV also indicates the contribution by tornado intesity to the

overall risk. The maximum intensity tornado events (F'6) produced no hits to

Target 8, althouth it produced the most hits to the adjacent targets. For

these high intensity tornadoes, all of the hits to the pool occurred to the

interior walls within eight feet of the top of the pool. The speeds of the

missiles were higher, and thus they did not drop sufficiently during the time

interval they were over the pool to result in a direct hit to Target 8. The

hit probability for both Targets 7 and 8 peaked at the strong intensity

tornadoes (F'2 or F'3) as opposed to weak intensity tornadoes (F'O or F'1) or

violent storms (>F'4). F'O intensity tornadoes were not simulated because of

the noted reduction in risk contribution for the F'1 intensity.

In addition to the estimation of missile impact risk, the TOR.'i!S code is

alse capable of estimating damage to a target given missile impact. To

provide some indication of the like19aod of damage to the fuel assemblies

under hypothetical conditions, Target 8 was assumed to have a one-quarter-

inch steel plate element on its top surface. If oblique angles of entry and

the presence of the fuel rack structures are considered, this case may .orovide

a lower limit to the range of fuel usembly damage probability. The

predicted damage (plate pcrforation) probabilities for missiles entering the

pool and directly hitting Target 8 were 1.35 x 10-13 per year from a single

missile and 2.58 x 10-9 per year for all the raissiles combined. These

probabilities are each more than an order of magnitude less than the predicted

impact probabilities and, furtner, do not include the effect of the fluid drag

IV-4 -

798 282

Page 26: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

provided by the 24 feet of water above the assemblies. Tornadoes with

intensities of F'3 or less did not contribute any to this actual damage risk.

An analysis of the impact risk cor.tribution by missile type to Target 8

provides further information regarding this difference i.n impact risk and

actual damage risk. The simulation outcomes for all the tornadoes indicate

that 82 percent of the impact risk to Target 8 was from the wood ber.m missile

(4 inches by 12 inches by 12 feet) with a total weight of only 115 lbs. The

6-inch steel pipe contributed 16 percent of the risk; the 1-inch steel rod

contributed 1 percent; and the utility pole,12-ir sa pipe, and vehicle

contributed less than 1 percent combined. Thus, the order of magnitude

reduction in the predicted impact risk versus the damage risk is partially due

to the fact that many of the predicted impacts involve one of the lighter

missiles that has a relatively weak damage potential.

n-s 798 283

Page 27: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

V. CONCLUSIONS

On the basis of this investigation, the following conclusions are made

regarding the likelihoods of missile impact events in the spent fuel pool for

Units 1 and 2:

(1) J4issiles Entering tha Pool - Th.. mean probability of atornado-generated missile entering the spent fuel pool for Units 1and 2 is estimated as 4.15 x 10-11 per year. For the entirepopulation of postulated missiles, the combined probability of atleast one tornado-generestimated as 7.65 x 10 gted missile entering the spent fuel pool is' per year.

(2) Missiles Directly Hitting the Assemblies - The mean probability of atornado-generated mis;ile entering the :: pent fuel pool and directlyhitting the spent fuel assemblies (or the interior pool wall justabove the top of the assemblies) is estimated as 2.37 x 10-12 peryear. For the entire population of postulated missiles, theccabined probability of at least one tornado-generated misgiledirectly hitting the assemblies is estimated as 4.34 x 10-oper year.

(3) Missiles Damaging the Assemblies - A hypothetical lower-limitestimate of the prooability of a tornado-generated missile enteringthe pogl and damaging the spent fuel assemblies is estimated as 1.34x 10-14 per year. For the entire population of postulated missiles,the combined probability of at least one tornado-ggnerated missiledamaging the assemblies is estimated as 2.58 x 10-9 per year.

The results indicate that the probability of tornado-generated missile damage

is less than the 10-7 per year risk criterion specified in the Standard

Review Plan [14] for missiles generated by natural phenomena. In addition,

the conservatisms in the analysis, coupled with the tightness of the predicted

statistical confidence bounds, suggest that the actual risk is likely to be

less than the lower bound of the predicted risk.

~

hkV-1 g

Page 28: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

-.

VI. REFERENCES

1. Twisdale, L. A. et al. , " Tornado Missile Risk Analysis," EPRI NP-768(Vol. I) and EPRI NP-769 (Vol. II), Electric Power Research Institute,Palo Alto, California, May 1978.

2. Twisdale, L. A., W.L. Dunn, and T.L. Davis, " Tornado Missile TransportAnalysis," Journal of Nuclear Engineering & Design, 51 (1979).

3. Dunn, W.L. and L. A. Twisdale,'" A Synthesized Windfield Model for Tornado~

Missile Transport," Journal of Nuclear Engineering & Design, 52 (1979).

4. Twisdale, L. A., " Tornado Data Characterization and Windspeed Risk,"Journal of the Structural Division, ASCE, Vol.104, No. ST10, October,s1978.

5. Twisdale, L. A. , " A Risk-Based Desiga Against Tornado Missiles,"Proceedings of the Third ASCE Specialty Conference on Structural Designof Nuclear Plant Facilities, Boston, Mass., April 1979.

6. Twisdale, L. A., "Probabilistic Considerations in Missile ImpactAssessment," Proceeding of the International Seminar on ProbabilisticDesign of Nuclear Power Plants, San Fransisco, Calif , August 1977.

7. Nuclear Regulatory Commission, " Design Basis Tornado for Nuclear PowerPlants," Regulatory Guide 1.76, April 1974.

8. Stephenson, A.E. , " Full-Scale Tornado -Missile Impact Tests," NP-440,Electric Power Research Institute, Palo Alto, California, July,1977.

9. Wen, Y.K. , and Chu, S.L. , " Tornado Risks and Design Wind Speed," Journalof the Structural Division, Proceedings ASCE, Volume 99, No. ST12,December 1973.

10. Fujita, T.T., " Proposed Characterization of Tornadoes and Hurricanes byArea and Intensity," The University of Chicago, SMRP Research Paper No.91, February 1971.

11. Feller, W. , An Introduction to Probability Theory and Its Acolications,Volume I, 3rd Edition, John Wiley & Sons, Inc., New Your,1968.

12. Fishman, G.S.. oncepts and Methods in Discrete Event Digital Simulation,John Wiley & Sons, New York,1973.

13. McGrath, E.J. , Basin, S.L. , Barton, R.W. , Erving, D.C. , Jaquette, S.C. ,and Ketler, W.R., et al., Technioues for Efficient Monte CarloSimulation, CRML-PSIC-38, Volumes 1, 2, 3, April 1975.

14. Nuclear Regulatory Commission. " Missiles Generated by Natural Phencmena,"3ection 3.5.1.4, Standard Review Plan, Revision 1, November,1975.

VI-1e

Page 29: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

APPENDIX A

TORMIS Input and Output Sample

The input and a portion of the output of the computer simulation is given

in this appendix for the computer simuiation of F'S tornadoes. Table A-1

illustrates the data input requirements for the TORMIS code. In Table A-2 the

output summary by target number and impact event is presented. The four

impact events that the code analy2.es are as follows:

(1) Missile impact or a hit to the target.

(2) Missile impact with velocity greater than a specified value.

(3) Damage evaluation for specified target properties.

(4) Damage evaluation for a second set of target properties.

The output summary also includes estimates of missile impact and damage to

combinations of targets. The notation "7 S UN" in Table A-2 represents the

union of Targets 7 and 8 and hence the combined probaMiities for each target.

The notation "7 8 IN" represents the interesection of both targets and hence

the probability that both targets are impacted in the same tornado event.

A-1

]9b

Page 30: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

_ .- - . - -, - ,

,; . * ;- , - '?--- - -

, ,, ,~

. -

-

,==.

*C' *J.

t ~3C,

, -== 4JC C

,ag 8- uI O v

! ' i

f c #' *

. s

.= -i.

s-3

' I O'

| W. c I

' 'is e

: s CD'

I . ,' O

4 " O i* 4 ** f, ** Oc i

O C O. O Ot * s

I eM ,

n i i c w W; W Wc I i O O O O O,

em o O *3n . ,8g i ev <* 4. ** T

o i ! t V - C =' ** *"" @' N *

C. C-O.

ir-1 N ** * O Ce e ,

Z C C cf C j | I e * * * *

C ! ! - C C C C C.-= t

& f C m O ** OF C C ci | 4 W W; m O CCCCC *< = | ' O C or C C ?OSCO ^

,y e W W . W4 |

f' M'eih c- O C 1 4 t M .ina M E E f.s3 M M, M 'M

~ a e c | e. ,o o C o< c e moC=3 -

i c o "3 s @ C 9OCCO -= a o C ' c' '

".0 i ** C aa . d'' @ # *'* f'" ? O"a''

== 5 j4 y mt,i

, e o ei 3 2 SONN Oe ** c5 i2 C j w c% f==' C 4 Ja ? :D # 3 *,(g*} *= 5

, .,

3C' ?. C'. 7 C'.

