torsional oscillator experiments on helium films on ...science-visits.mccme.ru/doc/nyeki.pdf · 2d...

28
Ján Nyéki, Anastasia Phillis, Jeevak Parpia*, Brian Cowan and John Saunders 29/09/10, IPP Moscow Torsional Oscillator Experiments on Helium Films on Graphite; The Search for a Two Dimensional Supersolid Department of Physics, Royal Holloway University of London, Egham, UK *LASSP, Department of Physics, Clark Hall, Cornell University, Ithaca, USA

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Ján Nyéki, Anastasia Phillis,

    Jeevak Parpia*, Brian Cowan

    and John Saunders

    29/09/10, IPP Moscow

    Torsional Oscillator Experiments on

    Helium Films on Graphite;

    The Search for a Two Dimensional

    Supersolid

    Department of Physics, Royal Holloway University of London, Egham, UK

    *LASSP, Department of Physics, Clark Hall, Cornell University, Ithaca, USA

  • Why Graphite as Substrate ?

    Joly et al, Surf. Sci. 264 (1992) 419

    •Flat - minimalised disorder

    •Helium film grows in layers.

    •We can control the growth.

    •Two solid He layers solidify

    •Triangular lattice symmetry

    •Cooling to submillikelvinrange

    Adsorption potential

    + Periodic potentialarising from atomic structure of surface

    Ground state

  • 2D Helium on Graphite

    • Strongly correlated fermions or bosons• Subject to an external triangular lattice potential•Tuning parameters: interatomic distance

    binding potential

    • No impurities

    Experimental techniques

    3He: NMR, heat capacity, neutron diffraction,

    vapour pressure

    4He: heat capacity, torsional oscillator,

    neutron diffraction, third sound, vapour pressure

    Temperature range ~ 15 µK to 15 K

    QuestsSuperfluidity of a 3He monolayer

    2D superfluid-insulator transition

    2D supersolid

  • Exfoliated Graphite

    Taub et al., PRB 16 (1977) 4551

    Fukuyama, JPSJ 77 (2008) 111013

    Grafoil ~ 20 m2/g

    Grafoil – atomically flat platelets 10-20 nm long, rolled, angle spread ±15°- surface area ~ 20 m2/g - density ~ 50% of bulk- “deep sides”, edges 3-5%- possible to cool below 1mK

  • Layered Helium Films

    Registered solid

    (commensurate phasesuperlattice)

    √3 ×√3 6.4 nm-2

    3He/Gr

    4/7 phase

    Fukuyama, JPSJ 77 (2008) 111013

  • Sibling system: 4/7 Phase in 3He films

    Elser, PRL62 (1989) 2405Takagi, J Phys Conf Ser 150 (2009) 032102

    7

    4

    densitylayer 1st

    densitylayer 2nd

    1

    2 ==ρρ

    Existence of 4/7 solid is clearly identified

    both experimentally and theoretically

    •Frustrated spin ½ magnet•Mott insulator•Gapless spin-liquid ground state

  • Motivation I

    Can we study this phenomenonin 2D helium-4 ?

    (alternative system of bosons in externally imposed lattice potential)

    Revived theoretical interest

    Heidarian & Damle, PRL 95, 127206 (2005),

    Melko et al, PRL 95, 127207 (2005),

    Bonisegni & Prokof‘ev, PRL 95, 237204 (2005) + ...

    Wessel and Troyer, PRL 95, 127205 (2005)

    Greiner et al, Nature 415, Jan 2002

    Stoof, ibid, N&V

    Triangular lattice symmetry supports formation of supersolid

  • Searching for Supersolid

    Superfluid response Broken translational symmetry+

  • 4He/Gr 2nd Layer - Phase Diagram

    Pierce& Manusakis, PRL 81, 156 (1997) and PRB 59, 3802 (1999)

    1st layersolid

    Commensurate4/7 phase

    Total coverage on PM scale [ nm-2 ]

    11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC

    vacancies ?

