toshiba intelligent power device high voltage monolithic ...media.digikey.com/pdf/data...

23
TPD4123AK 2011-09-22 1 TOSHIBA Intelligent Power Device High Voltage Monolithic Silicon Power IC TPD4123AK The TPD4123AK is a DC brush less motor driver using high voltage PWM control. It is fabricated by high voltage SOI process. It is three-shunt resistor circuit for current sensing. It contains level shift high-side driver, low-side driver, IGBT outputs, FRDs and protective functions for under voltage protection circuits and thermal shutdown circuit. It is easy to control a DC brush less motor by just putting logic inputs from a MPU or motor controller to the TPD4123AK. Features High voltage power side and low voltage signal side terminal are separated. It is the best for current sensing in three shunt resistance. Bootstrap circuit gives simple high-side supply. Bootstrap diodes are built in. A dead time can be set as a minimum of 1.4μs, and it is the best for a Sine-wave from drive. 3-phase bridge output using IGBTs. FRDs are built in. Included under voltage protection and thermal shutdown. The regulator of 7V (typ.) is built in. Package: 26-pin DIP. This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge. HDIP26-P-1332-2.00 Weight: 3.8 g (typ.)

Upload: others

Post on 28-Feb-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 1

TOSHIBA Intelligent Power Device

High Voltage Monolithic Silicon Power IC

TPD4123AK The TPD4123AK is a DC brush less motor driver using high

voltage PWM control. It is fabricated by high voltage SOI process. It is three-shunt resistor circuit for current sensing. It contains level shift high-side driver, low-side driver, IGBT outputs, FRDs and protective functions for under voltage protection circuits and thermal shutdown circuit. It is easy to control a DC brush less motor by just putting logic inputs from a MPU or motor controller to the TPD4123AK.

Features

High voltage power side and low voltage signal side terminal are separated.

It is the best for current sensing in three shunt resistance.

Bootstrap circuit gives simple high-side supply.

Bootstrap diodes are built in.

A dead time can be set as a minimum of 1.4μs, and it is the best for a Sine-wave from drive.

3-phase bridge output using IGBTs.

FRDs are built in.

Included under voltage protection and thermal shutdown.

The regulator of 7V (typ.) is built in.

Package: 26-pin DIP.

This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge.

HDIP26-P-1332-2.00

Weight: 3.8 g (typ.)

Page 2: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 2

Pin Assignment

Marking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617181920212223242526

GN

D

NC

NC

HU

HV

HW LU LV SD

LW

DIA

G

NC

VR

EG

NC

VC

C

GN

DUB

SU

IS1

IS2

BS

V

VVB

B

BS

W

WIS3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617181920212223242526

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617181920212223242526

GN

D

NC

NC

HU

HV

HW LU LV SD

LW

DIA

G

NC

VR

EG

NC

VC

C

GN

DUB

SU

IS1

IS2

BS

V

VVB

B

BS

W

WIS3

TPD4123K

Lot Code. (Weekly code)

Part No. (or abbreviation code)

TPD4123AK

Country of origin

Page 3: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 3

Block Diagram

Low-side

Driver

IS2

GND

Input Control

Thermal Shutdown

BSV

BSU

VBB

BSW

U

V

W

High-side Level

Shift Driver

15

13

4

5

6

7

8

9

10

18

21

24

23

17

22

25

20

1/16

Under-voltage

ProtectionUnder- voltage

Protection

7 V Regulator

26 IS3

IS1 19

11

Under-voltage

Protection

Under-voltage

Protection

VCC

VREG

HU

HV

HW

LU

LV

LW

DIAG

SD

Page 4: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 4

Pin Description

Pin No. Symbol Pin Description

1 GND Ground pin.

2 NC Unused pin, which is not connected to the chip internally.

3 NC Unused pin, which is not connected to the chip internally.

4 HU The control terminal of IGBT by the high side of U. It turns off less than 1.5V. It turns on more than 2.5V.

5 HV The control terminal of IGBT by the high side of V. It turns off less than 1.5V. It turns on more than 2.5V.

6 HW The control terminal of IGBT by the high side of W. It turns off less than 1.5V. It turns on more than 2.5V.

7 LU The control terminal of IGBT by the low side of U. It turns off less than 1.5V. It turns on more than 2.5V.

8 LV The control terminal of IGBT by the low side of V. It turns off less than 1.5V. It turns on more than 2.5V.

9 LW The control terminal of IGBT by the low side of W. It turns off less than 1.5V. It turns on more than 2.5V.

10 SD Input pin of external protection. (“L” active, It doesn't have hysteresis)

11 DIAG With the diagnostic output terminal of open drain, a pull-up is carried out by resistance. It turns on at the time of unusual.