~=e . e * * @ C g*'

c c I C; o j . e .

o Os O C cocQQ *ei- e e .

j fog;

r.= c. - - ~ e - e!I # N m * CCOO COOCC OC Ti C C ,O C of C O eoOo O C r1 C C e'l *

!', i

, ' Ia W M i , , e

w .ma m. , a1 w ena na w ma en: a. as w u .n.eg. e o r t ; ;, o e, C. o o COeo eCocC :e e es ,-

, ,s = 0 C i o C C. CO"

CCCC v ocCO cg ,

| C C C2 a @ *S C C C - r** C N o C

'|C- C @-

s O n 4| @ 2 CCCD TPHPO %'" O O

F= e o e e, o i i

r"* === 4' C 4 * c C% 2 =& OCC *** '" O' O' s ** = = - m 2

. c. 4. @. ?. C'. @. m8"=@ .'1 e

D o o c: C I, c . . . . . e,

I C C Qt O C COCQ CCCOC ';

C-==-

'

- a .| |

u - a m o e, co r - C C C a m = - m - o auO ocuCC e

'we t'= a u C u- W u wow Juwvv .

'* M E M M W- i g

* * O O C o ; o.

W M be E 's- Ts.' las W f J L= U M <*-* M U' C C C C a

C 7 C: O C O C ""' OCOC7 C

<= = o o <3 c5 c- - n o. o - uoO O U c.a C C Ci f' O O C C g C C C C 4 O' oCe -ae4 O -

,N # C O s O e C.r ef* @ **i r* tr N "=**@ eO 1

|N | C% 7 7 N- B .2 7 M *"' CT &TC -

R " Ch w sy C.* * W F. C W'.'****W*'N**

.* e Ct N Oj e . |' e e i es e

C C O O O - o j Q. * * el e e * * . * e3 , ; i ! O C CI C -Q COCO' CCCCC '"

c: | t. .t iH o. e a m- -5 i, -. - - m. o -- - - 'C .

mt '"* C OO OOO- ~N N O O

. i Ct C C ""

- * 1 i i e ! O C C, C o oo OCQc Ce E naa w I | s i e

O | i'

ina rim. ina a la. is, man ime in en. tas as .a

c'. . C <*3 og C C CC OOCOU1 he;

".@' W1 C cA' 833 Ci C .

I C C Ci O C QC COCC 4

! C1 C i - i m *O "3 ' c == co == a N O **ye **

N i - .| | |

*- 4 f C 2 ND *% Os-

V t Ci e c ,.- -- ,e e e -o, ,| | . - - - n, ~ N-- :e. . c o. . . * ,

C e Q . . . . . e e . . . . ., C C Ct C :C C000- ocOOC e

| .

e. ., ,

c--- cw c. m d, ca O N m O o-0 C O <",*

. 19 m - e -te e C O ci O Q O rL* 2 i :ne s M g,4* e a e i

I C6 b' C W h3 W ta.* - U L' T 2 M .'E M F"M.i

D C ""1 3 C c c' OOOO Ce ta >i ,| Q C O, C O Q, OOCC' 'E *= G e e' EaJ .22 M at 4i er ! g == c eg . *= *ain a = C c *= g

4 f= * * &* . ! sa. =a. e C .3 3; - e "" ' "3 7 t' # .

' I 3' N c *= f # N

** O C. **e f .)-

2 C - N .=>* E 6 E *C a=. ** 6

L* ' i 6- .= 0 # *= N N ? 2* a'"aC ** ** 3 .J

E. e .C o E b L.* > D. I I LS . e e e e

P h -. 4aa = = i a C '. O: O.e e

Cs eOCC CCOO ii

.4 E = E u Q; y 0 i

C ** O ma* -ir. * h. . e. m =|

'r 4+m e C h a T i w, -

z|e m E - M. e b E' Li =

f, '= = = 3 w' . w' w w s.

u . . . ;,O w = O nE. :. 3

,. s e= C; c = ! p - -y e

w en. Le a ea V1 .a., *. 4 a.et . 'L9 - s ina me I se o e == i t -

> c ci faJ os a == ==

C.'E E c s ar

. n.c w .= . = =.- - == m c e rm. = s Ji .= E cr .9 e.9 . * * E. = w . == a 2' *-

,.

r .c. ' z t .7 ' *sO 0 0 .c as 4 ==

.L* .eC 6 w . 4 == -. e .. . .

. = = =' .. O w == = w -e.-m - -u =. se C 3 : c= a. F. ;9

= C = *C 4; ta sa L1 .

6.mi

;s ac .g a ,,,,g,,y ww==w -. saa m = g

.aEw .r. -. w a em J a. J .sa .s J J ..d J e= se A - A A h 3. da J.s A a. m.

** is an. == == ar = .= , a= me - == *= = = . .= - c e e as e s.a. e e n. : c. w w .

*. - . 75 - - - ' - _ ' : - _ :._;.- - - - -

- - * . e * -

_

s4

Page 31: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

.

. . "T-~. s - . --, ~ , - . . ~ ..- - ~ . . - .

, ,,, ..,;........ .

,

. . .. - -- . - - z . , ,

- - . --

.

!?'

,

1 s,

*

.

a a e *"% m s r== mO C C O O O C C

. . .. . . . . . ._ s.

O C C O C- C o O; p.,

y .f:'

, O O O. O (*' C C CO O O. O O O O O .-I m N O O O O O O,

1 8'" @ A e CQ = E r. i , tem %,i; -n. e. N. e. see.,s C

- - m - -,i . ., . .i t 2 C O. O O, O W O- C

' ', s e i *i-

p I'

a =P 'm|' e a N P 0"* d'9 8 3'

I | C u O- O c C C O O C'

j [ M M W M M M* M M E. Wi 1, C C O O C O O C O "3

.

num,C C O- O O CS G C C O

Ij '* O C O. O O O O C C O* P= = P"- C O e O C C

M3 "Pt . .= P* O Cm.g C. O.- N.=,=% t e n -. - n g e cD . e . . e . . . e .p i | ' C o C; O C O O C C' O

^ ~ '"3. j

', I j ;' 8 '

Ic ', , , , - - -, - - -*"

| |C C Oe C C O O C O OM

iCf fa3 F2 M a3 'M M. h3 'M W |ad

C O C C O o O O C C Oy ' a C *'3 - C C O C O -,%,,,, C O O C C O< C C O O, ' m h 0, & O O C C C Cg

" , i i v'" e4 c, *= W No N c tD . Zi . ! m

* I - |'N. 4. . 4C

. i '-t - W m @ #

. . ,. . . .

>== 'C o L, o e C e C O c

i i i t # . ICC I!,i

a----.--Oe--.-e- ..O -O,3- -O-- e , , a e r m - c. a - a m ee - N i,

tgmecceOOCQeOOcoceCeecce OOOO O o C. O o e e o O O - - N N N e* : c a .3 w m u u u u u m u u u fa; w w u n w u u u m r.: a r.3 .3 . = w u u . u- u_. * ""3 ''' C' r3 O C O C e1 O C C O O O O O O O C O OOOO

|

,s O C C, O C C O o O O2 t: C O *** O O 93 O t* O C C O O O ? O O c C O 0 0 0 r* ' O O O O C O' O C O O"' "5 "'S '"' *7 O ** 'S *% "4 *"' e O O ei "* *4 O e d O O *"3 O "5 | O O O: *S s'? O "') s"3 "9* "3L.O * O ** 'S "3 O Pm # ** r"' O # O ""' *S f's .3 m r* e 4 "3 O O "3 (7 "' F* @l ** C ** ** O O *S

L = = ,= - = .O 2 7 O. u o ""!3OOOu = O O O J O O ** - O Oc3O "' W C' ''" P'* 4: 33 a N' 2=

= e. ;=.g - - p - - = 4. **. **. @. CP4 *" O. O. '' ". P* - P" '"* N *' - N f'* N 8'"9 - "''. _ . . . . . . . . . . . . . . . . . . . . . : . . . .

g37OCOOOOccOOC000000000000000 ' O o C. O C O' 3 C "3 - t'CD l I i

, j |' ' a:a

,

koc--~ COO =e -encero-coco -O'

f n' el h -' -s e e n a e * N N w c -"3r" O O O C O - C 0000000000000 OC r *|P' ' C O C' O O C *1 C C O """ * - N N ~

CC.a= ts.si !)- |ad Y tas u W i.e ind N tas ha fa3 find tha E N W W W W b fa3 asa N ena tad 1 b. ' sad hd I ||nJ fad f,.: . E|< 0 L "3 C c O u o C O O C C O O c O O C 3 0 C CC - O C O O O O, C C O' O

C C O O O O C O c r3 0 C O C O C C C C8; OC CO o O Ot O o C O O C Ce O O em c- e- = O O O cr e- N C e - O C c c e O c- O o O em o O O e C e' ,

