trapped-ion quantum computing: a coherent control problem

33
Trapped-ion quantum computing: A Coherent Control Problem Roee Ozeri Weizmann Institute of Science Quantum Science Seminar. April 2020

Upload: others

Post on 23-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trapped-ion quantum computing: A Coherent Control Problem

Trapped-ion quantum computing:

A Coherent Control Problem

x = 1000x2 + 3x = 5R(Β΅)R(Β΅)R(theta)

Roee Ozeri

Weizmann Institute of Science

Quantum Science Seminar. April 2020

Page 2: Trapped-ion quantum computing: A Coherent Control Problem

Laser-cooled Crystals of trapped atomic ions

Separation of few mm

Temperature few mK

0

1

Qubit encoded in internal levels of ion

Interface with qubit using lasers or microwaves

Trap by NIST Trap made by Sandia

Page 3: Trapped-ion quantum computing: A Coherent Control Problem

Trapped ion interaction with Radiation

Coupling between the two qubit levels using EM radiation.

For a single ion:

Where:;

and

Page 4: Trapped-ion quantum computing: A Coherent Control Problem

Trapped ion interaction with Radiation

When d = swm, only , n and , n + s will be resonantly coupled (another RWA).

In the interaction representation and within the Rotating Wave Appr. (RWA)

Carrier: s = 0

Blue sideband (BSB): s = +1

Red sideband (RSB): s = -1

Page 5: Trapped-ion quantum computing: A Coherent Control Problem

Sideband Spectroscopy

S1/2

D5/2

β€’ Scan the laser frequency

across the S β†’D transition

axialradial

carrier

Blue sidebandsRed sidebands

Page 6: Trapped-ion quantum computing: A Coherent Control Problem

T β‰ˆ 2 mK

Sideband cooling to the ground state

Pulse on red sideband together with optical-pumping

Page 7: Trapped-ion quantum computing: A Coherent Control Problem

Tom Manovitz; MSc thesis (2016)

Single qubit gates – Carrier rotations

Page 8: Trapped-ion quantum computing: A Coherent Control Problem

Randomized benchmarking

microwaveLaser (Raman)

e 10-4e 10-6

Lucas, Oxford

Page 9: Trapped-ion quantum computing: A Coherent Control Problem

Use a bi-chromatic drive:

πœ”Β± = πœ”0 Β± 𝜈 + πœ‰0

MΓΈlmer-SΓΈrensen gates

9

πœ‰0

πœ”βˆ’πœ”+

𝜈

| ↑↑, 𝑛

| ↓↓, 𝑛

| ↑↓, 𝑛 βˆ’ 1

| ↑↓, 𝑛 + 1| ↑↓, 𝑛

| ↓↑, 𝑛 βˆ’ 1

| ↓↑, 𝑛 + 1| ↓↑, 𝑛

A. SΓΈrensen & K. MΓΈlmer, PRL (1999) & PRA (2000)

Spectrally:

Hamiltonian (appx.) – spin dependent force:

𝐻 = ℏΩ 𝐽𝑦 𝑓 𝑑 ෝπ‘₯ + 𝑔 𝑑 ෝ𝑝

Global spin operator:

αˆ˜π½π‘¦ =ො𝜎1𝑦+ ො𝜎2

𝑦

2

Harmonic oscillator

operators

πœ”πœ”0 𝜈1 𝜈2βˆ’πœˆ1βˆ’πœˆ2

πœ”+πœ”βˆ’

Entanglement in trapped ion systems

Page 10: Trapped-ion quantum computing: A Coherent Control Problem

π‘ˆ 𝑑; 0 = π‘’βˆ’π‘–π΄ π‘‘ΰ·πœŽπ‘¦β¨‚ΰ·πœŽπ‘¦

2 π‘’βˆ’π‘–πΉ 𝑑 αˆ˜π½π‘¦ ොπ‘₯π‘’βˆ’π‘–πΊ 𝑑 αˆ˜π½π‘¦ ΰ·œπ‘

Bi-chromatic drive:

A. SΓΈrensen & K. MΓΈlmer, PRL (1999) & PRA (2000)

πœ”Β± = πœ”π‘†π· Β± 𝜈 + πƒπŸŽ

𝐺 𝑑 , 𝐹 𝑑

αˆ˜π½π‘¦ ොπ‘₯

αˆ˜π½π‘¦ Ƹ𝑝

𝐴 𝑑

MS gate: 𝐴 𝑇 = Ξ€πœ‹ 2 , 𝐹 𝑇 = 𝐺 𝑇 = 0

π‘ˆπ‘€π‘†(𝑇; 0)↓↓↓↓ βˆ’ 𝑖 ↑↑

2

MΓΈlmer – SΓΈrensen gate

πœ‰0

πœ”βˆ’πœ”+

𝜈

| ↑↑, 𝑛

| ↓↓, 𝑛

| ↑↓, 𝑛 βˆ’ 1

| ↑↓, 𝑛 + 1| ↑↓, 𝑛

| ↓↑, 𝑛 βˆ’ 1

| ↓↑, 𝑛 + 1| ↓↑, 𝑛

Page 11: Trapped-ion quantum computing: A Coherent Control Problem

Laser-driven entanglement

Benhelm et. al. Nat. Phys. 4 463 (2008 )

Akerman, Navon, Kotler, Glickman, RO, NJP 17, 113060 (2015)

SS; DD; SD + DS

Great, but sensitive to errors in gate parameters:

Time, trap frequency, laser detuning, laser intensity

π‘ˆπ‘€π‘†(𝑇; 0) 𝑆𝑆 =𝑆𝑆 βˆ’ 𝑖 𝐷𝐷

2

Page 12: Trapped-ion quantum computing: A Coherent Control Problem

Quantum Engineering of Robust Gates

ri - amplitudes

Valid gate if:

Multi-tone MΓΈlmer – SΓΈrensen gates

𝐴 𝑇 = Ξ€πœ‹ 2 𝐹 𝑇 = 𝐺 𝑇 = 0

Page 13: Trapped-ion quantum computing: A Coherent Control Problem

Multi-tone MΓΈlmer – SΓΈrensen gates

Continuous family of gates:

β€’ Choose your favorite shape through phase-space

β€’ Extra degrees of freedom:

Overdetermined system; add constraints

Page 14: Trapped-ion quantum computing: A Coherent Control Problem

Optimization of Quantum Gates

𝐹𝑔 = 1 +1

2

πœ•2𝐹𝑔 𝑛𝑖 , π‘Ÿπ‘– , πœ™π‘– 𝑖=1𝑁

πœ•π›Ό2α‰šπ›Όπ‘–π‘‘π‘’π‘Žπ‘™

𝛿𝛼2 +β‹―

Null errors order-by-order:

Analytic expression for gate fidelity:

Page 15: Trapped-ion quantum computing: A Coherent Control Problem

Gate timing errors – Cardioid gates

Solution is a Cardioid

Page 16: Trapped-ion quantum computing: A Coherent Control Problem

MΓΈlmer-SΓΈrensen gate Cardioid gate

Gate timing errors – Cardioid gates

Gate fidelity:

Shapira, Shaniv, Manovitz, Akerman, RO, Phys. Rev. Lett. 121, 180502 (2018)

Page 17: Trapped-ion quantum computing: A Coherent Control Problem

Trap frequency errors – CarNu gates

Shapira, Shaniv, Manovitz, Akerman, RO, Phys. Rev. Lett. 121, 180502 (2018)

Trap frequency and timing errors:

MS CarNu(2,3,7)

Page 18: Trapped-ion quantum computing: A Coherent Control Problem

Two-qubit gate fidelity

NIST Oxford

Page 19: Trapped-ion quantum computing: A Coherent Control Problem

Entanglement gates in multi-ion crystals

β€’ Multiple modes of motion: choose one

β€’ Slower because of heavier effective weight

β€’ Increasing laser-power: off-resonance coupling to other modes or carrier transition

β€’ Still works for a small number of ions

Page 20: Trapped-ion quantum computing: A Coherent Control Problem

Small Scale Quantum computers

Quantum Algorithms demonstrated:

β€’ Quantum Chemistry Calculations Phys. Rev. X (2018)

β€’ Grover Search algorithm Nature Comm. (2017)

β€’ Topological Quantum error-correction Science (2014)

β€’ Shor Factoring Algorithm Science (2016)

β€’ Many more…

Page 21: Trapped-ion quantum computing: A Coherent Control Problem

Architectures for scaling up: # 1

Shuttling ions between different trapping regions

Kielpinski, Monroe and Wineland Nature 417, 709 (2002)

Page 22: Trapped-ion quantum computing: A Coherent Control Problem

Architectures for scaling up: # 2

Photon interconnects between elementary Logic units (ELU’s)

Hong-Ou-Mandel interference

Monroe et. al. Phys. Rev. A 89, 022317 (2014)

Page 23: Trapped-ion quantum computing: A Coherent Control Problem

NISQ approach: Large Crystals

10 ’s -100’s ions

β€’ Exponential speed-up for quantum computing ~ 60 ions sufficient, provided high fidelity

β€’ Quantum simulators

β€’ Can we stretch previous ideas to larger ion-numbers?

Monroe, JQI

Page 24: Trapped-ion quantum computing: A Coherent Control Problem

Challenges:

β€’ 10’s – 100’s of motional modes; spectral crowding

β€’ With 2-qubit gates many concatenated operations are required (N3 in Shor’s)

β€’ In the MS gate and its variants the gate time T ∝ 1/ 𝑁

β€’ Infidelity, 𝐹𝑔~1βˆ’π‘‡

𝑇2𝑁2

β€’ Increasing laser-power: off-resonance coupling

β€’ Possible remedy: parallel gates

Use Multiple modes of motion

24J. I. Cirac & P. Zoller, PRL 74, 4091 (1995). [3] T. Monz et al. PRL 106, 130506 (2011).

NISQ approach: Large Crystals

Page 25: Trapped-ion quantum computing: A Coherent Control Problem

β€’ We generalize, πœ”Β± β†’ πœ”Β±,𝑖 = πœ”0 Β±πœ”π‘– at amplitude π‘Ÿπ‘– and phase πœ™π‘–.

β€’ The Hamiltonian generalizes:

𝐻 = ℏ

𝑗=1

𝑁

𝐽𝑦 ,𝑗 𝑓𝑗 𝑑 ෝπ‘₯𝑗 + 𝑔𝑗 𝑑 ෝ𝑝𝑗 , 𝐽𝑦 ,𝑗 ≑𝑁2𝒗𝑗 β‹… πˆπ‘¦

β€’ With: 𝑓𝑗 𝑑 + 𝑖𝑔𝑗 𝑑 =2 2

π‘πœ‚π‘—Ξ©Οƒπ‘–=1

𝑀 π‘Ÿπ‘– cos πœ”π‘–π‘‘ + πœ™π‘– π‘’π‘–πœˆπ‘—π‘‘

Multi-tone MS

25

25

πœ”πœ”πœ”0 𝜈1 𝜈2βˆ’πœˆ1βˆ’πœˆ2 𝜈3 𝜈5𝜈4 𝜈6 πœˆβ€¦βˆ’πœˆ3βˆ’πœˆ5 βˆ’πœˆ4βˆ’πœˆ6βˆ’πœˆβ€¦

Normal-mode

vector

Normal-mode

frequency

Quantum Engineering of multi-mode Gates

Page 26: Trapped-ion quantum computing: A Coherent Control Problem

β€’ Similar unitary:

π‘ˆ 𝑑; 0 =ΰ·‘

𝑗=1

𝑁

π‘’βˆ’π‘–π΄π‘— 𝑑 αˆ˜π½π‘¦,𝑗2

π‘’βˆ’π‘–πΉπ‘— 𝑑 αˆ˜π½π‘¦,𝑗 ොπ‘₯π‘—π‘’βˆ’π‘–πΊπ‘— 𝑑 αˆ˜π½π‘¦,𝑗 ΰ·œπ‘π‘—

β€’ Same phase-space intuition

26

26

πœ”πœ”0 𝜈1 𝜈2βˆ’πœˆ1βˆ’πœˆ2 𝜈3 𝜈5𝜈4 𝜈6 πœˆβ€¦βˆ’πœˆ3βˆ’πœˆ5 βˆ’πœˆ4βˆ’πœˆ6βˆ’πœˆβ€¦