12 NC Unused pin, which is not connected to the chip internally.

13 VREG 7V regulator output pin.

14 NC Unused pin, which is not connected to the chip internally.

15 VCC Control power supply pin. (15V typ.)

16 GND Ground pin.

17 U U-phase output pin.

18 BSU U-phase bootstrap capacitor connecting pin.

19 IS1 U-phase IGBT emitter and FRD anode pin.

20 IS2 V-phase IGBT emitter and FRD anode pin.

21 BSV V-phase bootstrap capacitor connecting pin.

22 V V-phase output pin.

23 VBB High-voltage power supply input pin.

24 BSW W-phase bootstrap capacitor connecting pin.

25 W W-phase output pin.

26 IS3 W-phase IGBT emitter and FRD anode pin.

Page 5: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 5

Equivalent Circuit of Input Pins

Internal circuit diagram of HU, HV, HW, LU, LV, LW input pins

Internal circuit diagram of SD pin

Internal circuit diagram of DIAG pin

HU/HV/HW LU/LV/LW

2 k 2 k To internal circuit

6.5 V

6.5 V

6.5 V

6.5 V

2 k

200

k

To internal circuit

SD 2 k 2 k To internal circuit

6.5 V

6.5 V

6.5 V

6.5 V

2 k200

k VREG

DIAG

26 V

Page 6: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 6

Timing Chart

HU

HV

HW

Input Voltage LU

LV

LW

VU

Output voltage VV

VW

Page 7: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 7

Truth Table

Input High side Low side

Mode HU HV HW LU LV LW SD U phase V phase W phase U phase V phase W phaseDIAG

Normal H L L L H L H ON OFF OFF OFF ON OFF OFF

H L L L L H H ON OFF OFF OFF OFF ON OFF

L H L L L H H OFF ON OFF OFF OFF ON OFF

L H L H L L H OFF ON OFF ON OFF OFF OFF

L L H H L L H OFF OFF ON ON OFF OFF OFF

L L H L H L H OFF OFF ON OFF ON OFF OFF

Thermal shutdown H L L L H L H OFF OFF OFF OFF OFF OFF ON

H L L L L H H OFF OFF OFF OFF OFF OFF ON

L H L L L H H OFF OFF OFF OFF OFF OFF ON

L H L H L L H OFF OFF OFF OFF OFF OFF ON

L L H H L L H OFF OFF OFF OFF OFF OFF ON

L L H L H L H OFF OFF OFF OFF OFF OFF ON

VCC Under-voltage H L L L H L H OFF OFF OFF OFF OFF OFF ON

H L L L L H H OFF OFF OFF OFF OFF OFF ON

L H L L L H H OFF OFF OFF OFF OFF OFF ON

L H L H L L H OFF OFF OFF OFF OFF OFF ON

L L H H L L H OFF OFF OFF OFF OFF OFF ON

L L H L H L H OFF OFF OFF OFF OFF OFF ON

H L L L H L H OFF OFF OFF OFF ON OFF OFF

H L L L L H H OFF OFF OFF OFF OFF ON OFF

L H L L L H H OFF OFF OFF OFF OFF ON OFF

L H L H L L H OFF OFF OFF ON OFF OFF OFF

L L H H L L H OFF OFF OFF ON OFF OFF OFF

VBS Under-voltage

L L H L H L H OFF OFF OFF OFF ON OFF OFF

SD * * * * * * L OFF OFF OFF OFF OFF OFF ON

Page 8: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 8

Absolute Maximum Ratings (Ta 25°C)

Characteristics Symbol Rating Unit

VBB 500 VPower supply voltage

VCC 18 V

Output current (DC) IOUT 1 A

Output current (pulse) IOUTp 2 A

Input voltage VIN -0.5 to 7 V

VREG current IREG 50 mA

Power dissipation (Tc 25°C) PC 23 W

Operating temperature Tjopr -40 to 135 °C

Junction temperature Tj 150 °C

Storage temperature Tstg -55 to 150 °C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook (“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Page 9: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 9

Electrical Characteristics (Ta 25°C)