* *'S C C C == N e C f= 3 a 8'"mC8 OO - N *n # C O- 75 a O O* C S C O O.n J O O O C - T N e''m O 8 O e OacONN@ Oc | C W @ # M 4. T C m =e s* - - - n

C. e e. . -. . v. e. no. rm. e.m - e. m. o. r* O. O. e N O. C. a. c.a , n - - n ~ - re -

. . . . . . . . . . . .. . . . .. . . .u"* 3OCOMOO30o0000000G00000OGCOC O C C+ c C O O C C C

'"*

| ! I I, , e 8

auO C0000u00000 -OCO e e a e a m N e 2 e a C v r C *, J ta u %,e c o u o u u w a u v eouw **v v tr,,a w w CJ u, w %J c w - - .e *=,

4 L ; ea. |: W f.d faa En. (J InJ b M W f.3 WWMM M .Jhd saa 1.3 'b faa CO Ea3 |a3 M0 3OO OOOuCOOOWCO OCOO O C C O O O O C C OCC s v 3 sCovovoocOC r.; O O O C o C- u O O""

C O ovc'S "" i." - # # N N P'. # C ** *5 c'3 @ 'D 4 g O r') O- O C O O "3 Oy *C- c # .*d P* N r" # == f* - O OOM@ ~ *"' W O C O O e 33' +3'y .* G.# C 4 O P'* 3: CP W "J3 ''" *" 2 3 - O O C:: @ I O 8"* #- C ''' O '*' *"* Nt N

J* D @ c' N P' CC C a N O O "" M 8*9 - C O O O O O O= = ** r* O ist' {"r r*I ' - N a 9'* *= *"' N *

* * * * * * * * * * * * * * ** * * * * * * * * * * * -

g

CC * * *- *'O -C C; O

* * * * * *g OOCOOOOCOCOCCOOCOCOOOOOOOOOO |O n O O C' O ;

i . I,3OO COOOO, O O C O ** ~ C O O ** , | s'* |

B 5 9 W im Ns W .a ci 2 Q % O @ *** tsce OccOC. COcuc- ocoa - O o o O 'O O.0 | t I

' O C C O N N -,, 1

6 ins las an. i.s ima ene ans as. .as an. na4 in.s . ena ins ena ine , i saa sa. me , .a4 noe ime i saa . en* an, . sa. .?OC 73OOOO CCD3O' OOOO' O O of O O O O 'O O. r'3,Duo OOOOC OOCCO' OOQc' ' O C O' O C O O O Ci O !

O .* O | 4 O O' O l O o Of ~* 'O O O O*CC CP'a m # 3'a"9 **

, O O Occ '"' e *"9 P= 23 N P= O |4 W *= c -

Q 9'i O .nd" e. O 8"* @i '9 e O. O O O =

'" '"i d- O 04 C' ' O*CC CD s'* @ C* O e - F* 3 o u* a m =.

* #. a O O P'm ef'. M d. O. A @ N N e C. O.r*'""N 4. O.O. C. O O. O.=.3 7. ! "".2 '"i "" : ** C '- ' -

e . e . e e . . . . e e . . e e . e. . e . . .

3CCQCC0000000000000CC00COCOO O C O, O O O C C C' O,

e' I t;i i i2O OOC 00 O O .= *= O-- s 2 e e a **' s, 2 a e 2 en *. = N ~*

"3 O OOOOC COOC OOO ' '

O C O. O O O O >O Q. O - - N N N '

e e e e f.: te u h: t.2 w u r.: :.3 m w I u n.3 m3 e e tal i w .m3 u s: ma u *

,OO OOOOO OOOO i COO ' I O C Of C O O '3 O O ~3O uoCOO Q .J C.,a C 3 OOC ,r' | '

C C O O C: O O O' C.* 'p O

- Pm r* 3 sfoC I 400= m e* i e O O C :: = e

: e c0e"Nc O C- O 'O C: r* O C O- e -**mo o e .a. asc QN--m % = co - c f* c= .m e; c .e = = - = ,N O -

* - e.c- a e. N - * w,#. a r* a. O. O. o. *. e.i,*. e. e. c. C. C. O. O.r;, N. o. N. e. N.- -..e e <'* -

. . . . . . . . . . . . s . . . .

3 C O -s O c ts O C w O m u c O c c e. C O O C O O O O O O ae O C C O 'O O ~3 ,O - Oi .u

i u. t i i e

| a

| e= 0..

.e -I

! m C, #' '

. .e z I, i.J * + |* 6- c. .-.

9' -

9.=

9-- ,

u, i O 9, 4 , 1 N =

m. ; - N *' s c

u - .' ~ ~ ** ~ ~. N == .,,. - * == ** - == - =. - N N=.===-,=.m.is 3 N N

...=. =.=..===.. .=. ==.. .=

z.- w - - - .- = w - - z z

*. .* **"z. - ..==% . , . . .-. ~ = - . .p . . ii = z

.- g y ,a y y ,,,, ,, y s ;,, c; eg ;,; ; e= -==e.e==-..e-== N N r. e% rw N sa. rw N tw g.*.i.=.1. N..e ,# y

=4 1 tas Es..as ame Q. e.o be C. 6e sia. Ch ses 6. .a. C. &me Q. Ese tes I. has I,h, C. a. an me w w aie w p. sus |w p p. ,,g .4 .3 ,,

-. - - - e..

-.* * . * . - . ; ; - . - - - ; - - 5 - - - -; _

.

-

. .

Page 32: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

d- .. ...... -..~ _.- . m . y . e4 4 . ;;:,.nc.: _ a ,- - ..~ u - r .,1 m _.2. %I! 3 t EMEWW|

i

|' ! '

i ...

. . _ii : ; i ! p.'. .

'

j|

t mi,

! |' *

i I e m Q'*

, -

|| .

! C

a o o . t| l ''

fM 's.a |' '

. .

| o o e, o o i, -|

,' ' N o ! M'

I ' g a

j . O o f I ! Ci' M .4 8 ,) .

. O| | i'

i * * a = ! | U| .'

i | '3 Og 4 4 ' ===.i. ,

e i Ni ce : N Ni N N et + N'| e A i ce o o et o o o' .o o, .

I o *I *'3 ' :

.M M.

MIi M I M M i M. M Wos ,M ma 'j I o I o o o o a: o e,< o o al o e o e o i o c. o oa ! o o | os o i e ! a a a ar N -

.L o I ci o C e o' o o al C =' ' ,, e c N. N - -. - - e: - -

| ,6 m P*

i P".*:} N. N.1 .N.

. N 4 N6 Nf'*

N.m - .| ,

. . .'

e o o -

o o, . i . 1'

i- -o e o, o oo os

-

e'

| | I'|

'

| | N -i m9 e t

,I esi ee a!' N

,i e m - . o - oi ,o e. oj o o

I i i,

i o e oi -

j.=.| 'a M M Jha M ,J ' M he ,

"3 'n se 1 o | c o je ,ci of.8 i o oo , e o o o :

o| c e c' co. O o e.3 o o e o I ''

I! o o e o l ei o o Na N 4-I o o o |

*e M4 o * @i @ *** I ;'

M | IN N @ l c..e o. e. c. G. . e.

-

N. 6 N. |*I

( es. N c o i i L

I'eC i |

t . I * * of C o o o j o e ai +c cC ' - o o o ; j ' I i ! *

(J f 8 ' ', II 8 N4 N N N N N Ni N I mw

.m o os o o I o 3_,. .o .P.e -- o .e e .e=

,

an P. eo o e i

| .i e os -o | o- . m: - m m i -

* Ml W M M M ! M Mi J M''C .M I g

MI

o, o o o o ; o a. n - e.~ 4 e i et c o & s-3 oi o o os o '

H o o e ci o t o i ot e o o o I o.< I e o' 'c.i e. = e o, o e o- *3

o - eg e e c. e oa g '"9 o P P '''

Sa'S

4 .W N. J. | e. 4.4C.=

. , ' 4 =*t N o o .. . .. .

= .'O '

+ . l. * P. o 'o o oi o o c. o o,

Y ! | _| |*

I l '.

yL9 e.C ci o !N = .e., N ,e e. e c. .= , -. - . .m

- - - N i- o o o - , ,

6 |, ,

i eg g- Mr M t

| M H H b i | ol oe

- o o o| | | , . os o ;

,p

| o o o * , et em'i

'=''- e o e o ? ot @

*

6 '4 o o o | I or o

< l O. . o.,

o. . o. o. N. o.'s AG *"* o e f -

N w e i. . . .

H i 1

|'o| c o os o t e el o o. . .

< o o o 4 .-

t

'ie e '

s= .I'i''"* '

e i|

I'is .. tw re N =

m 7 we N e di e m = a m t o I o' o o c' C oH.. N.ev e no . m * * * ' ** u oC 'j |m M Mi m m M. M wC-

| M M , == c I os o - o c. o eZ | , i |o Ul o f o e o w

~ ' o o|, , . o o c ce e c. es e o' c o | |

.

