transition from weak to strong energetic ion transport in

31
ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 1 Transition From Weak to Strong Energetic Ion Transport in Burning Plasmas F. Zonca 1), S. Briguglio 1), L. Chen 2), G. Fogaccia 1), G. Vlad 1) 1) Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65 - 00044 - Frascati, Italy. 2) Department of Physics and Astronomy, University of California, Irvine, CA 92717-4575. Vilamoura, Portugal, November 1–6 2004 20th IAEA Fusion Energy Conference 20th IAEA FEC

Upload: others

Post on 25-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 1

Transition From Weak to Strong Energetic Ion Transport

in Burning Plasmas

F. Zonca 1), S. Briguglio 1), L. Chen 2), G. Fogaccia 1), G. Vlad 1)

1) Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65 - 00044 - Frascati, Italy.

2) Department of Physics and Astronomy, University of California, Irvine, CA 92717-4575.

Vilamoura, Portugal, November 1–6 2004

20th IAEA Fusion Energy Conference

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 2

Background

2 A burning plasma is a self-organized system, where collective effects associ-ated with fast ions (MeV energies) and charged fusion products may altertheir confinement properties and even prevent the achievement of ignition.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 2

Background

2 A burning plasma is a self-organized system, where collective effects associ-ated with fast ions (MeV energies) and charged fusion products may altertheir confinement properties and even prevent the achievement of ignition.

2 Simulation results indicate that, above threshold for the onset of resonantEnergetic Particle Modes (EPM) (L. Chen, PoP 94), strong fast ion trans-port occurs in avalanches (IAEA 02).

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 3

Avalanches and NL EPM dynamics (IAEA 02)

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-3

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 60.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-2

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 75.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

.001

.002

.003

.004

.005

.006

.007

.008

.009

r/a

8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 90.00t/τA0

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 2

Background

2 A burning plasma is a self-organized system, where collective effects associ-ated with fast ions (MeV energies) and charged fusion products may altertheir confinement properties and even prevent the achievement of ignition.

2 Simulation results indicate that, above threshold for the onset of resonantEnergetic Particle Modes (EPM) (L. Chen, PoP 94), strong fast ion trans-port occurs in avalanches (IAEA 02).

2 Such strong transport events occur on time scales of a few inverse lineargrowth rates – 100÷200 Alfven times – and have a ballistic character (R.B.White, PF 83) that basically differentiates them from the diffusive and localnature of weak transport.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 2

Background

2 A burning plasma is a self-organized system, where collective effects associ-ated with fast ions (MeV energies) and charged fusion products may altertheir confinement properties and even prevent the achievement of ignition.

2 Simulation results indicate that, above threshold for the onset of resonantEnergetic Particle Modes (EPM) (L. Chen, PoP 94), strong fast ion trans-port occurs in avalanches (IAEA 02).

2 Such strong transport events occur on time scales of a few inverse lineargrowth rates – 100÷200 Alfven times – and have a ballistic character (R.B.White, PF 83) that basically differentiates them from the diffusive and localnature of weak transport.

2 Observations on JT-60U (and other tokamaks) have confirmed macroscopicand rapid energetic particle radial redistributions in connection with the socalled Abrupt Large amplitude Events (ALE) (K. Shinohara, NF 01).

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 4

ALE on JT-60U (K. Shinohara, et al., Nucl. Fus. 41, 603, (2001)

Courtesy of K. Shinohara and JT-60U

ALE = Abrupt Large amplitude Event

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 5

Fast ion transport: simulation and experiment2 Numerical simulations show fast ion radial redistributions, qualitatively

similar to those by ALE on JT-60U.

0

0.01

0.02

0 0.2 0.4 0.6 0.8 1

βH

r/a

Before EPM

After EPM

G. Vlad et al., EPS02, ECA 26B, P-4.088, (2002).

K. Shinohara etal PPCF 46, S31 (2004)Courtesy of M. Ishikawa and JT-60U

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 6

Issues arising

2 Can strong fast ion transport and avalanches have any relevance to burningplasmas? Do they cause global losses or just radial redistributions?

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 6

Issues arising

2 Can strong fast ion transport and avalanches have any relevance to burningplasmas? Do they cause global losses or just radial redistributions?

