trigonometric functions. 1. draw accurate graphs of the functions and 2. draw sketch graphs of and...

47
Trigonometric functions

Upload: norman-sherman

Post on 23-Dec-2015

235 views

Category:

Documents


7 download

TRANSCRIPT

Trigonometric functions

1. Draw accurate graphs of the functions and

2. Draw sketch graphs of andusing their properties

3. Draw accurate graphs of the function 4. Draw a sketch graph of using its properties.5. Investigate the influence of a in the graphs of ,

and 6. Investigate the influence of q on the graphs of ,

and7. Use trigonometric graphs to describe real – life situations.

siny cosy siny cosy

tany tany

siny a cosy a tany a

siny q cosy q tany q

Draw accurate graphs of the functions and

Trigonometric functions are used to describe periodic phenomenon. It is always better to set up a table if you are working with an unknown

function.

0 1 0 - - -1 - 0

siny cosy

siny

0 30 60 90 120 150 180 210 240 270 300 360

3

23

2

1

21

2

1

2

3

23

2

Note:

The sine curve starts at the origin and resembles a wave-like curve.

It takes to complete one cycle and thus the period of the function is

The amplitude of the graph is 1, that is the biggest distance from the position of rest.

The Domain is: x Є R and the range is

The sin function changes, repeats values over a certain interval and is called a periodic function.

360

360

[ 1;1]y

Draw accurate graphs of the functions and

siny cosy

The Graph of the Sine Function

Basic sin curve

y

x

0 30 6090120 150 180 210 240 270300 360

Basic cos curve

y

x

The Graph of the Sine Function

Draw sketch graphs of andusing their properties

siny

cosy

Properties of the sin – function:

•Period =

•The sin – function is a periodic function because there is a repetition of values over a certain interval (check table)•Amplitude = 1

• Range:•The graph starts at ( ;0)• The sin – function is positive in the first and second quadrant.•Use the five points: ,

360

[ 1;1]y

0

( ;0)0 90 ;1 ;(180 ;0); 270 ; 1 and 360 ;1

Draw sketch graphs of andusing their properties

360

[ 1;1]y

Properties of the cos – function: Period =The cos function is a periodic function because there is a repetition

of values over a certain interval (check table)Amplitude = 1Range:The graph starts at The values of cos changes as changes from to The cos – function is positive in the first and fourth quadrant.Use the five points: ,

siny

cosy

0 ;1

0 360

0 ;1 90 ;0 , 180 ; 1 , 270 ;0 and 360 ;1

Sin – function: Using the five points plus the sign in the four quads

y

x

Cos – function: Using the five points plus the sign in the four quads

y

x

Draw accurate graphs of the

function

If:

x- intercepts are at:

Asymptotes at:Amplitude: the tan curve has no amplitude, because it has no maximum or minimum value

tan 45 1 45 ;1

tan135 = -1 135 ;-1

tan 225 1 225 ;1

tan 335 1 315 ;-1

0 , y = 0

x = 90 , y = undefined

x = 180 , y = 0

x = 270 , y = undefined

x = 360 , y = 0

x

tany

0 , x = 180 ; x = 360x

90 and 270 Period of the tan – function = 180º

Range: y Є R

Domain: x Є [ 0º ; 360º ] ; x ≠ ± 90º ;

x ≠ 270º

Test Your Knowledge

1. On the same set of axis sketch the graphs of:

clearly showing the translations that take place.

y=sinx

y=2sinx

y=2sinx-1

Solutions

y

x

The tan - function

x

Draw a sketch graph of using its properties. tany

y

x-

Θ Є [ -90º ; 360º ]

Investigate the influence of a in the graphs of , and

In both the sin and the cos function we see a change in amplitude: amplitude = a unitsperiod = remains range =

siny a cosy a tany a

360[ ; ]y a a

y

x

The transformations in the graph of the cos – function, due to the influence of a

y

x

x

The following graphs clearly show how the graphs of the sin - and cos functions are translated when q is added to the parent graphs

y

x

Use trigonometric graphs to describe real life situations

The heights of tides with respect to time are illustrated in the following sketch. The solid line represents the curve of heights of tides against time.