P. c3 ) sa.| Pi m, an. Oi|I

|* 4 o b |g ei m a m m N=

@ == se .

o. i o. j *. * = * m = N.to t .5 *e. i=.

,

a. . .N == . . ..g,as g o' , . *

o e o se 'o e o og o , o c. O CI

-

i eI '

e f e 1 e o ei , !< g g,

* | *e e e

| e el e | e e' e s, .- - e. e e mi a e Ne e a e m , c. o o i ai o - o ci o vwe

yN m a'e a' f"9 e *' *= ; o o al VI | Ii i

ga, # t a f Mi M he M ., me as- as i M iii.sgIg |

= m mi on o , o= ci o c' o uw ' ce an, o o a o e os o e o. a e,'W o c o a m' 4 N i mi m a m. m o, '' o o at . @l m *=.

I c1 an * e' c c| @ c of G Gl * @ | @8 @ | o e' @ C* *

N. i .e" N.,

N. m. j N. i N. N.| 4 e el a q

|. N == me .s . .'

l. . > o o o | o o o ci o u.

|.

o o o x.'

!, s , , ,i

I 'er |o= e a el 4 e el e c M e e a #h

- m * * o 'o #. I, ,= m m) . 4

r HM |M C ' ' i I

'

I' , o o,

,

, . e e . i.

i.

.

'I*

,

I,

lI l e o meI aN N i N f4 I N Ni 'N ! Ne o en Ni

g | Ie o C 3i 's. a.. 2 2

|3 z., m.

2

|

. N. o.=, ;. l ti ' = .

'. w. > > fe p mi > > p. > >I o 'o $3 ) 8 3 21

I z.s-

2.e3 2 3 3 ,3 2.;

L l.

- | c |- | ;e ..m se w w me t w t w w , ms =i ,

# im.i a. m. . a. i a. m.e a. m.

, al,. j w e, ,

, .j e , i Ni A 8,= e

, | g | | a. ,

.=. I= ,i .==

, . . =

=a.. as . <, . == ==, w .

,.= .= t- , . , - =2 . ,- 6, a =- --

o ,l j *= = ==' = = **

. =v |= =

i . , vi -v v e, ., ,in.i v v v w;

. m.\ ! N. N. | N. N.r N.. . . . .. ,. ,~t w w 'N w ceo ~ - co . , ' . . . . .

- a= a= 1 e= == e- . o, . me a i g = 'm |ie= e. z g. a == = '=* *= = = *== = = *== ,. I,s i a He & H H. t= J b H. H kgN N .H H- N rN WI N f4 Ni m m. e se he .> ** a= lM.1

> h. > >6 m ' * . .am.' 'a m ,a a a in 3t z a a = == . as .. .

v Of O O O. M 'm ol.C |O O O

O. ,O8' * * =' * ' = X= * e

w ,s w w ,s w we w w we a. e.= w. * v= e e= i e e= s= e= s= > e=e.=.ed d 1.d me est aus .d $ e. .d -d e M > M4 E MI 'M se M l, M se s. , m.

i I8' ' '

, ,

i..si... a....., , - , , ; , . .. ..; - - - y = r , ; ,; ;,,-., ,;- , ; ; - -. 3. -

%'

A-4

Page 33: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

TABLE A-1. lilPUT DATA FOR F'5 sit 1ULAT10ft (Continued)

116, YT D , Zl (I) , W I, W Y , W 3 0. 2 0 6 Plo t C4 0.1240CJE 03 0.0 0.05C,00E 01 0.t.35000E 02 0. 2 4 0 '10 0 E 12

' 318,TTR,ZC(i),WI,WY,WZ'~

6.273000E 04-~ 6.s92500r 02 0.0-

0.5400J0E Ol' O.115000E 03 -0.501000E 02' - ~

*~ ~~

i

.

,-s-

*

I1 F ,YTR , ZC ll) . W I. WY , W L 0.298H00F O ta -0. 917 5 0d f U- 0.0 0.15 J 00 0 E 02 0.0 0.190000E 02__ , __ , ' ,

*__ _

. . _ _ _ . . . . . .

'

= .,

118 , TT H ,2C (I) , W E , W r , W Z 0.3027001 04 -0. 9175 0 0 t 02 0.0 0.15J130E 02 0.0 0.390000E 02_

'1 All NUNSHF RT 84 T IC TC IC 1TPTAH LAP THETA,

1 3 70. 140. 2664 C. O. 1 3 3.0- 2 -3~~ 70.- 14 0. -~ ~ 31 17. ' --- - --- ' 0 . - ' O .- - ~~3 - 3- 0.0

-- -' - ~ ~ ~ - --

, , ,.h,

,,

I 6 31. 22. 2941. - 1 1. C. 1 8 0.0 p..

C4 6 16 22. 2903. 4. O. 1 0 0.05 6 16; ~ ~ - -- ~ 2 2 ;- ' ' ~29R).'- -- -31. C. 1 -- 3'' O.~0

~~ ~' ~ - -

b..

..

6 6 40. 22. 108: 1. - 1 1. O. 1 H 0.0.

F 6 19. 22. 2983. -11. 1. I a 0.0..

'-2983. . e 3 ,-- - 2 1, - 1 -- U - 0 . 0 - ~-- '- ~ ---~- - - ~ - - - - " - " - - - - - - - -~ ~ - - -

,

. g . g _ _ - _ . _ . 3 9 . -- - --- - 1.,,

9 6 79. 22, 3000. 66. C. I B 0.010 6 331. 24. 2995. 15 8. O. 1 12 0.011 ' - 5 ' -- 2 7 9. 5 0.--- - 10 0 0 ; - ----'7 6 0 ; - --'C. 1 - ~ 1 C 0 . 0 - - - - - -~~- -- " - ~ - - - - - -

- - ~ ~ - - - ' -

.i

12 3 25. 59 2980. -94. C. 4 2 0.0

T H SU R T ' N G U.I T T PR ~ MT E"I L--~IIT~ T F -"TU ~~ 21 -'- ~ ~2 0 ~ 5T H NCT H WTI.~ 9TH-" ~ ~ - ' " - - ~ ~ - - - - - - - - - ~ - - - - " - - - - '--- - - - '

|'11 1 25 39. 1027. -94. C. 4 2 0.0..

:.

",,1 i 1 4 0 68. O. O. O. O. 72. 4003 72. 72."

1 2 2 5 0 60. O. O. O. 72. 140. 4000. 72. 12.,

1 ~1 '3- 0 -12796 2911.~268.-~~68.- ~ 0;-' O. " '--' ' 4 0 0 0 ;~ ~ 0 7 'U..

2 1 4 4 0 60. O. O. O. O. 72. 4000. 72. 72. ',,'2 2 5 5 0 60. O. O. O. 72. 140. 4000. 72. 72.,

--- 2 T -- 6 --- ~ 0 - 11069 ;120 0~- 6 0.'- 68. O. ~0. 4000.-- '0 F ~0. ..,,

I 1 7 1 02932.2932. - 14. 7. O. 22. 4000. 12. 12. *

1~ 1 - 9 - -- 0 1 12 9 51 ; 2 9 51. ~ ; 14 ;'-~ T.' ~ 0 .- '22.-- 400J;-- J; 'O.-~ ~~ - ' - - ~ ' - - ' '- -

']1 2 8 2 02932.2951. - 3 fl . -34. O. 22. 4000. 72. 72...

..i

1 4 10 2 02912.295). 7. 7. O. 22. 4000. 69 69.

1 5 11 1 02912.2951. - 1 84 . 7. 22. 22. 84000. 10. 10. [1 ' E-~~ 12 -~ ~ 0 -- ~; 12 912. 2 9 51.714.--- 7.--- 0 ; ~ ~ 0. 4 0 0 0 7-~ 0 7 D . ..

,

4 1 Il 1 02953.2953. 2. 7. O. 22. ii 00 0. 12. 12. '.. ,,

4 2 14 0 - 12953.1014. 2. 2. O. 22. 4000. O. O. -.

4 1" 15 - ~ 1 -~ 01014.1014.- 2. ~ 7. O. 22. '4000. ~~12; 12 . ' -- ' ~ ~ - - ~'~'- ~~~ ~~

'

4 is 16 2 02951.1014. 7. 7. O. 22. 4000. f. 9 . 69,,

4 5 17 1 02953.1014. 2. 7, 22. 22. 4000. 10. 10..

'4 7 - 18- 0 - 12 9 51.1014. ~ 2.- -~ 7.-- 0 - ~ 0 ; - - 4 0 0 0 .- 0 E ' O .~ - - ~ -- '- -- "- -- --- - ~~ - - ~ ~ ' - - - - - - - - - -- - - - ~ ~ - - ~ - - " - - -

..

5 1 19 1 02953.2953. -14. -28. O. 22. 4000. 12. 12...

5 2 20 2 02953.3014. -34 -14 O. 22. 4000. 72. 72. N,

~~5 l' 2i 1 ~~~01314.1014 - 14. 2 0.- 0 ; 22. '4000. 12.- 12; ~@--' -- -- - ' ~~

.*.

