transmission grid planning

25
7/27/2019 Transmission Grid Planning http://slidepdf.com/reader/full/transmission-grid-planning 1/25 Transmission Grid Planning By: Mohd Nasir Ahmad  Tenaga Nasional Berhad November 2006 Presentation Outline 1. Introduction 2. Study Methodology 3. Planning Input variables 4. Planning Criteria 5. Study Methodology 6. Output 7. Challenges 8. Future ASEAN Grid System

Upload: juzaili-js

Post on 02-Apr-2018

232 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 1/25

Transmission Grid Planning

By:

Mohd Nasir Ahmad

 Tenaga Nasional Berhad

November 2006

Presentation Outline

1. Introduction

2. Study Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 2: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 2/25

Presentation Outline

1. Introduction

2. Study Methodology3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges8. Future ASEAN Grid System

Introduction

Source of fuel

Hydrocarbon (oil, coal, natural gas)

Water

Nuclear

Wind

Solar

Conversion to electrical power

 Transmit

Page 3: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 3/25

Introduction

Power generated far away from load due to

source of energy (hydro, coal mines etc) Require high voltage transmission lines (grid)

to transfer large power from generation pointsto load centers

Need to appropriately plan the grid system Various generation size

Changing load demand Long lead time for transmission projects

completion

 Transmission Voltage Levels

Around the World

760 kV

500 kV 275 kV

230 kV

132 kV

115 kV

110 kV

ASEAN Countries

500 kV

275 kV 230 kV

132 kV

115 kV

110 kV

Page 4: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 4/25

 TNB Network

500kV

275kV132kV

66kV

33kV

22kV

11kV

0.415kV

0.240kV

Transmission Distribution

Frequency : 50 Hz

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 5: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 5/25

Methodology (1)

“Target Network”approach and concept of 

load-level Developing a future system, which will be

adequate and secure to cater for the load level of the future system, with reference to the 20-YearGeneration Development Plan

Methodology (2)Formulating Target Network Based On Load Level

TARGET NETWORK

(YEAR Y+20)

TARGET NETWORK

(YEAR Y+15)

TARGET NETWORK

(YEAR Y+12)

CURRENT SYSTEM

(YEAR Y)

DevelopmentProjects areidentified andanalyzed in detail

and proposed forimplementation

TARGET NETWORK

(YEAR Y+9)

YEAR Y+5

YEAR Y+4

YEAR Y+3

YEAR Y+2

YEAR Y+1

TARGET NETWORK

(YEAR Y+6)

Page 6: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 6/25

Methodology (3)EXAMPLE

TARGET NETWORK YEAR 2026

TARGET NETWORK YEAR 2021

TARGET NETWORK YEAR 2018

CURRENT SYSTEM

YEAR 2006

DevelopmentProjects are

identified andanalyzed in detailand proposed forimplementation

TARGET NETWORK YEAR 2015

YEAR 2011YEAR 2010

YEAR 2009YEAR 2008

YEAR 2007

TARGET NETWORK YEAR 2012

25.4 GW

22.4 GW

20.5 GW

18.6 GW

16.7 GW

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 7: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 7/25

Planning Input variables

Load forecast Generation Development Plan

Plant Retirements Dates

Project Completion Dates

Planning Input variables (1)

3.7%18.622015

3.8%17.9620143.8%17.312013

3.8%16.682012

3.9%16.072011

3.9%15.472010

4.2%14.892009

4.6%14.292008

4.9%13.662007

13.032006

%GWYear 

GrowthPeak Demand

Load Forecast (example)

2.5%25.452026

2.6%24.822025

2.6%24.202024

2.7%23.582023

2.7%22.972022

2.9%22.352021

3.0%21.712020

3.0%21.092019

3.1%20.472018

3.2%19.862017

3.4%19.252016

%GWYear 

GrowthPeak Demand

Page 8: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 8/25

Planning Input variables (2)

   2   0   0   1

   2   0   0   2

   2   0   0   3

   2   0   0  4

   2   0   0   5

   2   0   0  6

   2   0   0   7

   2   0   0   8

   2   0   0   9

   2   0   1   0

   2   0   1   1

   2   0   1   2

   2   0   1   3

   2   0   1  4

   2   0   1   5

   2   0   1  6

   2   0   1   7

   2   0   1   8

   2   0   1   9

   2   0   2   0

0

10,000

20,000

30,000

40,000

50,000

60,000

FISCAL YEAR

   C   A   P   A   C   I   T   Y

   (   M   W   )