2 A realistic answer cannot be independent on the dynamic formation of theplasma scenario: nonlinear wave-particle dynamics, sources, sinks, long timescales (transport).

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 6

Issues arising

2 Can strong fast ion transport and avalanches have any relevance to burningplasmas? Do they cause global losses or just radial redistributions?

2 A realistic answer cannot be independent on the dynamic formation of theplasma scenario: nonlinear wave-particle dynamics, sources, sinks, long timescales (transport). Unrealistic for now.

2 Applications to plasma equilibria given a priori. High B-field, low fast-ionenergy density operations are favored. Applications to ITER indicate fairlybenign behaviors except for the reversed shear operations. Hybrid scenariois optimal ⇒ G. Vlad et al., IT/P3-31 in Thursday Poster Session.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 6

Issues arising

2 Can strong fast ion transport and avalanches have any relevance to burningplasmas? Do they cause global losses or just radial redistributions?

2 A realistic answer cannot be independent on the dynamic formation of theplasma scenario: nonlinear wave-particle dynamics, sources, sinks, long timescales (transport). Unrealistic for now.

2 Applications to plasma equilibria given a priori. High B-field, low fast-ionenergy density operations are favored. Applications to ITER indicate fairlybenign behaviors except for the reversed shear operations. Hybrid scenariois optimal ⇒ G. Vlad et al., IT/P3-31 in Thursday Poster Session.

2 Therefore, it is crucial to theoretically assess the potential impact of fusionproduct avalanches on burning plasma operation in the perspective of directcomparisons with experimental evidence.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 6

Issues arising

2 Can strong fast ion transport and avalanches have any relevance to burningplasmas? Do they cause global losses or just radial redistributions?

2 A realistic answer cannot be independent on the dynamic formation of theplasma scenario: nonlinear wave-particle dynamics, sources, sinks, long timescales (transport). Unrealistic for now.

2 Applications to plasma equilibria given a priori. High B-field, low fast-ionenergy density operations are favored. Applications to ITER indicate fairlybenign behaviors except for the reversed shear operations. Hybrid scenariois optimal ⇒ G. Vlad et al., IT/P3-31 in Thursday Poster Session.

2 Therefore, it is crucial to theoretically assess the potential impact of fusionproduct avalanches on burning plasma operation in the perspective of directcomparisons with experimental evidence.

2 Simulation, Theory and Experiment are equally important.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 7

Nonlinear Dynamics: local vs. global processes

2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90,PPR 97) has been successfully applied to explain pitchfork splitting of TAEspectral lines (A. Fasoli et al. PRL 98): local distortion of the fast iondistribution function because of quasi-linear wave-particle interactions.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 7

Nonlinear Dynamics: local vs. global processes

2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90,PPR 97) has been successfully applied to explain pitchfork splitting of TAEspectral lines (A. Fasoli et al. PRL 98): local distortion of the fast iondistribution function because of quasi-linear wave-particle interactions.

2 Compton scattering off the thermal ions (T.S. Hahm and L. Chen PRL 95):locally enhance the mode damping via nonlinear wave-particle interactions

2 Mode-mode couplings generating a nonlinear frequency shift which mayenhance the interaction with the Alfven continuous spectrum (Zonca et al.

PRL 95 and Chen et al. PPCF 98): locally enhance the mode damping vianonlinear wave-wave interactions.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 7

Nonlinear Dynamics: local vs. global processes

2 Mode saturation via wave-particle trapping (H.L. Berk et al. PFB 90,PPR 97) has been successfully applied to explain pitchfork splitting of TAEspectral lines (A. Fasoli et al. PRL 98): local distortion of the fast iondistribution function because of quasi-linear wave-particle interactions.

2 Compton scattering off the thermal ions (T.S. Hahm and L. Chen PRL 95):locally enhance the mode damping via nonlinear wave-particle interactions

2 Mode-mode couplings generating a nonlinear frequency shift which mayenhance the interaction with the Alfven continuous spectrum (Zonca et al.

PRL 95 and Chen et al. PPCF 98): locally enhance the mode damping vianonlinear wave-wave interactions.

2 EPM is a resonant mode (L. Chen PoP 94), which is localized where thedrive is strongest: global readjustments in the energetic particle drive isexpected to be important as well.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 8

Nonlinear Dynamics of a single-n coherent EPM

2 NL dynamics of a single-n coherent EPM: neglect local phenomena andconsider only global NL EPM dynamics. Consistency check a posteriori .