Multi-tone MS

Quantum Engineering of multi-mode Gates

𝐺𝑗 𝑑 , 𝐹𝑗 𝑑

αˆ˜π½π‘¦,𝑗 ොπ‘₯

αˆ˜π½π‘¦,𝑗 Ƹ𝑝

𝐴𝑗

Page 27: Trapped-ion quantum computing: A Coherent Control Problem

Constraints – phase space closure

β€’Motion closes in all phaseβˆ’spaces at the gate time.

𝐹𝑗 𝑇 = 𝐺𝑗 𝑇 = 0 for all 𝑗 = 1,… ,𝑁.

β€’Geometric phases for all-to-all coupling:

A1 T βˆ’ 𝐴𝑗β‰₯2 𝑇 =πœ‹

2

27

𝐺1 𝑑 , 𝐹1 𝑑

αˆ˜π½π‘¦,1 ොπ‘₯

αˆ˜π½π‘¦,1 Ƹ𝑝

𝐴1 = πœ‹/2

𝐺𝑗β‰₯2 𝑑 , 𝐹𝑗β‰₯2 𝑑

αˆ˜π½π‘¦,𝑗β‰₯2 ොπ‘₯

αˆ˜π½π‘¦,𝑗β‰₯2 Ƹ𝑝

𝐴𝑗β‰₯2

Linear constraint

Quadratic constraint

The quadratic constraint optimization problem is NP-Hard

Page 28: Trapped-ion quantum computing: A Coherent Control Problem

Blue – Multi-mode gate, Yellow – regular MS, Red – multi-tone adiabatic

28

Gate optimization results – 6 ions, axial modes

Quantum Engineering of multi-mode Gates

Page 29: Trapped-ion quantum computing: A Coherent Control Problem

Gate simulation results – 6 ions, axial modes

22 tone pairs, robust to: timing errors, normal-mode frequency drifts, heating

29

Normal-mode

frequenciesAll motion closes

at gate time

𝐴1 𝑇

𝐴𝑗β‰₯2 𝑇

πœ‹

2

𝑇 β‰ˆ 5.82πœ‹

𝜈1,

Quantum Engineering of multi-mode Gates

Page 30: Trapped-ion quantum computing: A Coherent Control Problem

β€’ 𝑇 β‰ˆ 62πœ‹

𝜈1, 41 tone pairs, robust to: timing errors, normal-mode frequency drifts,

heating. Resulting fidelity is 0.9987.

30

Gate simulation results – 12 ions, axial modes

Quantum Engineering of multi-mode Gates

πœ‹

2

Page 31: Trapped-ion quantum computing: A Coherent Control Problem

31C. Figgatt et al. Nature 572, 368 (2019). Y. Lu et al. Nature 572, 363 (2019)

MonroeJQI and IonQ

Experimental implementation of similar ideas

Page 32: Trapped-ion quantum computing: A Coherent Control Problem

In Summary

β€’ Trapped-ion quantum computers:

High-fidelity quantum gates

Small universal quantum machines

β€’ Increasing to larger ion-qubit numbers:

Scale-up architectures: interconnected small modules

Large-ion crystals: Coherent control optimization problem - hard, yet possible

β€’ Work towards ~100 qubit trapped-ion universal quantum computers

32

Page 33: Trapped-ion quantum computing: A Coherent Control Problem

The Weizmann trapped ion team

33

Roee Ozeri Ravid Shaniv Lior Gazit Lee Peleg Tom Manovitz Yotam Shapira Nitzan Akerman

Ady Stern

David Schwerdt

Sr+ ions

Or KatzVidyut KaushalMeirav PinkasHaim NakavRuti Ben-ShlomiMeir AlonAvi Gross