   E   E   P  m_   S  m

   1  x   6   0   0

   M   W

 P e a k  D e m a

 n d

   C  o  a   l   2  x   7   0   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C   C   4  x   3   7   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C  o  a   l   2  x   7   0   0   M   W

 R e s e r v e  M

 a r g  i n  1 5 %

   G   T   4  x   2   4   0   M   W

   C   C   3  x   3   7   0   M   W

   R  e   t   i  r  e   8   7   0   M   W

   R  e   t   i  r  e   2   6   5   M   W

   R  e   t   i  r  e   3   6   0   M   W

   R  e   t   i  r  e   7   5   6   M   W

   R  e   t   i  r  e   3   0   0   M   W

   R  e   t   i  r  e   1 ,   0   8   5   M

   W

   R  e   t   i  r  e   2 ,   6   5   0

   M   W

   R  e   t   i  r  e   2 ,   2   4   5

   M   W

   R  e   t   i  r  e   6   8   M

   W

   R  e   t   i  r  e   6   0   0   M   W

   R  e   t   i  r  e   3   3   0   M   W

   C  o  a   l   2  x   7   0   0   M   W

   C   C   7  x   3   7   0

   M   W

   G   T   3  x   2   4   0

   M   W

   C  o  m  m   i   t   t  e   d   1 ,   4   4   2   M   W

   C  o  m  m   i   t   t  e   d   9   0   6   M   W

   R  e   t   i  r  e   1 ,   1   2   6   M   W

   C  o  m  m   i   t   t  e   d   4 ,   1   4   1   M   W

   R  e   t   i  r  e   3   6   0   M   W

   C  o  m  m   i   t   t  e   d   2 ,   3   3   0   M   W

   C  o  m  m   i   t   t  e   d   7   5   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   7   0   0   M   W

   C  o  m  m   i   t   t  e   d   2 ,   4   0   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   0   5   0   M   W

   C  o  a   l   1  x   7   0   0

   M   W

   G   T   4  x   2   4   0   M

   W

   C   C   6  x   3   7   0   M

   W

   C  o  a   l   1  x   7   0   0   M   W

   G   T   3  x   2   4   0

   M   W

   C  o  a   l   1  x   7   0   0   M   W

   G   T   2  x   2   4

   0   M   W

   C   C   4  x   3   7   0   M   W

   E  x  p  o  r   t   t  o   S  g   C  o  a   l   1  x   7   0   0   M   W

   {    {

   {

   {

   {   {

   {

   {

   {

   {   {   {

   C   C   3  x   3   7   0   M   W

   {   G   T   1  x   2   4   0   M   W

   C   C   3  x   3   7   0   M   W

   C   C   6  x   3   7   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C   C   6  x   3   7   0

   M   W

   C   C   5  x   3   7

   0   M   W

   {

Generation Development Plan (example)

Planning Input variables (3)

Location of future generation plants takes intoconsideration the following :

Latest power station siting study

Maximizing the existing transmission network

Minimizing acquisition of ROW

Regional self sufficiency

New power plants as close as possible to the load

centre

Page 9: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 9/25

Planning Input variables (4)

405Generation X GT 3, 4 & 52020

220Generation F GT 1 & 22019

290Generation E CCYL 32017

580Generation D CCYC 1 & 22016

832Generation B CCYC Units2013

240Generation A Unit 12012

Retired

Capacity (MW)Plant to RetireYear 

Retirement Dates of Plants

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 10: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 10/25

Planning Criteria (1)

1.  Thermal Limits

2. Voltage Limits

3. Stability Limits

4. Short Circuit Limits

Planning Criteria (1)

Reference made to some standards

In case of TNB, reference made to: TNB Transmission Reliability & Security

Standards

Malaysian Grid Code

Page 11: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 11/25

Planning Criteria (2)

No thermal overloading allowedNo thermal overloading allowed Transformers

Loss of load is NOT allowed under both system conditions stated above

No thermal overloading allowedNo thermal overloading allowedUnderground/SubmarineCables