Characteristics Symbol Test Condition Min Typ. Max Unit

VBB 50 280 450Operating power supply voltage

VCC 13.5 15 16.5V

IBB VBB 450 V 0.5

ICC VCC 15 V 0.9 5 mA

IBS (ON) VBS 15 V, high side ON 230 410Current dissipation

IBS (OFF) VBS 15 V, high side OFF 200 370A

VIH VIN “H”, VCC 15 V 2.5 Input voltage

VIL VIN “L” , VCC 15 V 1.5 V

SD input voltage VSD VCC 15 V 2.5 V

IIH VIN 5 V 150Input current

IIL VIN 0 V 100A

ISDH VIN 5 V 100SD Input current

ISDL VIN 0 V 150A

VCEsatH VCC 15 V, IC 0.5 A, high side 2.4 3 Output saturation voltage

VCEsatL VCC 15 V, IC 0.5 A, low side 2.4 3 V

VFH IF 0.5 A, high side 1.5 2.0 FRD forward voltage

VFL IF 0.5 A, low side 1.5 2.0 V

BSD forward voltage VF (BSD) IF 500 A 0.9 1.2 V

Regulator voltage VREG VCC 15 V, IREG 30 mA 6.5 7 7.5 V

Thermal shutdown temperature TSD VCC 15 V 135 185 °C

Thermal shutdown hysteresis TSD VCC 15 V 50 °C

VCC under voltage protection VCCUVD 10 11 12 V

VCC under voltage protection recovery VCCUVR 10.5 11.5 12.5 V

VBS under voltage protection VBSUVD 8 9 9.5 V

VBS under voltage protection recovery VBSUVR 8.5 9.5 10.5 V

DIAG saturation voltage VDIAGsat IDIAG 5 mA 0.5 V

Output on delay time ton VBB 280 V, VCC 15 V, IC 0.5 A 1.4 3 s

Output off delay time toff VBB 280 V, VCC 15 V, IC 0.5 A 1.0 3 s

Dead time tdead VBB 280 V, VCC 15 V, IC 0.5 A 1.4 s

FRD reverse recovery time trr VBB 280 V, VCC 15 V, IC 0.5 A 200 ns

Page 10: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 10

Application Circuit Example

Low-side

Driver

VCC

VREG

IS2

GND

Input Control

Thermal

Shutdown

BSV

BSU

VBB

BSW

U

V

W

High-side Level Shift

Driver

15

13

4

5

6

7

8

HU

HV

HW

LU

LV

LW 9

DIAG 11

18

21

24

23

17

22

25

26

1/16

7 V Regulator

C4 + C5

Control IC

or

Microcomputer

M

C1 C2 C3

R1

C6 + C7

19 IS1

20

IS3

10 SD

R2

Under- voltage

Protection

Under-voltage

Protection

Under-voltage

Protection

Under-voltage

Protection

R

C

RR

15V

Page 11: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 11

External Parts

Typical external parts are shown in the following table.

Part Typical Purpose Remarks

C1, C2, C3 25 V/2.2 F Bootstrap capacitor (Note 1)

C4 25 V/10 F VCC power supply stability (Note 2)

C5 25 V/0.1 F VCC for surge absorber (Note 2)

C6 25 V/1 F VREG power supply stability (Note 2)

C7 25 V/1000 pF VREG for surge absorber (Note 2)

R1 5.1 k DIAG pin pull-up resistor (Note 3)

R2 10 k SD pin pull-up resistor

Note 1: The required bootstrap capacitance value varies according to the motor drive conditions. The capacitor is biased by VCC and must be sufficiently derated for it.

Note 2: When using this product, adjustment is required in accordance with the use environment. When mounting, place as close to the base of this product leads as possible to improve the ripple and noise elimination.

Note 3: The DIAG pin is open drain. If not using the DIAG pin, connect to the GND.

Handling precautions

(1) Please control the input signal in the state to which the VCC voltage is steady. Both of the order of the VBB power supply and the VCC power supply are not cared about either. Note that if the power supply is switched off as described above, this product may be destroyed if the current regeneration route to the VBB power supply is blocked when the VBB line is disconnected by a relay or similar while the motor is still running.

(2) The excess voltage such as the voltage surge which exceed the absolute maximum rating is added, for example, may destroy the circuit. Accordingly, be careful of handling this product or of surge voltage in its application environment.

Page 12: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 12

Description of Protection Function

(1) Under voltage protection This product incorporates under voltage protection circuits to prevent the IGBT from operating in unsaturated mode when the VCC voltage or the VBS voltage drops. When the VCC power supply falls to this product internal setting VCCUVD (11 V typ.), all IGBT outputs shut down regardless of the input. This protection function has hysteresis. When the VCC power supply reaches 0.5 V higher than the shutdown voltage (VCCUVR (11.5 V typ.)), this product is automatically restored and the IGBT is turned on again by the input. DIAG output is reversed at the time of VCC under-voltage protection. When the VCC power supply is less than 7 V, DIAG output isn't sometimes reversed. When the VBS supply voltage drops VBSUVD (9 V typ.), the high-side IGBT output shuts down. When the VBS supply voltage reaches 0.5 V higher than the shutdown voltage (VBSUVR (9.5 V typ.)), the IGBT is turned on again by the input signal.