5 4 22 0 - 12951. 1014 -20. -28. O. 22. 4000. O. O. y, ,p5 5 21 1 0295 1. 10188 - 14 -20. 22. 22. 4003 10. 10. ,

{ g / f

. . .,

5 6 24 0 -12951'30147 -14 -20. 0. O. ~4000. D. U.- - - --'-- ~~ -

i.

6 1 25 0 -1A14.1014 - 14 7. O. 22. 4000. O. O. a$ i

6 1 27 1 3136H.3060. - 14. 7. C. 22. 4003 12. 12. m )- ~~

j"'~ ~ ~ ~

$6 2 ,26 2 01014.3068 -14. - 3 ft . O. 22. 4000. 72. 72. N,

g ;',6 4 2H 2 01014.3060. 7. 7. O. 22. 4000, t9. 69,

t. 5 29 1 01014.10 t> H . - 14. 7 2?. 22. 4000. 10. 10. g,

6 6 10 0 -11014.1068. -34. 7. U. O. 4000. O. O.- -

n

7 1 11 1 02951.2951. -20. 2. 1. 22. 4000. 42. 42. "

7 1 11 1 C1314.1014 -2P. 2. 1. 22. 4011 72. 72.- - -

[7 2 12 2 0295 1.1014. -20. -2H. 1. 22. 4000. 72. 72.,

7 's n > o "e',t.iivi, 7. >. 1. >>. n o.M . f9 ss, yg ; m,g g

Page 34: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

'.s- .. . .a ' - !l., . ..!

* *- . - . 2 * .. . '1.4* -

* * 4 * '~ * *~"'"""''J?'-

'|

! I[ 'i

i i ', ! ,

-

. !I e

Ii' i 'i

,i i

| NI '| e m m a

! Q( ]'

j G C'i i

|taa fa. i

g O C Fm-NM@ ^

Owr ---8

I. -me !' o o,

|'

e"'*en .'uo o

. . .m-Neco c . ,,

t m @ .N iteurocu.f,

f I,'N W _

kE,

' ! S o I

em,$@' 'i+,

i i ! t i ,, i eN - _, i,

,

o,| t.I i

I i 6o o i . .i -. i,

I ! i ,gss,

| | Mi e e3 |'

iI o e o o. o. e. o. O. o. i t %

| | ;o o o,C. e o ococco ,,

| o' ', !' 'O o C *

i I Q' N a;

!| | ,5 || 4* o- O t,

,, , .- , .

| | - a le"

,

|'

l | O' O ,o .

' '1 i

j i; ,

'

', !. w; e W

!c. o. c. o. t . o.o. e o oi,

| c, 8'"t C; . ,

, I o C C 8 CDoCOCi i

' ) of C o |- -

| g i - 3 67 *|

io- o w i *,,

'i | | .I 8 c N **e N f*e ."" O O d"S O C **.

,o eDoono e o; e o e eI

e: e ,E

i I | I WWMhWM W M. W W- W L'd''** ' , ' I! fu9 . #'* M ccQcOO t'ai O' o C C C

| o! o O | onC-NO O C n C O C7 '

CJ | . O r"* O *= P" G: o o. O O O Oi

3 ! N- Ik2 de.1 a's P* @ .= W C O C:: D 0i *3 C,' & NC i Oe C C

i, - N.8"*

'"4 P* N.O = r* -

'i .. * 8. I"*

7. * O. O.C 3 efj

| ne o O,,, ' Ig '

i *S i O O j a'3 O O O O O * * *.

| O. e no p C' O r* O o OC t 5 i ! c' e n i,

* - M | |O 't !

.i. .l. . .!I l.

|, O S. O "3 0 -V .. .

. .. . ... o. o o ; a C- o c: C e, . . . . . . . . . . . .i. . .i. . . . .I i3 - .= a a= - .= N N N N N O N N N N N o N N N N N O me N O N N o ,

| 9 | W M. M Mi E W8- - - - - - - - - - - ----i - -t --

g ei e - 1 C o- e O' O Ow i-

I *~ ,

!C .'I. e|

^ Ce O o.

N O' O C C O'

. . . . . ... . . . . . . . . . . . . . ea. . .e. . . . Ie I C c n C o C

|IM! h W"

H- T c C o c e O N N N N N O N N N N N O N N..N N N o N N o N N O- C * C

.a 'o

o. c. e. c. o. o.--| o; e o - e e.< - .- --- , - - . - - , --- - -. . eo

l c' o o | @ m W& m &C.J '.

' j g ,,

, g Os e O I CCCOoo *g ., * * * *

3 . . . . . . . . . . . . . . . . e . . .a. . .,. . . . . .*. O O O .

i ;i o O' o O C C C

3cCOOOOCCOccCoccco3OOOOccccOOOO m3 o oe

OOOcocoocccOCocOCCCCCCCC000COOCO P. .i Ie "" '

"o" * *O O O o'' "o'''r'*' O O 3 O Og 3 o o o o o o o o o o O C C o G C C O o O c:,o O C o o C C o O * *

3@ 4 4 4 4;-Q g 3 m 3 CE33g3 20733m3333O33W o' o o O o o o ogem a m m eu. m t -

' a 1

| | l-

d ' ' ens ee. ca. e nas s em. tas , esa e i

=^

-i a Lv cooooe o o o o o.

| | c' o Q w G.e = * w 8" G2 u u- G v oLa iN or* o n - o o e o e

. . .|. M! W W ""*r* J T e & D N N # N.l.g . . . . . . . e . . .'. . . . . . . . . . . . .

C ~~~'""*"""NNN""O#####OOOCOOO"m''"C"m'ONN C * O OI, N.".".".'".". "r ' #C #

NN N NNNNN. ccccc m m : o o o c.4

o. e. .

e s.ge i t e a: o in oeooo3 . . .

,| O: O o i O o' O o O O C.'. .'. e o -

*,<|. . . . . . . . . . . . . . . . . .. . ... . . . . .

' ,H- - - - - - - - e e o o N C o o o o e o u C o o e o o cri o o cr o *n : - , ,< NNNN N Ni N ci mi e' .. . . N-omNs C e. o e e,

C s e e a te ; i o o o ; oooCoo o n' o o, c; ,

. . . . . . . . . . . . . . . . . ... . . . . . .. . . . . . ... .. ~ w - .. . ~ m | eococco o or o c. oN em m v. N N N s n a e a a m m en m e m aa m ca co sa to o m c* o C* tm m-UC. N N N N w N u* e.= c' p* N e N N N N r= g- r- e of o o , e o o c == o *c o C. o o: cN N

e - --s=--- --m- mmm e , leI I o.o c: c - C as o o o e,

.Z., ; j' w w a. w e o u u o o- eina i in. nne

.!.|' e. e. m a e- a.c' o e.l. . . . . . . . . . ... . . * . . . . n = * e- m= . . . . . . . . . . .

:|: a.,easNaaas&n&am&aaemaemar=*zemueias o cm o of o o . .I. e. aj =. o. a. C.mi

N N e- ce NN i N N N N e N N ce e o* N cr tn eo oo ci o o i oeooeo . ..I -----w--em-w -- -- mi o o | | i , o o|. e i e i i e - o O ci o e

.'. .i. .I. .i . e. i. . e. h @i - Ao t' ,

t. . . . . . . . . i. -i - .

2" T FF#WCCCCCO4rwereCCOOOOommeNN e.;. . . . . . . .' I -N*NNm o o' O C C #. .

< -e-----ccerec4NNNNNmmn~~m eo . o. O o coecoo e o o O O"" C* C C C C O @ c O C o O @ 8"'i Ma ''9 ra f'* N N N N N oo oO

^

s

'sa3.Ne - m == m N m m m m m. es em M m'* 8*9 m N m. m m m f.mt

,LsJ com r=9 m rim i i W En3 W W D3 M (.J ana M M=

el. I N k* d'* C C o C O

2 e "'' m O O C C o C @ @ D @ @ ad3 C C O C C D # s=9 r** c N N.= ! O r .3 O. j @cC.CooCJ . . . . . . . . . . . . . . . .i. . . . .I. . 6 . .

C3 ** '"*8"9| cP Oooe o o: o o c

. V # *= # # c u1 c of # # c i.: 4 N & 4 @ m * P* m c'* r=9 == m P'* a= - to g g N ||5 e"9 O.O O@ CB *. O C 8 m oeq *

"*e ce N ** N N N N N * N N N N N m" N N N N N m N N N? L** C* c C* :'' L* @ Cr'CSC*C*C" @ @ r 4 4 is r* r* N N *5 @ t|'' OO ; th) h3 M | y=3 gi P c %p

O M|NN e ra C oO '. O. . . N.

P'* p N ** T e

== - ** - - *- Q C o c o - c o c o o - o C o C o s= o c - c o r= 1 o o c | .i. . N Ni N. C.