    Puddling

    IC phase

  • 4/7 Phase in 4He films

    Corboz et al., PRB78 (2008) 245414

    Total 4He coverage on PM scale [ nm

    -2]

    15 16 17 18 19 20 21 22 23

    T [

    mK

    ]

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    L CL + G IC

    Total coverage [ nm-2 ]

    12 13 14 15 16 17 18 19 20 21 22

    C [

    mJ/K

    ]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    5mK 10mK 15mK 20mK 30mK 40mK 50mK 60mK

    L C ICL + G

    Ziouzia et al.: Physica B (2003) & PhD Thesis

    3He tracer

    Greywall, Busch: PRL 67 (1991) 3535

    IC

    C

  • Motivation IICrowell & Reppy, PRB 53, 2701 (1993)

    superfluid response in 2nd layer

    20 mK – 600 mK

    -lnT like dependence

    no dissipation peaks reported

    Total 4He coverage on PM scale [ nm

    -2]

    15 16 17 18 19 20 21 22 23

    T [

    mK

    ]

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    L CL + G IC

    3D “Supersolidity”

    Sample annealing(disorder) and impurities playimportant role

    Chan, Science 319, 1207 (2008)

  • Torsional Oscillator

    E.L.Andronikashvili, Zh.Eksp.Teor.Fiz. 16 (1946) 780

    Andronikashvili’s experimentBulk liquid 4He

    ρn/ρ

    ρs/ρBishop & Reppy, PRB 22, 2701 (1980)

  • Torsional Oscillator Signal

    Kosterlitz-Thouless theory

    Resonant frequency

    12

    22)(

    h

    mk

    T

    TB

    c

    cs

    πρ

    =−

    I

    k=ω

    Bishop & Reppy, PRB 22, 2701 (1980)

    AmplitudeDrive=const ~ Q

    Q

    1Dissipated Energy

    Liquid 4He films

  • Experimental Cell: Torsional Oscillator

    torsion element 1: contains exfoliated graphite sample ~ 35 m2

    torsion rod

    torsion element 2: coin silver cylinder, with two Mg electrodes biased at 100V

    torsion rod

    isolation mass + torsion rod (copper) mounted to cold-plate

    Measure frequency shift and dissipationquality factor Q ~ 250000 - 550000working frequency ~ 1423 Hz; detecting changes < 10 µHz ~ 2x10-7g

    2 mK - 4000 mK (weak thermal linkto the copper demagnetisation stage)

  • L+G Region

    Temperature [ K ]

    0.0001 0.01 0.1 1

    Fre

    qu

    en

    cy

    - 1

    42

    3 H

    z

    [ m

    Hz ]

    -208

    -206

    -204

    -202

    -200

    -198

    -196

    13.25 nm-2

    15.42 nm-2

    16.35 nm-2

    17.31 nm-2

    17.57 nm-2

    17.91 nm-2

    18.14 nm-2

    18.29 nm-2

    18.45 nm-2

    18.57 nm-2

    18.69 nm-2

    Temperature [ K ]

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    10

    8 x

    ∆∆ ∆∆(1

    /Q)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Total coverage on PM scale [ nm-2 ]

    10 11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC1st

    layer

    Dissipation maximum

    at constant temperature

    in L + G region;

    moves to lower T

    in L region

    10 11 12 13 14 15 16 17 18 19

    T [

    mK

    ]

    0

    300

    600

    900

    1200

    L + G

    1st layer

    ∆∆∆∆f

    ∆∆∆∆(1/Q)

  • Transition L+G ���� L

    Temperature [ K ]

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    10

    8 x

    ∆∆ ∆∆(1

    /Q)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Total coverage on PM scale [ nm-2 ]

    10 11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC1st

    layer

    18.14 nm-2

    chosen as a reference to

    evaluate additional decoupling

    on top of the slip process

    Temperature [ K ]

    0.0001 0.01 0.1

    Fre

    qu

    en

    cy -

    14

    23

    Hz

    [ m

    Hz ]

    -200

    -199

    -198

    -197

    -196

    13.25 nm-2

    15.42 nm-2

    16.35 nm-2

    17.31 nm-2

    17.57 nm-2

    17.91 nm-2

    18.14 nm-2

    18.29 nm-2

    18.45 nm-2

    18.57 nm-2

    18.69 nm-2

    Extra decoupling = superfluid

    For n ≥ 18.14 nm-2

    0.001

    ∆∆∆∆(1/Q)

    ∆∆∆∆f

  • Homogeneous Fluid Region

    Temperature [ K ]

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    10

    8 x

    ∆∆ ∆∆(1

    /Q)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Total coverage on PM scale [ nm-2 ]

    10 11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC1st

    layer

    New peak appears

    &

    sharp increase of ∆∆∆∆f

    for n4 > 18.85 nm-2

    13 14 15 16 17 18 19 20

    T [

    mK

    ]

    0

    100

    200

    300

    400

    LL + G

    Temperature [ K ]