(2) Thermal shutdown This product incorporates a thermal shutdown circuit to protect itself against the abnormal state when its temperature rises excessively. When the temperature of this chip rises to the internal setting TSD due to external causes or internal heat generation, all IGBT outputs shut down regardless of the input. This protection function has hysteresis TSD (50C typ.). When the chip temperature falls to TSD TSD, the chip is automatically restored and the IGBT is turned on again by the input. Because the chip contains just one temperature detection location, when the chip heats up due to the IGBT, for example, the differences in distance from the detection location in the IGBT (the source of the heat) cause differences in the time taken for shutdown to occur. Therefore, the temperature of the chip may rise higher than the thermal shutdown temperature when the circuit started to operate.

(3) SD pin SD pin is the input signal pin to shut down the internal output IGBT. Output of all IGBT is shuted down after delay times (2 μs typ.) when "L" signal is inputed to the SD pin from external circuit (MCU etc.). It is possible to shut down IC when overcurrent and others is detected by external circuit. Shut down state is released by all of IC input signal "L". At open state of SD pin, shut down function can not operate.

Timing Chart of Under voltage protection and SD Function

Note: The above timing chart is considering the delay time

Safe Operating Area

Note 1: The above safe operating areas are Tj 135 C (Figure 1).

Pea

k w

indi

ng

curr

ent (

A)

Power supply voltage VBB (V)

Figure 1 SOA at Tj 135 C

0 450 0

1.0

SD

LIN

HO

HIN

VBS

VCC

LO

DIAG

ton toff

ton toff

Page 13: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 13

Cur

rent

dis

sipa

tion

IC

C

(mA

)

VCEsatH – Tj

I

GB

T s

atur

atio

n v

olta

ge

VC

Esa

tH

(V)

VCEsatL – Tj

F

RD

forw

ard

volta

ge

VFH

(V

)

F

RD

forw

ard

volta

ge

VFL

(V

)

Junction temperature Tj (°C)

Junction temperature Tj (°C)

I

GB

T s

atur

atio

n v

olta

ge

VC

Esa

tL

(V)

Junction temperature Tj (°C)

VFH – Tj

Junction temperature Tj (°C)

VFL – Tj

Control power supply voltage VCC (V)

ICC – VCC

Control power supply voltage VCC (V)

VREG – VCC

R

egul

ator

vol

tage

V

RE

G

(V)

1.4 50

3.4

3.0

2.6

2.2

1.8

0 50 100 150

IC 700 mA

IC 500 mA

IC 300 mA

VCC 15 V

1.0 50 0 50 100 150

1.2

1.4

1.6

1.8

IF 700 mA

IF 500 mA

IF 300 mA

150 1.050 0 50 100

1.2

1.4

1.6

1.8

0 12

2.0

0.5

1.0

1.5

14 16 18 18 6.0

12

6.5

7.0

7.5

14 16

8.0

150

IC 700 mA

IC 500 mA

IC 300 mA

50

3.4

3.0

2.6

2.2

1.8

0 50 100

VCC 15 V

1.4

IF 700 mA

IF 500 mA

IF 300 mA

Tj =40°C

Tj =25°C

Tj =135°C

Tj =40°C

Tj =25°C

Tj =135°C

IREG 30 mA

Page 14: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 14

U

nder

-vol

tage

pro

tect

ion

oper

atin

g vo

ltage

V

CC

UV

(V

)

Junction temperature Tj (°C)

ton – Tj

O

utpu

t-o

n de

lay

time

ton

(

s)

Junction temperature Tj (°C)

toff – Tj

O

utpu

t-of

f del

ay ti

me

tof

f (s

)

Junction temperature Tj (°C)

VCCUV – Tj

Junction temperature Tj (°C)

VBSUV – Tj

50 0 50 100 1500

3.0

1.0

2.0

VBB 280 V

VCC 15 V

IC 0.5 A

High-side

Low-side

0

3.0

1.0

2.0

50 0 50 100 150

VBB 280 V

VCC 15 V

IC 0.5 A

High-side

Low-side

50 0 50 100 150

12.5

10.0

12.0

10.5

11.5

11.0

0 50 100 150

10.5

8.0

10.0

8.5

9.5

9.0

VBSUVD

VBSUVR

U

nder

-vol

tage

pro

tect

ion

oper

atin

g vo

ltage

V

BS

UV

(V

)