- N C-

e .I | je 't is le i C o ci4 |-

oCOooo I. . .

I 3' 3 e ci - C O o C C C O', '

|O.

!' I O m Qi H' ! ft

: < - - <O == N - N a* r'* - N *= N a'* O - N '"" N ''' O - N == N m O 2 m C 3 * C * * *. . C. N - aie N N

- |'

| E O @ of I' CCoocoiin.

| - I + 44 kNewWu' I ! l

. 2 1 H eccOCC4 r* 2 cP O *= N 8"* e it' J 8"' CD C* O s= N - T c @ em *3 7 D *= N m e c k2 =: ' T' C 6s' C o en o.

Q* g e M* ONOe&N" " * * *'''** 3 e W W 3 23 t B 3 it' ,c iD @ c ? e C / f ma @ @ 6e s3 a LG, . . . N i.|: o - re er, ,

| ME l. .@ - - e n. m.

m.

m. ,m -. - -,g, m. . .. = m = m;

,a - N e r w - N m a cio - N p a e @ - m m a ci.a - N m - N P* . Coeoco , . . . . ., . -

| : .J l W *= Ni d''9 3 # 4 F*f'! ' '

3 x,; == = .= = . ,

I ' , i e.

'|

,

. e-. .e - 6 .." N "* 3 c @ M P3 N N N e.d *JM.""* C "" T "I*

C CC C*n C* C' ? C' 1|'' .O O E'S'')

O.=C - ** - .= *= .m.- == e= - - == == .N.N N d'*t la T" E E E E C Es== r=9 m. w """

==**e= * = . - = = - *= N :N N ad i .s. in. is. an. .s., a4 E E. 5. t# 8 | tud tun.6 Emu 6 tual me h %mus

E- Ee & .L E %& im I,2 %,,1 G .J me,'

e .-

Ii ! ei

=N, * . < . % s.-, , ,

4 ; e, . - - * * - . . * ; y . , -, , , 7 , .. . . sa s-=

= s >=

Page 35: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

=

_ -T - , e_ z. . - . . . _ - _. .e- . . - _ . ,e. c. 2 _ . _ ._ - - . . . - , ,

,, , . .

- - - -

. . , , .. . . _ _ - . _ . _ ..~

.

; ' i a.,

, -,i

.a.. __.i .,

i i CSJ'.. , ,

, , . -a.

t

em. ,. , , ,, , ,.

.

| | , i - 4n| OO- i i ,

;

C. C' i | | . ; ! WWi,^ | , ce

' " ' .i | j-

|'i OO

! Ce ' if

f I'j, ! No n 1<

1 I #w %.| i ,i ! c,

i I--, .. . ., ,,

t CO. ,

I!, ., . N@

OO, .

, .. ., , i _W

1| oc, ,' '

| 4Ci. -e n,

, , ,N. -

798 292 P. E; ! :... ,

'| ,

CO =4

m. i i i nI -

i j""O e

CJ o e O ." C C *= 0 * N N N 8"* 8"'t '"' N m m m N N N N N N N N N N m P"* M M m '"' M N N N N f*' *1 N 4 =3 W3 O C 8"* C C' C O C C O C O O C C C C O O C C C O O t's C O O C C C O O O C O r"* O C C 4 C C CO =.2

* f .

t p.6

.[ 6 m W W W W W W WWmWLWWbhWWWWWWWWWWWWWWmWWWWWWWWWWW WW na O C O C O C' O O OCO*3Ca'3COCOOCOOCOOCCccCOOCOCOOcccCon OO M

e o ra e c c O O O O 8"3 O C O C O O C r== O O o O O e O O O O es O O C O o e e o C O O O O ec ==-

c 9 O C O C C C O O O O D O O 0 0 0 0 C C D O O r'3 C O C 0 0 0 O c c O C O c o O 0 0 0 QN EO"" e" C 4 m ''* =* C O O C C C O C C C C O c O C D O C O O C O C ** * * * P* * * O o c O O C O cm

=~''' ? 4 2 *= C" 7 . N f'* m C S C* @ @ 4 @ 4 J N @ ? Cm P @ Ch P e o O @ @ 44@@ NCCOOOCr, T *= CU s,; e & O N em@@@ 3@@@@ @@@ * eC; E

@ W W* f.f.D.f.f.f @ @ @ @ @ @4 *'* ** @ f f @ 4 4 @ @e e e . e ... . . . . . e e . . e e e e e . e e 4

e e e o e e . . e e e e e e e

2* O O O, O O C O O O O O 3 8"'eO C O C C O O O O C O O C C O O O C C C Q O O O ** C Q C 3 0 CC

|' "'

.C3 | r a , t=I

q e a em O S = C *= N N N m m * e#== 8"'t M N N N N N N N * m m s== m a can m m m P" em N N N * r** J .,;: a

J W A W Ene In: W. i

-

90 MO O O O O O O C 000000C0000MO00C0000000000000000000<, Ea4 W and W W 61 W faa W W be W W :n3 kJ W W W In2 faa fa2 W W 62 W W W h2 h2 42 W W W be 62 fas Esa MW W

E #s 4

C C S C M 9 C' C f"! M C e O O M c"* O f= C C C C O O c'* e"J c c O O C e e r"3 O O O C C C O e C C SC f= ea.

M m e. n O C C O =,O e o c e3 C e c e n O f= e E:|r. n C e e o O C O e o c.; , O c c o o C e C C o., o O C O c e C e c o c e nO o e o O e e o o00OOOeOOC eeOcceOOOOC00 ccm I r =, o e * * - C fm o o e O O C O M C O O O O O O C m o C O O e C C - O O8. -1c= O O O O c cc >=

a 4 N 8"9 c,OCO4@ 4 4 4 4 N O O CF @ @ O O c e C e e 4 4 S *;. O C. s O O O 3 e a G O Fr= C e O** = C ==m3 O W* W".'@e @ee" N @ CD c||| @ 4 C*. CD @ 2 N6@ @ N. N.& 4 W* * W f*" ; @ ** ** 4 4 @ t=3 @ @@@@ p@g e . e e e Ae e . e -e e e e e e o e . . e e oe e e e o e e e e e e e e e ... e es e e

* O O C C O O. O O COOOOOCC 0000000000000000"0C0C000000 CO 2 E i;.-

L I e j C M E,

i y e- =6

d e c at c C *= N N N md=*em m m m m N N N N N N N #== m m e== r=* * 9 *** m as= m rue em N N N *== m s'm P% ** ke Z Z

Q O O O O O O C ;.4 0 0 C C 0 0 0 0 0 0 0 0 0 0 0 C D o c O'3 C O O O O u C O c c o C00 m

e , C Fi,,,,,ina une ans ime uns saa ens in ene one saa ese Ime ins ese bais ese ese has one ese one es ins see me as see . e e4 ene saa ene one one one ane ans ese one .a. ene as .no w .

. O O C O O O COOOCC0000u00OC00COC00e3OOCCCOCOOOO 06O s i .

84 . v v v o y u OuvOvOuwuuvvuoCwQvwOOvavcwCOvvOuOw a es w ea- as

b Cs O O C C C O C C C C C C C O O O Q C O O O O O O o F., OCOOOOOOOQcc a=C == Z =-ac" C,. # e" c N C C C O O*"3 O O O O C C C O C O O O O O O F. OO*OCCCOOCOCC = *h L 3

OCO@ @@ @ @ 4 N O C Cr* ||P :| CO459se@ @ e a O C|| eOOOew O -C fa.; OC e N 3 = 0 N O 4 6 @ 3 4 6 @ @ @ w @ 6 0 @ c"*i.; @ m Pe@ 23|D @ e, ||D GD 4 e N ,=2 tii', @ NN ** *m C ta *& 4 es'" O w 4 u &H e e e o e e e e e e e e e e e e e . e e o e e e e e e e e e e e e e e e o e e e e e _

3 O o m O r* O O O C O O O O c c O C O C O C O C C O ",,,c O O O O O O O O O O C O O O C O C00 *- -i

'

| I i

Ot I | "CC

6 L.,

N N N s='* *=* a'a ra m s=e ea N N N N N N N N m s== am r'= m = m m m == <== N N N = s 4&4 6 e -

C O O C 0 0 0 0 C 0 0 0 0 C C 0 C C O O O O O O O O O O O O O O O c"*O o C C O w*-3 0 0 *"* C r*"* O O ci e 0- O

t e 6- '

; i 3 m.