No thermal overloading allowedNo thermal overloading allowedOverheadLines

MinimumMinimum

Following Secured (N-1)

Contingency EventsNormal Operation

System Condition (Planning Timescales)Equipment

(All

TransmissionVoltages)

Thermal Limits

Planning Criteria (3)

1.05 p.u.0.95 p.u.1.05 p.u.1.0 p.u.GenerationBus

1.05 p.u.0.95 p.u.1.05 p.u.1.0 p.u.132kV

1.05 p.u.0.95 p.u.1.05 p.u.1.0 p.u.275kV

1.05 p.u.0.975 p.u.1.05 p.u.1.0 p.u.500kV

MaximumMinimumMaximumMinimum

Following Secured (N-1)Contingency Events

Normal Operation

System Condition (Planning Timescales)

NominalVoltage

Voltage Limits

Page 12: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 12/25

Planning Criteria (4)

31.5kA, 3sec40kA, 3sec for Power Station and 132kVwithin a 500/275kV substation

132

40kA, 3sec for bulk substation50kA, 1sec for Power Station and 275kVwithin 500kV substation

275

50kA, 1sec500

Short Circuit Rating CapacitySystem Voltage(kV)

Short Circuit Limits

Planning Criteria (5)

Stability Limits

Immediately following a fault clearance,

Low Limit : 0.7 p.u. for not more than 400 ms

High Limit : 1.25 p.u. for not more than 30 s

Voltage Excursion

Following a disturbance, the damping ratio of power, angle or voltage oscillation must notless than 5 %

Damping Ratio

Relative rotor angle of any two generatingunits must not exceed 180 degrees at any

time

Rotor angle

Note:

1. Maximum fault clearing time for 500kV & 275 kV is 100 ms

2. Maximum fault clearing time for 132 kV is 150 ms

Page 13: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 13/25

Presentation Outline

1. Introduction

2. Planning Methodology3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges8. Future ASEAN Grid System

Study Methodology (1)

Steady State Analysis Power Flow

Contingency Short Circuit

Reactive Power balance

 Transient Analysis Angle stability

Frequency stability

Voltage stability

Page 14: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 14/25

Study Methodology (2)

Establish Power Flow Files

Transient Stability Analysis

Voltage Stability Analysis

:

Target Network

Conduct Power Flow Studies

Conduct VAR Optimisation

Fault Level

Perform Conting ency Analysis

PROBLEM?

Fault Level

Mitigation

INPUTS

Load Forecast

Generation Devp. Plan

Retirement of plantsProject Completion dates

Mitigation

Measures

PROBLEM?

PROBLEM?

PROBLEM?

PROBLEM?

Contingencies Specification

Single Circuit Outages

Double Circuit Outages

** Impact assessment of severe

contingencies eg, loss of busbar,power station, ROW

 Add new l inesOpen points

Split busbar 

Upgrading CB

Analysis is done only after fault levelproblem is mitigated

•System Reconfiguration

•System Reinforcement•Equipment Upgrading•New 275kV injection point•VAR Compensation

Study Methodology (3)

Simulations are performed using:

PSS/E (Steady State Analysis)

DSA Powertools (Transient Analysis)

Maximum VAR contribution from generatingunits are capped to about 50% of machinecapabilities

275/132kV transformers tap fixed at nominal

MVAr contribution from SVC is set to zero

Page 15: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 15/25

Study Methodology (4)

Modeling of power system

 Transmission lines Generators

•Steady State – Voltage behind reactance

•Transient – Current injection

•Generator reactance (Xd, X’d,Xq, etc)

– Governor models

– Excitation models (including PSS)

– User models

 Transformers

Reactive components (Capacitors, reactors, SVC)

Study Methodology (5)

 Testing the robustness of the transmission plan

Steady State – contingency analysis

Deterministic

Loss of single element

Loss of double element

Loss of common ROW

Loss of half busbar

 Total loss of a busbar

Page 16: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 16/25

Study Methodology (6)

 Transient Analysis

Loss of largest unit in the system

 Three-phase fault on a bus, followed by loss of line/s

•Fault duration of 100ms / 150ms

Angle, Voltage& Frequency stable?