    0.0001 0.01 0.1 1

    ∆∆ ∆∆f

    [ m

    Hz ]

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    3.2

    3.4

    18.14 nm-2

    18.29 nm-2

    18.45 nm-2

    18.57 nm-2

    18.69 nm-2

    18.85 nm-2

    19.01 nm-2

    19.09 nm-2

    19.18 nm-2

    0.001

    ∆∆∆∆(1/Q)

    ∆∆∆∆f

    18.14 nm-2

  • Super- response around C phase

    Total coverage on PM scale [ nm-2 ]

    10 11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC1st

    layer

    Temperature [ K ]

    0.0001 0.01 0.1 1

    ∆∆ ∆∆f

    [ m

    Hz ]

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    3.2

    3.4

    19.18 nm-2

    19.26 nm-2

    19.34 nm-2

    19.42 nm-2

    19.51 nm-2

    19.60 nm-2

    19.69 nm-2

    19.78 nm-2

    19.87 nm-2

    19.96 nm-2

    20.05 nm-2

    20.16 nm-2

    20.28 nm-2

    20.40 nm-2

    20.52 nm-2

    20.64 nm-2

    20.74 nm-2

    Temperature [ K ]

    0.0001 0.01 0.1 1

    10

    8 x

    ∆∆ ∆∆(1

    /Q)

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0.001 0.001

    ∆∆∆∆(1/Q)∆∆∆∆f

  • Temperature [ K ]

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    ∆∆ ∆∆f

    [ m

    Hz ]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Super- response around C phase

    Total coverage on PM scale [ nm-2 ]

    10 11 12 13 14 15 16 17 18 19 20 21 22

    L CL + G IC1st

    layer

    19.18 nm-2

    19.26 nm-2

    19.34 nm-2

    19.42 nm-2

    19.51 nm-2

    19.60 nm-2

    19.69 nm-2

    19.78 nm-2

    19.87 nm-2

    19.96 nm-2

    20.05 nm-2

    20.16 nm-2

    20.28 nm-2

    20.40 nm-2

    20.52 nm-2

    20.64 nm-2

    20.74 nm-2

    after full composite background subtraction

    ∆f ~ ρs( *)( *) 1

    (0) (0) 2

    s

    s

    Tf T

    f

    ρρ

    ∆= =

  • Super- Response Overwiev

    Total coverage on PM scale [ nm-2

    ]

    15 16 17 18 19 20 21 22

    ∆∆ ∆∆f(

    0)

    [ m

    Hz ]

    0

    1

    2

    3

    T

    [ m

    K ]

    0

    400

    800

    1200

    1600

    L CL + G IC

    Not a simple structureless superfluid

  • Total coverage on PM scale [ nm-2

    ]

    19.0 19.5 20.0 20.5 21.0

    ∆∆ ∆∆f(

    0)

    [ m

    Hz ]

    0

    1

    2

    3

    4

    Superlattice density is a “pivotal” point in

    coverage dependence of super- response

    Scaling

    C

    T/T*

    0 1 2 3 4 5 6 7 8 9 10

    ∆∆ ∆∆f(

    T)/∆∆ ∆∆

    f(0)

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    T/T*

    0 1 2 3 4 5 6 7 8 9 10

    ∆∆ ∆∆f(

    T)/∆∆ ∆∆

    f(0)

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    ρρρρs(T)/ρρρρs(0)vs

    T/T*

    ρρρρs(T)/ρρρρs(0)vs

    T/T*( *)( *) 1

    (0) (0) 2

    s

    s

    Tf T

    f

    ρρ

    ∆= =

  • T/T*

    0.1 1 10

    ∆∆ ∆∆f(

    T)/∆∆ ∆∆

    f(0

    )

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    T/T*

    0.1 1 10

    ∆∆ ∆∆f(

    T)/∆∆ ∆∆

    f(0

    )

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Scaling

    Jason Ho, private communication, 2010

    α

    ρρ

    )/(1

    )0()(

    0TTT ss +

    =

    n4 on PM scale [ nm

    -2 ]

    19.0 19.5 20.0 20.5 21.0

    T*

    [ m

    K ]

    0

    10

    20

    30

    40

    50

    60

    *TT

    α~1.0

    *4TT 0.4T

    α~1.0

    ≤≤*

  • Super- Fraction

    Temperature [ K ]

    0.0001 0.01 0.1 1

    ∆∆ ∆∆f

    [ m

    Hz ]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    19.18 nm-2

    19.26 nm-2

    19.34 nm-2

    19.42 nm-2

    19.51 nm-2

    19.60 nm-2

    19.69 nm-2

    19.78 nm-2

    3rd layer

    What is the value of super- fraction?

