tracer testing techniques to support design · • tracertracer teststests cancan...

21
Tracer Testing Techniques to Support Design Tracer Testing Techniques to Support Design and Operation of In Situ Remediation Systems Craig E. Divine, PhD, PG ARCADIS Highlands Ranch (Denver), Colorado, USA Craig.Divine@arcadisus.com Remediation Technologies Symposium 2008 O b 2008 October 17, 2008 The Fairmont Banff Springs Hotel Banff, Alberta

Upload: others

Post on 23-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Tracer Testing Techniques to Support DesignTracer Testing Techniques to Support Design and Operation of In Situ Remediation Systems

Craig E. Divine, PhD, PGARCADIS

Highlands Ranch (Denver), Colorado, USA

Craig.Divine@arcadis‐us.coma g e@a cad s us co

Remediation Technologies Symposium 2008 

O b 2008October 17, 2008

The Fairmont Banff Springs Hotel

Banff, Alberta

Page 2: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Applied TracersDefinition:Definition:

Unique constituent intentionally introduced to aquifer

Why Powerful:

Source term is controlled and well characterized

•~10 AD: Flavius Josephus: chaff tracer identifies source of Jordan R.

•Late 1800s: Quantitative tracer tests using fluorescent dyes, salt, and bacteria in karst aquifers

•1945‐1955: Advances in chemical measurement increased power and•1945 1955: Advances in chemical measurement increased power and made high‐frequency sampling economically feasible

•1965‐1970: 650 papers

1995‐2000: 6500+ papers

•Now routinely used in “non‐research” applications 

– ARCADIS uses tracers to support design of all in situ systems– ARCADIS uses tracers to support design of all in situ systems

2

Page 3: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Aquifers are Heterogeneous and Anisotropic as a Rule!

Geology controls distribution and transport of injected fluids and solutesGeology controls distribution and transport of injected fluids and solutes•• The success of in situ remediation systems requires site specific understanding and tailored designThe success of in situ remediation systems requires site specific understanding and tailored design•• Tracer tests can effectively provide this critical informationTracer tests can effectively provide this critical information•• Tracer tests can effectively provide this critical informationTracer tests can effectively provide this critical information

“We need to stamp out homogeneous “We need to stamp out homogeneous isotropismisotropism from our thinking!”from our thinking!”

Page 4: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Groundwater Always Takes The Path of Least Cumulative Resistance

Flow FocusingHidden Complexity

Page 5: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Classic Fate and Transport Model (i.e., the ADE)

However, what we observe…k l h f h l• Peak transport velocity is much faster than average velocity

• Significant “tailing” is observed• Transverse dispersive spreading is negligiblep p g g g• Delivery and transport is highly variable between sites

Page 6: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

A Better Conceptualization of Solute Transport

The porous media is represented by two domains in close proximity – one mobile, one immobile – and solute mass is exchanged via diffusion

Page 7: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

7

Page 8: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

How Does This Relate to In Situ Remediation?

Success with in‐situ technologies begins and ends with hydrogeology

Page 9: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Idealized Conceptual Well Network

Two phases

‐injection (mobile porosity)

‐drift (transport velocity, mass transfer)

Page 10: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Injection Phase – Calculating Mobile Porosity

• Inject whatever volume is needed to reach a planned radius Monitor Tracer

rr

• Use a qualitative tracer to get real‐time arrival

– Conductivity (or “inverse rrConductivity (or  inverse conductivity)

– Visual dye

InjectionInjectionwellwell

• Use a quantitative tracer  (typically fluorescent tracer) with low S/N ratio for porosity and transport  wellwellcharacterization

Page 11: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Example: Calculating Mobile Porosity

35

40

25

30

uenc

e (f

t)15

20

Rad

ius

of In

flu

φmV

h r2 π⋅⋅0

5

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .1040

nm = 0.023INJ3INJ1

nm = 0.023INJ3INJ1

Injected Volume (gal)

MON1MON1

Page 12: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Example: Inverse Modeling of Drift Phase

Mon-1 FluoresceinPeak Velocity: 5‐10 ft/dayAverage Velocity: 1‐2 ft/day

0.80.9

1Average Velocity: 1 2 ft/dayMobile Porosity: 2‐4%Immobile Porosity: 25%M T f 0 05 d

0 40.50.60.7

ObservedMobileI bil

Mass Transfer: 0.05 per day

0.10.20.30.4 Immobile

010 20 30 40 50

Page 13: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Key Information Relevant to Design

• High hydraulic conductivityAquifer has high injectability– Aquifer has high injectability

• Low mobile porosity– Facilitates efficient amendment distribution

• Immobile porosity and mass‐transfer– Diffusion‐controlled tailing for conservative solutes will control period of performancep p

• May need to consider recirculation strategies for full‐scale implementation

Page 14: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Quantifying Lactate Half‐Life Over Time100

TOC

(mg/

L)

0-50 0 50 100 150

Time (days)TOC

0 3

0.4

race

r io

n

0

0.1

0.2

0.3

Nor

mal

ized

Tr

Con

cent

rati

-50 0 50 100 150

Time (days)Iodide Fluorescein

17

20

25

ay)

Best EstimateHigher Reliability

75

910

15TO

C H

alf L

ife (d

5

0

5

0 20 40 60 80 100 120 140 160 180 200

Elapsed Time (day)

Page 15: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

4D Mapping with Geophysics

Amendment 5 hrs after injection

15

Page 16: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

System Operation and Performance Assessment

IRZ Operation and Performance

Page 17: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Recirculation System for Performance for Ammonia Treatment

17

Page 18: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Ethanol Recirculation System for Cr (VI) Treatment

184 0

230.0

138.0

184.0

Observed

C d

46.0

92.0 Computed

0.0

0.3 864.3 1,728.2 2,592.1 3,456.1 4,320.0

Time

Page 19: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Push‐Pull Test for Cr(VI) Sorption

300

400

(mg/

L)

0

100

200

0 500 1000 1500 2000 2500 3000 3500 4000

Bro

mid

e

0 500 1000 1500 2000 2500 3000 3500 4000

Extracted Volume(gal)

100

150

200

ium

(µg/

L)

0

50

0 500 1000 1500 2000 2500 3000 3500 4000

Chr

om

Extracted Volume (gal)

Page 20: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Capture Zone Confirmation

Page 21: Tracer Testing Techniques to Support Design · • TracerTracer teststests cancan effectivelyeffectively provideprovide thisthis criticalcritical informationinformation “We need

Future Directions•Improved in‐situ and “real‐time” monitoring capabilities

•Development of practical test design tools

•Measure LNAPL mobilityMeasure LNAPL mobility

Closing Thoughts“There’s no truth like tracer truth.” James Quinlan

Tracers are the best tools for understanding how injected fluids and contaminants beha e at the remediation (i e local ) scalecontaminants behave at the remediation (i.e., local ) scale

AcknowledgementsPayne, F.C, Quinnan, J.A., and Potter, S.T., 2008.  

Remediation Hydraulics.  CRC Press, Boca Raton, FL. 408 pp.

21