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 17: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 17/25

Output of Planning Studies

 Transmission Development plan

Short Term (within 5 years)

•Firm up Transmission Projects

Long Term (beyond 5 years)

•To do necessary preliminary works such asidentification of possible route, route survey, submissionof application to authorities for development, etc

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 18: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 18/25

Challenges

Scarcity of substation land

Limited ROW

Escalating cost of equipment (AIS vs GIS)

Public resistance

Concern on EMF (public approaching closer totransmission lines)

NIMBY (Not-In-My-Back- Yard) Syndrome can leadto insufficient transmission capacity

Presentation Outline

1. Introduction

2. Planning Methodology

3. Planning Input variables

4. Planning Criteria

5. Study Methodology

6. Output

7. Challenges

8. Future ASEAN Grid System

Page 19: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 19/25

ASEAN Power Grid

 The dream of ASEAN leaders…….

 ASEAN POWER GRID

ASEAN Electrical Power Grid

Abundance of Resources

Coal Mines (eg Indonesia)

Natural Gas (eg Brunei)

Hydro potential (eg Cambodia, Myanmar)

Difference in peaking time

Export energy during low load demand

Import energy during peak demand

•Defer plant up investment cost

Page 20: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 20/25

Cambodia purchases from Vietnam

Power Purchase 80.0 MW (2000)

Power Purchase 120.0 MW (2006)

Power Purchase 50.0 MW (2019)

Thailand purchases from Lao PDR

Theun Hinboun (Hydro) 214.0 MW (1998)

Huoy Ho (Hydro) 126.0 MW (1999)

Nam Theun 2 (Hydro) 940.0 MW (2008)

Nam Ngum 2 (Hydro) 615.0 MW (2008)

Nam Ngum 3 (Hydro) 460.0 MW (2008)

Xekaman 1 (Hydro) 468.0 MW (2010)

Xepien-Xenamnoi (Hydro) 390.0 MW (2010)

Hongsa (Lignite) 720.0 MW (2010)

Existing and Committed Interconnection

Thailand purchases from Myanmar

Power Purchase 1500.0 MW (2013)

Vietnam purchases from Lao PDR

Nam Mo (Hydro) 100.0 MW (2007)

Xekaman 3 (Hydro) 218.0 MW (2012)

Nam Kong 1 (Hydro) 240.0 MW (2012)

Sekong 4 (Hydro) 440.0 MW (2014)

Nam Theun 1 (Hydro) 400.0 MW (2014)

Sekong 5 (Hydro) 253.0 MW (2015)

Nam Theun 3 (Hydro) 236.0 MW (2016)

Existing and Committed Interconnection

Page 21: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 21/25

Peninsular Malaysia - Thailand

Power Purchase 80 MW (1990) - HVACEnergy Exchange 300 MW (2001) - HVDC

Peninsular Malaysia - Singapore

Power Exchange (contra) 500 MVA HVAC

Existing and Committed Interconnection

ASEAN Interconnection Masterplan Study (1)

(AIMS)

Study started in J uly 2000 and completed in March 03

Done by AIMS working group (from member countries)• Generation, Transmission and Reg & Commsub working group

Objective of study

 To formulate an ASEAN Interconnection Master Plan thatwill

• facilitate economic generation and transmission of electricity

• enhance security of power systems

• provide opportunities for future energy trading among ASEANmember countries

Page 22: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 22/25

ASEAN Interconnection Masterplan Study (2)

(AIMS)

Scope of Work for Master Plan Study Review of Existing Studies

Review of Existing Practices and TechnicalCoordination

Assessment of ASEAN Demand and Supply

Optimization of The interconnection Plan

Regulatory and Commercial Issues  The AIMS was approved in year 2003 at the

ASEAN Minister on Energy Meeting (AMEM)

ASEAN Interconnection Masterplan Study(AIMS) – Working Group

AIMS WG.