    Compare with measurements of a KT superfluid monolayer in the same cell (3rd layer, n3 ~ 5.5 nm

    -2)

    Super- fraction at T����0:

    ~ 39% of 2nd layer for 19.18 nm-2 sample

    ~ 27% of 2nd layer for 19.78 nm-2 sample

    ΧΧΧΧ-factor for this cell = 0.942

    Measurements at perimeter velocity 25 ÷÷÷÷ 55 µµµµm/s

    checked up to ~ 500 µµµµm/s0.001

  • Super- response from superlattice?

    These number fluctuations are intrinsic to the 4/7 superlattice structure[Watanabe, Imada, JPSJ 76 2007]. Fluctuations into the 3rd layer.

    Zero-point vacancies [Andreev & Lifshitz] appear in the superlattice when ∆> 2UV .

    In 2D , ∆ for 3He impuriton is much larger than in the bulk [Ziouzia, PhD Thesis, London ]

    The 2nd layer superlattice phase is unstable. [Corboz et al., PRB 78 2008]

    Key: since ∆N ∆φ ≥ 1, number fluctuations required to define phase.[For this reason a commensurate solid cannot be a supersolid]

    g(E)

    E

  • Monte Carlo simulations

    2nd

    layer coverage n2 [ nm

    -2 ]

    3 4 5 6 7 8

    ∆∆ ∆∆f(

    0)

    [ m

    Hz ]

    0

    1

    2

    3

    4

    G + L SF IC

    Total coverage on PM scale [ nm-2

    ]

    16 17 18 19 20 21

    ∆∆ ∆∆f(

    0)

    [ m

    Hz ]

    0

    1

    2

    3

    4

    L CL + G IC

    Corboz et al., PRB78 (2008) 245414

    Pierce& Manousakis, PRL 81, 156 (1997)

    and PRB 59, 3802 (1999)

    Two Monte Carlo simulations

    of the 2nd layer disagree

    about stability of the 4/7

    superlattice solid phase

    stable 4/7 phase

    superfluid phase only

  • In the 4/7 phase

    a ~ 4.1 Ǻ � vc~ 3.9 m/s

    Momentum deficit in Quantum Glass

    Reduced rotational inertia due to presence of tunelling two-level systems.

    If “bulk” velocity v(t) ≠0 the TLS has nonzero mean values of momenta

    12 in both stationary states. In the ground state the projection of

    1 onto v is negative.

    No superflow

    [Andreev, JETP Lett 85 2007, ZhETF 136 2009, Korshunov Pis’ma v ZhETF 90 2009 ]

    U - characteristic height of

    energy barrier

    J - tunneling amplitude

    ∆∆∆∆ ≈ 1 mK ?Temperature [ K ]

    0.0001 0.01 0.1 1

    ∆∆ ∆∆f

    [ m

    Hz ]

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    3.2

    3.4

  • Summary

    Motivation: Does vacancy doped commensurate phase √7 x √7(4/7 phase) have a supersolid response?

    •High precision TO measurements from 2mK to 4K. Second layer density is the tuning parameter.

    •1st layer interaction with the substrate present all time ���� careful measurements can distinguish that from ‘super-’ response; sensitive to

    2nd layer structure

    •Unusual temperature dependence of momentum deficit; no sharp onset:∆f(T) ~ -lnT near onset while ∆f(T) ~ T as T ���� 0.

    •∆f(0) is tuned by n2. Plateau-feature when n ≈ n0 (4/7 ) and vanishes near at incommensurate 2nd layer density nI. Possible QCP at nI.

    •More than 25% of the 2nd layer contributes to super- signal when approaching n0.

  • Summary II

    Motivation: Does vacancy doped commensurate phase √7 x √7(4/7 phase) have a supersolid response?

    • After “pre-cursor” feature plot of ∆f(0) vs T* shows two clear regimes. Boundary correlates with qualitative change in dependence of ∆f on lnT

    • For a significant coverage range there is data collapse in ∆f(T)/∆f(0) vsT/T* coordinates.

    • Quantum glass model qualitatively agrees with observed ∆f(T) ~ -lnTdependence. Energy scales involved need to be addressed.

    •We need experimental evidence on the structure of putative 4/7 phase in the T ���� 0 limit.