What is the value of a and q if the equation of the curve is given by

siny a q

2sin 2y The equation is:

y

x

Test your knowledgeQuestion 1 Write down the amplitude and period of the

graph y= - 2 cos2x

Answer

A Amplitude = -2Period = 360°B Amplitude = 2 Period = 180°C Amplitude = -2 Period = 360°D None of the above

Test your KnowledgeQuestion 2

Write down the amplitude and period of the graph y = sin x – 2

Answer

A Amplitude = 1 Period = 360°B Amplitude = 2 Period =360°C Amplitude = - 2 Period = 180°D None of the above

Test your knowledgeQuestion 3

Write down the range and period of the graph y = 2 tanx

Answer

A Range : y ε R Period = 360°B Range : y ε [ - 2 ; 2 ] Period = 360°C Range : y ε R Period = 180°D None of the above

Test your knowledgeQuestion 4

Write down the range of the graph y = 2sinx – 1

Answer

A Range : Range : y ε R B Range : y ε [ - 2 ; 2 ] C Range y ε [ - 1; 3 ]D Range : y ε [ - 3; 1 ]

Test your knowledgeQuestion 5

Write down the amplitude of the graph y = 3tan2x

Answer

A Amplitude = 3B Amplitude = 2C No Amplitude D None of the above

Problems

1. On a certain day the depth, D metres, of water at a fishing port, t hours after midnight, is given by

a. Find the depth of the water at 1.30 pm.b. The depth of the water in the harbour is recorded each hour. What

is the maximum difference in the depths of the water over the 24 hour period?

Solution

pm 1.30at metres 219 isDepth

1d.p. tom219

metres 19322 difference Maximum 2

159512

3)1(59512 of valuemin. )45sin(59512

22159512 of valuemax. Hence, )405sin(59512

1 is minimum ,1)30sin( of valueMaximum b) ))513(30sin(59512,513 When a)

0

D

D

DD

DD

tDt

Problem

Solve 3600,1)sin(240tan 00 xx

Solution

4355or 6184

64- 360or 64180

)64 )08050(sin

)0805.0(sin (r.a.a. 08050)sin(

1610)sin(2

1)sin(28390 so 839040tan

1

1

x

x

x

x

x

x

Trig Graph collection

The following slides give more exemplars of trig graphs. Please study them

0 90 180 360270-90-180-270-360

0 90 180 270-90-180-270-360 360

450o0o 90o 180o 270o 360o-90o-180o-270o-360o-450o

90o

180o

0o 270

o

1

-1

360o

0o

90o

180o

270o

The Trigonometric Ratios for any angle

270-360 90 180

x

y = f(x)

0 360-90-180-270

1

-1

2

-2

sinx

2sinx

3

-3

3sinx

y = ½sinx

90 180

x

0 270-90-180-270

1

-1

2

-2

Sinx

2Sinx

3Sinx

Amplitude 1

Period 360o

Amplitude 2

Period 360o

Amplitude 3

Period 360o

-360

360

-3

3

90 180

x

y = f(x)

0 270 360-90-180-270-360

1

-1

2

-2

3

-3

cosx

½cosx

2cosx

3cosx

xx

x x

y = sinx y = 2sinx

y = 3sinx y = ½ sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

x

x x

y = cosx y = 2cosx

y = 3cosx y = ½ cosx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o x

x

270 360-360

y = f(x)

90 1800-90-180-270

1

-1

2

-2

f(x) = sinx f(x) = sin2x f(x) = sin3x f(x) = sin ½ x

x

270 36090-360 180

y = f(x)

0-90-180-270

1

-1

2

-2

f(x) = cosx f(x) = cos2x f(x) = cos3x f(x) = cos ½ x

xx

x x

y = sinx y = sin2x

y = sin3x y = sin ½ x

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

xx

x x

y =cosx y = cos2x

y = cos3x y = cos ½ x

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = tan

0o 90o 180o 270o 360o-90o-180o-270o-360o 450o-450o x

y = sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = cosx

y = tan

0o 90o 180o 270o 360o-90o-180o-270o-360o 450o-450o x

xx

y = sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = cosx y = 2sinx y = 2cosx

x

y = 3sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = 3cosx

x

y = ½ sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = ½ cosx

x x

xx

x x

y = sinx y = -2sinx

y = 3sinx y = ½ sinx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = - sinx y = 2sinx

y = - 3sinx y = - ½ sinx

x

x x

y = cosx y = 2cosx

y = 3cosx y = ½ cosx

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o 0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

y = -cosx y = -2cosx

y = -3cosx y = -½ cosx

x

270-360 90 180

x

y = f(x)

0 360-90-180-270

1

-1

2

-2

3

-3

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o x

x x0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o

0

1

2

3

- 1

- 2

- 3

90o 180o 270o 360o-90o-180o-270o-360o x