Transmission

Sub-Working

Group

Generation

Sub-Working

Group

Regulatory and

Commercial Framework

Sub-Working Group

Page 23: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 23/25

Total 11 Meetings of Working Group for

technical discussions

Demand forecasting

Generation development plan studies

Transmission network development studies

Economic evaluation studies

Regulatory and commercial issues studies

Formation of Sub-Working Groups

ASEAN Interconnection Masterplan Study (3)(AIMS)

Power Development Plan - PM

   2   0   0   1

   2   0   0   2

   2   0   0   3

   2   0   0  4

   2   0   0   5

   2   0   0  6

   2   0   0   7

   2   0   0   8

   2   0   0   9

   2   0   1   0

   2   0   1   1

   2   0   1   2

   2   0   1   3

   2   0   1  4

   2   0   1   5

   2   0   1  6

   2   0   1   7

   2   0   1   8

   2   0   1   9

   2   0   2   0

0

10,000

20,000

30,000

40,000

50,000

60,000

FISCAL YEAR

   C   A   P   A   C   I   T   Y   (   M   W   )

   E   E   P  m_   S  m

   1  x   6   0   0   M   W

 P e a k  D e m

 a n d

   C  o  a   l   2  x   7   0

   0   M   W

   C  o  a   l   1  x   7   0

   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C   C   4  x   3   7   0   M   W

   C  o  a   l   1  x   7   0   0

   M   W

   C  o  a   l   2  x   7   0   0   M   W

 R e s e r v e  M

 a r g  i n  1 5 %

   G   T   4  x   2   4   0   M   W

   C   C   3  x   3   7   0

   M   W

   R  e   t   i  r  e   8   7   0   M   W

   R  e   t   i  r  e   2   6

   5   M   W

   R  e   t   i  r  e   3   6

   0   M   W

   R  e   t   i  r  e   7   5   6

   M   W

   R  e   t   i  r  e

   3   0   0   M   W

   R  e   t   i  r  e   1 ,   0   8   5   M   W

   R  e   t   i  r  e   2 ,   6   5   0   M   W

   R  e   t   i  r

  e   2 ,   2   4   5   M   W

   R  e   t   i  r

  e   6   8   M   W

   R  e   t   i  r

  e   6   0   0   M   W

   R  e   t   i  r  e   3   3   0   M   W

   C  o  a   l   2  x   7   0   0   M   W

   C   C   7  x   3   7   0   M   W

   G   T   3  x   2   4   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   4   4   2   M   W

   C  o  m  m   i   t   t  e   d   9   0   6   M   W

   R  e   t   i  r  e   1 ,   1   2   6   M   W

   C  o  m  m   i   t   t  e   d   4 ,   1   4   1   M   W

   R  e   t   i  r  e   3   6   0   M   W

   C  o  m  m   i   t   t  e   d   2 ,   3   3   0   M   W

   C  o  m  m   i   t   t  e   d   7   5   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   7   0   0   M   W

   C  o  m  m   i   t   t  e   d   2 ,   4   0   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   0   5   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   G

   T   4  x   2   4   0   M   W

   C

   C   6  x   3   7   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   G   T   3  x   2   4   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   G   T   2  x   2   4   0   M   W

   C   C   4  x   3   7   0   M   W

   E  x  p  o  r   t   t  o   S  g   C  o  a   l   1  x   7   0   0   M   W

   {    {

   {

   {

   {   {

   {   {

   {

   {   {   {   C   C   3  x   3   7   0

   M   W

   {   G   T   1  x   2   4   0

   M   W

   C   C   3  x   3   7   0   M   W

   C   C

   6  x   3   7   0   M   W

   C  o  a   l   1  x   7   0   0   M   W

   C   C   6  x   3   7   0   M   W

   C   C   5  x   3   7   0   M   W

   {

PM – Sumatra Energy Exchange

Page 24: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 24/25

   2   0   0   1

   2   0   0   2

   2   0   0   3

   2   0   0  4

   2   0   0   5

   2   0   0  6

   2   0   0   7

   2   0   0   8

   2   0   0   9

   2   0   1   0

   2   0   1   1

   2   0   1   2

   2   0   1   3

   2   0   1  4

   2   0   1   5

   2   0   1  6

   2   0   1   7

   2   0   1   8

   2   0   1   9

   2   0   2   0

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

FISCAL YEAR

   C   A   P   A   C   I   T   Y   (   M   W   )