W W ime and ena W taa W me W W is.s ha una taa he ama es,a N W ha saa me ma saa en.s W ama ha ens noe mJ as saa W a.s saa nas ens ena na es,s &J 2 ime

e O O Q O O{ O O O O O O O O O O O C O O O O O C O O O C D O O O O O O C O ''' M C C OOC r.,a we

w C O *") i e O O DOOOOOOCCOOOOCOOOOOOOOOOOOCDCOOJOD COO F t".

g O C C, O C- f"3 OCOOCCDCCDoOOOOOOOOCCOCOOOOOOOOOCO COO E/: e.=.e, w' ie O C U O u O O u o Q U C C O C Q C Ons o u c c u c Q " o u Q u O O c u c c wOa va m

< C N tt* ** * N OSC@ @ @ @ W W N O O C" O C* C' O"@ 22&@ @&W C ED 3 OOOee ? f"" e W e=

c @ W; O =C 2 O P Q @ *G @ @ @ @ @ @ w & W @ lii'* C W* IC @ iC N N CD CD T @ ED CD @ C N Q has %e3 N N *" se) @ bl |EkJ e'e e e e e e: e e e e e eio e eie e e o e . . e e e i Me a ei e e e e o e o e eee e ..e e ele eJ O O O' O O C' c O 00000000000000c0000000000C0000CD000 COC =c C

23 t i e n, , fa2 =

c|C .

e4&4 go cw O C O O NNNmemememNNNNNNNmmmemmmr~mmmeNNN-mC f"* O O CCOOCC 0000000000 CCCOOOOOOOOccccCOO# COO =c C

'

? E =,

b La2 W is. W W W &na M W ha 22 b2 En2 42 h2 b3 h3 W N th2 W Er2 W W D2 kJ h2 Ea3 kJ M EaJ |na th2 Ta2 W W 1h3 y W h3 W se WD G O O ' OOOOCOOCOOOODOCCCoDCCOOcOOOQCOOCQC&CCC C .

O O e O C CCCOOOCCCDOOOCOOOCOOOOOCOCOOOOOOCC*OCC i||'m o C O- C O O O O O O O C O C O O O O O O C C C C C O O O O O O O C O C C t"5 f* f"* N 5 O

C O O C C C D O O O C O O O O r"' O O O O O ''' O * C C C C O O O O C O Pe* Wr* #9' N

.P= P=

I' OOO@@ 4 64 @ @ N O O C*' C's ;T' r O C w C 3 e C 4 e 3 3 tr 3 OOC 2 2 . |* "t . sE* **? "

f== Ni O C 4 ha3 @ @ W 4 6 and 4 4 2 6 4 O @ W @ 4 m N 4 O C:; ? 4 E||: .E i,,; e N 4, nog @ N N .|" w :D sr. L,;M 4 OO.e e e. . e e Ie .e o e. e e e e e e6 e e eee e e.e o e. * * e. . .e . . . . .* e a e e e e e as tae

-3 *** S C O O O M C O O C O o C O o o O O O O O O r9 O O O C o O O O C O O C o O O O O r"2 COC t--La t*i;

t Es; + 1I i 4 W' , J.,

. e r-

j I | 3 O O es.

i 3 0 * r| j g i ' = 4i i e !

'

I W .

' E E|l |

^

i-

.-

6

1 ii a s z'

== a= == | .= .= < m - =.===.=.=a=-.========.smi==,=.=====,=-,=,=.=.== .- mm .= ,= m .,== Gaa aBEE EE E E E E as h. as E as E E as E E en E E 26 E EME E as E E mE as E E W ,E E as i as hc m- E

.tse se o e o e e e o e e6 e e e. e o e. e o e. e e e e e e, e o e o e es e e e eE C =e e e e e o e

Ch P'') * N 8"" # it" 4 em 8" N 8"* 2 tt' 4 Pm T C" O '" N P9 3 W*. e4 "'* = Nd"* 3 W" 4 f** C ? O. .s'*N m a W" @ h. 2

ar ::. = . E p

======um====an,ae.,w,,,, ewe,,,,wa,,,,,,,.,,,,,que,,=.,,,ze= c= e- = y. . = == . . - - e= =.- == o- c= em a= e.m ,gsaw == === ==== ene ==,

RE M "Je M M De M M Sir M Mt M M ** .2 12 CN B.E E 2 2. nE .E. R m.z 21* E E e-o e 2. .T 2 M De M er ame er g c ar er me'rN P2 P2 N N N N NEns em e.e 6 an et e . . m ag as er er c at er a:.e ag gya r E E r E' E F

es. e. toe | h. tse an. ut. (se in. E E E E E E 3* C E E E E E E E T ?* E 2|: E f* 2" E E 3" E E 2* C C E E E E y.= 0,

e-s a eea n.e e.4 == ee em 6 e n vs to vi vn en vs te. e.4 v s va en va in es. w. J'1 ene w. G w s 4 e s 6. v4 we w v? <a v1 ws w# v4 CN.

a

U %) L,' V U V L,J L.J VNNNNNen P N N N N N N N N N N N N Pie N N N N P2 N N et N N ce N gi; N pa at 3

i

. . . , a . . - - e - - . e - , - r - - - , . -- .

_

Page 36: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

=

-

a. .

+M' *.O

7e

'

o ac ,t=ac .ee-cc c4 e mm e red * Oce

O. CO. eO O o O emmee n. oe e e e i ekW WW W kE e ve e

en EWW WNm mf n 3m o OO2 *FW**se 04 # == N sem =MON w= N OG c sez *cop #c 2 %* O =*e #

R * N. C O * * O O N O P P O C O C * O * * * * C T =2 - e e e e e e e . s = = . o - eC O O C Q O O Q Q O O O G O O O O O 9 C O O O s4 0 cC

- e - e -

wo@ em W NN 4voc CO O OG e ACON ?pC Cae e e e s * s e e e ewMu WW W kb e

L wWW 6QNd e? * OT m =P * Nm>F WN O O@ f 2bN 4bec e4 > OE m' % Mm 4NON me N == m #re M

6LO N. @eO O m * O C @ M N. N M. O. C. C ". O * * 4 C M M 8ee e e . - e e

C O O O O O O O O O O O O O O O O O c. O.-e e . .w eg OOOOO

U g e a e

C V NN m3 m Vf a ce s 4= *- -~ = == = NN= =g

E.D 4 e e t e 4s e e e ezum um ww e .e,u ww wu <-aN- ,, * -me .-mO -N , CO < ~-, -M

LLN@ NN 2 RC V 44@ fG H=Of Nn . N NNW =>asecoONOCmoceccOOvo--%c g eC g=de . c2 O O ---e o e . e . s e o -- e - = e . . - e eD SD>OOOOOOOceOOMCOOOOOCCCC .e e e

E 700- * I

U O #4 cm 4 Nm 4 064 Tm' CC CC O On G meO Pe e a e i e s i e a e e s& 4 MM MH M MM M MMM LC w. a-N m= 4 -m e coo 3U D * *# e= = 44 T OcN *C O SE mt O t r f =wa == .4m #* * **y M =**eS9Ph e Pem ?C C = C.m * S O O S N t * * N O c ? %w

e.e - . - - s - . e . = , - - . - _ e - eM' 43OCOOOOOOOOOOOOOOccOOogOgN- OP PO O **WO CO O= - ,,,,

,

Q meOs **a e e e e s

= .,m a uu ww w www u eww ee e e

% NE @@ @ Oos*M#r N r me m> 3@@ "0 E

= weO N c( N =* CO* f N Fe f C-

3 M** 4 ? CCOg E' O e.. e O " ". CO.=. C O.c.= O.O O.N" O 4 e N e c c =Q e. =*mO " ??N ?

e.

-

o - e -C r ECOOOOOOOOOOOOOOOmococccce2Q ,n> w

U70 O*- a som w=

* **c w,

= www gew e e" =

c as Ins =

w .e.e e.t .t 4- =e e q =

ew .i.t .e== i .n NNW @* & W MC w s w m

a.em

m ~70 e* ' 6 ese o agm4 n x*w @* e NN4 W 444 m.w ONm N# G pp =

4 ==T .=Jm > w NP.CO*=CO*Ca**COcceNNacnON@ a e -

e e - e e e o e e e _ _ e . e- >

M S.OCOOOOOOOCCOOce99C.m a S9e99e e e i eeM pm *N m " " - C' m w' F * ve,m. NN |

N. e.' N N. N,N N =9

e e NeMM MM M O' - w

p e

'J m m N ew ! M Ob. = NMw% MN h e La e== * Ne < O =wN eNu I

g ==nm F P * Nn a o eco N< ME@N C* * # dw' s wCO men = w * O e 6 = * * O O. s* O. tw * * e' O u o e., O es * wi e u O O Fnm ... e e - e . . . e - - ey**COOOOOOOOOOOOOuOvecuCOOOOEm

. . . . e - - .m,C M t@ wN *( m*O Fa ton ew *P NN N NN*' N NNNH I* * t e e t e e e e e e I N,u 'ma Wh w wwk u www* W'N 08 l C ""O V =CN w-

.M PM OC ' N 35# M PPN TmCN NO @'

mOg\ 2 %NN CL*N On O g t= @ *M*

= = = C o. m N C O e. O N. N ". O. O. S = S # # N C O S *z e. e - - - - e . ..