2 Treat hot particle distribution consisting of a background plus a perturba-tion on meso time and space scales: the background is frozen in time.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 8

Nonlinear Dynamics of a single-n coherent EPM

2 NL dynamics of a single-n coherent EPM: neglect local phenomena andconsider only global NL EPM dynamics. Consistency check a posteriori .

2 Treat hot particle distribution consisting of a background plus a perturba-tion on meso time and space scales: the background is frozen in time.

2 The modification in the energetic particle distribution function in the pres-ence of finite amplitude fluctuations is derived in the framework of nonlinearGyrokinetics

2 The non-adiabatic fast ion response – δHk – is obtained from the NL gyroki-netic equation (Frieman & Chen PF 82). For details see TH/5-1 in FridayPoster Session.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 9

Initial value radial envelope problem

2 Using both time scale separation, ω = ω0 + i∂t as well as spacial scaleseparation, θk ⇒ (−i/nq′)∂r with ∂r acting on A(r, t) only, the initial valueradial envelope problem meso time and space scales becomes:

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)]A0︸ ︷︷ ︸

= δWKT A0︸ ︷︷ ︸

,

LINEAR DISPERSION LIN. ⊕ NL EN. PART. RESP.

2 eHδφ/TH = A(r, t) = A0(r, t) exp(−iω0t), with |ω−1

0 ∂t lnA0(r, t)| � 1

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 9

Initial value radial envelope problem

2 Using both time scale separation, ω = ω0 + i∂t as well as spacial scaleseparation, θk ⇒ (−i/nq′)∂r with ∂r acting on A(r, t) only, the initial valueradial envelope problem meso time and space scales becomes:

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)]A0︸ ︷︷ ︸

= δWKT A0︸ ︷︷ ︸

,

LINEAR DISPERSION LIN. ⊕ NL EN. PART. RESP.

2 eHδφ/TH = δA(r, t) = A0(r, t) exp(−iω0t), with |ω−1

0 ∂t lnA0(r, t)| � 1

2 Nonlinear (n = 0, m = 0) distortion to the hot particle distribution on mesotime and space scales: for details see TH/5-1 in Friday Poster Session.

∂tHz = 2k2

θρ2

H

ωcH

TH

mH

∂r

[

IIm(

QF0

ω

ωd

ωd − ω

)

Γ2|A|2]

H

.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 10

2 Assume isotropic slowing-down and EPM NL dynamics dominated by pre-cession resonance.

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)] ∂tA0 =3πε1/2

4√

2αH

[

1 +ω

ωdF

ln(

ωdF

ω− 1

)

+iπω

ωdF

]

∂tA0 + iπω

ωdF

A0

3πε1/2

4√

2k2

θρ2

H

TH

mH

∂2

r∂−1

t

(

αH |A0|2)

.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 10

2 Assume isotropic slowing-down and EPM NL dynamics dominated by pre-cession resonance.

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)] ∂tA0 =3πε1/2

4√

2αH

[

1 +ω

ωdF

ln(

ωdF

ω− 1

)

+iπω

ωdF

]

∂tA0 + iπω

ωdF

A0

3πε1/2

4√

2k2

θρ2

H

TH

mH

∂2

r∂−1

t

(

αH |A0|2)

︸ ︷︷ ︸

.

DECREASES DRIVE@ MAX |A0|INCREASES DRIVE NEARBY

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 3

Avalanches and NL EPM dynamics (IAEA 02)

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-3

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 60.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-2

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 75.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

.001

.002

.003

.004

.005

.006

.007

.008

.009

r/a

8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 90.00t/τA0

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 10

2 Assume isotropic slowing-down and EPM NL dynamics dominated by pre-cession resonance.

[DR(ω, θk; s, α) + iDI(ω, θk; s, α)] ∂tA0 =3πε1/2

4√

2αH

[

1 +ω

ωdF

ln(

ωdF

ω− 1

)

+iπω

ωdF

]

∂tA0 + iπω

ωdF

A0

3πε1/2

4√

2k2

θρ2

H

TH

mH

∂2

r∂−1

t

(

αH |A0|2)

︸ ︷︷ ︸

.