 R e s e r v e  M

 a r g  i n  1 5%

 P e a k  D e m

 a n d

   C   C   1  x   7   0   0   M   W

   C   C   1  x   7   0   0   M   W

   C   C   2  x   7   0   0   M   W

   C   C   4  x   7   0   0   M   W

   C   C   2  x   7   0   0   M   W

   C   C   4  x   7   0   0   M   W

   C   C   5  x   7   0   0   M   W

   C   C   4  x   7   0   0   M   W

   C   C   5  x   7   0   0   M   W

   C   C   5  x   7   0   0   M

   W

   C   C   5  x   7   0   0   M   W

   C   C   3  x   7   0   0

   M   W

   G   T   1  x   2   0   0   M   W

   G   T   1  x   2   0   0   M   W

   G   T   2  x   2   0   0   M   W

   G   T   1  x   2   0   0   M   W

   E   E   C  a_   T   h   1  x   3   0   0

   M   W

   G   T   3  x   2   0

   0   M   W

   G   T   1  x   2   0   0

   M   W

   R  e   t   i  r  e   8   0   6   M   W

   R  e   t   i  r  e   6   7   6   M   W

   R  e   t   i  r  e   6   2   0   M   W

   R  e   t   i  r  e   7   6   1   M   W

   R  e   t   i  r  e   6   9   1   M   W

   R  e   t   i  r  e   7   3   8   M

   W

   R  e   t   i  r  e   8   5   8   M   W

   R  e   t   i  r  e   1 ,   5   4   0   M   W

   R  e   t   i  r  e   6   0   7

   M   W

   R  e   t   i  r  e   1 ,   2   2   5   M

   W

   R  e   t   i  r  e   6   8   9   M

   W

   R  e   t   i  r  e   2 ,   3   3

   1   M   W

   R  e   t   i  r  e   5   0   0

   M   W

   R  e   t   i  r  e   7   2   5   M   W

   C  o  m  m   i   t   t  e   d   2 ,   6   5   8   M   W

   C  o  m  m   i   t   t  e   d   2 ,   2   9   0   M

   W

   C  o  m  m   i   t   t  e   d   1   9   0   M   W

   C  o  m  m   i   t   t  e   d   3   6   7   M   W

   C  o  m  m   i   t   t  e   d   1 ,   4   6   3   M

   W

   C  o  m  m   i   t   t  e   d   1 ,   9   9

   1   M   W

   C  o  m  m   i   t   t  e   d   2 ,   0   1   5   M   W

   C   C   2  x   7   0   0   M   W

   R  e   t   i  r  e   1   5   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   1   3   4   M   W

   C  o  m  m   i   t   t  e   d   2 ,   0   1   9   M

   W

   C  o  m  m   i   t   t  e   d   1 ,   5   0

   0   M   W

   G   T   1  x   2   0   0   M   W

   C  o  m  m   i   t   t  e   d   1 ,   0

   6   7   M   W

   {    {   {

   {   {    {

   {   {   {    {   {

   {   {

   {   {

   C  o  a   l   1  x   7   0   0   M   W

   C  o  a   l   1  x   7   0   0

   M   W

Power Development Plan - Thailand

Cambodia - Thailand Energy Exchange

 Interconnection Type of Capacity Year

 Project Interconnection (MW)

1) Thailand-Lao PDR* HVAC (PP) 2015/1578 2008/2010

2) Thailand-Myanmar HVAC (PP) 1500 20133) Thailand-Cambodia HVAC (EE) 300 2016

4) Vietnam-Lao PDR HVAC (PP) 1887 2007-2016

5) Cambodia-Vietnam* HVAC (PP) 80/120/50 2003/2006/2019

6) P.Malaysia-Sumatra HVDC (EE) 600 2008

7) Singapore-P.Malaysia HVDC (PP) 700 2012

8) Singapore-Sumatra HVDC (PP) 600 2014

9) Singapore-Batam* HVAC (PP) 200/200/200 2014/2015/2017

10) Sabah/Sarawak-Brunei HVAC (EE) 300 2019

11) Sabah/Sarawak- HVAC (EE) 300** 2007West Kalimantan

AIMS Findings

Page 25: Transmission Grid Planning

7/27/2019 Transmission Grid Planning

http://slidepdf.com/reader/full/transmission-grid-planning 25/25

Challenges in Realizing the ASEAN Grid

Variant of electricity structure in each country

Cross border energy exchange policies

Funding of projects

Security of supply – too dependable to othercountry

etc

 THANK YOUwww.tnb.com.my