eGOOnOOCOOOOG2OOOn?OnOOcco>_ e e e . . _ -

l&& O= = =ac c aro "aCO **

=, = =*** * = 'e e e s "ei e e e e e eWE MW M se W E w EbW 6.MO m= a C F4 M N M * Tw?& PN m (4 ? Pa PPN %***m"'wfN c= s 4 mmsL E Pa m e C #PP e *mm

=

y*CONNCO.P.Op ==CoQp ONN*Scos=e - * - - e e e - .. kcOcuCOOOOOOOO- e . e e o e

W- OOOnOCnowCCcz

>=Nm3pN*WpMMgwNmpp %*gp NmWeM

kw '****NNNNM*W* 99OWVfff4444%

g

M

=g . -

, g - = s

-

798 293A_Q

Page 37: Tornado Missile Risk Analysis of Spent Fuel Pool.' · 2019. 8. 9. · Poisson arrival process and a union concept of success for event A. For rare events, the approximation in Equation

e

. . . .~

. ..__ =; . ~

_

~ ~_. . . - ~ ~

I

e

m E 4 44e4@fd 4444 44 4 mmteffM O O COCOCOQ4 COO QCO COOOOQm W G

e e e e e e a e e e e e e e e e e e e e e o e O O =M u u NusMMMGJMuM MMM MMMMMM e e e }m s 'e o m ##*Ee@Ferce Mme ##Pm44M W M' e1 m = Wg%*NN46 tM* WW3 NNdCMOT @ T Wf N 3 Ow=?O MC4 44N ffM @7VO@ G= * * a g~ MM f 4 ""N*R** ??@ 4 CC" @34*44N N * ng

-

k g*.7. C e s * C * O J O * * * N N N N N m m 4 C * * N o m m. ". N. N N P # 4= e e e e - e e . e e e e o e e _ e e o e . e a e - oNomON000

O C S S C 'J O O O C C G O M C O G 2 O O O O O O O O O O O O O e e e * * * e FM- -2000004O

C*i2Y E 4 C14m444mmmm mmm CO4444C 3 u C0C0%QC0000 000 OCOCUGD C @ ' *

. MKgc "*4po e e o e e e e e e e e e e o e e e eO O O' >

e a e WWe EWhA6 hum& T "L =W W WWWbbW e e e.ed ,9M 3 **k ee nCNN47*** 4f ast: 44M W MD * g N CsNev7f#ges **e **fge4C m /g ? # m #dNMP2PmmmE ES# @S44M&@ p m '

_ .g

: = m e=ncee*Nmm* M*O 44ecemo e e

N C * O. t. t m 4 N N. "_ ? 3 D * C 0 m e O N N. P * E. W E ~;OCON: * *C e - e e _ e e e - e e e e e o e e o e e*ONO*CGC

'

e o e _ e '

w SCMOOOOcccuCOOOCCPQQOOOOOOOOOOO e e e e * - * *, e'

-

e e o e e e o e e C000000CM-

4 m * eONENNNr*me eas @ f te N N N WC*

e e

= e = emee-eweeen mee eewones M O mwde e e a e e e e e o e e e e e e e e e e i e - - N e azuy .e

*w s muuuuuumuuu uww wuuwmue e e e -= ? 44Gm44t*gg@ NNS' **V4mmM M M' Q,m u* * 44 4*Comm440 MM* @fm*NNm m 9m m f a eez-fremmmm NN- -ateemo @ Ni -

y r = c cereceseNNc --N **ecNNe f C: (w C O O. N U A C = C f f. t f N N N T * m N O M @ w C E O.m.g a m e .

* *m. . e . . - . e - . o - e e . e e . - ere e . . .eO40=OCO N yC CCCCC&OCCCCCOOOOOOOMQMCOOOOOOCO

q 00000000* Oe e e o e e ee

f MwD T = 4 44@mc@#4444 444. m a te4 c r aw O O O OccOOOOOOOG COce COOCsom m 04 mc e e e e e e e e e o e e e o e e e e e e e e e e o O -

p e u u wwwuuwwwwww u w u; wwwuume e e e t# 4 9 OONmeeP4NN3 NND- ##NN44M M M| N -

0= 4 m **Np 44me=we eST. =pdemmN 4 m 4@ c E O O?W#7 ?#=NNC EMC' pepp@@p 4 6, O# f N @#TONN*Ges# NN#' @ @mm@@# C Os e= * SSN SNCpSp=wme ppe re*Smw=S**Npped e p- Cy

. . - e . e o e - e - . e . - . . . . . o.e - e e . . eenNngDOC3333003 300J7C030400020000C20000 e e e e e * e e * w

% C0000000 C m|- e ' e

'* N N o n=ccerenreo aCOe ==ceem u mOeQOQwogp **=1

e e e e e o e e e e e e e e e e ' **COOO i e O= = = pp

s e e e e e 1 m h

g *E P WWWuMWWWMWW EWES wmEWWW f> Ea 2 ** Cpwa aTNNd ==O- P e m o c re 3 J M

W* N r. N N e e O O C- r = E P vec **f? =C i * mt @ g P*meNNf4mM N Wmit m*wm2 e e 4 a" N a er***mNN==m 44* e=44=w i e a>h C O c o n * C g C N N = " * m e.N L g * O w = * C. g g e *e *. g".e -

w @

*- e e . _ _ . e . e e e e . _ . t O e m

en000c06O0C00000000000C00000000 e W *'W e w P'

4 E FN N * P =POCOP=7P" ==*' NNPOcc * 4 e6, - e e w=Cw-eCoOO* ewe- eeuem e n O

= e e e e e e e e e e e a e e a e e e e e e e e =

1 m a e =========== = = = . ====== e us% e O N N * N e s c

O.' =P=w m e s: "mOONo e o s e

m .- 4 # W F w GD e 9 m u e = Wsg mmw*" = N "s O P =

esew* Je d

K m o * NNeseCP@m>O V7c NNO E Usw a N = C#Onfree="f ffN ffc 4f nC@

O = O P O. "ea**@cN*NN*ONNaO*=N4mm sheOComw - . e . e e e e e e e e e e e e e e e Emp

379973O70007S00MO0M300090C00000 N SANC e e e e e e e o e e e a e e e e = p 4- me-H f c N NNePOOPNPPM N N Pe ' mmmecP

. HwmN ** N NNpMNNpN==N NNN NNeppe i EC@ l< e a e e e e e e e e a e o e e e e e e e e e WM t

J h h 4: bwebumWhWWW EhW. WWWWHW N =v'

Q g + q memN=* ec*mm 4 4 ew s SWQm** # QEw e z N asmmee@wvmmm NNm agacu>f @ me* z a e **@ N ue C N a m e d esm* 44m=WN e M e

N 6 O e@ * *mmWO*me fee *mmmOO e EECd

e . . e - m M.M Os**w m O * * * * w oXFwwww D w s:U c.u & u. =. O m o w 4- . . e e e . . e . . . e . . . . e e wum0000000009030u000C0000000000000 h Er

a be4ei E mam.

N p # N NNPpCOONPCN NN*- **SP?P D W Pg N N N NN*NNNwNm eN NNN NNe*=w a G e

e e e e e e e e e e e e e e e e ei s e e e e e a mMp -< W w w mWwmkhwwWWW W W al WWWmmW i > WE ez # @ ##4#mmCP**N 44@ R*eNeg e e 3 he gy e y 4 m*mP44mm**m 4441 e#pe@p 5 h Me

. m 4 * ese@Oommmm* **Os cemmc@ = Omme ,U # 4 m **mNC@WmPPm **#- **PNmm MCm4- -6 . e< = o em O.- Om o n.e.e .4 4 - c 4 4.e.O N.N e o.- o4 = c e. c.e . - e - e e - . . - e . - . . e .. - o N

.k bi w.

EH 3OCSCOCCCOCOnOceOOOOOOCOOOOOCOO e

i g i e * dm>c w= .

O OCSCPPPa ?PO p== == Gees i E WWWN Nm ==OpOOO*CO* *** **OCCO * Ud M= *

e e e e e e e e e - e e e e a e e e e e e e e E >>=M M = bWbWWMbMMMM WMb bMEdwW w pL = c C@Ne**Ciff@ ffN+ ST7CNO u n%* * N Sebp P@p?PPP 44P- @ 7NN NO ' E PM$ N = emmO**4PFFm m>N S Cp S44 * L1 W? * m *=@p**n*PFP C a* ? ePF#=m > T

'

COO *e=ONO=*m w N N # m N N * c 4 4 m O * * * * c #. mE2

F db= e - . e e e e e . e e e o e e - e o e e e e e

CCCCQSCOOMSCOOOLSCOOOOOQQOGCOOD =m UA* me

Nmg=N*WmNeg*N* men *g"NHO*NAmwN*Wennm=N*g m>

e E EEE EMB E = 1 *

=DE=mmmm E.JJad E

%mm=gggepe?Ccce===p NNNN*M**ddddC9WPTESTmeedwe=we-weeneen-we

etr* f'tmem p & e"*

- o -_

-. .

3 -

-

6

gb -.4k+ g

A-9

798 294.