DECREASES DRIVE@ MAX |A0|INCREASES DRIVE NEARBY

2 Assume localized fast ion drive, αH = −R0q2β′

H = αH0 exp(−x2/L2

p) 'αH0(1 − x2/L2

p), with x = (r − r0).

2 In order to maximize the drive the EPM radial structure is nonlinearlydisplaced by

(x0/Lp) = γ−1

L kθρH (TH/MH)1/2 (|A0|/W0) ,

2 x0 is the radial position of the max EPM amplitude and W0 indicating thetypical EPM radial width in the NL regime

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 3

Avalanches and NL EPM dynamics (IAEA 02)

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-3

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 60.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

x 10-2

r/a

8, 4 9, 4

10, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 75.00t/τA0

|φm,n

(r)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

.001

.002

.003

.004

.005

.006

.007

.008

.009

r/a

8, 4 9, 410, 411, 412, 413, 414, 415, 416, 4

- 4

- 2

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δαH

r/a

= 90.00t/τA0

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 11

2 During convective amplification, radial position of unstable front scales lin-early with EPM amplitude.

0

0.002

0.004

0.006

0.008

0.01

0.3 0.35 0.4 0.45 0.5 0.55 0.6

A0

(r/a)

Y = M0 + M1*XM0 -0.021507M1 0.061857R 0.99903

2 Real frequency chirping accompanies convective EPM amplification in orderto keep ω ∝ ωd

∆ω = s ωdF |x0(x0/r) (ω0/ ωdF |x=0

) .

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 12

Avalanches and transport in NL EPM dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/a

ωτ τ/τ = 45.00

r/a0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2A0 A0

(r/a)(β /β ) H H0

τ/τ = 45.00A0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/a

ωτA0

τ/τ = 132.00 (r/a)(β /β ) H H0

r/a0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2A0

τ/τ = 132.00A0

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 13

Threshold conditions for Avalanches

2 Consistency check for neglecting wave particle trapping: based on the dis-placement x0 of the avalanche front when trapping becomes important

2 Threshold for weak avalanche, or avalanche onset: x0>∼ |nq′|−1.

1 � γL

kθρH(TH/mH)1/2R−1

0

>∼ (kθLp)−1/2 ,

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 13

Threshold conditions for Avalanches

2 Consistency check for neglecting wave particle trapping: based on the dis-placement x0 of the avalanche front when trapping becomes important

2 Threshold for weak avalanche, or avalanche onset: x0>∼ |nq′|−1.

1 � γL

kθρH(TH/mH)1/2R−1

0

>∼ (kθLp)−1/2 ,

2 Strong avalanche condition: x0>∼ W0, the characteristic NL EPM width.

1 � γL

kθρH(TH/mH)1/2R−1

0

>∼ W 2

0/∆2 . ∆ ≈ (Lp/kθ)

1/2

2 W 2

0/∆2 � 1, due to the short scale of the nonlinear distortion: onset for

EPM induced avalanches is close to the linear excitation threshold.

2 If neither of these conditions is satisfied, EPM will saturate either via wave-particle trapping or other local phenomena.

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 14

Possible EPMs during Alfven Cascades in JETC

ourt

esy

ofS.D

.P

inch

esan

dJE

T-E

FD

A

20th IAEA FEC

ENEA-UCI F. Zonca, L. Chen, S. Briguglio, G. Fogaccia and G. Vlad 15

Conclusions

2 Numerical simulations and theoretical analyses demonstrate ballistic fastion transport above the EPM linear excitation threshold.

2 Nonlinear mode dynamics is an avalanche process: i.e. the radial propaga-tion of an unstable front.

2 Threshold conditions for the avalanche onset are given: typical values areclose to the linear excitation threshold.

2 Good qualitative agreement of numerical simulations with local theoreticalcalculations of EPM convective amplification.

2 Time scales and qualitative phenomenology similar to experimental obser-vations: ALE on JT-60U and fast chirping in Alfven Cascade experimentson JET.

2 Applications to ITER indicate fairly benign behaviors except for the reversedshear operations. Hybrid scenario is optimal ⇒ G. Vlad et al., IT/P3-31 inThursday Poster Session.

20th IAEA FEC