50

VCCUVD

VCCUVR

Page 15: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 15

IBS (OFF) – VBS

Control power supply voltage VBS (V)

IBS (ON) – VBS

C

urre

nt d

issi

patio

n I

BS

(O

N)

(A

)

Control power supply voltage VBS (V)

C

urre

nt d

issi

patio

n I

BS

(O

FF

) (A

)

100 12

500

200

300

400

14 16 18 18 100

12

200

300

400

14 16

500

T

urn-

on

loss

W

ton

(J

)

Junction temperature Tj (°C)

Wton – Tj

0 50

250

200

150

100

50

0 50 100 150

IC 700 mA

IC 500 mA

IC 300 mA

Junction temperature Tj (°C)

T

urn-

off l

oss

Wto

ff (J

)

Wtoff – Tj

050

50

40

30

20

10

0 50 100 150

IC 300 mA

IC 500 mA

IC 700 mA

Tj =40°C

Tj =25°C

Tj =135°C

Tj =40°C

Tj =25°C

Tj =135°C

Page 16: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 16

Test Circuits

IGBT Saturation Voltage (U-phase low side)

FRD Forward Voltage (U-phase low side)

LW = 0V VCC = 15V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

HW = 0V LU = 5V

0.5A

VM

LV = 0V

HV = 0V HU = 0V

0.5A

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

VM

Page 17: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 17

VCC Current Dissipation

Regulator Voltage

IM

VCC = 15V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

VM

VCC = 15V

30mA

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

Page 18: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 18

Output ON/OFF Delay Time (U-phase low side)

IM U = 280V 560Ω 2.2μF

LU = PG

IM

ton toff

10%

10%

90%

90%

LW = 0V VCC = 15V

HW = 0V LU = PG LV = 0V

HV = 0V HU = 0V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

Page 19: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 19

VCC Under-voltage Protection Operating/Recovery Voltage (U-phase low side)

*Note: Sweeps the VCC pin voltage from 15 V and monitors the U pin voltage. The VCC pin voltage when output is off defines the under-voltage protection operating voltage. Also sweeps from 6 V to increase. The VCC pin voltage when output is on defines the under voltage protection recovery voltage.

VBS Under-voltage Protection Operating/Recovery Voltage (U-phase high side)

*Note: Sweeps the BSU pin voltage from 15 V to decrease and monitors the VBB pin voltage. The BSU pin

voltage when output is off defines the under voltage protection operating voltage. Also sweeps the BSU pin voltage from 6V to increase and change the HU pin voltage at 5 V0 V5 V each time. It repeats similarly output is on. When the BSU pin voltage when output is on defines the under voltage protection recovery voltage.

VM

U = 18V

2kΩ

6V → 15VVCC = 15V → 6V LW = 0V

HW = 0V LU = 5V LV = 0V

HV = 0V HU = 0V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

LW = 0V VCC = 15V

HW = 0V LU = 0V LV = 0V

HV = 0V HU = 5V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

BSU = 15V → 6V VM2kΩ

VBB = 18V

6V → 15V

17U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

Page 20: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 20

VBS Current Dissipation (U-phase high side)

HU = 0V/5V

BSU = 15V

LW = 0V VCC = 15V

HW = 0V LU = 0V LV = 0V

HV = 0V

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

IM

Page 21: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 21

Turn-On/Off Loss (low side IGBT high side FRD)

LW = 0V VCC = 15V

HW = 0V LU = PG LV = 0V

HV = 0V HU = 0V

IM

L VM

VBB/U = 280V 5mH

2.2μF

Input (LU = PG)

IGBT (C-E Voltage) (U-GND)

Wtoff Wton

1G

ND

2N

C

3N

C

4H

U

5H

V

6H

W

7LU

8LV

9LW

10S

D

11D

IAG

12N

C

13V

RE

G

14N

C

15V

CC

16G

ND

1

7U

18B

SU

19IS

1

20IS

2

21B

SV

22V

23V

BB

24B

SW

25W

26IS

3

Power Supply Current

Page 22: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 22

Package Dimensions

HDIP26-P-1332-2.00 Unit : mm

Weight: 3.8 g (typ.)

Page 23: TOSHIBA Intelligent Power Device High Voltage Monolithic ...media.digikey.com/PDF/Data Sheets/Toshiba PDFs/TPD4123AK.pdf · motor by just putting logic inputs from a MPU or motor

TPD4123AK

2011-09-22 23

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively “Product”) without notice.

This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.

Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.

Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.

Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.

Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.

The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.

ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.

Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.